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Abstract—Running machine learning analytics over
geographically distributed datasets is a rapidly arising
problem in the world of data management policies
ensuring privacy and data security. Visualizing high
dimensional data using tools such as t-distributed
Stochastic Neighbor Embedding (tSNE) and Uniform
Manifold Approximation and Projection (UMAP) be-
came a common practice for data scientists. Both
tools scale poorly in time and memory. While recent
optimizations showed successful handling of 10,000
data points, scaling beyond million points is still
challenging. We introduce a novel framework: Sketch
and Scale (SnS). It leverages a Count Sketch data
structure to compress the data on the edge nodes,
aggregates the reduced size sketches on the master
node, and runs vanilla tSNE or UMAP on the sum-
mary, representing the densest areas, extracted from
the aggregated sketch.

We show this technique to be fully parallel, scale
linearly in time, logarithmically in memory and com-
munication, making it possible to analyze datasets
with many millions, potentially billions of data points,
spread across several data centers around the globe.
We demonstrate the power of our method on two mid-
size datasets: cancer data with 52 million 35-band
pixels from multiplex images of tumor biopsies; and
astrophysics data of 100 million stars with multi-color
photometry from the Sloan Digital Sky Survey (SDSS).

Index Terms—count sketch, heavy hitter, scalable,
umap, tsne, geo-distributed
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I. INTRODUCTION

Dimensionality reduction plays a crucial role in
both machine learning and data science. It primar-
ily serves two fundamental roles: (1) as a pre-
processing step it helps to extract the most im-
portant low dimensional representation of a signal
before feeding the data into a Machine Learning
algorithm, (2) as a visualization tool it navigates
data scientists towards better understanding of lo-
cal and global structures within the dataset while
working with more comprehensible two- or three-
dimensional plots. In clustering and classification
problems we often seek to find a relatively small
number of clusters, to correspond the number of
categories human perception can distinguish.

Among the full spectrum of dimensionality re-
duction and lower dimensional embedding tech-
niques available today [6], [19], [21], [22], [25],
tSNE [13] and UMAP [15] are probably the
two most popular methods for visualization. t-
distributed stochastic neighbor embedding (tSNE) is
a high-dimensional data visualization tool proposed
by Geoffrey Hinton’s group in 2008 [13]. tSNE
converts similarities between data points to joint
probabilities and tries to minimize the Kullback-
Leibler divergence between the joint probabilities
of the low-dimensional embedding and the high-
dimensional data. In contrast to PCA, tSNE is not
linear, it employs the local relationships between
points to create a low-dimensional mapping, by
comparing the full high-dimensional distance to
the one in the projection subspace and capturing
non-linear structures. tSNE has a non-convex cost
function and provides different results for different



initialisations.

One of the major hurdles with tSNE is that it
ceases to be efficient when processing high- (or
even medium) dimensional data sets with large
cardinalities, due to the fact that the naive tSNE
implementation scales as O(n?). On a typical laptop
CPU, processing 10,000 points with tSNE would
take close to an hour. There was a considerable re-
search effort exerted to speed up tSNE. Barnes-Hut
approximation pushed scaling down to O(nlogn)
[12]. Approximated tSNE [17] lets user steer the
trade off between speed and accuracy; netSNE is
training neural networks on tSNE [4] to provide
a more scalable execution time. The multicore
tSNE [26] and tSNE-CUDA [2] introduced highly
parallel version of the algorithm for CPU and GPU
platforms. UMAP [15] is using manifold learning
and topological data analysis to reduce dimension-
ality. It uses cross-entropy to optimize the lower
dimensional representation. Faster performance is
the main advantage over tSNE [18]. Nevertheless,
both frameworks scale poorly and computational
prohibitive when data hits a hundred million points.
In addition, the entire dataset has to reside in mem-
ory of one machine, making it infeasible for the
datasets distributed across several compute clusters
around the globe. For instance, privacy concerns
of the healthcare data might limit transfers from
clinic to clinic, physics related data accumulated by
several research centers can be too large to transfer.

In this paper, we introduce Sketch and Scale
(SnS), a solution to deal with much higher-
cardinality datasets with an intermediate number of
dimensions. We implement our idea as a prepro-
cessor to any of the above mentioned dimension-
ality reduction techniques. SnS uses approximate
sketching over parallel, linear streams. Furthermore,
it can be executed over spatially segregated subsets
of the data. Specifically, we utilize a hashing-based
algorithm Count Sketch over the quantized high
dimensional coordinates to find the cells with the
highest densities: the so called “heavy-hitters” [3],
[5]. We then select an appropriate number of heavy
hitters (10%-10°) to analyze with the standard tech-
niques to get the final clusters/visualizations.

