
Proceedings of Machine Learning Research vol 125:1–45, 2020 33rd Annual Conference on Learning Theory

Near-Optimal Methods for Minimizing
Star-Convex Functions and Beyond

Oliver Hinder ohinder@pitt.edu
University of Pittsburgh & Google & Stanford University

Aaron Sidford sidford@stanford.edu
Stanford University

Nimit Sohoni nims@stanford.edu
Stanford University

Editors: Jacob Abernethy and Shivani Agarwal

Abstract
In this paper, we provide near-optimal accelerated first-order methods for minimizing a broad
class of smooth nonconvex functions that are unimodal on all lines through a minimizer. This
function class, which we call the class of smooth quasar-convex functions, is parameterized
by a constant γ ∈ (0, 1]: γ = 1 encompasses the classes of smooth convex and star-convex
functions, and smaller values of γ indicate that the function can be “more nonconvex.” We
develop a variant of accelerated gradient descent that computes an ε-approximate minimizer
of a smooth γ-quasar-convex function with at most O(γ−1ε−1/2 log(γ−1ε−1)) total function
and gradient evaluations. We also derive a lower bound of Ω(γ−1ε−1/2) on the worst-case
number of gradient evaluations required by any deterministic first-order method, showing
that, up to a logarithmic factor, no deterministic first-order method can improve upon ours.
Keywords: Nonconvex optimization; star-convexity; first-order methods

1. Introduction

Acceleration (Nemirovski, 1982; Nesterov, 1983) is a powerful tool for improving the per-
formance of first-order optimization methods. Accelerated gradient descent (AGD) obtains
asymptotically optimal runtimes for smooth convex minimization. Furthermore, acceleration
is prevalent in stochastic optimization (Johnson and Zhang, 2013; Allen-Zhu, 2017; Ghadimi
and Lan, 2016; Woodworth and Srebro, 2016; Xu et al., 2018), coordinate descent methods
(Nesterov, 2012; Fercoq and Richtárik, 2015; Hanzely and Richtárik, 2019; Shalev-Shwartz
and Zhang, 2014), proximal methods (Frostig et al., 2015; Li and Lin, 2015; Lin et al., 2015),
and higher-order optimization (Bubeck et al., 2019; Gasnikov et al., 2018; Jiang et al., 2019).
Acceleration has also been successful in a wide variety of practical applications, such as image
deblurring (Beck and Teboulle, 2009) and neural network training (Sutskever et al., 2013).

More recently, acceleration techniques have been applied to speed up the computation of
ε-stationary points (points where the gradient has norm at most ε) of smooth nonconvex
functions (Agarwal et al., 2017; Carmon et al., 2017, 2018). In particular, while gradient
descent’s O(ε−2) rate for finding ε-stationary points of nonconvex functions with Lipschitz
gradients is optimal among first-order methods, if higher-order smoothness assumptions
are made accelerated methods can improve this to O(ε−5/3 log(ε−1)) (Carmon et al., 2017).

c© 2020 O. Hinder, A. Sidford & N. Sohoni.

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Further, Carmon et al. (2019b) show that under the same assumptions, any dimension-free de-
terministic first-order method requires at least Ω(ε−8/5) iterations to compute an ε-stationary
point in the worst case. These bounds are significantly worse than the corresponding O(ε−1/2)
bound that AGD achieves for smooth convex functions.

Still, in practice it is often possible to find approximate stationary points, and even
approximate global minimizers, of nonconvex functions faster than these lower bounds suggest.
This performance gap stems from the fairly weak assumptions underpinning these generic
bounds. For example, Carmon et al. (2019b,a) only assume Lipschitz continuity of the
gradient and some higher-order derivatives. However, functions minimized in practice often
admit significantly more structure, even if they are not convex. For example, under suitable
assumptions on their inputs, several popular nonconvex optimization problems, including
matrix completion, deep learning, and phase retrieval, display “convexity-like” properties,
e.g. that all local minimizers are global (Bartlett et al., 2019; Ge et al., 2016). Much more
research is needed to characterize structured sets of functions for which minimizers can be
efficiently found; our work is a step in this direction.

Main contributions The class of “structured” nonconvex functions that we focus on
in this paper is the class of functions we term quasar-convex. Informally, quasar-convex
functions are unimodal on all lines that pass through a global minimizer. This function class
is parameterized by a constant γ ∈ (0, 1], where γ = 1 implies the function is star-convex
(Nesterov and Polyak, 2006) (itself a generalization of convexity), and smaller values of γ
indicate the function can be “even more nonconvex.” We produce an algorithm that, given a
smooth γ-quasar-convex function, uses O(γ−1ε−1/2 log(γ−1ε−1)) function and gradient queries
to find an ε-optimal point. Additionally, we provide nearly matching query complexity lower
bounds of Ω(γ−1ε−1/2) for any deterministic first-order method applied to this function class.
Minimization on this function class has been studied previously (Guminov and Gasnikov,
2017; Nesterov et al., 2019); our bounds more precisely characterize its complexity.

Basic notation Throughout this paper, we use ‖·‖ to denote the Euclidean norm (i.e.
‖·‖2). We say that a function f : Rn → R is L-smooth, or L-Lipschitz differentiable, if
‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ for all x, y ∈ Rn. (We say a function is smooth if it is
L-smooth for some L ∈ [0,∞).) We denote a minimizer of f by x∗, and we say that a point
x is “ε-optimal” or an “ε-minimizer” if f(x) ≤ f(x∗) + ε. We use ‘log’ to denote the natural
logarithm and log+(·) to denote max{log(·), 1}.

1.1. Quasar-convexity: definition, motivation and prior work

In this paper, we improve upon the state-of-the-art complexity of first-order minimization of
quasar-convex functions,1 which are defined as follows.

1. The concept of quasar-convexity was first introduced by Hardt et al. (2018), who refer to it as ‘weak
quasi-convexity’. We introduce the term ‘quasar-convexity’ because we believe it is linguistically clearer.
In particular, ‘weak quasi-convexity’ is a misnomer because it does not subsume quasi-convexity. Moreover,
using this terminology, strong quasar-convexity would be confusingly termed ‘strong weak quasi-convexity.’

2

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Definition 1 Let γ ∈ (0, 1] and let x∗ be a minimizer of the differentiable function f : Rn →
R. The function f is γ-quasar-convex with respect to x∗ if for all x ∈ Rn,

f(x∗) ≥ f(x) +
1

γ
∇f(x)>(x∗ − x). (1)

Further, for µ ≥ 0, the function f is (γ, µ)-strongly quasar-convex2 (or (γ, µ)-quasar-convex
for short) if for all x ∈ Rn,

f(x∗) ≥ f(x) +
1

γ
∇f(x)>(x∗ − x) +

µ

2
‖x∗ − x‖2. (2)

We say that f is quasar-convex if (1) holds for some minimizer x∗ of f and some constant
γ ∈ (0, 1], and strongly quasar-convex if (2) holds with some constants γ ∈ (0, 1], µ > 0.
We refer to x∗ as the “quasar-convex point” of f . Assuming differentiability, in the case
γ = 1, condition (1) is simply star-convexity (Nesterov and Polyak, 2006);3 if in addition the
conditions (1) or (2) hold for all y ∈ Rn instead of just for x∗, they become the standard
definitions of convexity or µ-strong convexity, respectively (Boyd and Vandenberghe, 2004).
Definition 1 can also be straightforwardly generalized to the case where the domain of f is a
convex subset of Rn (see Definition 3 in Appendix D). Thus, our definition of quasar-convexity
generalizes the standard notions of convexity and star-convexity in the differentiable case.
Lemma 10 in Appendix D.2 shows that quasar-convexity is equivalent to a certain “convexity-
like” condition on line segments to x∗. In Figure 1, we plot example quasar-convex functions.

We say that a one-dimensional function is unimodal if it monotonically decreases to its
minimizer and then monotonically increases thereafter. As Observation 1 shows, quasar-
convexity is closely related to unimodality. Therefore, like the well-known quasiconvexity
(Arrow and Enthoven, 1961) and pseudoconvexity (Mangasarian, 1965), quasar-convexity
can be viewed as an approximate generalization of unimodality to higher dimensions. We
remark that beyond one dimension, neither quasiconvexity nor pseudoconvexity subsumes or
is subsumed by quasar-convexity. The proof of Observation 1 appears in Appendix D.1, and
follows readily from the definitions.

Observation 1 Let a < b and let f : [a, b]→ R be continuously differentiable. The function
f is γ-quasar-convex for some γ ∈ (0, 1] iff f is unimodal and all critical points of f are
minimizers. Additionally, if h : Rn → R is γ-quasar-convex with respect to a minimizer x∗,
then for any d ∈ Rn with ‖d‖ = 1, the 1-D function f(θ) , h(x∗ + θd) is γ-quasar-convex.

There are several other ‘convexity-like’ conditions in the literature related to quasar-
convexity. For example, star-convexity is a condition that relaxes convexity, and is a strict
subset of quasar-convexity in the differentiable case. Nesterov and Polyak (2006) introduce
this condition when analyzing cubic regularization. Lee and Valiant (2016) further investigate
star-convexity, developing a cutting plane method to minimize general star-convex functions.

2. By Observation 4, x∗ is unique if µ > 0.
3. When γ = 1, condition (2) is variously known as quasi-strong convexity (Necoara et al., 2019) or weak

strong convexity (Karimi et al., 2016).

3

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

-10 -5 0 5 10

0.5

1.0

1.5

2.0

Figure 1: Examples of quasar-convex functions.

Star-convexity is an interesting property because there is some evidence to suggest the
loss function of neural networks might conform to this structure in large neighborhoods of
the minimizers (Kleinberg et al., 2018; Zhou et al., 2019). Furthermore, Hardt, Ma, and
Recht (2018) show that, under mild assumptions, the objective for learning linear dynamical
systems is quasar-convex; the problem of learning dynamical systems is closely related to the
training of recurrent neural networks. Another relevant class of functions is those for which
a small gradient implies approximate optimality. This is known as the Polyak-Łojasiewicz
(PL) condition (Polyak, 1963) and is weaker than strong quasar-convexity (Guminov and
Gasnikov, 2017). For linear residual networks, the PL condition holds in large regions of
parameter space (Hardt and Ma, 2017).

