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Abstract

The development of large-scale image-captioning
datasets is expensive, while the abundance of unpaired im-
ages and text corpus can potentially help reduce the efforts
of manual annotation. In this paper, we study the few-shot
image captioning problem that only requires a small amount
of annotated image-caption pairs. We propose an ensemble-
based self-distillation method that allows image captioning
models to be trained with unpaired images and captions.
The ensemble consists of multiple base models trained with
different data samples in each iteration. For learning from
unpaired images, we generate multiple pseudo captions with
the ensemble and allocate different weights according to
their confidence levels. For learning from unpaired captions,
we propose a simple yet effective pseudo feature generation
method based on Gradient Descent. The pseudo captions
and pseudo features from the ensemble are used to train the
base models in future iterations. The proposed method is
general over different image captioning models and datasets.
Our experiments demonstrate significant performance im-
provements and meaningful captions generated with only
1% of paired training data. Source code is available at
https://github.com/chenxy99/SD-FSIC.

1. Introduction

The advances in Deep Neural Networks (DNNs) have
demonstrated promising performances in vision and natural
language processing tasks. Driven by such advances, re-
search in image captioning, a cross-modal task that requires
both visual and language modeling, has been developing
rapidly in recent years. Most image captioning methods learn
a deep neural network model in a supervised learning manner
based on manually labeled image-caption pairs [5, 54, 57].
Despite their success, the training of these supervised mod-
els requires a large corpus of captions paired with images,
which is extraordinarily labor-intensive. With over 123k
images annotated with 5 captions each, the most popular
image captioning dataset Microsoft COCO [39] is still con-
sidered relatively small compared with general datasets such

n

as ImageNet [47] and Openlmages [32]. Therefore, the high
cost of manual annotations has limited the generalizability
of image captioning models.

To alleviate the expensive cost of annotating image-
caption pairs, recent studies propose semi-supervised learn-
ing [8, 28, 40] and unsupervised image captioning [13, 19,
33] approaches, allowing image captioners to learn from un-
paired images and captions. These methods utilize externally
trained object detectors [45, 59, 61] and external sentence
corpus [13]. Semi-supervised image captioners also leverage
external modeling [28, 40] and language data [8] to establish
semantic alignments between visual and language data and
hence boost the performance of image captioners. Despite
their success, their performances are highly dependent on
the availability of external data and models, especially when
only few image-caption pairs are annotated.

To address the few-shot image captioning problem, we
for the first time propose an ensemble-based self-distillation
method that does not depend on any external knowledge.
Specifically, we train multiple base models using annotated
image-caption pairs together with unpaired images and cap-
tions, which forms an ensemble that performs better than the
individual models. Pseudo captions and image features are
generated with the ensemble, and added to the training of the
base models. This method is considered a self-distillation
approach, in which the ensemble serves as a teacher and the
base models serve as the students. To improve the accuracy
and robustness of the ensemble, different weights of loss are
assigned to the pseudo captions depending on their confi-
dence levels. Further, we introduce a simple yet effective
method to generate pseudo features from unpaired captions,
and use these features to train the base models. With the pro-
posed method, we can leverage the large number of unpaired
images and captions to improve the performance of few-shot
image captioning.

In sum, the contributions of this work include: 1) a novel
approach to few-shot image captioning based on temporal
ensemble and multi-model ensemble, 2) a self-distillation
method with Confidence Reweighting (CR) for learning from
unpaired images, and 3) a pseudo feature generation method
based on Gradient Descent for learning from unpaired cap-
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tions.

2. Related Work
2.1. Image Captioning with Unpaired Data

Different methods have been proposed to train image cap-
tioners with partially annotated image-caption pairs [7, 8,
18, 19, 21, 40] or with only unpaired data [13, 33]. Chen
et al. [8] first exploits external language data to improve
the performance of image captioners. The cross-domain
image captioner [7] uses adversarial training to transfer a su-
pervised image captioner to a target domain without paired
training data. Non-autoregressive image captioning [22]
formulates a multi-agent reinforcement learning system to
cooperatively maximize a sentence-level reward in a semi-
supervised setting. Liu et al. [40] proposes a self-retrieval
approach to make use of unpaired images. Gu et al. [18]
captures the characteristics of an image captioner from a
pivot language and aligns it with the target language. Kim et
al. [28], Yang et al. [13], Laina et al. [33] and Gu et al. [19]
use Generative Adversarial Networks (GANs) to generate
pseudo images from captions or to project images and cap-
tions into a common latent space [20, 65]. Guo et al. [21]
implements a concepts-to-sentence memory translator cor-
relating the relational reasoning between visual concepts
and generated captions. Different from these works, our
ensemble-based self-distillation approach focuses on maxi-
mizing the use of existing data for few-shot image captioning.
It does not require additional models to generate pseudo fea-
tures or searching for the unpaired captions over the training
set, which is more efficient than previous methods.