In Section II we present the idea of sketching

and describe its crucial role in building scalable pre-
processing pipeline. Further, in Section IV we apply
it to two data sets: multispectral cancer images,
with a total of 52 million pixels, and photometric
observations of 32 million stars from the Sloan
Digital Sky Survey. Finally we discuss various
practical aspects on how to scale our technique to
much larger data sets, geographically disjoint data
and overcoming privacy-related constraints.

II. SCALABLE PREPROCESSOR TO TSNE/UMAP

There is a genuine need to find clusters in data
sets with cardinalities in the billions: pixels of
multispectral imaging data in medical and geospa-
tial imaging, large multi-dimensional point clouds,
etc. Furthermore, we want to compute approximate
statistics (various moments) of a multidimensional
probability distribution with a large cardinality. Our
tool helps with all of this: it generates a very
compact approximation to the full multidimensional
probability distribution of a large dataset.

1) Clusters and heavy hitters: Hereafter we will
assume that our data is clustered, i.e. there exists
a metric space with a non-vanishing correlation
function: the excess probability over random that
we can find two points at a certain distance from
one another. While a Gaussian random process
can be fully described with a single correlation
function, other higher order processes can have non-
trivial higher order, N-point correlations. We can
quantify this by creating a discretized grid over our
metric space, and counting the number of points
in each bin. This way we introduce a probability
distribution P(N) that a bin will count N points.

The bins intersecting our biggest clusters will
have a large count. We will call these “heavy
hitters” (HH). Datasets with strong clustering will
have cell count distributions with a fat tail. Many of
these heavy hitters will be contact neighbors, as the
real clusters will be split by the grid discretization.
A way to identify heavy hitters is to count the num-
ber of points in each bin, those above the threshold
will be our heavy hitters. Finally, we use vanilla
tSNE/UMAP to find the real, connected clusters
which have been split up into multiple adjacent bins.
tSNE/UMAP is applied in the reduced cardinality of
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Fig. 1. Preprocessing steps: 1. set a regular grid; 2. count points
in every bin and find heavy bins; 3. create several represantatives
for each heavy bin; 4. feed representatives into tSNE/UMAP.

the heavy hitters, each representing potentially mil-
lions of the original data points. Refer to Fig. 1 for
high level overview of the preprocessing pipeline.

We weighted each HH by replicating it multi-
ple times with small uniform perturbation (1/4 of
the cell size), since identical points are merged
in tSNE. One scheme is to give a higher score
towards the highest ranked HH. Assume that the
smallest HH has a rank of 7,,,;, and a count
fmin- A second possibility for weighting is to use
1+ |logs(Tmaz/7)| as the number of the replicas,
scaling with the rank 7 of the HH. Finally, we
can also use 1+ [logy(f/ fmin)] as the replication
factor, weighting by the log of the counts f. We
have tested that these do not impact the main
features of the clustering patterns we find.

2) Heavy hitters vs random subsampling: One
would think we apply tSNE/UMAP to the sub-
sampled data, however, this does not work at low
sampling rates. No matter how fat the tail of the
original P(N) distribution is, it will converge to an
infinitesimally Poisson process as the sampling rate
nears zero, and the fat tail rapidly disappears [24].

Consider a data set with 10!! points with some
dense clusters of 107 points or more. To apply tools
like tSNE/UMAP, we need to reduce the dataset size
down to around 10%, i.e. sampling rate of 10~7.
In order to detect a cluster with even a modest
significance, we need to have enough points to keep
the Poisson error low. In practice 100 points or more
will push relative Poisson error to 1/1/100 = 0.1.
For instance, a dense cell with N ~ 107 points,
sampled at a rate of 10~7, would have in average
only one point sampled, K = Np = 1. Therefore, it
will be indistinguishable from the many billions of
low density cells. At a sampling rate of p = 107>
we could detect K = 100 for the cell with 10°
points with a 10% uncertainty, but the whole ran-

dom subset would have 10'!~5 = 105 points, too
large to feed it into tSNE. With a larger data set
these tradeoffs get rapidly much worse.