We are not the first to study acceleration on quasar-convex functions; recent work by
Guminov and Gasnikov (2017) and Nesterov et al. (2019) shows how to achieve accelerated
rates for minimizing quasar-convex functions. For a function that is L-smooth and γ-quasar-
convex with respect to a minimizer x∗, with initial distance to x∗ bounded by R, the
algorithm of Guminov and Gasnikov (2017) yields an ε-optimal point in O(γ−1L1/2Rε−1/2)
iterations, while the algorithm of Nesterov et al. (2019) does so in O(γ−3/2L1/2Rε−1/2)
iterations. For convex functions (which have γ = 1), these bounds match the iteration
bounds achieved by AGD (Nesterov, 1983), but use a different oracle model. In particular,
to achieve these iteration bounds, Guminov and Gasnikov (2017) rely on a low-dimensional
subspace optimization method within each iteration, while Nesterov et al. (2019) use a
one-dimensional line search over the function value in each iteration (as well as a restart
criterion that depends on the optimal function value). However, quasar-convex functions are
not necessarily unimodal along the arbitrary low-dimensional regions or line segments being
searched over. Therefore, even finding an approximate minimizer within these subregions
may be computationally expensive, making each iteration potentially costly; by contrast, our
methods only require a function and gradient oracle. In addition, neither paper provides
lower bounds nor studies the “strongly quasar-convex” regime.

1.2. Our results

For functions that are L-smooth and γ-quasar-convex, we provide an algorithm which finds
an ε-optimal solution in O(γ−1L1/2Rε−1/2) iterations (where, as before, R is an upper
bound on the initial distance to the quasar-convex point x∗). Our iteration bound is

4

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

the same as that of Guminov and Gasnikov (2017), and a factor of γ1/2 better than the
O(γ−3/2L1/2Rε−1/2) bound of Nesterov et al. (2019). Additionally, we are the first to provide
bounds on the total number of function and gradient evaluations required; our algorithm
uses O(γ−1L1/2Rε−1/2 log(γ−1ε−1)) evaluations to find a ε-optimal solution.

We also provide an algorithm for L-smooth, (γ, µ)-strongly quasar-convex functions;
our algorithm uses O(γ−1κ1/2 log(γ−1ε−1)) iterations and O(γ−1κ1/2 log(γ−1κ) log(γ−1ε−1))
total function and gradient evaluations to find an ε-optimal point, where κ , L/µ (κ is
typically referred to as the condition number). For constant γ, this matches accelerated
gradient descent’s bound for smooth strongly convex functions, up to a logarithmic factor.

The key idea behind our algorithm is to take a close look at which essential invariants need
to hold during the momentum step of AGD, and use this insight to carefully redesign the algo-
rithm to accelerate on general smooth quasar-convex functions. By observing how the function
behaves along the line segment between current iterates x(k) and v(k), we show that for any
smooth quasar-convex function, there always exists a point y(k) along this segment with the
properties needed for acceleration. Furthermore, we show that an efficient binary search can
be used to find such a point, even without the assumption of convexity along the segment.

To complement our upper bounds, we provide lower bounds of Ω(γ−1L1/2Rε−1/2) for
the number of gradient evaluations that any deterministic first-order method requires to
find an ε-minimizer of a quasar-convex function. This shows that up to logarithmic factors,
our lower and upper bounds are tight. Our lower bounds extend the techniques of Carmon,
Duchi, Hinder, and Sidford (2019b) to the class of smooth quasar-convex functions, allowing
an almost exact characterization of the complexity of minimizing these functions.

Paper outline In Section 2, we provide a general framework for accelerating the minimiza-
tion of smooth quasar-convex functions. In Section 3, we apply our framework to develop
specific algorithms tailored to both quasar-convex and strongly quasar-convex functions.
In Section 4, we provide lower bounds to show that the upper bounds for quasar-convex
minimization of Section 3 are tight up to logarithmic factors.

2. Quasar-Convex Minimization Framework

In this section, we provide and analyze a general algorithmic template for accelerated
minimization of smooth quasar-convex functions. In Section 3.1 we show how to leverage
this framework to achieve accelerated rates for minimizing strongly quasar-convex functions,
and in Section 3.2 we show how to achieve accelerated rates for minimizing non-strongly
quasar-convex functions (i.e. when µ = 0). For simplicity, we assume the domain is Rn.

Our algorithm (Algorithm 1) is a simple generalization of accelerated gradient descent.
Given a differentiable function f ∈ Rn → R with smoothness parameter L > 0 and initial
point x(0) = v(0) ∈ Rn, the algorithm iteratively computes points x(k), v(k) ∈ Rn of improving
“quality.” However, it is challenging to argue that Algorithm 1 actually performs optimally
without the assumption of convexity. The crux of circumventing convexity is to show that
there exists a way to efficiently compute the momentum parameter α(k) to yield convergence
at the desired rate. In this section, we provide general tools for analyzing this algorithm;
in Section 3, we leverage this analysis with specific choices of the parameters α(k), β, and
η(k) to derive our fully-specified accelerated schemes for both quasar-convex and strongly
quasar-convex functions.

5

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Algorithm 1 General AGD Framework
input :L-smooth function f : Rn → R, initial point x(0) ∈ Rn, number of iterations K

Sequences {α(k)}K−1
k=0 , {β(k)}K−1

k=0 , {L(k)}K−1
k=0 , {η(k)}K−1

k=0 are defined by the particular
algorithm instance, where α(k) ∈ [0, 1], β(k) ∈ [0, 1], L(k) ∈ (0, 2L), η(k) ≥ γ

L(k) .

1 Set v(0) = x(0)

2 for k = 0, 1, 2, . . . ,K − 1 do
3 Set y(k) = α(k)x(k) + (1− α(k))v(k)

4 Set x(k+1) = y(k) − 1
L(k)∇f(y(k)) # L(k) computed s.t. f(x(k+1)) ≤ f(y(k))− 1

2L(k)

∥∥∇f(y(k))
∥∥2

5 Set v(k+1) = β(k)v(k) + (1− β(k))y(k) − η(k)∇f(y(k))
end

6 return x(K)

We first define notation that will be used throughout Sections 2 and 3:

Definition 2 Let ε(k) , f(x(k))− f(x∗), ε
(k)
y , f(y(k))− f(x∗), r(k) ,

∥∥v(k) − x∗
∥∥2 ,

r
(k)
y ,

∥∥y(k) − x∗
∥∥2 , Q(k) , β(k)

(
2η(k)α(k)∇f(y(k))>(x(k) − v(k))− (α(k))2(1− β(k))

∥∥x(k) − v(k)
∥∥2).

In the remainder of this section, we analyze Algorithm 1. We assume that f is L-smooth
and (γ, µ) strongly quasar-convex (possibly with µ = 0) with respect to a minimizer x∗.
First, we use Lemma 1 to bound how much the function error of x(k) and the distance from
v(k) to x∗ decrease at each iteration.

Lemma 1 (One Step Framework Analysis) Suppose f is L-smooth and (γ, µ)-quasar-
convex with respect to a minimizer x∗. Then, in each iteration k ≥ 0 of Algorithm 1 applied
to f , it is the case that

2(η(k))2L(k)ε(k+1)+r(k+1) ≤ β(k)r(k)+
[
(1− β(k))− γµη(k)

]
r(k)y +2η(k)

[
L(k)η(k) − γ

]
ε(k)y +Q(k).

Proof Let z(k) , β(k)v(k)+(1− β(k))y(k). Since v(k+1) = z(k)−η(k)∇f(y(k)), direct algebraic
manipulation yields that

r(k+1) =
∥∥∥v(k+1) − x∗

∥∥∥2 = ∥∥∥z(k) − x∗ − η(k)∇f(y(k))
∥∥∥2

=
∥∥∥z(k) − x∗

∥∥∥2 + 2η(k)∇f(y(k))>(x∗ − z(k)) + (η(k))2
∥∥∥∇f(y(k))∥∥∥2 . (3)

Using the definitions of z(k) and y(k), we have∥∥∥z(k) − x∗
∥∥∥2 = β(k)

∥∥∥v(k) − x∗
∥∥∥2 + (1− β(k))

∥∥∥y(k) − x∗
∥∥∥2 − β(k)(1− β(k))

∥∥∥v(k) − y(k)
∥∥∥2

= β(k)r(k) + (1− β(k))r(k)y − β(k)(1− β(k))(α(k))2
∥∥∥v(k) − x(k)

∥∥∥2 . (4)

Further, since v(k) = y(k) + α(k)(v(k) − x(k)) and z(k) = β(k)v(k) + (1 − β(k))y(k) = y(k) +
α(k)β(k)(v(k) − x(k)), it follows that

∇f(y(k))>(x∗ − z(k)) = ∇f(y(k))>(x∗ − y(k)) + α(k)β(k)∇f(y(k))>(x(k) − v(k)) . (5)

6

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

(y� = v)(y� = x)

0 1
α

g(α)

Figure 2: Illustration of Lemma 2. g(α) is defined as in the proof of the lemma; here, we
depict the case where g(0) > g(1) and g′(1) > 0. The points highlighted in green
satisfy inequality (6); the circled point has g′(α) = 0 and g(α) ≤ g(1). Here c = 10.

Since (γ, µ)-strong quasar-convexity of f implies −ε(k)y ≥ 1
γ∇f(y

(k))>(x∗ − y(k)) + µ
2 r

(k)
y and

the definition of x(k+1) and L(k) implies 0 ≤
∥∥∇f(y(k))∥∥2 ≤ 2L(k)[ε

(k)
y − ε(k+1)], combining

with (3), (4), and (5) yields the result.
Note that L(k) in Line 3 of Algorithm 1 can be set to the Lipschitz constant L if it is
known; otherwise, it can be efficiently computed to make f(x(k)) = f(y(k) − 1

L(k)∇f(y(k))) ≤
f(y(k)) − 1

2L(k)

∥∥∇f(y(k))∥∥2 and L(k) ∈ (0, 2L) hold using backtracking line search. See
Lemma 8 (Appendix C.1) for more details.