2.2. Novel Object Captioning

A related problem to few-shot image captioning is novel
object captioning. It aims to describe images of objects ab-
sent from training data. Novel object captioning methods
highly depend on externally trained image taggers or ob-
ject detectors [37, 60, 64] to generalize pretrained image
captioners for describing near-domain or out-of-domain im-
ages [2]. Deep Compositional Captioner (DCC) [24] and
Novel Object Captioner (NOC) [53] are the first methods
to address this problem with the incorporation of external
knowledge. Following a template-based framework, Lu et
al. [41], Wu et al. [56], and Feng et al. [12] further propose
Neural Baby Talk (NBT), Decoupled Novel Object Captioner
(DNOC) and Cascaded Revision Network (CRN), respec-
tively. Mogadala et al. [42], Yao et al. [60] and Li et al. [37]
propose a copying mechanism with knowledge guided at-
tention, LSTM with Copying (LSTM-C) and LSTM with
Pointing (LSTM-P), respectively. Finally, inference-time
strategies are proposed for generating sentences with spe-
cific novel objects, namely image Captions with Guiding Ob-
jects (CGO) [64] and Constrained Beam Search (CBS) [4].

These novel object captioning methods assume the absence
of training data for novel objects, but for few-shot image
captioning, such knowledge is available in the unpaired train-
ing data and can be learned with semi-supervised learning
methods. Therefore, instead of focusing on the use of exter-
nal knowledge and specialized architectures for describing
novel objects, our ensemble-based self-distillation approach
is more general and more feasible to address the few-shot
image captioning problem.

2.3. Ensemble-Based Semi-Supervised Learning

Our work is also related to a number of ensemble-based
semi-supervised learning approaches [34, 51, 62]. Ensem-
ble [14] is commonly used in semi-supervised learning to
generate pseudo labels for unlabeled data, which has been
applied in various tasks, such as object detection [9, 63],
person re-identification [16], machine translation [55] and
natural language inference [58]. For example, in image clas-
sification, multi-model ensemble [62] uses different base
models to generate pseudo class labels and integrates their
results, whereas temporal ensemble [34, 51] integrates mod-
els at different training iterations to generate pseudo labels.
Despite the success of these methods, their application in
the image captioning task has not been explored, and how
to utilize unpaired data from both vision and language do-
mains remains an open question. In this work, we bridge
this gap by generating pseudo captions and pseudo image
features based on an integration of multi-model ensemble
and temporal ensemble.

3. Approach

The goal of few-shot image captioning is to develop an
image captioner y = F'(x|@) that generates a caption y =
{y1,...,y:} to describe an input image «. Its parameters 6
can be jointly optimized on three datasets: a scarcely anno-
tated set of image-caption pairs D, , = {(z¥, y(i))}ivjl’y,
a set of unpaired images D, = {z(V}=, and a set un-
paired captions D, = {y¥) }iv:yl The training of an image
captioner can be achieved by minimizing the loss function

L= Em,y + )‘.’L“Cflf + Ay£y7 (1)

where L, ,, L., and L, are computed on the three datasets
Dy.y» Dy, Dy, respectively, and A, and A, balance the
weights of the corresponding loss terms.

In the rest of this section, we introduce our ensemble
method (see Section 3.1) to generate pseudo captions of the
unpaired images (see Section 3.2) and pseudo features of the
unpaired captions (see Section 3.3). A complete summary of
our algorithm is described in the Supplementary Materials.
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Figure 1. Overview of the ensemble-based self-distillation method. We train M encoder-decoder networks (i.e., base models) and build an
ensemble to generate pseudo captions and pseudo features. (a) We feed the unpaired images to the base models and obtain K output captions
from the ensemble. These captions are used in later iterations of the training process as pseudo captions, with their normalized confidences
as the weights of loss. (b) Given an unpaired caption, we use Gradient Descent to find the optimal latent features for the ensemble to generate
the caption. The M Mean Teacher models are sequentially selected during the optimization.

