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Abstract
Given a matrix A ∈ Rn×d and a vector b ∈ Rd, we show how to compute an ε-approximate
solution to the regression problem minx∈Rd

1
2‖Ax − b‖22 in time Õ((n +

√
d · κsum)s log ε

−1)
where κsum = tr

(
A>A

)
/λmin(A

>A) and s is the maximum number of non-zero entries in a row
of A. This improves upon the previous best running time of Õ((n+

√
n · κsum)s log ε

−1).
We achieve our result through an interesting combination of leverage score sampling, proximal

point methods, and accelerated coordinate descent methods. Further, we show that our method
not only matches the performance of previous methods up to polylogarithmic factors, but further
improves whenever leverage scores of rows are small. We also provide a non-linear generalization
of these results that improves the running time for solving a broader class of ERM problems and
expands the set of ERM problems provably solvable in nearly linear time.
Keywords: Convex Optimization, Empirical Risk Minimization, Randomized Algorithms

1. Introduction

Given A ∈ Rn×d and b ∈ Rn, the regression problem minx∈Rd
1
2‖Ax − b‖

2
2 is one of the most

fundamental problems in optimization and a prominent tool in machine learning. It is one of the
simplest empirical risk minimization (ERM) problems and a prominent proving ground for devel-
oping new provably efficient algoirthms for solving large scale learning problems.

Regression is long known to be solve-able directly by fast matrix multiplication in O(ndω−1)
time where ω < 2.373 (Williams, 2012) is the matrix multiplication constant and recent work has
improved the running time to Õ((nnz(A) + dω) log(1/ε)),1 i.e. linear time plus the time needed

1. Throughout we use Õ to hide factors polylogarithmic in n,d,κ def
= λmax(A

>A)/λmin(A
>A), and M (see Defini-

tion 3 and Definition 6).
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to solve a nearly square linear system (Clarkson and Woodruff, 2013; Li et al., 2013; Nelson and
Nguyen, 2013; Cohen et al., 2015; Cohen, 2016). However, for large A even a super-quadratic run-
ning time of Ω(dω) can be prohibitively expensive. Consequently, over the past decade improving
this running time of regression under mild regularity assumptions on A has been an active area of
research.

In this paper we improve the best known running time for solving regression under standard
regularity assumptions. In particular we consider the following regression problem.

Definition 1 (The Regression Problem) Given A ∈ Rn×d with rows a1, ..., an and given b ∈ Rn,
we consider the regression problem minx∈Rd fA,b(x) where

fA,b(x)
def
=

1

2
‖Ax− b‖22 =

∑
i∈[n]

1

2

(
a>i x− bi

)2
.

The central problem of this paper is to get faster regression algorithms defined as follows.

Definition 2 (Regression Algorithm) We call an algorithm a T (A)-time regression algorithm if
for any b ∈ Rn, x0 ∈ Rd, and ε ∈ (0, 12) with high probability (w.h.p) in n in timeO(T (A) log ε−1)
the algorithm outputs a vector y such that

fA,b(y)−min
x
fA,b(x) ≤ ε ·

(
fA,b(x0)−min

x
fA,b(x)

)
. (1)

Note that if x∗ is a minimizer of fA,b(x) then the guarantee (1) is equivalent to the following

‖y − x∗‖2A>A ≤ ε‖x0 − x∗‖
2
A>A (2)

where ‖x‖2M
def
= x>Mx for M � 0. The goal of this paper is to provide regression algorithms with

improved running times depending on n, d, and the following regularity parameters.

Definition 3 (Regularity Parameters) We let λmin(A
>A) and λmax(A

>A) denote the smallest and
largest eigenvalues of A>A, κ(A>A)

def
= λmax(A

>A)/λmin(A
TA) denote the condition number

of A>A, κsum(A>A)
def
= tr

(
A>A

)
/λmin(A

TA) denote the total condition number of A>A, and
s(A) denote the maximum number of non-zero entries in a row of A. Occasionally, we drop the
terms in parenthesis when they are clear from context.

In this paper we provide an Õ((n+
√
d · κsum)s log(1/ε) time algorithm for solving regression,

improving upon the previous best running time of Õ((n +
√
n · κsum)s log(1/ε). (See Table 1 for

the history of running time improvements to this problem.)

1.1. Previous Results

Classic iterative methods such as gradient descent and accelerated gradient descent (Nesterov, 1983)
solve the regression problem with running times of O(n · s(A) · κ(A>A)) and O(n · s(A) ·√
κ(A>A)) respectively. While these running times are super-linear whenever κ(A>A) is su-

per constant there has been a flurry of recent papers showing that using sampling techniques faster
running times can be achieved. These often yield nearly linear running times when n is sufficiently

2
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Regression Running Times
Algorithms Running time

Naive Matrix Multiplication O(nd2)

Gradient Descent Õ((nnz(A)κ) log(1/ε))

Fast Matrix Multiplication (Williams, 2012) O(ndω−1) where ω < 2.373

Accelerated Gradient Descent (Nesterov, 1983) Õ((nnz(A)
√
κ) log(1/ε))

Row Sampling (Li et al., 2013; Cohen et al., 2015)
Õ((nnz(A) + dω) log(1/ε))Subspace Embeddings (Nelson and Nguyen, 2013)

SAG (Roux et al., 2012; Defazio et al., 2014)
Õ((nnz(A) + κsums) log(1/ε))SVRG (Johnson and Zhang, 2013a)

APP (Frostig et al., 2015a)
Õ((nnz(A) + s

√
nκsum) log(1/ε))Catalyst (Lin et al., 2015)

Katyusha (Allen Zhu, 2016)
This Paper Õ((nnz(A) + s

√
dκsum) log(1/ε))

Table 1: History of improvements to the running time for regression in terms of the problem pa-
rameters nnz(A), n, d, κ def

= κ(A>A, κsum
def
= κsum(A

>A), and s def
= s(A).

larger than d (Shalev-Shwartz and Zhang, 2012; Johnson and Zhang, 2013a; Shalev-Shwartz and
Zhang, 2016; Allen Zhu, 2016).

Using recent advances in accelerated coordinate descent (Allen Zhu et al., 2016; Nesterov and
Stich, 2017) coupled with proximal point methods (Frostig et al., 2015a; Lin et al., 2015) the previ-
ous fastest iterative algorithm is as follows:

Theorem 4 (Previous Best Regression Running Times) Given A ∈ Rn×d, there is a T (A)-time
regression algorithm with

T (A) = Õ

((
n+

∑
i∈[n] ‖ai‖2√
λmin(A>A)

)
· s(A)

)
= Õ((n+

√
n · κsum(A>A)) · s(A)).

The equality in this theorem follows directly from Cauchy Schwartz, as∑
i∈[n]

‖ai‖2 ≤
√
n · tr(A>A) =

√
n · κsum(A>A) · λmin(A>A) .

We provide a generalization of the above theorem as Theorem 8 which is more useful to our analysis
and provide a proof in the Appendix (Section C).

1.2. Our Results

The work in this paper is motivated by the natural question, can this running time of Theorem 4
be further improved? Despite the running time lower bound of

√
n · κsum(A>A) shown in Wood-

worth and Srebro (2016),2 in this paper we give an affirmative answer improving the
√
n · κsum(A>A)

term in Theorem 4 to
√
d · κsum(A>A). The main result of this paper is the following:

2. Their lower bound involves a function with d � n. However, d � n is more common as we explain.
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Theorem 5 (Improved Regression Running Time) Given A ∈ Rn×d, Algorithm 1 is a T (A)-
time regression algorithm that succeeds w.h.p in n where

T (A) = Õ

(
nnz(A) +

(
d+

∑
i∈[n] ‖ai‖2 ·

√
σi(A)√

λmin(ATA)

)
· s(A)

)

and σi(A) = ‖ai‖2(A>A)−1 for all i ∈ [n].