Lemma 1 provides our main bound on how the error ε(k) changes between successive
iterations of Algorithm 1. The key step necessary to apply this lemma is to relate f(y(k))
and ∇f(y(k))>(x(k) − v(k)) to f(x(k)), in order to bound Q(k). In the standard analysis of
accelerated gradient descent, convexity is used to obtain such a connection. In our algorithms,
we instead perform binary search to compute the momentum parameter α(k) for which the
necessary relationship holds without assuming convexity. The following lemma shows that
there always exists a setting of α(k) that satisfies the necessary relationship.

Lemma 2 (Existence of “Good” α) Let f : Rn → R be differentiable and let x, v ∈ Rn.
For α ∈ R define yα , αx+ (1− α)v. For any c ≥ 0 there exists α ∈ [0, 1] such that

α∇f(yα)>(x− v) ≤ c [f(x)− f(yα)] . (6)

Proof Define g(α) , f(yα). Then for all α ∈ R we have g′(α) = ∇f(yα)>(x − v). Conse-
quently, (6) is equivalent to the condition αg′(α) ≤ c[g(1)− g(α)].
If g′(1) ≤ 0, inequality (6) trivially holds at α = 1; if f(v) = g(0) ≤ g(1) = f(x), the
inequality trivially holds at α = 0. If neither of these conditions hold, g′(1) > 0 and
g(0) > g(1), so Fact 1 from Appendix C.2 implies that there is a value of α ∈ (0, 1) such that
g′(α) = 0 and g(α) ≤ g(1), and therefore this value of α satisfies (6). Figure 6 illustrates
this third case graphically.

7

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

In our algorithms, we will not seek an α satisfying (6) exactly, but instead α ∈ [0, 1] such
that

α∇f(yα)>(x− v)− α2b ‖x− v‖2 ≤ c [f(x)− f(yα)] + ε̃ , (7)

for some b, c, ε̃ ≥ 0. As (7) is a weaker statement than (6), the existence of α satisfying (7)
follows from Lemma 2. Moreover, we will show how to lower bound the size of the set of
points satisfying (7), which we use to bound the time required to compute such a point.

We can thus bound the quantity Q(k) from Lemma 1 by selecting α(k) to satisfy (7) with
appropriate settings of b, c, ε̃, which we do in Lemma 3 (proved in Appendix C.1).

Lemma 3 If β(k) > 0 and α(k) ∈ [0, 1] satisfies (7) with x = x(k), v = v(k), b = 1−β(k)

2η(k)
, and

c = L(k)η(k)−γ
β(k) , or if β(k) = 0 and α(k) = 1, then

Q(k) ≤ 2η(k)
[
(L(k)η(k) − γ) · (ε(k) − ε(k)y) + β(k)ε̃

]
. (8)

Now, in Algorithm 2 we show how to efficiently compute an α satisfying inequality (7).

Algorithm 2 BinaryLineSearch(f, x, v, b, c, ε̃)
Assumptions: f is L-smooth; x, v ∈ Rn; b, c, ε̃ ≥ 0
Define g(α) , f(αx+ (1− α)v) and p , b ‖x− v‖2.

1 if g′(1) ≤ ε̃+ p then return 1;
2 else if c = 0 or g(0) ≤ g(1) + ε̃/c then return 0;
3 τ ← 1− g′(1) / BacktrackingSearch(g, p, 1) # one step of gradient descent on g from 1, using

backtracking to select step size; see Algorithm 5 for BacktrackingSearch pseudocode
4 lo← 0,hi← τ, α← τ
5 while cg(α) + α(g′(α)− αp) > cg(1) + ε̃ do
6 α← (lo + hi)/2
7 if g(α) ≤ g(τ) then hi← α;
8 else lo← α;

end
9 return α

The core idea behind Algorithm 2 is as follows: let g(α) , f(αx + (1 − α)v) be the
restriction of the function f to the line from v to x. If either g(0) ≤ g(1), or g is decreasing
at α = 1, then (6) is immediately satisfied. If this does not happen, then g(0) > g(1) but
g′(1) > 0, which means that g switches from increasing to decreasing at some α ∈ (0, 1),
and so g′(α) = 0. Such a value of α also satisfies (6). Algorithm 2 uses binary search to
exploit this fact and thereby efficiently compute a value of α approximately satisfying (6) (i.e.,
satisfying (7)). In Lemma 4, we bound the maximum number of iterations that Algorithm 2
can take until (7) holds and it thereby terminates. Lemma 4 is proved in Appendix C.2.

Lemma 4 (Line Search Runtime) For L-smooth f : Rn → R, points x, v ∈ Rn and
scalars b, c, ε̃ ≥ 0, Algorithm 2 computes α ∈ [0, 1] satisfying (7) with at most

6 + 3
⌈
log+2

(
(4 + c)min

{
2L3

b3
, L‖x−v‖2

2ε̃

})⌉
function and gradient evaluations.

8

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

In summary, we achieve our accelerated quasar-convex minimization procedures by
setting η(k), β(k), and ε appropriately and computing an α(k) satisfying (7) via binary search
(Algorithm 2). By lower bounding the length of the interval of values of α(k) satisfying (7),
we show that this binary search only costs a logarithmic factor in the overall runtime.

3. Algorithms

In this section, we develop algorithms for accelerated minimization of strongly quasar-convex
functions and quasar-convex functions, respectively, and analyze their running times in terms
of the number of function and gradient evaluations required. We note that the Lipschitz
constant L does not need to be known; however, a lower bound γ̂ > 0 on γ does need to
be known, and the runtime depends inversely on γ̂. In Appendix B, we provide numerical
experiments on different types of quasar-convex functions, which validate the claim that our
algorithm is not only efficient in theory but also empirically competitive with other first-order
methods such as standard AGD.

3.1. Strongly Quasar-Convex Minimization

First, we provide and analyze our algorithm for (γ, µ)-strongly quasar-convex function
minimization, where µ > 0. The algorithm (Algorithm 3) is a carefully constructed instance
of the general AGD framework (Algorithm 1).

As in the general AGD framework, the algorithm maintains two current points denoted
x(k) and v(k) and at each step appropriately selects y(k) = α(k)x(k) + (1 − α(k))v(k) as a
convex combination of these two points. Intuitively, the algorithm iteratively seeks to
decrease quadratic upper and lower bounds on the function value. L-smoothness of f implies
for all x, y ∈ Rn that f(x) ≤ UBy(x) , f(y) + ∇f(y)>(x− y) + L

2 ‖x− y‖2; if L(k) = L,
then x(k+1) is the minimizer y(k) − 1

L∇y
(k) of the upper bound UBy(k) . Similarly, by (γ, µ)

quasar-convexity, f(x) ≥ f(x∗) ≥ minz LBy(z) for all x, y ∈ Rn, where LBy(x) , f(y) +
1
γ∇f(y)

>(x−y)+ µ
2 ‖x− y‖2. The minimizer of the lower bound LBy(k) is y(k)− 1

γµ∇f(y
(k));

we set v(k+1) to be a convex combination of v(k) and the minimizer of LBy(k) .

Algorithm 3 Accelerated Strongly Quasar-Convex Function Minimization
input : L-smooth f : Rn → R that is (γ, µ)-strongly quasar-convex, with µ > 0
input : Initial point x(0) ∈ Rn, number of iterations K, solution tolerance ε > 0
return output of Algorithm 1 on f with initial point x(0), where for all k,
L(k) = BacktrackingSearch(f, γµ

2−γ , x
(k)), β(k) = 1− γ

√
µ

L(k) , η(k) = 1√
µL(k)

,

and α(k) = BinaryLineSearch(f, x(k), v(k), b = γµ
2 , c =

√
L(k)

µ , ε̃ = 0) if β(k) > 0 else 1.

We leverage the analysis from Section 2 to analyze Algorithm 3. First, in Lemma 5 we
show that the algorithm converges at the desired rate, by building off of Lemma 1 and using
the specific parameter choices in Algorithm 3. The proof is provided in Appendix C.3.

Lemma 5 (Strongly Quasar-Convex Convergence) If f is L-smooth and (γ, µ)-strongly
quasar-convex with minimizer x∗, γ ∈ (0, 1], and µ > 0, then in each iteration k ≥ 0 of

9

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Algorithm 3,

ε(k+1) +
µ

2
r(k+1) ≤

(
1− γ√

2κ

)[
ε(k) +

µ

2
r(k)
]
, (9)

where ε(k) , f(x(k)) − f(x∗), r(k) , ‖v(k) − x∗‖2, and κ , L
µ . Therefore, if the number of

iterations K ≥
⌈√

2κ
γ log+

(
3ε(0)

γε

)⌉
, then the output x(K) satisfies f(x(K)) ≤ f(x∗) + ε.

Note that when f is (1, µ)-strongly quasar-convex with µ > 0, Lemma 5 implies that the
number of iterations Algorithm 3 needs to find an ε-minimizer of f is of the same order as the
number of iterations required by standard AGD to find an ε-minimizer of a µ-strongly convex
function. In each iteration of Algorithm 3, we compute α(k) and then simply perform O(1)
vector operations to compute y(k), x(k+1), and v(k+1). Consequently, to obtain a complete
bound on the overall complexity of Algorithm 3, it remains to bound the cost of computing
α(k), which we do using Lemma 4. This leads to Theorem 1 (also proved in Appendix C.3).

Theorem 1 If f is L-smooth and (γ, µ)-strongly quasar-convex with γ ∈ (0, 1] and µ > 0,
then Algorithm 3 produces an ε-optimal point after O

(
γ−1κ1/2 log

(
γ−1κ

)
log+

(
f(x(0))−f(x∗)

γε

))
function and gradient evaluations.