3.1. Ensemble Method

Assume that an image captioner is designed following
the encoder-decoder framework [54]. It is composed of
an encoder z = F(x|@%) that projects the input image x
into a latent feature vector z, and a decoder y = D(z|6")
that generates the output caption y from the vector z. In
practice, the encoder is commonly implemented using a
Convolutional Neural Network (CNN), and the decoder is
commonly implemented using a Recurrent Neural Network
(RNN). To generate accurate yet diverse pseudo captions
and pseudo features, we train M image captioners as base
models and develop an ensemble out of the base models.
Training on the paired data is achieved by minimizing the
supervised loss

M
Loy = E

m=1 (cc,y)eDz,y

fCE(y7F($\9m)), (2)

where 0, is the parameters of the m-th base model, and
Lcg(+, -) measures the sequential cross entropy loss.

We develop an ensemble by computing a Mean
Teacher [51] for each of the M base models, and the predic-
tions of the M Mean Teachers are averaged into the final
output. Mean Teacher is a temporal ensemble method that
averages model weights instead of their outputs to prevent
overfitting. Specifically, given the parameters O,tﬂ of the
m-th base model at the ¢-th training iteration, the parameters
for the m-th Mean Teacher are computed as

O =a®t+(1-a)8,, m=1,....M, (3)

where « is a smoothing coefficient, and the parameters at
t = 0 are initialized as ®°, = " .

Thus, the temporal and multi-model ensemble not only
generates more accurate and robust captions than the base
models, but also enables the generation of pseudo captions
and pseudo features that can be used to train the base models.
As shown in Figure 1, for the diversity of base models and
the robustness of the ensemble, we randomly assign the gen-
erated pseudo captions and features to different base models.
Specifically, at each iteration, we randomly split the batched
training data into M blocks and train each base model with
only one block of the data. Compared with other resam-
pling strategies such as Monte Carlo cross-validation [10]
or Bootstrap [50], the non-repeated M -fold splitting leads
to relatively noisier samples, which improves the diversity
of different base models and prevents them from generating
similar captions. By iteratively including pseudo captions
and features into the training set, this method is referred to
as self-distillation.

3.2. Self-Distillation with Unpaired Images

Figure 1a shows the process of self-distillation with un-
paired images. With beam search [30], the ensemble gen-
erates K pseudo captions {g", ..., 4™} that describe the
input image with different confidence levels (i.e., sum of
log-likelihood). Using less confident pseudo captions as
training labels may result in error accumulation and gradu-
ally degrade the performance of the models. To address this
issue, we propose the Confidence Reweighting (CR) method
to assign different weights to each training sample according
to the confidence of the pseudo captions. Given the k-th
pseudo caption §* = {§f,..., 75 }. where Ly, represents



its length, its confidence is computed as

Ly
Sk = Zlogp(gﬂgfjfl,@l,...,G)M), k=1,...,K.

j=1
“4)
Given the confidence levels of all pseudo captions s =
{s1,..., 8k}, the weights v = {1, ..., vk} can be obtained
with a softmax normalization v = softmax(s).
With the normalized weights, the unsupervised loss term
for the unpaired images is defined as

M K
Lo =M Z Z Z’ykll(m = n)luse (9", F(x]0,,)),
m=1x€D, k=1
n ~ Cat(M, p),
(@)

where fysg(, -) is the distillation loss [25, 49, 517, 1.() is
the indicator function, and Cat(M, p) is the categorical dis-
tribution with probabilistic parameter p.

The proposed CR method allows the base models to
avoid accumulating the errors while learning from less
confident pseudo captions. Unlike the adversarial semi-
supervised learning [28] and the fluency-guided cross-
lingual approach [35], our method directly uses the log-
likelihood from the existing decoder to balance the weights
of the generated captions. Therefore, without additional
parameters, it avoids overfitting due to the few paired data.

3.3. Self-Distillation with Unpaired Captions

To include the unpaired captions in the training of base
models, we propose to generate pseudo image features by
applying Gradient Descent to the trained ensemble (see Fig-
ure 1b). Previous studies typically use GANs [17, 65] to
generate pseudo image features [13, 28, 33] or model pa-
rameters [48], which is less effective under the few-shot
condition. Differently, our method can effectively generate
valid pseudo features without introducing additional parame-
ters, avoiding overfitting the few training examples.