Up to polylogarithmic factors Theorem 5 is an improvement over Theorem 4 as σi(A) ∈ [0, 1].
This improvement can be substantial as σi(A) can be as small as O(d/n), e.g. if A is an entry-wise
random Gaussian matrix. Compared to Theorem 4 whose second term in running time grows as n,
our second term is always independent of n due to the following:∑
i∈[n]

‖ai‖2
√
σi(A) ≤

√∑
i∈[n]

‖ai‖22
∑
i∈[n]

‖ai‖2(A>A)−1 =
√
tr (A>A) tr(A(A>A)−1A>) ≤

√
dκsum.

(3)
Therefore in Theorem 5 we have T (A) = Õ((n+

√
d · κsum(A>A)) · s(A)).

This improvement from n to d can be significant as n (the number of samples) is in some cases
orders of magnitude larger than d (the number of features). For example, in the LIBSVM dataset3,
in 87 out of 106 non-text problems, we have n ≥ d, 50 of them have n ≥ d2 and in the UCI dataset,4

in 279 out of 301 non-text problems, we have n ≥ d, 195 out of them have n ≥ d2.
Furthermore, in Section 5 we show how to extend our results to ERM problems more general

than regression. In particular we consider the following ERM problem

Definition 6 (ERM) Given A ∈ Rn×d with rows a1, ..., an and functions {ψ1 . . . ψn} ∈ R → R
such that each ψi : R→ R is twice differentiable and satisfies

∀ x ∈ Rd 1

M
≤ ψ′′(x) ≤M (4)

we wish to minimize F (x) : Rd → R over x ∈ Rd where

F (x)
def
=
∑
i∈[n]

fi(x) =
∑
i∈[n]

ψi(a
>
i x)

This assumption (4) is satisfied by many ERM problems where the fi(x) are regularized directly.
For example, the δ-regularized logistic function f(x) = log(1 + exp(−x)) + δ

2x
2 satisfies δ ≤

f ′′(x) ≤ 1/4 + δ for all x and therefore under appropriate rescaling yields M = 1/
√
δ which may

be small in many instances. Showing how to adapt the above result to ERM problems with arbitrary
regularization, like logistic regression, we leave to future work. The following is our main theorem
regarding ERM:

3. https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
4. http://archive.ics.uci.edu/ml/datasets.html

4



LEVERAGE SCORE SAMPLING FOR ERM

Theorem 7 Given an ERM problem(Definition 6) and an initial point x0, there exists an algorithm
that produces a point x′ such that F (x′) − minx∈Rd F (x) ≤ ε (F (x0)−minx∈Rd F (x)) which
succeeds w.h.p in n in total time

Õ

((
nnz(A) +

(
dM5 +

n∑
i=1

‖ai‖2
√
σi(A)M3√

λmin(A>A)

)
s(A)

)
log

(
1

ε

))

where σi(A)
def
= ‖ai‖2[A>A]−1 are the leverage scores with respect to ai.

Note that Theorem 7 interpolates our regression results, i.e. it recovers our results for regression
in the special case of M = 1. To better understand the bound in Theorem 7, note that following the
derivation in Equation (3) we have that the running time in Theorem 7 is bounded by

Õ

((
nnz(A) +

(
dM5 +

n∑
i=1

M3
√
dκsum(A>A)

)
s(A)

)
log

(
1

ε

))
.

The best known bound for the ERM problem as defined in Definition 6 given by (Frostig et al.,
2015a; Lin et al., 2015; Allen Zhu, 2016) is

Õ

((
nnz(A) +

n∑
i=1

M
√
nκsum(A>A))

)
s(A) log

(
1

ε

))

In this case Theorem 7 should be seen as implying that under Assumption (4) the effective depen-
dence on the number of examples on the running time for ERM can be reduced to at most dM5.

Again, we remark that the running time bound of Theorem 7 should be viewed as a proof of
concept that our regression machinery can be used to improve the running time of ERM. We leave
it as future work to both improve Theorem 7’s dependence on M and have it extend to a broader set
of problems. For example, we believe the the running time can be immediately improved to

Õ

((
nnz(A) +

(
dM4 +

n∑
i=1

‖ai‖2
√
σiM

3√
λmin(A>A)

)
s(A)

)
log

(
1

ε

))

by using a proximal version of Theorem 15, which is alluded to in the work of Allen Zhu et al.
(2016). Note that this improvement leads to the effective number of examples being bounded by
dM4.

1.3. Our Approach

Our algorithm follows from a careful combination and analysis of a recent suite of advances in
numerical linear algebra. First, we use the previous fastest regression algorithm, Theorem 4, which
is the combination of recent advances in accelerated coordinate descent (Allen Zhu et al., 2016;
Nesterov and Stich, 2017) and proximal point methods (Frostig et al., 2015a; Lin et al., 2015).
Then, we show that if we have estimates of the leverage scores of the rows of A, a natural recently
popularized measure of importance, (Spielman and Srivastava, 2008; Li et al., 2013; Cohen et al.,
2015) we can use concentration results on leverage score sampling and preconditioning to obtain a
faster regression algorithm. (See Section 3.)
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A powerful well known fact is that given a regression algorithm leverage scores can be estimated
in nearly linear time plus the time needed to solve Õ(1) regression problems (Spielman and Srivas-
tava, 2008). Consequently, to achieve the improved running time when we do not have leverage
scores we are left with a chicken and egg problem. Fortunately, recent work (Li et al., 2013; Cohen
et al., 2015) has shown that such a problem can be solved in several ways. We show that the tech-
nique in Li et al. (2013) carefully applied can be used to obtain our improved running time for both
estimating leverage scores and solving regression problems with little overhead (See Section 4).

For application to a broader class of ERM problems most parts of the regression procedure
generalize naturally. The key ingredient is the generalization of the preconditioning step to the
case when we are sampling non-quadratic functions. For this, we prove concentration results on
sampling from ERM inspired from Frostig et al. (2015b) to show that it suffices to solve ERM on a
sub-sampling of the components that may be of intrinsic interest. (See Section 5)

In summary our algorithms are essentially a careful blend of accelerated coordinate descent and
concentration results coupled with the iterative procedure in Li et al. (2013) and the Johnson Lin-
denstrauss machinery of Spielman and Srivastava (2008) to compute leverage scores. Ultimately
the algorithms we provide are fairly straightforward, but it provides a substantial running time im-
provement that we think is of intrinsic interest.

Finally, we remark that there is another way to achieve the
√
d · κsum(A) improvement over√

n · κsum(A). One could use subspace embeddings (Clarkson and Woodruff, 2013; Nelson and
Nguyen, 2013; Cohen, 2016) and preconditioning to reduce the regression problem to a regression
problem on a Õ(d)× d matrix and then apply Theorem 4 to solve the Õ(d)× d regression problem.
While this works, it has three shortcomings relevant to our approach. Firstly note that even if
the original rows of the matrix are s sparse, the the rows of the sketched matrix might become
Ω(d) sparse, and the final running time would have an additional Õ(d2) term our method does
not. Second, it is unclear if this approach yields our more fine-grained running time dependence on
leverage scores that appears in Theorem 5 which we believe to be significant. Thirdly it is unclear
how to extend the approach to the ERM setting.

1.4. Paper Organization

After providing requisite notation in Section 2 we prove Theorem 5 in Sections 3 and 4. We first
provide the algorithm for regression given leverage score estimates in Section 3 and further provide
the algorithm to compute the estimates in Section 4. Note that the algorithm for computing leverage
scores makes use of the algorithm for regression given leverage scores as a sub-routine. In Section
5 we state and prove Theorem 14 which forms the bulk of the proof of Theorem 7. The proof of
Theorem 7 is provided in the Appendix. Finally we collect the proofs of all the lemmas/theorems
deferred from the main paper due to space constraints in the Appendix.