Standard AGD on L-smooth µ-strongly-convex functions requires O
(
κ1/2 log+

(
f(x(0))−f(x∗)

ε

))
function and gradient and evaluations to find an ε-optimal point (Nesterov, 2004). Thus, as
the class of L-smooth (1, µ)-strongly quasar-convex functions contains the class of L-smooth
µ-strongly convex functions, our algorithm requires only a O(log(κ)) factor extra function and
gradient evaluations in the smooth strongly convex case, while also being able to efficiently
minimize a much broader class of functions than standard AGD.

3.2. Non-Strongly Quasar-Convex Minimization

Now, we provide and analyze our algorithm (Algorithm 4) for non-strongly quasar-convex
function minimization, i.e. when µ = 0. Once again, this algorithm is an instance of
Algorithm 1, the general AGD framework, with a different choice of parameters. We assume
L > 0, since otherwise quasar-convexity implies the function is constant.

Algorithm 4 Accelerated Non-Strongly Quasar-Convex Function Minimization
input : L-smooth f : Rn → R that is γ-quasar-convex
input : Initial point x(0) ∈ Rn, number of iterations K, solution tolerance ε > 0

Define ω(−1) = 1, and ω(k) = ω(k−1)

2

(√
(ω(k−1))2 + 4− ω(k−1)

)
for k ≥ 0.

Set L(−1) = BacktrackingSearch(f, ε, x(0), run_halving=True)
return output of Algorithm 1 on f with initial point x(0), where for all k,
β(k) = 1, L(k) = BacktrackingSearch(f, max

k′∈[−1,k−1]

L(k′), x(k)), η(k) = γ
L(k)ω(k) , and

α(k) = BinaryLineSearch(f, x(k), v(k), b = 0, c = γ(1
ω(k) − 1), ε̃ = γε

2).

Lemma 6 (Non-Strongly Quasar-Convex AGD Convergence) If f is L-smooth and
γ-quasar-convex with respect to a minimizer x∗, with γ ∈ (0, 1], then in each iteration k ≥ 0

10

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

of Algorithm 4,

ε(k) ≤ 8

(k + 2)2

[
ε(0) +

L

2γ2
r(0)
]
+

ε

2
, (10)

where ε(k) , f(x(k))− f(x∗) and r(k) ,
∥∥v(k) − x∗

∥∥2. Therefore, if R ≥
∥∥x(0) − x∗

∥∥ and the
number of iterations K ≥

⌊
8γ−1L1/2Rε−1/2

⌋
, then the output x(K) satisfies f(x(K)) ≤ f(x∗) + ε.

Combining the bound on the number of iterations from Lemma 6, and the bound from
Lemma 4 on the number of function and gradient evaluations during the line search, leads to
the bound in Theorem 2 on the total number of function and gradient evaluations required to
find an ε-optimal point. The proofs of Lemma 6 and Theorem 2 are given in Appendix C.4.

Theorem 2 If f is L-smooth and γ-quasar-convex with respect to a minimizer x∗, with
γ ∈ (0, 1] and

∥∥x(0) − x∗
∥∥ ≤ R, then Algorithm 4 produces an ε-optimal point after

O
(
γ−1L1/2Rε−1/2 log+

(
γ−1L1/2Rε−1/2

))
function and gradient evaluations.

Note that standard AGD on the class of L-smooth convex functions requires O
(
L1/2Rε−1/2

)
function and gradient evaluations to find an ε-optimal point; so, again, our algorithm requires
only a logarithmic factor more evaluations than does standard AGD.

4. Lower bounds

In this section, we construct lower bounds which demonstrate that the algorithms we presented
in Section 3 obtain, up to logarithmic factors, the best possible worst-case iteration bounds
for deterministic first-order minimization of quasar-convex functions. We use the ideas of
Carmon et al. (2019a), who mechanized the process of constructing such lower bounds. Their
idea is to construct a zero-chain, which is defined as a function f for which if xj = 0, ∀j ≥ t

then ∂f(x)
∂xt+1

= 0. On these zero-chains, one can provide lower bounds for a particular class
of methods known as first-order zero-respecting (FOZR) algorithms, which are algorithms
that only query the gradient at points x(t) with x

(t)
i 6= 0 if there exists some j < t with

∇if(x
(j)) 6= 0. Examples of FOZR algorithms include gradient descent, accelerated gradient

descent, and nonlinear conjugate gradient (Fletcher and Reeves, 1964). It is relatively easy
to form lower bounds for FOZR algorithms applied to zero-chains, because one can prove
that if the initial point is x(0) = 0, then x(T) has at most T nonzeros (Carmon et al., 2019a,
Observation 1). The particular zero-chain we use to derive our lower bounds is

f̄T,σ(x) , q(x) + σ

T∑
i=1

Υ(xi)

where

Υ(θ) , 120

∫ θ

1

t2(t− 1)

1 + t2
dt

q(x) ,
1

4
(x1 − 1)2 +

1

4

T−1∑
i=1

(xi − xi+1)
2.

This function f̄T,σ is similar to the function f̄T,µ,r of Carmon et al. (2019b). However, the
lower bound proof is different because the primary challenge is to show f̄T,σ is quasar-convex,

11

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

rather than showing that ‖∇f̄T,σ(x)‖ ≥ ε for all x with xT = 0. Our main lemma is as
follows, and applies to a rescaled version of f̄T,σ denoted by f̂ .

Lemma 7 Let ε ∈ (0,∞), γ ∈ (0, 10−2], T =
⌈
10−3γ−1L1/2Rε−1/2

⌉
, and σ = 1

104T 2γ2 , and
assume L1/2Rε−1/2 ≥ 103. Consider the function

f̂(x) , 1
3LR

2T−1 · f̄T,σ(xT 1/2R−1). (11)

This function is L-smooth and γ-quasar-convex, and its minimizer x∗ is unique and has
‖x∗‖ = R. Furthermore, if xt = 0 ∀t ∈ Z ∩ [T/2, T], then f̂(x)− infz f̂(z) > ε.

The proof of Lemma 7 appears in Appendix E.1. Combining Lemma 7 with Observation 1
from Carmon et al. (2019a) yields a lower bound for first-order zero-respecting algorithms,
and an extension of this lower bound to the class of all deterministic first-order methods.
This leads to Theorem 3, whose proof appears in Appendix E.2.

Theorem 3 Let ε, R, L ∈ (0,∞), γ ∈ (0, 1], and assume L1/2Rε−1/2 ≥ 1. Let F denote the
set of L-smooth functions that are γ-quasar-convex with respect to some point with Euclidean
norm less than or equal to R. Then, given any deterministic first-order method, there exists a
function f ∈ F such that the method requires at least Ω(γ−1L1/2Rε−1/2) gradient evaluations
to find an ε-optimal point of f .

Theorem 3 demonstrates that the upper bound for our algorithm for quasar-convex
minimization is tight within logarithmic factors. We note that by reduction (Remark 5),
one can prove a lower bound of Ω(γ−1κ1/2) for strongly quasar-convex functions; thus, our
algorithm for strongly quasar-convex minimization is also optimal within logarithmic factors.

Although the construction of our lower bounds is similar to that of Carmon et al. (2019b),
there are important differences between our lower bounds and theirs. First, the assumptions
differ significantly; we assume quasar-convexity and Lipschitz continuity of the first derivative,
while Carmon et al. (2019b) assume Lipschitz continuity of the first three derivatives. Next,
the bounds in (Carmon et al., 2019a,b) apply to finding ε-stationary points, rather than
ε-optimal points. In addition, our lower and upper bounds only differ by logarithmic factors,
whereas there is a gap of Õ(ε−1/15) between the lower bound of Ω(ε−8/5) given by (Carmon
et al., 2019b) and the best known corresponding upper bound of O(ε−5/3 log(ε−1)) (Carmon
et al., 2017). Finally, we require xt = 0 for all t > T/2 to guarantee f̂(x) − infz f̂(z) > ε,
whereas Carmon et al. (2019a,b) only need xT = 0 to guarantee ‖∇f̂(x)‖ > ε.

5. Conclusion

In this work, we introduce a generalization of star-convexity called quasar-convexity and
provide insight into the structure of quasar-convex functions. We show how to obtain a
near-optimal accelerated rate for the minimization of any smooth function in this broad
class, using a simple but novel binary search technique. In addition, we provide nearly
matching theoretical lower bounds for the performance of any first-order method on this
function class. Interesting topics for future research are to further understand the prevalence
of quasar-convexity in problems of practical interest, and to develop new accelerated methods
for other structured classes of nonconvex problems.

12

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Acknowledgements

The work of Aaron Sidford was supported by NSF CAREER Award CCF-1844855.

References

Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma. Finding approximate
local minima faster than gradient descent. In Symposium on Theory of Computing (STOC), pages
1195–1199. ACM, 2017.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. Journal
of Machine Learning Research, 18(1):8194–8244, 2017.

Mihai Anitescu. Degenerate nonlinear programming with a quadratic growth condition. SIAM
Journal on Optimization, 10(4):1116–1135, 2000.

Kenneth J. Arrow and Alain C. Enthoven. Quasi-concave programming. Econometrica, 16(5):779–800,
1961.

Peter L. Bartlett, David P. Helmbold, and Philip M. Long. Gradient descent with identity initializa-
tion efficiently learns positive-definite linear transformations by deep residual networks. Neural
Computation, 31(3):477–502, 2019.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Sébastien Bubeck, Yin Tat Lee, and Mohit Singh. A geometric alternative to Nesterov’s accelerated
gradient descent. arXiv preprint arXiv:1506.08187, 2015.

Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near-optimal method
for highly smooth convex optimization. In Conference on Learning Theory (COLT), pages 492–507,
2019.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Convex until proven guilty:
Dimension-free acceleration of gradient descent on non-convex functions. In International Confer-
ence on Machine Learning (ICML), pages 654–663, 2017.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods for nonconvex
optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points I. Mathematical Programming, pages 1–50, 2019a.

Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points II: First-order methods. Mathematical Programming, 2019b.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Bruce D. Craven and Barney M. Glover. Invex functions and duality. Journal of the Australian
Mathematical Society, 39(1):1–20, 1985.

13

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Cong D. Dang and Guanghui Lan. On the convergence properties of non-euclidean extragradi-
ent methods for variational inequalities with generalized monotone operators. Computational
Optimization and Applications, 60:277–310, 2015.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.
uci.edu/ml.