Suppose we have learned M base-model decoders with
their parameters {87,...,02}, as well as their Mean
Teacher parameters {@F ..., ®”1. Given an unpaired
caption y, we aim to find its corresponding latent features

M
Z = argmin, Z les(y, D(z|O))). (©6)

m=1

Starting from a Gaussian noise z ~ N(0,02I), we se-
quentially select one of the Mean Teachers to calculate the
sequential cross entropy and update the features z using
Gradient Descent:

 dlee(y. D(=1©1))

92 ; (7

zZ =z —

where 7 is the learning rate of this inner optimization prob-
lem. This strategy can reduce the computational complexity
and improve the robustness of self-distillation. Its conver-
gence can be guaranteed by the online learning with non-
convex losses [15]. The optimal features z can be used as a
pseudo feature vector to train the base models, so that they
can generate more fluent and accurate captions. Thus, the
unsupervised loss term for unpaired captions is denoted as

M
L, =M > Lu(m=n)lce(y, D(2|67)),

m=1yeD, (8)
n ~ Cat(M, p).

4. Experiments

In this section, we report our experiments and results
to demonstrate the effectiveness of the proposed approach.
First, we introduce datasets, evaluation, and implementation
details. Next, we conduct quantitative comparisons with the
state of the art and various baselines. Finally, we present the
qualitative results, and analyze the model complexity.

4.1. Datasets and Evaluation

Our experiments are mainly conducted on the Karpa-
thy splits [26] of the Microsoft COCO dataset [39], with
113k training images, 5k validation images, and 5k test
images. Following [28], we randomly sample 1% of the
image-caption pairs for training, and use the rest images and
captions as unpaired training data.

In addition, following the practices of [13] and [28], we
introduce Shutterstock [1] as an external sentence corpus.
We use 2, 322, 628 distinct image descriptions from this web-
site as the unpaired captions and randomly sample a small
portion of image-captions pairs from the COCO dataset. The
remaining training images from the COCO dataset are used
as the unpaired training data.

We use the common evaluation metrics for image caption-
ing: BLEU [43], METEOR [6], ROUGE [38], CIDEr [52],
SPICE [3] and WMD [27]. Since CIDEr [52] is well-
accepted to measure the information and smoothness of the
sentences, the hyper-parameters of our models are tuned on
the validation set for the best CIDEr, and the final results are
evaluated on the test set.

4.2. Implementation Details

We use the Neural Image Caption (NIC) [54] with a
ResNet-101 [23] backbone as our base model, as well as
the Att2in2 [46] and the Up-Down [5] models. We train
the models using a minibatch size of 50 and the Adam [29]
optimizer with learning rate 2.5 x 1073, We initialize the
hyperparameters A, and A, as 0, and linearly increase them
to Ay = 0.1 and A\, = 1 with the number of epochs. For
inner optimization of the latent feature vector z, we run the



Method Base Model COCO test

BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor ROUGEL CIDEr SPICE WMD
Adversarial Learning [28] NIC [54] 63.0 - - 18.7 20.7 - 55.2 - -
Pseudo Label [36] NIC [54] 63.3 44.6 20.9 21.3 19.4 46.0 57.2 12.0 14.0
Deep Mutual Learning [62] NIC [54] 63.7 449 31.1 21.6 19.5 46.2 58.3 12.3 14.1
Pivoting [18] NIC [54] 46.2 24.0 11.2 54 13.2 - 17.7 -
GAN [13] NIC [54] 58.9 40.3 27.0 18.6 17.9 43.1 54.9 11.1
SME [33] NIC [54] - - - 19.3 20.2 45.0 61.8 12.9
SGA [19] SGAE [59] 67.1 47.8 323 21.5 20.9 47.2 69.5 15.0
Ours NIC [54] 64.5 459 32.1 22.5 20.0 46.7 62.4 12.7 14.7
Ours Att2in2 [46] 66.9 48.6 34.5 24.3 20.8 48.2 66.3 13.2 15.4
Ours Up-Down [5] 67.9 49.8 35.4 25.0 21.7 49.3 73.0 14.5 16.6

Table 1. Quantitative comparisons on the COCO test set between our method and state-of-the-art semi-supervised [28, 36, 62] and

unsupervised [13, 18, 19, 33] image captioners.