In contrast, we detect the top heavy hitters with a
high confidence, using direct aggregation at full or
somewhat reduced sampling rate. Then we take a
small enough subset of these, so that tSNE/UMAP
can easily cluster them further, while we discard all
the low-density bins. This has the advantage, that
a small number of the top heavy hitters will still
contain a large fraction of the points, particularly
those which are located in dense clusters. Of course,
aggregating a multidimensional histogram in high
resolution with a large number of dimensions by
brute force would result in an untenable memory
requirement. Instead we will use sketching tech-
niques to build an approximate aggregation with
logarithmic memory and linear compute time.

Our approach is particularly powerful for the data
with the following properties: (i) the data has a
very large number of rows (10% to 10'2), (ii) has
a moderate number of dimensions (< 20) and (iii)
there is a moderate number of clusters (< 100),
but these can have non-compact extents (iv) the
clusters have a high density contrast in the metric
space. The limitation on the number of dimensions
is less of a problem than it seems, as dimensionality
reduction techniques, like random projections [23]
can be applied as a preprocessor to our code.

3) Streaming sketches of heavy hitters: The
field of streaming algorithms arose from the ne-
cessity to process massive data in sequential order
while operating in a very low memory. First in-
troduced for the estimation of the frequency mo-
ments [1], it was further developed for a wide
spectrum of problems within linear algebra [28],
graph problems [14], and others [16]; and found ap-
plications in machine learning [9], [20], networking
[7], [11], astrophysics [8], [10]. Further we provide
a glimpse on streaming model and sketches for
finding frequent items. For comprehensive review
refer to [16]. Given a zero vector f of dimension
n, the algorithm observes the stream of updates to
its coordinates S = {s1, ..., s,, }, where s; specifies
the update to i: f; < f; + 1. Alon, Matias and
Szegedy [1] were first to show the data structure



Fig. 2. Count Sketch update step: for each item compute two
hashes for each row of the sketch, first hash chooses the bin,
second hash chooses the sign of the change to apply (+1 or -1).
(AMS sketch) approximating ¢ norm of the vec-
tor f at the end of the stream while using only
O(log nm) bits of memory. In a nutshell, AMS is a
counter ¢ and a hash function h : [m] — {—1,+1},
on arrival of s;, ¢ is updated as ¢ = ¢ + h(s;).
At the end of the stream, ¢2 is returned as an
approximation of || f||3 . It is unbiased:
m n

B(¢*) = BE(Y_h(s)* = EQY_ fih(i))* =
EY FING) + By fifih@hG) =3 7 = If13,
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where the last inequality holds due to h2(i) = 1
and E(h(i)h(j)) = 0 for ¢ # j and 2-wise inde-
pendent A(-). Similarly, one can show the variance
bound: Var(c?) < 4|/ f||3, then running several in-
stances in parallel, averaging and/or using a median
filter provide control over the approximation [1].

Count Sketch (CS) algorithm [3] extends AMS
approach to find heavy hitters with an ¢y guar-
antee, i.e. all i, st. f; > ¢|f|l2, together with
approximations of f;. The idea behind the algorithm
combines the AMS sketch with a hashing table with
C buckets. It uses hash hq(-) to map arrived item ¢
to one of the C buckets and hash ho(+) for choosing
the sign in AMS sketch. Every (e, £5)-heavy hitter’s
frequency can be estimated by the corresponding
bin count if we choose C = 1 /52, as on average
only ¢ fraction of /5 norm of non-heavy items will
fall into the same bin. To eliminate the collisions
and identify the heavy hitters R = log(n/d) hash
table maintained in parallel, where 1 — § proba-
bility of successful recovery of all heavy hitters.
CS memory utilization is sublinear in n and m:
O(Z5 log nm), which is handy when working with
billions and even trillions of items.

III. SCALABLE COUNT SKETCH

1) The Count Sketch algorithm: As described
in section II-3, the Count Sketch (CS) accepts

updates to n-dimensional vector f in a streaming
fashion and can recover coordinates of f for which
fi = €llfll2, ie. (g,€3)-heavy hitters. It’s major
advantage is memory usage that scales logarith-
mically in dimensionality n and stream size m.
Moreover, CS is a linear operator, thus can be
merged efficiently. This opens a diverse pool of
applications in distributed settings: multiple nodes
can compute sketches, each on its own piece of data,
and send it to the master node for merging. Such
an approach can help to alleviate the bottleneck in
communication speed and brings a certain level of
privacy for free [9], [20]. Below we present the
details of the four major operations over the CS
data structure: initialization, update, estimate and
merge [3].