Marian J. Fabian, René Henrion, Alexander Y. Kruger, and Jiří V. Outrata. Error bounds: Necessary
and sufficient conditions. Set-Valued and Variational Analysis, 18(2):121–149, 2010.

Olivier Fercoq and Peter Richtárik. Accelerated, parallel, and proximal coordinate descent. SIAM
Journal on Optimization, 25(4):1997–2023, 2015.

Roger Fletcher and Colin M. Reeves. Function minimization by conjugate gradients. The Computer
Journal, 7(2):149–154, 1964.

Roy Frostig, Rong Ge, Sham Kakade, and Aaron Sidford. Un-regularizing: approximate proximal
point and faster stochastic algorithms for empirical risk minimization. In International Conference
on Machine Learning (ICML), pages 2540–2548, 2015.

Alexander Gasnikov, Pavel Dvurechensky, Eduard Gorbunov, Evgeniya Vorontsova, Daniil Se-
likhanovych, and César A. Uribe. The global rate of convergence for optimal tensor methods in
smooth convex optimization. Computer Research and Modeling, 10(6):737–753, 2018.

Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local minimum. In
Advances in Neural Information Processing Systems (NIPS), pages 2973–2981, 2016.

Saeed Ghadimi and Guanghui Lan. Accelerated gradient methods for nonconvex nonlinear and
stochastic programming. Mathematical Programming, 156(1-2):59–99, 2016.

Sergey Guminov and Alexander Gasnikov. Accelerated methods for α-weakly-quasi-convex problems.
arXiv preprint arXiv:1710.00797, 2017.

Filip Hanzely and Peter Richtárik. Accelerated coordinate descent with arbitrary sampling and
best rates for minibatches. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 304–312, 2019.

Moritz Hardt and Tengyu Ma. Identity matters in deep learning. In International Conference on
Learning Representations (ICLR), 2017.

Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical systems.
Journal of Machine Learning Research, 19(29):1–44, 2018.

Bo Jiang, Haoyue Wang, and Shuzhong Zhang. An optimal high-order tensor method for convex
optimization. In Conference on Learning Theory (COLT), pages 1799–1801, 2019.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems (NIPS), pages 315–323, 2013.

Pooria Joulani, András György, and Csaba Szepesvári. A modular analysis of adaptive (non-)convex
optimization: Optimism, composite objectives, and variational bounds. In International Conference
on Algorithmic Learning Theory (ALT), 2017.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the Polyak-Łojasiewicz condition. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML-PKDD), pages 795–811. Springer, 2016.

14

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Robert Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does SGD escape local
minima? In International Conference on Machine Learning (ICML), pages 2698–2707, 2018.

Jasper C.H. Lee and Paul Valiant. Optimizing star-convex functions. In Symposium on Foundations
of Computer Science (FOCS), pages 603–614. IEEE, 2016.

Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex programming. In
Advances in Neural Information Processing Systems (NIPS), pages 379–387, 2015.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with ReLU activation.
In Advances in Neural Information Processing Systems (NIPS), pages 597–607, 2017.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization.
In Advances in Neural Information Processing Systems (NIPS), pages 3384–3392, 2015.

Olvi L. Mangasarian. Pseudo-convex functions. Journal of the Society for Industrial and Applied
Mathematics Series A Control, 3(2):281–290, 1965.

James R. Munkres. Topology. Pearson, 1975.

Ion Necoara, Yurii Nesterov, and François Glineur. Linear convergence of first order methods for
non-strongly convex optimization. Mathematical Programming, 175(1):69–107, 2019.

Arkadi S. Nemirovski. Orth-method for smooth convex optimization. Izvestia AN SSSR, Ser.
Tekhnicheskaya Kibernetika, 2, 1982.

Arkadi S. Nemirovski and David B. Yudin. Problem Complexity and Method Efficiency in Optimization.
Wiley, 1983.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983.

Yurii Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, 2004.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Yurii Nesterov and Boris T. Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and Pavel Dvurechensky. Primal-dual
accelerated gradient descent with line search for convex and nonconvex optimization problems.
Proceedings of the Russian Academy of Sciences (RAS), 485(1):15–18, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In Advances in Neural Information Processing Systems (NeurIPS) - Autodiff Workshop,
2017.

Boris T. Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi Matematiki i
Matematicheskoi Fiziki, 3(4):643–653, 1963.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. In International Conference on Machine Learning (ICML), pages
64–72, 2014.

15

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of
initialization and momentum in deep learning. In International Conference on Machine Learning
(ICML), pages 1139–1147, 2013.

Alexander Tyurin. Mirror version of similar triangles method for constrained optimization problems.
arXiv preprint arXiv:1705.09809, 2017.

Huynh Van Ngai and Jean-Paul Penot. Approximately convex functions and approximately monotonic
operators. Nonlinear Analysis: Theory, Methods & Applications, 66(3):547–564, 2007.

Jean-Philippe Vial. Strong and weak convexity of sets and functions. Mathematics of Operations
Research, 8(2):231–259, 1983.

Blake E. Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
In Advances in Neural Information Processing Systems (NIPS), pages 3639–3647, 2016.

Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, and Christopher Ré. Accelerated
stochastic power iteration. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 58–67, 2018.

Hui Zhang and Wotao Yin. Gradient methods for convex minimization: better rates under weaker
conditions. arXiv preprint arXiv:1303.4645, 2013.

Jingzhao Zhang, Suvrit Sra, and Ali Jadbabaie. Acceleration in first order quasi-strongly convex
optimization by ODE discretization. In IEEE Conference on Decision and Control (CDC), 2019.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. SGD converges to
global minimum in deep learning via star-convex path. In International Conference on Learning
Representations (ICLR), 2019.

Zhengyuan Zhou, Panayotis Mertikopoulos, Nicholas Bambos, Stephen Boyd, and Peter Glynn.
Stochastic mirror descent in variationally coherent optimization problems. In Advances in Neural
Information Processing Systems (NIPS), pages 7040–7049, 2017.

16

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Appendix A. Related Work

As discussed in Section 1, Guminov and Gasnikov (2017) and Nesterov et al. (2019) provide
the previous state-of-the-art upper bounds for first-order quasar-convex minimization. The
methods presented in (Guminov and Gasnikov, 2017) attain the optimal iteration complexity,
but require solving a subproblem over R2 or R3 in each iteration. The methods presented in
(Nesterov et al., 2019) are suboptimal by a factor of γ−1/2 in terms of iteration complexity,
and require a one-dimensional line search over function value in each iteration; although they
show that the criterion for the line search need only be satisfied approximately, even finding a
local minimum of a quasar-convex function restricted to a 1-D region may be expensive, since
the restriction of a quasar-convex function to an arbitrary line segment can be an arbitrary
(smooth) function. In addition, the method of (Nesterov et al., 2019) relies on a restart
criterion that requires prior knowledge of the optimal function value, which is often unknown
in practice. By contrast, our algorithm is implementable with only a first-order oracle, due
to the careful design and analysis of our binary search procedure, and does not require
knowledge of the optimal value; in addition, it attains the optimal iteration complexity. (Our
algorithms, and analysis techniques, also differ in several respects from that of (Nesterov
et al., 2019); for example, our algorithm does not require restarts.) Moreover, our lower
bounds and algorithm for strongly-quasar convex minimization are also novel.

Independently, recent work by Zhang et al. (2019) uses a differential equation discretization
to approach the accelerated O(κ1/2 log(ε−1)) rate for minimization of smooth strongly quasar-
convex functions in a neighborhood of the optimum, in the special case γ = 1 (i.e. star-convex
functions). Similarly, in the γ = 1 case, geometric descent (Bubeck et al., 2015) achieves
O(κ1/2 log(ε−1)) running times in terms of the number of calls to a one-dimensional line
search oracle (although, as previously noted, the number of function and gradient evaluations
required may still be large).4

In addition to pseudoconvexity, quasiconvexity, star-convexity, and the PL condition,
other relaxations of convexity or strong convexity include invexity (Craven and Glover, 1985),
semiconvexity (Van Ngai and Penot, 2007), quasi-strong convexity (Necoara et al., 2019),
restricted strong convexity (Zhang and Yin, 2013), one-point convexity (Li and Yuan, 2017),
variational coherence (Zhou et al., 2017), the quadratic growth condition (Anitescu, 2000),
and the error bound property (Fabian et al., 2010). A more in-depth discussion is presented
in Appendix A.1.

A.1. Related function classes

In this section, we provide a brief taxonomy of related conditions (relaxations of convexity
or strong convexity), and describe how they relate to quasar-convexity. For simplicity, here
we assume f is L-smooth with domain X = Rn. We denote the minimum of f by f∗ and the
set of minimizers of f by X ∗; when X ∗ consists of a single point, we denote the point by x∗.

First, we review the definitions of quasar-convexity, star-convexity, and convexity. Recall
that (strong) quasar-convexity is a generalization of (strong) star-convexity, which itself
generalizes (strong) convexity.

4. Although this result is not explicitly stated in the literature, upon careful inspection of the analysis in
(Bubeck et al., 2015) it can be observed that the µ-strong convexity requirement may be relaxed to the
requirement of (1, µ)-strong quasar-convexity, with no changes to the algorithm necessary.

17

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

• (Strong) quasar-convexity (with parameters γ ∈ (0, 1], µ ≥ 0): for some x∗ ∈ X ∗,
f(x∗) ≥ f(x) + 1

γ∇f(x)
>(x∗ − x) + µ

2 ‖x
∗ − x‖2 for all x ∈ X .

– When µ = 0, this is merely referred to as quasar-convexity, which is also known
as weak quasi-convexity (Hardt et al., 2018).

– When µ > 0, f has exactly one minimizer x∗.

• (Strong) star-convexity (with parameter µ ≥ 0): for some x∗ ∈ X ∗, f(x∗) ≥ f(x) +
∇f(x)>(x∗ − x) + µ

2 ‖x
∗ − x‖2 for all x ∈ X .