2. Notation

For symmetric matrix M ∈ Rd×d and x ∈ Rd we let ‖x‖2M = x>Mx. For symmetric matrix
N ∈ Rd×d we use M � N to denote the condition that x>Mx ≤ x>Nx for all x ∈ Rd and we
define≺,�, and� analogously. We use nnz(A) to denote the number of non-zero entries in A and
for b ∈ Rn, we let nnz(b) denote the number of nonzero entries in b.

6
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3. Regression Algorithm Given Leverage Score Estimates

The regression algorithm we provide in this paper involves two steps. First we find which rows of
A are important in terms of leverage score. Second, we use these leverage scores to sample the
matrix and solve the regression problem on the sampled matrix using the following theorem which
is a generalization of Theorem 4 that is useful for our analysis.

Theorem 8 (Previous Best Regression Running Time) Let A and B be matrices with the same
number of columns. Suppose that B has n rows and

(
5
6

)
B>B � A>A �

(
6
5

)
B>B, then there is

a T (A)-time regression algorithm with

T (A) = Õ

(
nnz(A) +

(
n+

∑
i∈[n] ‖bi‖2√
λmin(B>B)

)
· s(B)

)
.

Theorem 8 is a consequence of results on accelerated coordinate descent (Allen Zhu et al., 2016;
Nesterov and Stich, 2017) and approximate proximal point (Frostig et al., 2015a; Lin et al., 2015).
We defer the proof to the Appendix (Section C). In the rest of the section we define leverage scores
and analyze the second step of our algorithm.

Definition 9 (Leverage Score) For A ∈ Rn×d with rows a1, ..., an ∈ Rd we denote the leverage
score of row i ∈ [n] by σi(A)

def
= a>i

(
A>A

)+
ai.

Note that σi(A) ∈ (0, 1] for all i ∈ [n] and
∑

i∈[n] σi(A) = rank(A). The following lemma shows
that sampling rows of A according to overestimates of leverage scores yields a good approximation
to A after appropriate re-scaling (Cohen et al., 2015; Spielman and Srivastava, 2008):

Lemma 10 (Leverage Score Sampling (Cohen et al. (2015)) ) Let A ∈ Rn×d, let δ ∈ (0, 12),
and let u ∈ Rn be overestimates of leverage scores of A; i.e. ui ≥ σi(A) for all i ∈ [n]. Define
pi

def
= min

{
1, kδ−2ui log n

}
for a sufficiently large constant k > 0 and let H ∈ Rn×n be a random

diagonal matrix where Hii =
1
pi

independently with probability pi and Hii = 0 otherwise. With
high probability in n, nnz(H) = O(d ·δ−2 · log n) and (1−δ) ·A>A � A>HA � (1+δ) ·A>A.

Algorithm 1 outlines the procedure to solve regression given overestimates of leverage score.

Algorithm 1: SolveUsingLSA,u(x0, b, ε, u)

Let pi = min {1, k′ · ui log n} where k′ is a sufficiently large absolute constant.
repeat

Let H ∈ Rn×n be a diagonal matrix where independently for all i ∈ [n] we let Hii =
1
pi

with probability pi and 0 otherwise.
Let B =

√
HA.

until
∑

i∈[n] ‖bi‖2 ≤ 2 ·
∑

i∈[n]
√
k′ · ui log n · ‖ai‖2;

Invoke Theorem 8 on A and B to find y such that

fA,b(y)−min
x
fA,b(x) ≤ ε ·

(
fA,b(x0)−min

x
fA,b(x)

)
.

Output: y.
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Theorem 11 If u ∈ Rn satisfies σi(A) ≤ ui ≤ 4 · σi(A) + [n · κ(A>A)]−1 for all i ∈ [n] then
SolveUsingLSA,u is a T (A)-time regression algorithm where

T (A) = Õ

(
nnz(A) +

(
d+

∑
i∈[n]

√
σi(A) · ‖ai‖2√

λmin(A>A)

)
· s(A)

)
.

Proof Let k′ = δ−2 · k for δ = 1
10 and k defined in Lemma 10. Applying Lemma 10 yields that for

every iteration of the inner loop, we have with high probability in n that(
5

6

)
A>A � A>HA �

(
6

5

)
A>A (5)

where A>HA =
∑

i∈[n] :Hii 6=0 bib
>
i , bi

def
= 1√

pi
ai and pi

def
= min {1, k′ · ui log n}. Note that

E

∑
i∈[n]

‖bi‖2

 =
∑
i∈[n]

pi√
pi
‖ai‖2 ≤

∑
i∈[n]

√
k′ui log n‖ai‖2 .

Consequently, by Markov’s inequality, with probability at least 1/2∑
i∈[n]

‖bi‖2 ≤ 2 ·
∑
i∈[n]

√
k′ · ui log n · ‖ai‖2

Therefore the loop in the algorithm terminates with high probability in n in O(log n) iterations.
Consequently, the loop takes only O(nnz(A) + n log n)-time and since we only sampled O(log n)
many independent copies of A>HA, the guarantee (5) again holds with high probability in n.

Using the guarantee (5) and Theorem 8 on A and B
def
=
√
HA, we can produce a y we need in

time O(log(ε−1)) times

Õ

nnz(A) +

d log n+
1√

λmin(A>A)

∑
i∈[n]

‖bi‖2

 · s(A)


where we used that B has at most O(d log n) rows with high probability in n. Since we know∑

i∈[n]

‖bi‖2 ≤ 2
∑
i∈[n]

√
k′ · ui log n · ‖ai‖2,

all that remains is to bound
∑

i∈[n]
√
ui‖ai‖2. However, A>A � λmax(A

>A)I and therefore

I � λmax(A
>A)(A>A)−1 and ‖ai‖2 ≤

√
λmax(A>A) · σi(A) .

Consequently, Cauchy Schwartz and λmin(A
>A) ≤ tr(A>A) yields

1√
n

∑
i∈[n]

‖ai‖2 ≤
√∑

i∈[n]

‖ai‖22 ≤
1√

λmin(A>A)

∑
i∈[n]

‖ai‖22 ≤
√
κ(A>A)

∑
i∈[n]

√
σi(A) · ‖ai‖2.

Since
√
a+ b ≤

√
a+
√
b this yields∑

i∈[n]

√
ui · ‖ai‖2 ≤ 2

∑
i∈[n]

√
σi(A) · ‖ai‖2 +

1√
n · κ(A>A)

∑
i∈[n]

‖ai‖2 ≤ 3
∑
i∈[n]

√
σi(A) · ‖ai‖2

which in turn yields the result as Õ hides factors poly-logarithmic in n and d.

8
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4. Regression Algorithm Without Leverage Score Estimates

In the previous section we showed that we can solve regression in our desired running time provided
we have a constant factor upper approximation to leverage scores. Here we show how to apply this
procedure repeatedly to estimate leverage scores as well. We do this by first adding a large multiple
of the identity to our matrix and then gradually decreasing this multiple while maintaining estimates
for leverage scores along the way. This is a technique introduced in Li et al. (2013) and we leverage
it tailored to our setting.

A key technical ingredient for this algorithm is the following well-known result on the reduction
from leverage score computation to regression with little overhead. Formally, Lemma 12 states
that you can compute constant multiplicative approximations to all leverage scores of a matrix in
nearly linear time plus the time needed to solve Õ(1) regression problems. Algorithm 2 details the
procedure for computing leverage scores.

Algorithm 2: ComputeLS(A, δ,A)
Let k = c log(n) and ε = δ2

(18nd logn·κ(A>A))2
where c is some large enough constant.

for j = 1, · · · , k do
Let vj ∈ Rn be a random Gaussian vector, i.e. each entry follows N(0, I).
Use algorithm A to find a vector yj such that

fA,vj (yj)−min
x
fA,vj (x) ≤ ε(fA,vj (0)−min

x
fA,vj (x)) .

end
Let τi = 1

k

∑k
j=1(e

>
i A

>yj)
2 for all i = 1, · · · , n.