Adagrad [11] optimizer for N = 100 iterations with learn-
ing rate 7 = 1. The standard derivation of the initialized
pseudo feature is 0 = 0.1. We set the smoothing coefficient
a = 0.99 for the Mean Teacher method and the weight de-
cay as 0.0005. The total epoch is set as 100, where the first
two epochs are used to pretrain the models on the unpaired
captions only. We also use M = 3 base models to form our
ensemble model and set beam search size as K = 5. The
elements of p for the categorical distribution are set as 1/M.
We implement our experiments in PyTorch [44].

4.3. Quantitative Results

Quantitative results on the COCO dataset. We com-
pare our method with state-of-the-art approaches on COCO
test set. First, our method is compared with three few-shot
image captioning methods (see the first panel of Table 1):
Adversarial Learning [28] uses a GAN model to match
the distribution of latent feature from images and captions.
Pseudo Label [36] is a conventional semi-supervised classi-
fication model. Deep Mutual Learning [62] is an ensemble
of students learning collaboratively and teaching each other
throughout the training process. For a fair comparison with
our method, we have similarly applied ensembles to the
Pseudo Label [36] and Deep Mutual Learning [62] meth-
ods with M = 3 and = 0.99, and adapted them for the
few-shot image captioning task. In addition, we also com-
pare our method with four unsupervised methods (see the
second panel of Table 1): Pivoting [18] uses a joint learning
framework with an image-to-pivot captioning model and a
pivot-to-target neural machine translation model. GAN [13]
generates an adversarial caption, reconstructs an alignment
of visual and sentence embedding space and uses gradient
policy to optimize the awards. SME [33] aligns images and
sentences in a shared latent representation structured through
visual concepts. SGA [19] presents a scene graph-based ap-
proach for unpaired image captioning. For our proposed
method, we use three image captioners as the base model,

e.g.,NIC [54], Att2in2 [46] and Up-Down [5] (see the last
panel of Table 1) and compare their performances with the
state of the arts.

As shown in Table 1, most of the compared methods
are based on the NIC [54] model, while only SGA uses the
state-of-the-art Auto-Encoding Scene Graphs (SGAE) [59]
and policy gradient [46] to improve its performance. In
comparison with SME [33], the best NIC-based approach,
our method performs 1.0% better in CIDEr (from 61.8 to
62.4) using the same base model. Different from SME [33]
that depends on external object detectors, our method sim-
ply depends on the base models, without any externally
trained models. Therefore, our approach can be easily ap-
plied to different state-of-the-art image captioners to handle
the few-shot situation. For example, our method based on
the Up-Down base model performs significantly better than
the SGA method [19], while the Up-Down model [5] is infe-
rior to the SGAE [59] captioner used in SGA [19]. Further
comparisons across different base models are reported in the
Supplementary Materials.

Quantitative results on the Shutterstock dataset. Fur-
ther, following the practices of [13] and [28], we use the
image descriptions from Shutterstock as unpaired captions
and test the model performances on the COCO test set. In
Table 2, we compare our method with three state-of-the-
art semi-supervised [28] and unsupervised [13, 21] image
captioners, including Adversarial Learning [28], GAN [13],
and R?M [21]. Our method significantly outperforms these
methods, even with only 0.5% of paired data (i.e.,566 image-
caption pairs). The performance of our method increases
with the number of paired data, while being consistently
better than the Adversarial Learning [28] method. Interest-
ingly, the discrepancy between the unpaired Shutterstock
captions and COCO images affects our method and Ad-
versarial Learning [28] differently. On one hand, with 1%
paired data, replacing the unpaired COCO captions with
the Shutterstock captions only causes a minor degradation
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Method Paired COCO test
BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor ROUGE.L CIDEr SPICE WMD

GAN [13] 0% 41.0 22.5 11.2 5.6 12.4 28.7 28.6 8.1 -
R2M [21] ¢ 44.0 254 12.7 6.4 13.0 31.3 29.0 9.1 -
Adversarial Learning [28] 0.5% - - - 5.4 12.0 34.6 10.5 4.2 -
Ours 070 61.9 42.4 28.5 18.9 17.3 44.6 46.5 9.8 11.5
Adversarial Learning [28] 0.8% - - - 12.2 15.1 41.6 29.0 7.6 -
Ours e 63.9 44.9 31.0 21.1 18.8 46.1 54.7 11.6 13.2
Adversarial Learning [28] 1% - - - 15.2 16.9 433 39.7 94 -
Ours 0 64.1 45.2 31.3 21.5 19.3 46.4 58.4 12.1 14.1