– When µ = 0, this is merely referred to as star-convexity.
– When µ > 0, this is also known as quasi-strong convexity (Necoara et al., 2019).
– When µ = 0, f may not have a unique minimizer; some authors require the

condition to hold for all x∗ ∈ X ∗ (Nesterov and Polyak, 2006), while others only
require it for some x∗ ∈ X ∗ (Lee and Valiant, 2016); we use the latter definition.

– When µ > 0, f has exactly one minimizer x∗.

• (Strong) convexity (with parameter µ ≥ 0): f(y) ≥ f(x)+∇f(x)>(y−x)+ µ
2 ‖y − x‖2

for all x, y ∈ X .

– When µ = 0, this is merely referred to as convexity.

Next, we enumerate some other generalizations of strong convexity from the literature,
and state whether they generalize quasar-convexity, are generalized by quasar-convexity, or
neither.

• Weak convexity (Vial, 1983) (with parameter µ > 0): f(y) ≥ f(x) +∇f(x)>(y − x)−
µ
2 ‖y − x‖2 for all x, y ∈ X .

– Neither implies nor is implied by quasar-convexity.

• Quadratic growth condition (with parameter µ > 0) (Anitescu, 2000): f(x) ≥ f(x∗) +
µ
2 ‖x

∗ − x‖2 for all x ∈ X .

– Neither implies nor is implied by quasar-convexity.

• Restricted secant condition (with parameter µ > 0) (Zhang and Yin, 2013): 0 ≥
∇f(x)>(x∗ − x) + µ

2 ‖x
∗ − x‖2 for all x ∈ X .

– Implied by (γ, µγ)-strong quasar-convexity (for any choice of γ ∈ (0, 1]).

• One-point strong convexity (with parameter µ > 0) (Li and Yuan, 2017): for some
y ∈ X , 0 ≥ ∇f(x)>(y − x) + µ

2 ‖y − x‖2 for all x ∈ X .

– This is a generalization of the restricted secant property (which is one-point strong
convexity in the special case y = x∗), and is therefore likewise implied by strong
quasar-convexity.

• Variational coherence (Zhou et al., 2017): 0 ≥ ∇f(x)>(x∗ − x) for all x ∈ X , x∗ ∈ X ∗,
with equality iff x ∈ X ∗.

18

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

– Implied by strong quasar-convexity (for any µ > 0 and γ ∈ (0, 1]). The closely
related weaker condition “for some x∗ ∈ X ∗, 0 ≥ ∇f(x)>(x∗ − x) for all x ∈ X ,
with equality iff x ∈ X ∗” is implied by quasar-convexity (for any µ ≥ 0, γ ∈ (0, 1]).
In fact, the set of functions satisfying this condition is the limiting set of the class
of γ-quasar-convex functions as γ → 0; this is the set of differentiable functions
with star-convex sublevel sets.

• Polyak-Łojasiewicz condition (Polyak, 1963) (with parameter µ > 0): 1
2 ‖∇f(x)‖

2 ≥
µ(f(x)− f∗) for all x ∈ X .

– This is implied by the restricted secant property (Karimi et al., 2016), and therefore
by strong quasar-convexity.

–

• Quasiconvexity (Arrow and Enthoven, 1961): f(λx+ (1− λ)y) ≤ max{f(x), f(y)} for
all x, y ∈ X and λ ∈ [0, 1].

– Neither implies nor is implied by quasar-convexity. (However, the set of differ-
entiable quasiconvex functions is contained in the limiting set of the the class of
γ-quasar-convex functions as γ → 0.)

• Pseudoconvexity (Mangasarian, 1965): f(y) ≥ f(x) for all x, y ∈ X such that ∇f(x) ·
(y − x) ≥ 0.

– Neither implies nor is implied by quasar-convexity.

• Invexity (Craven and Glover, 1985): x ∈ X ∗ for all x ∈ X such that ∇f(x) = 0.

– Implied by quasar-convexity (for any µ ≥ 0, γ ∈ (0, 1]).

Appendix B. Numerical Experiments

The main contribution of this work is theoretical; however, we also include some numerical
experiments to show that our algorithm can be implemented in a practical manner.

We first consider optimizing a “hard function” - an example of the type of function used
to construct the lower bound in Theorem 2. This function class is parameterized by σ and
the dimension T ; we denote these functions by f̄T,σ (see Appendix 4 for the definition). We
compare our method to other commonly used first-order methods: gradient descent (GD),
[standard] accelerated gradient descent (AGD), nonlinear conjugate gradients (CG), and the
limited-memory BFGS (L-BFGS) algorithm. (Out of all these algorithms, only our method
and GD offer theoretical guarantees for quasar-convex function minimization.)

We next evaluate our algorithm on real-world tasks: we use our algorithm to train a
support vector machine (SVM) on the nine LIBSVM UCI binary classification datasets (Chang
and Lin, 2011) (which are derived from the UCI “Adult” datasets (Dua and Graff, 2017)). The
SVM loss function we use is a smoothed version of the hinge loss: f(x) =

∑n
i=1 φα(1−bia

>
i x),

where ai ∈ Rd, bi = ±1 are given by the training data (the ai’s are the covariates and the
bi’s are the labels), and φα(t) = 0 for t ≤ 0, t2

2 for t ∈ [0, 1], and tα−1
α + 1

2 for t ≥ 1. When
α = 1, φα = t2

2 for all t ≥ 0, and thus φα and f are convex. For all α ∈ (0, 1], φα is smooth

19

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

and α-quasar-convex. Line searches for this function are inexpensive, as the quantities bia
>
i x

need only be calculated once per outer loop iteration. Results are given in Table 1.
Finally, we evaluate on the problem of learning linear dynamical systems, which was

shown to be quasar-convex (under certain assumptions) by Hardt et al. (2018). In this
problem, we are given observations {(xt, yt)}Ti=1 generated by the time-invariant linear system
ht+1 = Aht + Bxt; yt = Cht +Dxt, where xt, yt ∈ R; ht ∈ Rn is the hidden state at time
t; and Θ = (A,B,C,D) are the (unknown) parameters of the system. Informally, we seek
to learn Θ̂ to minimize 1

T

∑T
i=1(yt − ŷt)

2, where ĥt+1 = Âĥt + B̂xt; ŷt = Ĉĥt + D̂xt, and
ĥ0 = 0. When parameterized in controllable canonical form, this problem was shown to
be quasar-convex on a subset of the domain near the optimum in (Hardt et al., 2018).
We describe this problem and our experimental approach in more detail in Appendix B.1.
Representative plots are given in Figure 3. Despite the nonconvexity, AGD performs quite
well on this problem. Nonetheless, we observe that our method is competitive with AGD
in terms of iteration count; we use more function evaluations due to the line search, but
gradient evaluations are about twice as expensive in this setting, and the line search can
also be parallelized. The design of better heuristics to speed up our method (for example,
using the standard AGD value of α as an “initial guess” for the line search) is an interesting
question for future empirical investigation.

↓ Function / Algorithm → Ours (Alg. 4) Gradient Descent (GD) Standard AGD Nonlinear CG L-BFGS
f̄T,σ (σ = 10−1, T = 102; ε = 10−4) 422; 1,451 336; 738 272; 869 312; 1,599 354; 1,778
f̄T,σ : (σ = 10−4, T = 103; ε = 10−6) 12,057; 55,357 18,607; 40,684 3,891; 12,399 1,251; 3,647 1,093; 6,554
f̄T,σ : (σ = 10−6, T = 103; ε = 10−8) 17,135; 167,447 275,572; 602,561 55,623; 177,247 10,007; 30,023 2,079; 12,476

LIBSVM UCI datasets (α = 1; ε = 10−4) 0.92; +0.017% 4.65; +0.036% — 0.46; +0.001% 0.29; +0.010%
LIBSVM UCI datasets (α = 0.5; ε = 10−4) 1.32; +0.016% 4.78; +0.033% — 0.48; +0.001% 0.30; +0.011%

Table 1: Experimental results. The stopping criterion used is ‖∇f(x)‖∞ ≤ ε. For f̄T,σ
we report (# iterations; # function+gradient evals); the initial point is x0 = 0.
For LIBSVM UCI datasets, we report: the ratio of the total number of iterations
required compared to standard AGD, averaged over all 9 datasets and 3 different
random initializations (shared across algorithms) per dataset, and the average final
test classification accuracy difference compared to AGD.

B.1. Additional Experimental Details

We implement our algorithm, as well as AGD and GD, in Julia and Python.5 We run
our experiments on learning linear dynamical systems (LDS) using the PyTorch framework
(Paszke et al., 2017). We generate the true parameters and the dynamical model inputs the
same way as in (Hardt et al., 2018), using the same parameters n = 20, T = 500. However,
differently from this paper, we do not generate fresh sequences {(xt, yt)} at each iteration,
but instead generate 100 sequences at the beginning which are used throughout (so, it is no
longer a stochastic optimization problem). As in (Hardt et al., 2018), we actually minimize
the loss 1

|B|
∑

(x,y)∈B

(
1

T−T1

∑
i>T1

(yt − ŷt)
2
)
, where the outer summation is over the batch

B of 100 sequences and the inner summation starts at time T1 := T/4, to mitigate the

5. Code for our implementation and experiments is available at https://github.com/nimz/
quasar-convex-acceleration.

20

https://github.com/nimz/quasar-convex-acceleration
https://github.com/nimz/quasar-convex-acceleration

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Figure 3: Results on learning linear dynamical systems, for two different problem instances.
We evaluate our method with γ = {0.5, 1}, and compare to GD and AGD. We run
until the loss is < 10−4 or 1000 iterations have been reached. Our method uses ≈4x
as many total evaluations as AGD; for instance, in the first setting all methods
run for 1000 iterations and use 2195, 3195, 13562 and 14626 total evaluations
respectively (out of which 1000 are gradient evaluations).

fact that the initial hidden state is not known. In addition, we generate the initial point
(Â0, Ĉ0, D̂0) by perturbing the true dynamical system parameters (A,C,D) with random
noise; we additionally ensure that the spectral radius of Â0 remains less than 1.