Output: τ
1−δ/3 + δ

2n·κ(A>A)
.

Lemma 12 (Computing Leverage Scores) For A ∈ Rn×d, let A be a T (A)-time algorithm for
regression on A. For δ ∈ ( 1n ,

1
2), in time O((nnz(A) + T (A) log ε−1)δ−2 log n) where we set

ε = δ2(18n · d · log n ·κ(A>A))−2, with high probability in n, the algorithm ComputeLS(A, δ,A)
outputs τ ∈ Rn such that σi(A) ≤ τi ≤ (1 + δ)σi(A) + δ · [n · κ(A>A)]−1 . for all i ∈ [n].

We defer the proof of Lemma 12 to the Appendix (Section A). Combining the algorithm for
estimating leverage scores ComputeLS (Algorithm 2) with our regression algorithm given leverage
scores SolveUsingLS (Theorem 11) yields our solver (Algorithm 3). We first provide a technical
lemma regarding invariants maintained by the algorithm (Lemma 13). The proof of Lemma 13 is
deferred to the Appendix(Section B) due to space constraints.

Lemma 13 In the algorithm SolveA,ε (See Algorithm 3) the following invariant is satisfied

σi(Aη) ≤ ui ≤ 4 · σi(Aη) + [n · κ(A>
η Aη)]

−1. (6)

We now prove Theorem 5 using Lemma 13 and Algorithm 3.
Proof [Proof of Theorem 5] Lemma 13 shows that u is always a good enough estimate of σi(Aη)
throughout the algorithm to invoke SolveUsingLS with Theorem 11. Note that SolveUsingLS is

9
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Algorithm 3: SolveA(x0, b, ε)

Let Aη =

(
A√
ηI

)
, η = λmax(A

>A) and ui =

{
1
η‖ai‖

2
2 if 1 ≤ i ≤ n

1 if n+ 1 ≤ i ≤ n+ d
5

repeat
u← 2 · ComputeLS(Aη,

1
4 ,A) for algorithm A given by SolveUsingLSAη ,u.

η ← 3
4 · η.

until η > 1
10λmin(A

>A);

Set η ← 0. Let b =
(
b
0

)
∈ Rn+d.

Apply algorithm SolveUsingLSA0,u
to find y such that

fA0,b
(y)−min

x
fA0,b

(x) ≤ ε(fA0,b
(x0)−min

x
fA0,b

(x)) .

Output: y

called from within the invocation of ComputeLS and then in particular at the last step when η is set
to 0 and the invariant ensures that the output of the algorithm is as desired by Theorem 5.

During the whole algorithm, ComputeLS(Aη,
1
4 ,A) is called Θ(log(κ(A>A))) times. Each

time ComputeLS is called, SolveUsingLS is called Θ(log(n)) many times. Therefore upto log
factors all that remains is to bound the running time of the individual invocation of SolveUsingLS.
We use Theorem 11 for this purpose. Note that, for λ ≥ 0 and i ∈ [n] we have σi(Aλ) ≤ σi(A0)
and since A>

λAλ ≥ λI we have that λ ≤ λmin(A
>
λAλ). Furthermore, since λmin(A

>
λAλ) ≥

λmin(A
>A) we have that the running time follows from the following and Theorem 11:∑

i∈[n+d]

√
σi(Aλ) · ‖ai‖2√

λmin(A>
λAλ)

≤
∑
i∈[n]

√
σi(A) · ‖ai‖2√
λmin(A>A)

+
∑
i∈[d]

√
λ√
λ
.

Finally note that all the statements hold with high probability in n but they are invoked logarith-
mically many times and hence by a union bound, we see that the procedure succeeds with high
probability in n.

5. Extension for ERM Problems

In this section we consider the ERM problem (cf. Definition 6). We propose Algorithm 4 as the
main sub-routine to solve the ERM problem. Theorem 14 provides the error guarantee and bounds
the running time of Algorithm 4. Note that Theorem 14 provides a constant factor decrease in the
error which can be repeated via a standard reduction to provide ε error as required by Theorem 7.
We formally provide the reduction and the proof of Theorem 7 in the Appendix (Section D).

Algorithm 4 takes as input, estimates of leverage scores of the matrix A>A and creates an
estimator of the true function by sampling component functions according to the probability distri-
bution given by the leverage scores and appropriate re-scaling. Further, it reformulates the estimator
as a sum of variance reduced components akin to Johnson and Zhang (2013b). The algorithm then

10
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approximately minimizes the estimator using an off-the-shelf ERM minimizer A (Theorem 15).
This step can be seen as analogous to the preconditioned iteration in the case of linear regression.

Algorithm 4: ERMSolve(x0, {τi}ni=1, F (x) =
∑n

i=1 fi(x)),m)

Define for k = 1→ n, pk
def
= τk∑

j τj
.

Let D(j) be the distribution over [1, . . . n] such that ∀ k Prj∼D(j = k) = pk

Define for k = 1→ n, f̃k(x)
def
= 1

pk

[
fk(x)−∇fk(x0)>x

]
+∇F (x0)>x

Sample m integers i1 . . . im ∈ [n] independently from D.
if
∑m

t=1
‖ait‖2√

pit
≤ 10m

∑n
k=1 ‖ak‖2

√
pk then

Set Fm(x) = 1
m

∑m
t=1 f̃it(x).

Use Theorem 15 to find x′ such that

Fm(x′)−minFm(x) ≤ 1

512M4
(Fm(x0)−minFm(x))

end
Output: x′

Theorem 14 Given an ERM problem (Definition 6) and numbers ui which are over estimates of
leverage scores i.e. ui ≥ σi, set parameters such that τi = min{1, 20ui log(d)},m = 160

(
(
∑

j τj) ·M4
)

then we have that Algorithm 4 produces a point x′ such that

F (x′)− min
x∈Rd

F (x) ≤ 1

2

(
F (x0)− min

x∈Rd
F (x)

)
with probability at least 1/2. Further Algorithm 4 can be implemented in total time

Õ

((
mM +

n∑
i=1

‖ai‖2
√
τiM

3√
λmin(A>A)

)
s(A)

)
.

5.1. Proof of Theorem 14

We first provide a generalization of Theorem 4 for the ERM setting and then prove Theorem 14.

Theorem 15 (Acc. Coordinate Descent for ERM) Consider the ERM problem (cf. Definition 6)
with ψi such that ∀ x ψ′′

i (x) ∈ [µi, Li] and λ such that ∀ x ∇2F (x) � λI . Given a point x0, there
exists an algorithm A which produces a point x′ w.h.p in n such that

F (x′)− min
x∈Rd

F (x∗) ≤ ε(F (x0)− min
x∈Rd

F (x∗))

in total time proportional to

Õ

((
n∑

i=1

√
Li

µi
+

n∑
i=1

‖ai‖2

√
Li

λ

)
s(A) log(ε−1)

)

11
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The proof of Theorem 15 is a direct consequence of Allen Zhu et al. (2016) and is deferred to
the Appendix (Section F). We will use AlgorithmA guaranteed by Theorem 8 as a subroutine in the
Algorithm 4.
Proof For convenience we restate the definitions provided in Algorithm 4. Given parameters
{τ1 . . . τn} we define a probability distribution D over {1, . . . n} such that

∀ k ∈ [n] pk
def
= Prj∼D(j = k)

def
=

τk∑
τk

. (7)

We define approximations to fk for k ∈ [n] as

f̃k(x)
def
=

1

pk

[
fk(x)−∇fk(xi)Tx

]
+∇F (x0)Tx . (8)

Further we sample m integers {i1, . . . im} independently from D and we define the approximation

Fm(x)
def
=

1

m

m∑
t=1

f̃it(x) . (9)

Define x∗
def
= argminxF (x). To prove the theorem we will prove two key properties. Firstly the

choice of the sample size m = Ω(
∑n

k=1 τkM
4) is sufficient to ensure that approximately minimiz-

ing Fm(x) makes constant multiplicative factor progress on F . Secondly we will bound the running
time of the coordinate descent procedure (A from Theorem 8). Consider the random matrix

Ã>Ã
def
=

1

m

m∑
t=1

aita
>
it

pit
. (10)

and define the event E1 to be the following event.