Table 2. Quantitative comparisons on the COCO test set between our method and state-of-the-art semi-supervised [28] and unsupervised [13,
21] image captioners trained with Shutterstock captions. Both our method and Adversarial Learning [28] are trained with 0.5 — 1% of
COCO image-caption pairs in addition to the unpaired COCO images and Shutterstock captions. The unsupervised GAN [13] and R?M [21]
methods use an additional set of 36 million images from the OpenImage [32] dataset.

Method Data COCO test
P Ul UC BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor ROUGEL CIDEr SPICE WMD

Mean Teacher (P) v 62.0 43.1 29.4 20.1 18.7 45.1 53.8 114 134
Mean Teacher (P+UI) v v 63.0 43.9 30.1 20.6 18.9 45.6 55.8 11.6 13.7
Mean Teacher (P+UC) v v 62.5 43.5 29.8 20.5 19.8 45.2 56.1 12.0 13.7
Mean Teacher (P+UI+UC) vV v 62.8 44.2 30.6 21.3 19.5 45.5 59.3 12.2 14.3
Ours (P) v 62.9 44.1 304 20.9 19.2 45.7 56.2 11.9 13.7
Ours (P+UI) w/o CR v v 64.2 45.2 31.1 21.3 19.4 46.2 58.0 12.1 13.9
Ours (P+UI) v v 63.8 45.0 31.2 21.6 19.6 46.3 58.7 12.3 14.2
Ours (P+UC) v v 64.4 45.6 31.9 22.2 19.9 46.7 60.4 12.5 14.4
Ours (P+UI+UC) w/oCR vV v 64.3 45.8 32.1 224 19.9 46.5 60.7 12.5 14.5
Ours (P+UI+UC) v v v 64.5 45.9 32.1 22.5 20.0 46.7 62.4 12.7 14.7
Ours+ (Visual Genome) v vV 65.2 46.9 33.0 23.3 20.4 47.6 64.9 13.1 15.1
Ours+ (Unlabeled COCO) v VvV vV 65.8 475 335 23.6 20.6 479 65.3 13.3 15.4

Table 3. Quantitative comparison with various baselines on the COCO test set. The baselines are trained with different data settings,
including paired data (P), unpaired images (UI), and unpaired captions (UC). The Ours+ model is trained with additional unpaired images

from the Visual Genome [31] dataset or the COCO [39] dataset.

(6.4% in CIDEr, from 62.4 to 58.4), while that of Adversar-
ial Learning [28] is 28.1% (from 55.2 to 39.7). On the other
hand, when the percentage of paired data decreases from
1% to 0.5%, our method has a less significant performance
drop (20.4% in CIDEr, from 58.4 to 46.5) than Adversarial
Learning [28] (73.6% in CIDEr, from 39.7 to 10.5). Since
Adversarial Learning [28] adopts a pseudo-label assignment
strategy to utilize the unpaired data, it cannot avoid the error
propagation due to the domain discrepancy between COCO
images and Shutterstock captions, especially with few paired
data. Differently, our method does not rely on a matching
mechanism, but uses ensemble models and gradient descent
to prevent models from the severe error propagation. In
practice, it allows real-world applications to collect unpaired
images and captions from different domains, which can ef-
fectively reduce the labor-intensive efforts of data collection.

Effects of multi-model ensemble. Since our method is
based on an ensemble of multiple Mean Teachers, when

M = 1, our ensemble model degrades to a single Mean
Teacher model. As shown in Table 3, Mean Teacher
(P+UI+UC) with fewer parameters has already outperformed
the state-of-the-art methods. Hence, we compare our method
with Mean Teacher as a strong baseline, to demonstrate the
effects of multi-model ensemble. As shown in Table 3, with
paired data only (P), the multi-model ensemble leads to a
significant improvement of 4.5% in CIDEr (from 53.8 to
56.2); with both paired data and unpaired images (P+UI),
the improvement is 5.2% (from 55.8 to 58.7); with both
paired data and unpaired captions (P+UC), the improvement
is 7.7% (from 56.1 to 60.4); with all paired and unpaired
data (P+UI+UC), the improvement is 5.2% (from 59.3 to
62.4). These improvements suggest the effectiveness of the
integration of temporal ensemble and multi-model ensemble.