The quasar-convexity parameter γ derived in (Hardt et al., 2018) for the LDS objective
is defined as the supremum of the real part of a ratio of two degree-n univariate polynomials
over the complex unit circle. Therefore, it is difficult to calculate in practice. We instead
simply evaluate different values of γ in our experiments; we find that, while the choice of
γ does affect performance somewhat, our method does not break down even if the “wrong”
choice is used.

Hardt, Ma, and Recht (2018) presented two better-performing alternatives to fixed-
stepsize SGD: SGD with gradient clipping or projected SGD. By contrast, as we use an
adaptive step size, there is no need to clip gradients; in addition, we find projection to be
unnecessary as the initial iterate we generate already has ρ(Â0) < 1 by construction.

In the LDS experiments, we use forward difference to approximate the 1D gradients in
the line search, since full gradient evaluations require backpropagation and are thus more
expensive than function evaluations in this case; we do not find this to incur significant
numerical error.

For the adaptive step sizes, we use a standard scheme in which the step size at iteration
k > 0 [which we denote 1

L(k)] is initialized to the previous step size 1
L(k−1) times a fixed

value ζ1 > 1, and then multiplied by a fixed value ζ2 ∈ (0, 1) until it is small enough so
that the function value decrease is sufficient,6 where ζ1, ζ2 are constant hyperparameters. In
all experiments for GD, AGD, and our method, we used ζ1 = 1.1, ζ2 = 0.6, and L(0) = 1
(these values were only coarsely tuned; the algorithms are fairly insensitive to them when
reasonable settings are used).

6. Specifically, for GD, we decrease the step size 1

L(k) until the criterion f(x(k+1)) ≤ f(x(k)) −
1

2L(k) ||∇f(x(k))||2 is satisfied; for AGD and our method, the criterion is f(x(k+1)) ≤ f(y(k)) −
1

2L(k) ||∇f(y(k)||2. These criteria are guaranteed to hold when L(k) ≥ L.

21

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Appendix C. Algorithm analysis

Here, we provide omitted proofs for Sections 2-3.

C.1. One step analysis

Lemma 3 If β(k) > 0 and α(k) ∈ [0, 1] satisfies (7) with x = x(k), v = v(k), b = 1−β(k)

2η(k)
,

and c = L(k)η(k)−γ
β(k) , or if β(k) = 0 and α(k) = 1, then

Q(k) ≤ 2η(k)
[
(L(k)η(k) − γ) · (ε(k) − ε(k)y) + β(k)ε̃

]
. (8)

Proof First suppose β(k) > 0. As by definition y(k) = α(k)x(k) + (1 − α(k))v(k) and
L(k)η(k) ≥ γ, applying (7) yields

Q(k) = 2β(k)η(k)

(
α(k)∇f(y(k))>(x(k) − v(k))−

(
α(k)

)2 (1− β(k))
∥∥x(k) − v(k)

∥∥2
2η(k)

)

≤ 2β(k)η(k)

(
L(k)η(k) − γ

β(k)
[f(x(k))− f(y(k))] + ε̃

)
= 2η(k)

(
[L(k)η(k) − γ] · [ε(k) − ε(k)y] + β(k)ε̃

)
.

Alternatively, suppose β(k) = 0. Then Q(k) = 0 as well; if we select α(k) = 1, then y(k) = x(k)

and (8) trivially holds for any ε̃, as ε
(k)
y = ε(k).

In Algorithm 5 (analyzed in Lemma 8), we show how to efficiently compute an L(k) such
that f(y(k) − 1

L(k)∇f(y(k))) ≤ f(y(k)) − 1
2L(k)

∥∥∇f(y(k))∥∥2 holds in Line 3 of Algorithm 1,
even when the true Lipschitz constant L is unknown. This is done using standard backtracking
line search; we provide the details of the algorithm and analysis for completeness.

Algorithm 5 BacktrackingSearch(f, ζ, x, run_halving = False)
Assumptions: f : Rn → R is L-smooth; x ∈ Rn; ζ > 0 and (ζ < 2L or run_halving=False)

1 L̂← ζ
2 if run_halving then
3 while f(x− 1

L̂
∇f(x)) ≤ f(x)− 1

2L̂
‖∇f(x)‖2 do

4 L̂← L̂/2

end
5 L̂← 2L̂

end
6 while f(x− 1

L̂
∇f(x)) > f(x)− 1

2L̂
‖∇f(x)‖2 do

7 L̂← 2L̂

end
8 return L̂

22

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Lemma 8 Let L be the minimum real number such that f : Rn → R is L-smooth. Then, Al-
gorithm 5 computes an “inverse step size” L̂ such that f

(
x− 1

L̂
∇f(x)

)
≤ f(x)− 1

2L̂
‖∇f(x)‖2.

If run_halving is False, L̂ ∈ [ζ, 2L) and Algorithm 5 uses at most
⌈
log+2

L
ζ

⌉
+ 3 function

and gradient evaluations. If run_halving is True, L̂ ∈ (0, 2L) and Algorithm 5 uses at most
max

{⌈
log+2

L
ζ

⌉
,
⌈
log+2

ζ
L

⌉}
+ 3 evaluations.

Proof We use the elementary fact that if f is L-smooth, then for any x ∈ Rn if we define
y , x − 1

L∇f(x), then f(y) ≤ f(x) − 1
2L ‖∇f(x)‖

2 (for example, see (Nesterov, 2004) for
proof).
In Algorithm 5, we use ζ as the initial guess for L̂, and when run_halving is False simply
double L̂ until the desired condition holds. Note that since an L-smooth function is also
L′-smooth for any L′ ≥ L, the desired condition holds for any L′ ≥ L; we will use L to
denote the minimum value of L′ such that f is L′-smooth. We need to double L̂ at most⌈
log+2 (L/ζ)

⌉
times until it is greater than or equal to L, so the while loop condition is checked

at most
⌈
log+2 (L/ζ)

⌉
+ 1 times. Since we stop increasing L̂ when the desired condition holds,

and it holds whenever L̂ ≥ L, the final value of L̂ will be less than 2L. Each check of the
while loop condition requires computing f

(
x− 1

L̂
∇f(x)

)
for the current value of L̂; we also

need to compute f(x) and ∇f(x) at the beginning.
When run_halving is True (branch in Line 2), we also halve the initial guess L̂ until the
condition no longer holds, then double this value to recover the last value of L̂ for which the
condition holds. Similarly, at most

⌈
log+2

ζ
L

⌉
iterations of this halving procedure are required.

Finally, notice that if the while loop condition in Line 3 ever evaluates to True, then the
value L̂ at the end of Line 5 will satisfy f(x − 1

L̂
∇f(x)) ≤ f(x) − 1

2L̂
‖∇f(x)‖2, meaning

that the while loop on Line 6 will immediately terminate.

Note that the constant 2 used in Algorithm 5 is arbitrary; we can use any constant larger
than 1 to multiplicatively increase L̂ each time, which merely changes both the runtime and
the final upper bound on L̂ by a constant factor. The term “backtracking” is used because
increasing L̂ corresponds to decreasing the “step size.”

C.2. Analysis of Algorithm 2

We first present a simple fact that is useful in our proofs of Lemmas 2 and 4.

Fact 1 Suppose that a < b, g : R→ R is differentiable, and that g(a) ≥ g(b). Then, there
is a c ∈ (a, b] such that g(c) ≤ g(b) and either g′(c) = 0, or c = b and g′(c) ≤ 0.

Proof If g′(b) ≤ 0, the claim is trivially true. If not, then g′(b) > 0, so the minimum value
of g on [a, b] is strictly less than g(b) (and therefore strictly less than g(a) as well). By
continuity of g and the extreme value theorem, g must therefore attain its minimum on [a, b]
at some point in c ∈ (a, b). By differentiability of g and the fact that c minimizes g, we then
have g′(c) = 0.

23

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Fact 2 Suppose f is L-smooth. Define g(α) , f(αx + (1 − α)v); then, g is L ‖x− v‖2-
smooth.

Proof By L-smoothness of f , ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ for all x, y. So,

‖∇f(y(α1))−∇f(y(α2))‖ = ‖∇f(α1x+ (1− α1)v)−∇f(α2x+ (1− α2)v)‖
≤ L ‖(α1 − α2)x− (α1 − α2)v‖ = L|α1 − α2| ‖x− v‖ .

By definition of g and the Cauchy-Schwarz inequality,

|g′(α1)− g′(α2)| = |∇f(y(α1))
>(x− v)−∇f(y(α2))

>(x− v)|
≤ ‖∇f(y(α1))−∇f(y(α2))‖ ‖x− v‖ ,

so |g′(α1)− g′(α2)| ≤ L ‖x− v‖2 |α1 − α2| as desired.

Using Lemma 2 and Fact 2, we prove Lemma 4.

Lemma 4 (Line Search Runtime) For L-smooth f : Rn → R, points x, v ∈ Rn and
scalars b, c, ε̃ ≥ 0, Algorithm 2 computes α ∈ [0, 1] satisfying (7) with at most

6 + 3
⌈
log+2

(
(4 + c)min

{
2L3

b3
, L‖x−v‖2

2ε̃

})⌉
function and gradient evaluations.

Proof Define L̂ , L ‖x− v‖2; by Fact 2, g is L̂-smooth. Note that if p + ε̃ ≥ L̂ and
g′(α) = 0, then by L̂-smoothness of g, we have g′(1) ≤ ε̃+ p. So, it must be the case that
p + ε̃ < L̂ if Algorithm 2 enters the binary search phase. Thus, if g′(1) > ε̃ + p, then by
Lemma 8 and the definition of τ we have g′(τ) > 0 and g(τ)− g(1) ≤ − (ε̃+p)2

4L̂
. Recall that

the loop termination condition in Algorithm 2 is α(g′(α)− αp) ≤ c(g(1)− g(α)) + ε̃. First,
we claim that the invariants g(lo) > g(τ), g(hi) ≤ g(τ), and g′(hi) > ε̃ hold at the start of
every loop iteration. This is true at the beginning of the loop, since otherwise the algorithm
would return before entering it. In the loop body, hi is only ever set to a new value α if
g(α) ≤ g(τ). If the loop does not subsequently terminate, this also implies g′(α) > ε̃ since
then

α(g′(α)− αp) > c(g(1)− g(α)) + ε̃ ≥ c(g(1)− g(τ)) + ε̃ ≥ ε̃ .