1: function init(R, C):
init R x C table of counters S (with zeros)
3 init bucket hashes: {h7 : [n] — [C]}i%:l
4 init sign hashes: {} : [n] — £1}7_
5: function update(s;)):
6: forrinl...R:
7
8
9

Slr,hi(si)] += h5(ss)
: function estimate(?):
init length R array estimates
for r in 1... R: estimates[r] = h%(:)S[r, h](3)]
10: return median(estimates)
11: function merge(S1, S2):
12: return S7 + So

2) Design of the experiment: We utilized GPU
optimized Count Sketch [27] running on CPU Intel
Xenon Gold 6126 and GPU Tesla V100. CS param-
eters are set [3] to find 2-10* most frequent items
from stream of length 108: 16 rows, 2-10° columns.
The total memory is less than 26MB. In order to
be able to compute hash values for the binning,
we need to enclose the data in a D-dimensional
hypercube, with M linear bins in each dimension.
Then the discrete quantized coordinates of the data
can be concatenated together to create a feature
vector, that can be fed into Count Sketch.

Question is how to choose the number of bins:
too many bins will result in very low density in in
each bin representing the cluster, to few bins will
cause several independent clusters to be merged into
one. Further, we estimate the random collision rate
between heavy hitters in adjacent cells.

The discretized volume V' = MP is the total
number of bins in the hypercube. We limit the



number of heavy hitters as K < 10*. A\ = K/V
is the mean density of heavy hitters in a cell. We
can define a contact neighborhood of the cell by
small hypercube with volume W = 3 around it.
Given the single cell density A, the density of heavy
hitters within a contact neighborhood is p = WA =
K(W/V). Since the heavy hitters (from the random
collisions perspective) can be treated as a Poisson
point process, we can estimate the probability that
a neighborhood volume contains O or one heavy
hitters: P(0) = e *,P(>0) =1-P(0) =1—e".
The number of heavy hitters with a random collision
in its neighborhood is C' = K P(> 0). This number
is quite sensitive on the number of dimensions
and the number of linear bins. For K = 10%,
D = 10, M = 8, the collision rate is high:
C = 1,057; while if we increase the number of
bins to M = 16, it goes down to C' = 0.00144.
Though only approximately, this argument gives
some guidance in choosing the binning. The number
of dimensions is limited by the hash collision rate
in the sketch matrix, nevertheless, the growth of
storage there is only logarithmic (see next section).
It is expected that the hash collisions in the sketch
table will cause uncertainties in the estimation of
the cell frequency counts. The use of a +1 hash
value for the increment is mitigating this, but still
the many cells with small counts will add a fixed
Poisson noise to the sketch counts, leading to an
increasing relative uncertainty as the frequencies
decrease. We evaluated how well CS algorithm
estimates the exact frequencies of the discretized
multidimensional cells, and how well it ranks those
that appear most frequently. We used the Cancer
sample (using 22 bins in each coordinate, top 20K
HH) and determined how the relative error grows
with the rank of the densest cells. The rank rep-
resents a descending ordering, so cells with the
highest counts have the lowest ranks. For each cell
i we find its frequency f; and rank r; in the output
of an exact algorithm and its frequency fi in the
Count Sketch output. The relative error is defined as
|fi — fil/ fi. The rms values of the relative error are
0.001 for r < 3000, 0.003 for 3000 < r < 10000,
and 0.01 for 10k < r < 20k.

IV. APPLICATIONS

In this paper we test the ideas on two different
data sets: (1) 52M pixels in 40 multispectral images
from cancer immunotherapy and (2) photometric
observations of 30M stars in the Sloan Digital Sky
Survey (SDSS). In both cases the clusters are not
thought to be sharply divided into very distinct
categories, rather they form distributions where the
categories gradually morph into one another. In ad-
dition the first few components of PCA do not give
a meaningful separation, i.e. nonlinear techniques
are needed. However, the data set is too large to
use tSNE/UMAP directly. Check project repository
[27] for additional details.