Further, we observe that the performance of our method
(P+UI+UCQC) increases when M < 5 and then start to de-
crease when M > 5 (see Figure 2a). We also observe
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similar trends in our (P+UI) baseline. It suggests that er-
ror propagation may occur due to the distillation with the
pseudo captions/features instead of ground-truth supervision.
Training with only paired data does not suffer from error
propagation because it is completely supervised. Interest-
ingly, even if we use 10 base models with paired data only
(P), its performance cannot surpass 3 base models with un-
paired images (P+UI) or 1 base models with all the unpaird
data (P+UI+UC), which demonstrate the effectiveness of our
approach in leveraging unpaired data.

Finally, as shown in Figure 2b, with a fixed number of
the models M = 3, the performance improvements between
different baselines are consistent across various ratios of
paired data from 0.5% to 10%, suggesting the effectiveness
of our method and the inclusion of unpaired data.

Effects of self-distillation with unpaired images and
captions. By including the unpaired images, our self-
distillation method increases its CIDEr score from 56.2 to
58.7 (i.e., Ours (P+UI) in Table 3). Similarly, by only in-
cluding the unpaired captions, our approach also achieves a
significant improvement in CIDEr (from 56.2 to 60.4). More-
over, with the pseudo features generated from unpaired cap-
tions, our method achieves a remarkable 6.3% improvement
in CIDEr (from 58.7 to 62.4), suggesting that the knowledge
distilled from the pseudo features is effective. To further ver-
ify the performance gain from the unpaired images, we addi-
tionally include 112k Visual Genome [31] training images
or 123k COCO unlabeled images in the experiments. These
images provide abundant knowledge to improve the general-

ization of the model. As shown Table 3, Visual Genome and
COCO unlabeled images further increase the model’s CIDEr
scores to 64.9 and 65.3, respectively. The improvements
confirm the effectiveness of pseudo caption generation and
suggests potential benefits from larger image datasets.

Note that the main technical novelty of our self-
distillation method is the Confidence Reweighting (CR) ap-
plied to the pseudo captions. As shown in Table 3, the perfor-
mance degrades to CIDEr=58.0 without using this method
(i.e.,by averaging the cross entropy). The difference is also
significant when unpaired captions are added to the training
data (2.8% in CIDEr, from 60.7 to 62.4), which suggests the
effectiveness of CR in protecting model convergence from
the propagation of captioning errors. Moreover, we observe
that the confidence levels of generated pseudo captions are
strongly correlated with their CIDEr scores. For the top-5
most confident captions, their average CIDEr scores on the
COCO validation set are 61.3, 59.5, 59.3, 57.8, and 57.6,
respectively. The most confident caption has the highest
CIDEr score, while the least confident caption has the lowest
score. This correlation justifies the use of confidence level
as a reweighting strategy in the distillation process.

Analysis of SPICE F-scores. To further understand the
contributions of each technical component, we report a break-
down of SPICE F-scores over various subcategories on the
COCO test set. Asillustrated in the first panel and the second
panel in Table 4, after adding unpaired images and unpaired
captions, the generated captions are more comprehensive-
ness in relationships between objects, counting number, sizes
and objects. For example, the higher score on objects sug-
gests that the generated captions can describe the object in
the image more precisely. For more detailed ablation studies,
please refer to the Supplementary Materials.

4.4. Qualitative Analysis

In addition to the quantitative results, we further demon-
strate the effectiveness of our method with qualitative ex-
amples on the COCO validation set. Figure 3 compares
the results of our method (P+UI+UC) with the two state-
of-the-art approaches: Pseudo Label [36] and Deep Mutual
Learning [62], as well as two baseline methods: Ours (P)
and Ours (P+UI). The Adversarial Learning [28] method is
not compared because of the inaccessibility of source code.
As shown in Figure 3, the Pseudo Label and Deep Mutual
Learning methods, as well as the baselines, can describe
part of the scenes correctly (e.g., ‘broccoli’ and ‘beach’), but
fail to describe the image contents completely (e.g., missing
the ‘meat’ and ‘surfboard’). By training with images and
unpaired captions, our approach generates more accurate
and fluent captions to describe the input images, and objects
in the images are correctly recognized (e.g., ‘meat’ and ‘surf-
board’). It also verifies that the F-score of objects of our
method is higher than that of other baselines. The qualita-