E1
def
= {0.5A>A � Ã>Ã � 2A>A} . (11)

We use a concentration inequality Lemma 24 (stated and proved in Appendix Section G) to ensure

Pr(E1) ≥ 1− 1/d

The following lemma bounds the number of samples required for exact minimization of Fm(x) to
lead to constant decrease in error under the event E1. Due to space constraints we provide the proof
of the Lemma in the Appendix(Section E)

Lemma 16 Consider an ERM problem F (x) =
∑
fi(x) as defined in Definition 6. Let Fm be as

defined in (9) and Ã be as defined in (10). Let

xm
def
= argminx∈RdFm(x).

Let E1
def
= {0.5A>A � Ã>Ã � 2A>A} and let Pr(E1) ≥ p. Then if we setm ≥ 160(

∑
j τj)·M4,

we have that

Pr

(
F (xm)− F (x∗) ≤ O

(
1

4
(F (x0)− F (x∗))

))
≥ p− 1

10
(12)

12



LEVERAGE SCORE SAMPLING FOR ERM

For the rest of the proof we will assume that the event E1 and the property (12) holds. Lemma 16
implies that this happens with probability at least 7/10. An application of Markov’s inequality gives
us that the condition in the if statement in Algorithm 4 i.e.

m∑
t=1

‖ait‖2√
pit
≤ 10m

n∑
k=1

‖ak‖2
√
pk = 10E

[
m∑
t=1

‖ait‖2√
pit

]
(13)

happens with probability at least 9/10. Putting the above together via a union bound gives us
that with probability at least 6/10 all three of the following happen: E1, Condition (12) and the
execution of the if loop (i.e. Condition 13 is met). We now show that under the above conditions
we get sufficient decrease in error. Firstly note that by definition we have that

Fm(x′)− Fm(xm) ≤ 1

512M4
(Fm(x0)− Fm(xm)) . (14)

Note that if event E1 happens then

∀ x 1

2M
A>A ≤ ∇2Fm(x) ≤ 2MA>A . (15)

Now consider the RHS of (14)

Fm(x0)− Fm(xm) ≤M‖x0 − xm‖2A>A ≤ 2M(‖x0 − x∗‖2A>A + ‖xm − x∗‖2A>A)

≤ 4M2(F (x0)− F (x∗) + F (xm)− F (x∗))
≤ 5M2(F (x0)− F (x∗)) (16)

The first inequality follows from (15), second from triangle inequality, third by noting that F is 1
M

strongly convex in A>A norm (Assumption (4)) and the fourth from Lemma 16. Further,

F (x′)− F (xm) ≤ ∇F (xm)>(x′ − xm) +
M

2
‖x′ − xm‖2A>A

≤ ‖∇F (xm)‖[A>A]−1‖(x′ − xm)‖A>A +
M

2
‖x′ − xm‖2A>A

≤
√

2M(F (xm)− F (x∗))‖(x′ − xm)‖A>A +
M

2
‖x′ − xm‖2A>A

≤
√

2M(F (xm)− F (x∗))
√
4M(Fm(x′)− Fm(xm)) + 2M2(Fm(x′)− Fm(xm))

≤ 1

8M

√
(F (xm)− F (x∗))

√
(Fm(x0)− Fm(xm)) +

1

256M2
(Fm(x0)− Fm(xm))

≤ 1

3
(F (x0)− F (x∗)) (17)

The first and third inequality follow by noting that F is M smooth and 1/M strongly convex in
A>A norm. Fourth inequality follows by noting that if event E1 holds, Fm is 1/2M strongly convex
in A>A norm. Fifth inequality follows from (14) and sixth inequality from (16) and Lemma 16.
(17) together with (12) implies that with probability at least 6/10, we have that

F (x′)− F (x∗) ≤
1

2
(F (x0)− F (x∗))

13
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We will now bound the running time of the procedure via Theorem 15. Define Lit and µit to be
respectively the smoothness and strong convexity parameters of the components f̃it/m. Note that
Lit ≤ M

mpit
and µit ≥ 1

Mmpit
. Note that event E1 gives us that ∀ x ∇2Fm(x) � 1

2M λmin(A
>A).

A direct application of Theorem 15 using the bounds on Lit and µit gives us that the total running
time is bounded by

Õ

((
m∑
t=1

M +

m∑
t=1

‖ait‖2

√
M

mpit
· M

λmin(A>A)

)
s(A) log(ε−1)

)
≤ Õ

(
mM +

n∑
i=1

‖ai‖2
√
τiM

3√
λmin(A>A)

)

The inequality follows from Condition (13) and the definitions of pk,m.
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Appendix A. Computing Leverage Scores given a Regression Algorithm (Lemma 12)

In this section we give a proof of Lemma 12 which bounds the running time of computing leverage
scores assuming access to a regression algorithm. The main algorithm is given as Algorithm 2.
Proof [Proof of Lemma 12] Let y∗j = (A>A)−1A>vj be the minimizer of fA,vj (x). (2) shows that

‖Ayj −Ay∗j ‖22 ≤ ε · v>j A(A>A)−1A>vj .

Using vj ∼ N(0, I), we have that

v>j A(A>A)−1A>vj ≤ 2d · log(n)

with probability 1− n−Θ(1). Hence, we have that∣∣∣e>i Ayj − e>i Ay∗j ∣∣∣ ≤ ‖Ayj −Ay∗j ‖2 ≤
√
2εd · log(n).

Using this and∣∣∣e>i Ay∗j ∣∣∣ ≤√e>i A(A>A)−1A>ei

√
v>j A(A>A)−1A>vj ≤

√
2d · log(n) ,

we have that ∣∣∣∣(e>i Ayj)2 − (e>i Ay∗j)2∣∣∣∣ ≤ 6
√
εd · log(n).

Using the definition of ε, we have that∣∣∣∣∣∣1k
k∑

j=1

(e>i Ayj)
2 − 1

k

k∑
j=1

(e>i Ay
∗
j )

2

∣∣∣∣∣∣ ≤ 6
√
εd · log(n) ≤ δ

3n · κ(A>A)
(18)
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Also, we note that
1

k

k∑
j=1

(e>i Ay
∗
j )

2 =
1

k

k∑
j=1

(e>i A(A>A)−1A>vj)
2.

Since vj ∼ N(0, I) and k = c log(n)/δ2 where c is some large enough constant, Johnson-
Lindenstrauss lemma shows that, with high probability in n for all i ∈ [n](

1− δ

3

)
σi(A) ≤ 1

k

k∑
j=1

(e>i Ay
∗
j )

2 ≤
(
1 +

δ

3

)
σi(A)

Combining this with (18) gives the result.
Finally, to check the success probability of this algorithm, we note that we solved O(δ−2 log n)

many regression problems and each one has success probability 1 − n−Θ(1). Also, the John-
son–Lindenstrauss lemma succeed with probability 1− n−Θ(1). This gives the result.

Appendix B. Proof of Invariants in Algorithm 3(Lemma 13)

Proof Note that A>
η Aη = A>A + ηI. Consequently, since initially η = λmax(A

>A) we have
that initially ηI � A>

η Aη � 2ηI. Consequently, we have that initially σi(Aη) ≤ ui ≤ 2σi(Aη)
and therefore satisfies the invariant (6).