1) Clustering of pixels in cancer images:
Our dataset consists of 40 images taken at 0.5
w/pixel resolution, with a 20% overlap. The slide
contains a Sy thick section of a melanoma biopsy.
The images are observed with a combination of
5 different broadband excitation filters and 20nm
wide narrow-band filters, for a total of 35 layers,
1344x1004 pixels in each. The tissue was stained
with 7 different fluorescent markers/dyes: DNA
content of nuclei; lineage markers Tumor, CDS,
FoxP3 and CD163 (type of cell); and expression
markers PD-1 and PD-L1 (“checkpoint blockers”,
controlling the interaction between tumors and the
immune system).

Cancer cells are mostly located in dense areas,
tumors, with a reasonably sharp boundary. Today
these tissue areas are annotated visually, by a
trained pathologist. Cancer immunotherapy is aimed
at understanding the interactions between cancer
cells and the immune system, and much of these
take place in the Tumor Micro Environment (TME),
in the boundary of tumor and immune cells.

To automate imaging efforts to thousands of
images and billions of cells, the task goes beyond
detecting and segmenting into distinct cells of a
certain type, it is also important to automatically
identify the tumor tissue and the tumor membrane.

We expect the data to have approximately 8
degrees of freedom. Our goal is to see what level
of clustering can be detected at the pixel level, and
whether clustering can be used to identify (a) cells
of different types (b) outlines associated with tumor
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Fig. 3. The 10 clusters identified in the UMAP processing of
the 20,000 top heavy hitters in the cancer data.

and possibly other tissue types. As each specimen
contains different ratios of tissues and cells, naive
PCA will not work well, as the weights of the
different components will vary from sample to
sample. Even if the subspaces will largely overlap,
the orientation of the axes will vary from sample
to sample. In addition, each staining batch of the
samples is slightly different, thus the clusters will
be moving around in the pixel color space. Our goal
is to verify if we can find enough clusters that can
be used further downstream as anchor points for
mapping the color space between different staining
batches and tissue types. The dataset has a limited
set of labels available: a semi-automated segmenta-
tion of the images, the detection of cell nuclei and
separating them into two basic subtypes, cancer and
non-cancer. The non-cancer cells are likely to have
a large fraction of immune cells, but not exclusively.
The expression markers are typically attached to the
membranes, in between the nuclei.

We take the the first 8 components of the pixel-
wise PCA of the images. We then compute the
intensity (Euclidean norm) of the pixel intensities,
eliminate the background noise using a threshold
derived from the noise. This leaves 26M of the
initial 52M pixels. Each pixel is then normalized by
the intensity, turning them into colors. We embed
the points into an 8-dimensional hypercube, and
quantize each coordinate into 25 linear bins. Then
we run the Count Sketch algorithm and create an
ordered list of the top 20,000 heavy hitters. The top
HH has 204,901 points, while the 20,000t rank
has only 180. The cumulative fraction of the top
20,000 heavy hitters is 84.11%. The sketch matrix

Fig. 4. The merged groups in image space: tumor (red), other
(blue). The nuclei were painted to the surrounding tissue color.

is 16x200,000. We then feed the top 20K HH to
UMAP, and generate the top two coordinates. We
find 10 clusters in the data, labeled from 1 through
10, as shown on Figure 3. These can be grouped into
three categories, pixels related to tumor (1,5,8,10),
pixel related to nuclei of cells (6,9), and non-tumor
tissue (2,3,4,7). These show an excellent agreement
with labels generated for nuclei using an industry
standard segmentation software.

Tumor Other
Tumor 95792 3675
Other 6795 108630

We built a contingency table summarizing the
pixel level classifications shown above. For each
pixel in the label set marked as Tumor or Other
we build a histogram of the 10 classes in our
classification. We considered a classification correct
if a Tumor pixel in the label set belonged to either a
Nucleus or Tumor class in our scheme. We did the
same for the Non-Tumor cells. The pixels tagged as
background by our mask were ignored. The results
are quite good, the false positive rates are 3.7% and
5.9% for Tumor and Other, respectively.

2) Classification of stellar photometry in SDSS:
We used the Thirteenth Data Release (DR13) of
SDSS. Our goal is to see how well can we re-
cover the traditional astronomical classification of
stars, the so called Hertzsprung-Russel diagram.
We extracted two different subsets of stars: (1)
540k stars with classification labels obtained from
analyzing their spectra and (2) 30M stars without
labels. The features are the combinations of 5
magnitudes u, g, 7,1, 2, defined by the differences
(ug,ur,...,iz) = (v — g, u' — ', .. ;i = 2).
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Fig. 5. The 2D projection for the ul-u2 UMAP coordinates for
stars from SDSS. The UMAP transformation was derived from
the 30M photometric sample. The objects shown here are from
the five main spectroscopic classes, A2, F8, G8, K7, W. The
classes A,F,G,K are ordered by decreasing temperature.