Method Data COCO test
P Ul UC SPICE Relation Cardinality Attribute Size Color Object

Mean Teacher (P) v 11.4 2.3 0.8 2.8 0.9 2.5 23.1
Mean Teacher (P+UI) v v 11.6 2.6 1.0 2.8 1.5 2.3 23.5
Mean Teacher (P+UC) v v 11.9 2.3 2.2 3.6 1.4 3.8 23.9
Mean Teacher (P+UI+UC) v v v 12.2 2.9 1.2 3.6 2.1 1.5 24.3
Ours (P) v 11.9 2.6 0.5 2.9 1.3 32 24.1
Ours (P+UI) w/o CR v 12.1 2.6 0.6 3.1 1.4 34 24.3
Ours (P+UI) v o 12.3 2.7 0.6 32 1.5 3.5 24.6
Ours (P+UC) v v 12.6 2.6 2.2 3.6 1.3 3.5 25.3
Ours (P+UI+UC) w/oCR vV v 12.5 2.7 1.0 34 1.6 3.5 25.1
Ours (P+UI+UC) v v v 12.7 2.8 14 3.6 1.6 3.6 25.3
Ours+ (Visual Genome) v vV 13.1 3.1 1.0 3.1 1.5 1.3 26.2
Ours+ (Unlabeled COCO) v vV vV 13.3 3.2 14 3.2 2.0 1.9 26.6

Table 4. Breakdown of SPICE F-scores over various subcategories on the COCO test set.

Pseudo Label:
Deep
Ours (P):
(P+UI) :
(P+UI+UC) :
Ground-truth:

Ours

Ours

Pseudo Label:

Ours (P):

Ours (P+UI):
Ours (P+UI+UC):
Ground-truth:

Mutual Learning:

Deep Mutual Learning:

A close
A plate
A plate
A plate
A plate
A plate

of a plate of broccoli and vegetables.
food
food
of food
of food
with meat chops, broccoli and pasta on it

up
of
of

with broccoli and broccoli.
with broccoli and broccoli.
with broccoli and vegetables.

with meat and broccoli.

A man flying a kite on the beach.

A man holding a kite on a beach.
A man is flying a kite on a beach.
A man holding a skateboard on a beach.

A person holding a surfboard on a beach.

A guy on a beach holding a surf board.

Figure 3. Qualitative examples of our model and various baselines on COCO validation set.

tive results suggest the effectiveness of using unpaired data
in few-shot image captioning. For more qualitative results,
please refer to the Supplementary Materials.

4.5. Model Complexity

Despite its significantly improved performance, com-
pared with non-ensemble approaches, the proposed method
is relatively more complex in model size and computational
cost. Its complexity is mostly decided by the base model
architecture, the number of base models M, and the num-
ber of iterations IV for the inner optimization of z. On the
one hand, the model size increase linearly with M, and the
training time increases with O(M + N). In our experiments,
we set N = 100 and M = 3, which takes a total of ~ 3
hours for training on a single NVIDIA 2080 Ti GPU. To
accelerate the training for faster deployment, a smaller NV
can be adopted. With a reduced N = 20, our method can
achieve a 61.2 CIDEr score with M = 3 by converging in
only ~ 1 hour. On the other hand, to reduce the inference

W

time, one can selectively choose any number of the base
models to form a new ensemble. For example, a base model
can achieve 59.6 & 0.09 CIDEr scores, and an ensemble
of two base models can achieve 61.4 4+ 0.08 CIDEr scores,
significantly better than the state-of-the-art approaches.

5. Conclusion

In this paper, we have introduced an ensemble-based self-
distillation method for image captioning with few paired
data and a large number of unpaired images and captions.
It is an effective method to generate accurate and robust
pseudo captions and pseudo features, and use them to train
the base models. Our approach significantly outperforms the
state-of-the-art approaches, demonstrating its effectiveness
of utilizing the unpaired images and captions. Future efforts
will be focused on the exploration of the connection of the
unpaired images and unpaired captions to make the best use
of these unpaired datasets in few-shot image captioning and
other related vision tasks.
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