Now, suppose at the start of the repeat loop, u satisfies the invariant (6). In this case the the
assumptions needed to invoke SolveUsingLS by Theorem 11 are satisfied. Hence, after the line
u← 2 · ComputeLS(Aη,

1
4 ,A), by Lemma 12 we have that for all i ∈ [n]

2σi(Aη) ≤ ui ≤ 2

(
1 +

1

4

)
σi(Aη) +

2

4n · κ(A>
η Aη)

.

Now, letting η′ = 3
4η we see that (3/4)σi(Aη) ≤ σi(Aη′) ≤ (4/3)σi(Aη) and direct calculation

shows that invariant (6) is still satisfied after changing η to η′.
All the remains is to consider the last step when we set η = 0. When this happens η <

1
10λmin(A

>A). and therefore σi(Aη) is close enough to σi(A) and the invariant (6) is satisfied.

Appendix C. Previous Best Regression Runtime - Proof of Theorem 8

First we give the theorems encapsulating the results we use and then use them to prove Theorem 4
in the case when A = B. We then prove the case when A 6= B. Theorem 17 describes the fastest
coordinate descent algorithm known by Allen Zhu et al. (2016). Theorem 18 describes the reduction
Frostig et al. (2015a) to from regression to coordinate decent via proximal point.

Theorem 17 (Corollary of Thm 5.1 of Allen Zhu et al. (2016)) Let f : Rn → R be a twice dif-
ferentiable σ-strongly convex function for µ > 0. Further suppose that for all x ∈ Rn and i ∈ [n]

it is the case that ∂2

∂x2
i
f(x) ≤ Li for i ∈ [n] and the partial derivative ∂

∂xi
f(x) can be computed in

O(s) time. Then there exists an algorithm which given any ε > 0 finds a y ∈ Rn such that

f(y)−min
x
f(x) ≤ ε

(
f(x0)−min

x
f(x)

)
.

17
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in expected running time O(s
∑

i

√
Li/µ).

Theorem 18 (Corollary of Thm 4.3 of Frostig et al. (2015a)) Given A ∈ Rn×d with rows a1, ..., an
and c ∈ Rn. Consider the function p(x) =

∑n
i=1 φi(a

>
i x) where φi are convex functions. Sup-

pose that λI � ∇2p(x) � LI for all x ∈ Rd. Let κ = L/λ. Let dual problem gs(y) =∑n
i=1 φ

∗
i (yi) +

1
2λ‖A

>y‖22 − s>A>y.
Suppose that for any s ∈ Rd, any y0 ∈ Rn and any 0 ≤ ε ≤ 1

2 , we can compute y in expected
running time Tε such that

gs(y)−min
y
gs(y) ≤ ε(gs(y0)−min

y
gs(y)). (19)

Then, for any x0 and any ε ∈ (0, 12) we can find x such that

p(x)−min
x
p(x) ≤ ε

(
p(x0)−min

x
p(x)

)
in time Õ(Tδ log(1/ε)) w.h.p. in n where δ = Θ(n−2κ−4) and Õ includes logarithmic factors in
n, κ.

We note that although the guarantees of Thm 5.1 of Allen Zhu et al. (2016) and Thm 4.3 of
Frostig et al. (2015a) are not stated in the form of Theorems 17 and 18. They can be easily converted
to the form above by noticing that the expected running time of the procedure in Thm 4.3 of Frostig
et al. (2015a) using Theorem 17 is Õ(Tδ log(1/ε)) which can then be boosted to high probability in
n using Lemma 19. We now give the proof of Theorem 8.
Proof [Proof of Theorem 8 when A = B] Let

p(x) =

n∑
i=1

φi(a
>
i x) where φi(x) =

1

2
(x− bi)2 .

Then, we have that φ∗i (y) =
1
2y

2 + biy and hence

gs(y) =

n∑
i=1

φ∗i (yi) +
1

2λ
‖A>y‖22 − s>A>y =

1

2
‖y‖22 + b>y +

1

2λ
‖A>y‖22 − sTAT y.

Note that gs(y) is 1 strongly convex and

d2

dy2i
gs(y) = 1 +

1

λ
‖ai‖22

def
= Li .

Hence, Theorem 17 finds y satisfying (19) in time

O

s(A) ·
∑
i∈[n]

√
1 +

1

λ
‖ai‖22 log(ε

−1)

 = O

n+
1√
λ

∑
i∈[n]

‖ai‖2

 · s(A) · log(ε−1)

 .

Hence, this shows that the primal can be solved in time

O

n+
1√
λ

∑
i∈[n]

‖bi‖2

 · s · log(n · κ) · log(κε−1)


18
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where we used A = B at the end.

Proof [Proof of Theorem 8 for the case A 6= B] The proof involves two steps. First, we show that
given any point x0, we can find a new point x that is closer to the minimizer. Then, we bound how
many steps it takes. To find x, we consider the function

fx0(x) =
1

2
‖Bx−Bx0‖22 + 〈Ax0 − c,Ax−Ax0〉 .

Let z be the minimizer of fx0 and x∗ be the minimizer of 1
2‖Ax− b‖

2
2. Note that

z = x0 − (B>B)−1A>η with η = Ax0 − b, and x∗ = (A>A)−1A>b.

Hence, we have that

1

2
‖Az −Ax∗‖22 =

1

2
‖A(A>A)−1A>η −A(B>B)−1A>η‖22

=
1

2
ηA>(A>A)−1A>η − ηA>(B>B)−1A>η +

1

2
‖A(B>B)−1A>η‖22.

Using that 5
6B

>B � A>A � 6
5B

>B, we have

1

2
‖Az −Ax∗‖22 ≤

4

10
ηA>(A>A)−1A>η =

4

10
‖Ax0 −Ax∗‖22. (20)

However, it is difficult to reduce to the case when A = B to minimize the function fx0 due to the

extra linear term. To address this issue, we assume B = [B;
√

λ
100I] by appending an extra identity

term. Note that this only adds a small matrix λ
100I and hence we still have 5

6B
>B � A>A �

6
5B

>B but with a slightly different constant which will not affect the proof for (20). Due to the
extra identity term, fx0(x) reduces to an expression of the form 1

2‖Bx − d‖
2
2 + C for some vector

d and constant C. We can now apply Theorem 8 for the case A = B and get an x such that

fx0(x)− fx0(z) ≤
1

200
(fx0(x0)− fx0(z)) . (21)

in time

O

((
n+

∑
i∈[n] ‖bi‖2√
λmin(B>B)

)
· s(B) · log(nκ) · log(κ)

)
.

Note that the extra terms in B does not affect the minimum eigenvalue and it increases 1√
λ

∑
i∈[n] ‖bi‖2

by atmost n.
Now, using the formula of z, the guarantee (21) can be written as

‖Bx−Bz‖22 ≤
1

200
‖Ax0 −Ax∗‖22 .

Using that 5
6B

>B � A>A � 6
5B

>B , we have

‖Ax−Az‖2 ≤
1

10
‖Ax0 −Ax∗‖2 .
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Combining this with (20), we have that

‖Ax−Ax∗‖2 ≤ 0.9‖Ax0 −Ax∗‖2.

Hence, we get closer to x∗ by constant factor. Therefore, to achieve (2), we only need to repeat this
process log(1/ε) times. Hence, the total running time is

O

((
n+

∑
i∈[n] ‖bi‖2√
λmin(B>B)

)
· s(B) log2(nκ) log(ε−1)

)

Appendix D. Reduction from High Probability Solvers to Expected Running Times -
Proof of Theorem 7

In this section we provide Lemma 19 which reduces the problem of achieving ε accuracy with high
probability to the problem of achieving an accuracy c with probability at least δ for some constants
c, δ. Note that a naive reduction suffers an additional log log(1/ε) term which we avoid. The
reduction helps provide a concise proof of Theorem 7 based on Theorem 14.