We built the Count Sketch on 30M objects and
selected the top 2,609 heavy hitters. The count was
1,352,580 at rank 1 and 117 at rank 2,609. The
2,609 HHs contained 99.0% stars, forming a highly
representative sample. We then feed the HHs to
UMAP, and extract a 4-dimensional projection. One
of the 4-way scatter plot between the coordinates
is shown on Figure 5. We can distinguish White
Dwarfs, and FA,K and M stars. This experiment
has yielded a success beyond any expectations.

V. CONCLUSION

We presented a preprocessing technique that is
aimed at reducing the cardinality of extreme sized
data sets with moderate dimensions while preserv-
ing the clustering properties. We use approximate
sketching with a linear time streaming algorithm to
find the heavy hitter cells of the quantized input
data. This new point process, formed by the heavy
hitters will correctly represent the clustering proper-
ties of the underlying point cloud. Our code makes
heavy use of GPUs for the hash computations and
the sketch aggregation, and can be parallelized to an
arbitrary high degree. We demonstrated the utility
of this approach on two different data sets, one
on 50M pixels of cancer images, the other on 30
million stars with 5 colors from the Sloan Digital
Sky Survey. We have found that the heavy hitters
correctly sampled the clusters in both data sets with
quite different properties, and the results were in
excellent agreement with the sparse labels available.
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Fig. 6. The scaling of the run time for sketch table of size
10x20,000 vs. the size of the data, up to a billion points. For the
higher cardinalities the scaling is very linear.

The computations were extremely fast, essen-
tially I/O limited. Processing the Count Sketch of 50
million points takes only a few seconds on a single
V100 GPU with a single stream I/O. Introduc-
ing parallell I/O would saturate all CUDA kernels
of the GPU. By running replicating the data we
scaled beyond 1 billion points, and demonstrated an
asymptotically linear scaling (Fig. 6). For the cancer
data, using pixel colors only we were able to split
the pixels into three distinct groups, which have
formed spatially coherent and connected regions,
separated by the tumor boundaries. This experiment
has exceeded our early expectations. The current
data used was rather modest, with 52 million pixels
in 40 images. Currently at Johns Hopkins University
we have more than 45,000 images created, with
100,000 more in the queue, resulting in hundreds
of billions of total pixels, as shown on Fig. 6. Ap-
proaching a pixel-wide analysis of such a data will
only be possible through highly scalable algorithms.

For the 30M stars, we generated 20,000 heavy
hitters in a very short time. Feeding these to UMAP
and projecting to 4 dimensions, let us identify sev-
eral major classes of stars based upon imaging data
only. While it does not represent a breakthrough
in astronomy (to properly classify stars we need
absolute luminosities, thus distances obtainable only
by other techniques) it is a a good demonstration of
the scalability and feasibility of our technique.

Our approach has additional long-term impli-
cations. Sketches can be computed on arbitrary
subsets of the data, and be combined subsequently.



The only constraint is that the hashing functions
and the sketch matrix sizes must be the same for
all threads. Using this approach, sketches of data at
different geographic locations can be computed in
place, and only the accumulations move to the final
aggregation site. This not only saves huge amounts
of data movement, but also diminishes potential
data privacy concerns, as the approximate hashing is
not invertible, i.e. hides all identifiable information.

Our approach naturally overcomes the problem
rising from institutional and national policies lim-
iting the free movement of the data across bound-
aries and between research centers and hospitals.
Such concerns for studies of clustering in segre-
gated large-scale data are already present in current
Covid-19 research, e.g. aggregating mobility data
between cellular providers in different countries.

When data is stored on a massively parallel
storage system, like in many commercial clouds, it
is quite easy to run a Count Sketch job over 10000
parallel processes. The sketches can then be aggre-
gated using a tree topology in logarithmic time first
within one datacenter, then across many datacenters
with minimal communications overhead.

In summary, our algorithm enables the generation
of extremely powerful approximate statistics over
almost arbitrary large data sets.
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