Lemma 19 Consider being given a function F : Rd → R and define x∗ def
= argminxF (x). Let A

be an algorithm such that given any point x0 the algorithm runs in time T and produces a point x′

such that
F (x′)− F (x∗) ≤ c (F (x0)− F (x∗))

with probability at least 1 − δ for given universal constants c, δ ∈ [0, 1]. Further suppose there
exists a procedure P which given a point x can produce an estimate m in time T ′ such that F (x)−
F (x∗) ∈ [m/r, rm] for some given r ≥ 1. Then there exists a procedure that given a point x0
outputs a point x′ such that

F (x′)− F (x∗) ≤ ε (F (x0)− F (x∗))

and the expected running time of the procedure is bounded by O
(
(T + T ′) log(r) log(ε−1

)
) where

O() hides constant factors in c, δ. Moreover for any γ we have a procedure that produces a point
x′ such that

F (x′)− F (x∗) ≤ ε (F (x0)− F (x∗))

with probability at least 1− γ with a total running time of O
(
(T + T ′) log(r) log(ε−1) log(γ−1)

)
We first use Lemma 19 to prove Theorem 7 and then provide a proof of Lemma 19.
Proof [Proof of Theorem 7] We make use of Lemma 19 plugging in Algorithm 4 as the procedure
A. Note that c, δ are both 1/2 as guaranteed by Theorem 14. Moreover since F (x) is such that that
∀ x Mλmin(A

>A) � ∇2F (x) � Mλmax(A
>A), we can use ‖∇F (x)‖22 as an estimator for

F (x)− F (x∗). The corresponding r for it is bounded by M2κ(A>A).
Finally note that the running time guaranteed in Theorem 14 depends on the quality of the

estimates of the leverage scores input to it. We invoke Lemma 12 for computing accurate estimates
of leverage scores. Putting together the above arguments finishes the proof for Theorem 7.
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Proof [Proof of Lemma 19] To show the lemma we will show the existence of a procedure (de-
scribed in Algorithm 5) which produces a point x′ such that

F (x′)− F (x∗) ≤ 1/2 (F (x0)− F (x∗)) (22)

with expected running time bounded by O ((T + T ′) log(r)). Applying this procedure O(log(ε−1)
and using linearity of expectation gives us the Lemma 19. Consider the following procedure to
prove Lemma 19.

Algorithm 5: Reduction(x0, F (x),P,A, c, δ, r)
Set T = logc−1(2r2)
repeat

for i = 0→ T do
for j = 0→ logδ−1(2 logc−1(2r2) do

Set xij = A(xi, F )
end
Set xi+1 = minj xij

end
Compute error estimates E1 = P(x0), E2 = P(xT )
Set E = E2

E1
.

until E ≤ 0.5;
Output: xT

Note that since for every xij we have that

F (xij)− F (x∗) ≤ c (F (xi)− F (x∗))

with probability at least δ, therefore we have that

F (xi+1)− F (x∗) ≤ c (F (xi)− F (x∗))

with probability at least 1 − δlogδ−1 (2 logc−1 (r2) = 1 − 1
2 logc−1 (r2)

. Taking a union bound over the
outer loop gives us that with probability at least 1/2 we have that

F (xT )− F (x∗) ≤
1

2r2
(F (xi)− F (x∗))

Moreover by the property of the estimates given by P we know that in this case we have that
E ≤ 0.5. Therefore we have that with probability at least 1/2 the repeat loop computes an
xT that reduces error by at least a factor of 1/2 and we can verify it. Therefore in expectation
the loop runs a total of 2 times. The total runtime of the above procedure can easily seen to be
O
(
(T + T ′) log(r) log(ε−1

)
.

Further suppose we are given a procedure with the guarantee that for any ε in expected running
time Tε it produces a point x′ such that

F (x′)−minF (x) ≤ ε(F (x0)−minF (x))
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We now run this procedure for time Tε/2. By Markov’s inequality with probability at least 1/2 we
have a point that satisfies

F (x′)−minF (x) ≤ ε(F (x0)−minF (x))

It is now easy to see that if we repeat the above procedure log(γ−1) many times and take the x with
the minimum value we have a point x′ such that

F (x′)−minF (x) ≤ ε(F (x0)−minF (x))

with probability at least 1− γ.

Appendix E. Proofs of ERM Sampling (Lemma 16)

Proof [Proof of Lemma 16] Consider the definitions in (7), (8), (9). Note the following easy obser-
vation.

F (x) = Ek∼Df̃k(x)

Consider the following Lemma 20 which connects the optima of two convex functions F and
G.

Lemma 20 Let F (x), G(y) : Rd → R be twice differentiable and strictly convex. Define

x∗ = argminxF (x) and y∗ = argminyG(y)

Then we have that
F (y∗)− F (x∗) = ‖∇G(x∗)‖2H−1

G HFH−1
G
.

where HF
def
=
∫ 1
0 ∇

2F (t.y∗ + (1− t)x∗)dt and HG
def
=
∫ 1
0 ∇

2G(t.y∗ + (1− t)x∗)dt.

We wish to invoke Lemma 20 by setting F = F (x), G = Fm(x). In this setting we have that

HF
def
=

∫ 1

0
∇2F (t.xm + (1− t)x∗)dt and HG

def
=

∫ 1

0
∇2Fm(t.xm + (1− t)x∗)dt

Firstly note that the definition of F and Assumption (4) gives us that

HF �M ·A>A (23)

Using Definition 10 and Assumption (4) gives us that

HG �M · Ã>Ã

Combining the above two and noting that the event E1 happens with probability at least p we get
that

H−1
G A>AH−1

G � 4M2[A>A]−1 w.p. p (24)

Also note that for any fixed matrix R, we have that

E[‖∇Fm(x∗)‖2R] =
Ek∼D[‖∇f̃k(x∗)‖2R]

m
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which implies via Markov’s inequality that with probability at least 9/10 we have that

‖∇Fm(x∗)‖2R ≤
10Ek∼D[‖∇f̃k(x∗)‖2R]

m
(25)

Putting (24) and (25) together and using a union bound we get that

‖Fm(x∗)‖2H−1
G A>AH−1

G
≤

40M2Ek∼D[‖∇f̃k(x∗)‖2[A>A]−1 ]

m
w.p. p− 1/10

Using Lemma 20 and (23) we get that with probability at least p− 1/10

F (xm)− F (x∗) ≤
40M3Ek∼D[‖∇f̃k(x∗)‖2[A>A]−1 ]

m
(26)

We will now connect Ek∼D[‖∇f̃k(x∗)‖2[A>A]−1 ] with the error at xi.

Lemma 21 Consider an ERM function F (x) =
∑m

i=1 fi(x) where fi(x) = ψi(a
>
i x) with ψ′′

i ∈
[ 1
M ,M ]. Define a distribution D(j) over [n] such that Pr(j = k) = pk

def
= τk∑

τk
for numbers

τk
def
= min(1, 20uk log(d)) where uk ≥ σi(A)6 are overestimates of leverage scores. Given a point

x̃ consider the variance reduced reformulation

F (x) = Ek∼D[f̃k(x)]

where
f̃k(x)

def
=

1

pk

[
fk(x)−∇fk(x̃)>x

]
+∇F (x̃)>x

Then we have that

Ek∼D

[
‖∇f̃k(x∗)‖2[A>A]−1

]
≤ 2(

∑
j

τj) ·M · (F (x̃)− F (x∗))

Putting together (26) and Lemma 21 we get that

F (xm)− F (x∗) ≤ 80

(
(
∑

j τj) ·M4

m
· (F (x0)− F (x∗))

)
w.p p− 1

10

Lemma 16 now follows from the choice of m.

We finish this section with proofs of Lemma 20 and 21
Proof [Proof of Lemma 20] For all t ∈ [0, 1] let z(t) def

= t · y∗ + (1 − t) · x∗ for t ∈ [0, 1] and
HF

def
=
∫ 1
0 ∇

2F (z(t))dt. By Taylor series expansion we have that

F (y∗) = F (x∗) +∇F (x∗)>(y∗ − x∗) +
∫ 1

0

1

2
(y∗ − x∗)>∇2F (z(t))(y∗ − x∗)dt

= F (x∗) +
1

2
‖y∗ − x∗‖2HF

.

6. σi are leverage scores defined in Definition 9
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Here we used that ∇F (x∗) = 0 and ∇2F (z(t)) � 0 by the convexity of F . We also have by
definition that

∇G(y∗) = 0

and therefore

∇G(y∗)−∇G(x∗) =
∫ 1

0
∇2G(z(t))(y∗ − x∗) · dt

and
(y∗ − x∗) = −H−1

G ∇G(x∗)

where HG
def
=
∫ 1
0 ∇

2G(z(t)). We now have that

F (y∗)− F (x∗) =
1

2
‖y∗ − x∗‖2HF

= ‖∇G(x∗)‖2H−1
G HFH−1

G
(27)

Proof [Proof of Lemma 21] For the purpose of this proof it will be convenient to perform a change
of basis. Define the function

G(x) = Ek∼Dgi(x) where gi(x) =
1

pi
fk((A

>A)−1/2x)

Note that G(x) = F ((A>A)−1/2)x). We will first note that

∇2gi(x) =
1

pi
·
[
(A>A)−1/2aia

>
i (A

>A)−1/2 · ψ′′
i (a

>
i (A

>A)−1/2x)
]

and now by the cyclic property of trace and the fact that ψ′′
i ≤M we have

tr(∇2gi(x)) =
(
∑

j τj)

τi
· a>i (A>A)−1ai ·M

Note that a>i (A
>A)−1ai ≤ 1. Now either τi = 1 or τi ≥ 20a>i (A

>A)−1ai log(d). In both cases
we see that RHS above ≤ 1. Therefore we get that gi is (

∑
j τj)M smooth. We now have the

following lemma.

Lemma 22 Let D be any distribution over [n] and define G = Ei∼D[gi(x)] for component convex
functions gi each of which is L smooth. Let x∗

def
= argmin G(x). We have that

Ei∼D‖∇gi(x)−∇gi(x∗)‖22 ≤ 2L(G(x)−G(x∗))

The proof of the above Lemma is identical to the proof of Equation 8 in Johnson and Zhang (2013b)
and we provide the proof for completeness. Assuming the Lemma, note that

2(
∑
j

τj)M(F (x̃)− F (x∗)) = 2(
∑
j

τj) ·M · (G((A>A)x̃)−G((A>A)x∗))

≥ Ei∼D‖∇gi((A>A)x̃)−∇gi((A>A)x∗)‖22

= Ei∼D‖(A>A)−1/2 1

pi
(∇fi(x̃)−∇fi(x∗))‖22

= Ei∼D‖∇f̃i(x∗)‖2(A>A)−1 − 2Ei∼D

[
1

pi
(∇fi(x∗)−∇fi(x̃))>[A>A]−1∇F (x̃)

]
− ‖∇F (x̃)‖2[A>A]−1

≥ Ei∼D‖∇f̃i(x∗)‖2(A>A)−1
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The first line follows by definition. The second line by 22 and by noting that g is (
∑

j τj)M smooth.
The third and fourth line follows by definition. The fifth line follows by noting that ∇F (x∗) = 0.

Proof [Proof of Lemma 22] Let x∗
def
= argmin g(x). Define auxiliary functions

hi(x)
def
= gi(x)− gi(x∗)−∇gi(x∗)>(x− x∗)

We know that hi(x∗) = minhi(x) since∇hi(x∗) = 0. Using smoothness of h and that hi(x∗) = 0,
we now have that

‖∇hi(x)‖22 ≤ 2Lhi(x)

A simple substitution gives us that for all i

‖∇gi(x)−∇gi(x∗)‖22 ≤ 2L
(
gi(x)− gi(x∗)−∇gi(x∗)>(x− x∗)

)
Taking expectations and using the fact that g(x∗) = 0 gives us that

Ei∼D‖∇gi(x)−∇gi(x∗)‖22 ≤ 2L(g(x)− g(x∗))

Appendix F. Accelerated Coordinate Descent for ERM - Proof of Theorem 15

Proof To remind the reader

f(x) =

n∑
i=1

ψi(a
>
i x) where ψ′′

i (x) ∈ [µi, Li] .

Following is a well known theorem. For a proof see Kakade et al. (2009).

Theorem 23 (Strong / Smooth Duality) A closed and convex function f is β-strongly convex with
respect to a norm ‖ · ‖ if and only if f∗ is 1

β -strongly smooth w.r.t the dual norm of ‖ · ‖.

A direct application of the above theorem gives us that ψ∗′′
i (y) ∈ [ 1

Li
, 1
µi
]. Consider the function

gs(y) =
n∑

i=1

ψ∗
i (yi) +

1

2λ
‖A>y‖22 − s>A>y

Consider the following modified function g̃s(y)
def
= gs(Dy) where D is a diagonal matrix with

Dii = Li. We will equivalently minimize the function g̃s(yi). We now immediately get that the
function g̃s(y) is 1 strongly convex. Moreover we have that

d2

dy2i
gs(y) =

Li

µi
+

1

λ
‖ai‖2Li .
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Hence, Theorem 17 finds y satisfying (19) in time

O

s(A) ·
∑
i∈[n]

√
Li

µi
+

1

λ
‖ai‖2Li log(ε

−1)

 = O

((
n∑

i=1

√
Li

µi
+

1√
λ

n∑
i=1

‖ai‖
√
Li

)
s(A) log(ε−1)

)

A direct application of Theorem 18 gives that the total running time is

O

((
n∑

i=1

√
Li

µi
+

1√
λ

n∑
i=1

‖ai‖
√
Li

)
s(A) log(nκ) log(κ/ε)

)

The above equation assumes that the inner iterations of accelerated coordinate descent can be im-
plemented in O(s(A)). This is easy to see because diagonal scaling is linear in sparsity. Therefore
the only bottleneck is computing the gradient of the dual function ψ∗. We can assume that ψ is
explicit and therefore the gradient of ψ∗ is easily computed.

Appendix G. A Matrix Concentration Inequality for Sampling with Replacement

Lemma 24 Given an error parameter 0 ≤ ε ≤ 1, let u be a vector of leverage score overestimates,
i.e. σi(A) ≤ ui for all i. Let α = ε−2 be a sampling rate parameter and c be a fixed constant. For
each row we define a number γi = min{1, αcui log(d)} and a probability pi =

γi∑
γi

. Let Yj be a

random variable which is sampled by picking a vector ai with probability pi and setting Yj =
aia

>
i

pi
.

Now consider the random variable Y = 1
m

∑
j Yj . We have that as long as m ≥

∑
i γi then

Pr((1− ε)A>A � Y � (1 + ε)A>A) ≥ 1− d−c/3

Proof The proof of the lemma follows the proof of Lemma 4 in Cohen et al. (2015). We only state
the differences. We use the inequality given in Harvey (2012).

Lemma 25 Let Y1 . . . Yk be independent random positive semidefinite matrices of size d × d. Let
Y =

∑
Yi and let Z = E[Y ]. If Yi � R.Z then

Pr
[∑

Yi � (1− ε)Z
]
≤ de−

ε2

2R and Pr
[∑

Yi � (1 + ε)Z
]
≤ de−

ε2

3R .

Note that the expectation of Yj/m = aia
>
i /m. Moreover note that each

Yj
m
� max

i

aia
>
i

∑
k γk

mγi
� A>A

c log dε−2

The inequality follows from noting that m ≥
∑
γi and Equation 10 in Cohen et al. (2015). The

calculations now follow exactly in the same way as in the proof in Cohen et al. (2015).
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