Similarly, lo is only ever set to a new value α if g(α) > g(τ). Thus, these invariants indeed
hold at the start of each loop iteration.
Now, suppose α = (lo + hi)/2 does not satisfy the termination condition. If g(α) ≤ g(τ),
this implies g′(α) > ε̃. As g(lo) > g(τ) ≥ g(α), by Fact 1, there must be an α̂ ∈ (lo, α) with
g′(α̂) = 0 and g(α̂) ≤ g(τ) [and thus satisfying the termination condition]. The algorithm
sets hi to α, which will keep α̂ in the new search interval [lo, α].
Similarly, if g(α) > g(τ), then since g(τ) ≥ g(hi) and g′(hi) > 0, there must be an α̂ ∈ (α,hi)
with g′(α̂) = 0 and g(α̂) ≤ g(τ) [and thus satisfying the termination condition], by applying
Fact 1. The algorithm sets lo to α, which will keep α̂ in the search interval. Thus, there is
always at least one point α̂ ∈ [lo,hi] satisfying the termination condition.

24

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

In addition, note that if an interval [z1, z2] ⊆ [0, 1] of points satisfies the termination condition,
then at every loop iteration, either the entire interval lies in [lo,hi] or none of the interval
does, i.e. either [z1, z2] ⊆ [lo,hi] or [z1, z2] ∩ [lo,hi] = ∅. The reason is that if a point α
satisfies the termination condition we terminate immediately. If not, then α is not in an
interval of points satisfying the termination condition, so either z2 < α or z1 > α. Thus,
all intervals of points satisfying the termination condition either disjointly lie in the set of
points that remain in our search interval, or the set of points we throw away (i.e. an interval
of satisfying points never gets split).
Suppose that α ∈ [0, τ], g′(α) = 0, and g(α) ≤ g(τ). By L̂-Lipschitz continuity of g′, we have
that for all t, |g′(t)| = |g′(t)− g′(α)| ≤ L̂|t−α| and g(t)− g(1) ≤ g(t)− g(τ) ≤ g(t)− g(α) ≤
L̂
2 (t− α)2. So, for all t ∈ [α/2, τ],

t(g′(t)− tp) + c(g(t)− g(τ)) ≤ t(L̂|t− α| − (t− α)p) + cL̂
2 (t− α)2 − αtp

≤
(
L̂(1 + c

2) + p
)
· |t− α| − α2p/2 .

Suppose |t− α| ≤ α2p/2 + ε̃

L̂(1 + c
2) + p

. Then,
(
L̂(1 + c

2) + p
)
· |t− α| − α2p/2 ≤ ε̃.

So, if α ∈ [0, τ], g′(α) = 0, and g(α) ≤ g(τ), then all t ∈
[
α− α2p/2+ε̃

L̂(1+c/2)+p
, α+ α2p/2+ε̃

L̂(1+c/2)+p

]
∩

[α/2, τ] also satisfy the termination condition t(g′(t)−tp)+c(g(t)−g(1)) ≤ ε̃. If α2p/2+ε̃

L̂(1+c/2)+p
≤

α/2, the lower bound of the first interval is ≥ α/2 and the intersection of the two intervals
contains [α− α2p/2+ε̃

L̂(1+c/2)+p
, α]. If not, then the first interval contains [α/2, α] as does the second

interval, so the intersection of the two intervals contains [α/2, α]. Therefore, the length of
the interval of points satisfying the termination condition is at least min{α2 ,

α2p/2+ε̃

L̂(1+c/2)+p
}.

If g′(α) = 0 and g(α) ≤ g(τ), then g(0) ≤ g(τ)+ L̂
2α

2 by L̂-smoothness. Since g(τ) + (p+ε̃)2

4L̂
≤

g(1) < g(0), this implies α ≥ p+ε̃

L̂
√
2
. Therefore, the interval length is at least

min

{
p+ ε̃

2
√
2L̂

,
p3/(4L̂2) + ε̃

(1 + c/2)L̂+ p

}
≥ min

{
p+ ε̃

L̂
√
8
,
p3/(4L̂2) + ε̃

(2 + c/2)L̂

}
≥ p3/(4L̂2) + ε̃/

√
2

(2 + c/2)L̂
.

p3/(4L̂2) + ε̃/
√
2

(2 + c/2)L̂
≥ max

{
p3

(8 + 2c)L̂3
,

ε̃

(4 + c)L̂

}
= max

{
b3

(8 + 2c)L3
,

ε̃

(4 + c)L̂

}
, using

the fact that L̂ = L ‖x− v‖2 and p = b ‖x− v‖2.
Since we know at least one such interval of points satisfying the termination condition is
always contained within our current search interval, this implies that if we run the algorithm
until the current search interval has length at most max

{
b3

(8+2c)L3 ,
ε̃

(4+c)L‖x−v‖2

}
, we will

terminate with a point satisfying the necessary condition. As we halve our search interval
(which is initially [0, τ] ⊂ [0, 1]) at every iteration, we must therefore terminate in at most⌈
log+2

(
(4 + c)min

{
2L3

b3
, L‖x−v‖2

ε̃

})⌉
iterations.

Before each loop iteration (including the last which does not get executed when the termination
condition is satisfied), we compute g(α) and g′(α), so there are two function and gradient
evaluations per iteration. Before the loop begins, we require (at most) three function and
gradient evaluations to evaluate g(0), g(1), g′(1), in addition to the evaluations required to

25

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

compute τ . As argued earlier, if p+ ε̃ ≥ L̂, Algorithm 2 terminates before Line 3. Thus, we
compute τ only if g′(1) ≥ p+ ε̃, in which case Lemma 8 says that at most

⌈
log2(

L̂
p+ε̃)

⌉
+ 1

additional function evaluations are required to compute τ . Note that L̂
p+ε̃ ≤ min

{
L̂
p ,

L̂
ε̃

}
since

p, ε̃ ≥ 0; thus,
⌈
log2(

L̂
p+ε̃)

⌉
≤
⌈
log2

(
min

{
L̂
p ,

L̂
ε̃

})⌉
≤
⌈
log+2

(
(4 + c)min

{
2L3

b3
, L‖x−v‖2

ε̃

})⌉
.

Thus, the total number of function and gradient evaluations made is at most
6 + 3

⌈
log+2

(
(4 + c)min

{
2L3

b3
, L‖x−v‖2

2ε̃

})⌉
.

Note that we define min{x,+∞} = x for any x ∈ R ∪ {±∞}. Note also that if b = 0 and
L = 0, or if ε̃ = 0 and either L = 0 or x = v, the above expression is technically indeterminate;
however, observe that g is constant in all of these cases, so at most one gradient evaluation
is performed and the point α = 1 is returned.

C.3. Strongly quasar-convex algorithm analysis

Lemma 5 (Strongly Quasar-Convex Convergence) If f is L-smooth and (γ, µ)-strongly
quasar-convex with minimizer x∗, γ ∈ (0, 1], and µ > 0, then in each iteration k ≥ 0 of
Algorithm 3,

ε(k+1) +
µ

2
r(k+1) ≤

(
1− γ√

2κ

)[
ε(k) +

µ

2
r(k)
]
, (9)

where ε(k) , f(x(k)) − f(x∗), r(k) , ‖v(k) − x∗‖2, and κ , L
µ . Therefore, if the number of

iterations K ≥
⌈√

2κ
γ log+

(
3ε(0)

γε

)⌉
, then the output x(K) satisfies f(x(K)) ≤ f(x∗) + ε.

Proof For all k, η(k) = 1√
µL(k)

≥
√

γ
(2−γ)(L(k))2

≥ γ
L(k) as required by Algorithm 1, since

x
2−x ≥ x2 for all x ∈ [0, 1] and since (2−γ)L(k)

γ ≥ µ > 0 by definition of L(k) because we
use γµ

2−γ (which is ≤ L by Observation 2) as the initial guess for L(k) and only increase it
during the backtracking search. Similarly, since 0 < µ

L(k) ≤ 2−γ
γ and γ ∈ (0, 1], we have

0 < γ
√

µ
L(k) ≤

√
γ(2− γ) ≤ 1, meaning that β(k) ∈ [0, 1). Additionally, by construction,

either β(k) = 0 and α(k) = 1, or β(k) > 0, α(k) ∈ [0, 1], and (α, x, yα, v) = (α(k), x(k), y(k), v(k))

satisfies (7) with b = γµ
2 = 1−β(k)

2η(k)
, c =

√
L(k)

µ = L(k)η(k)−γ
β(k) , ε̃ = 0. Consequently, by combining

Lemmas 1 and 3, for each iteration k ≥ 0 of Algorithm 3 we have

2(η(k))2L(k)ε(k+1)+r(k+1) ≤ β(k)r(k)+
[
(1− β(k))− γµη(k)

]
r(k)y +2η(k)

[
L(k)η(k) − γ

]
ε(k)+2β(k)η(k)ε̃

Substituting in η(k) = 1√
µL(k)

= 1−β(k)

γµ and ε̃ = 0, this implies that

2

µ
ε(k+1) + r(k+1) ≤ β(k)r(k) +

2√
µL(k)

√L(k)

µ
− γ

 ε(k) = β(k)

[
r(k) +

2

µ
ε(k)
]

.

26

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Multiplying by µ/2 and using the definition of β as 1−γ
√

µ
L(k) and the fact that 0 < L(k) < 2L

yields (9). Now, by (9) and induction,

ε(k) +
µ

2
r(k) ≤

(
1− γ√

2κ

)k [
ε(0) +

µ

2
r(0)
]
≤ exp

(
− kγ√

2κ

)[
ε(0) +

µ

2
r(0)
]
.

Therefore, whenever k ≥
√
2κ
γ log+

(
ε(0)+µ

2
r(0)

ε

)
we have ε(k) = f(x(k)) − f(x∗) ≤ ε, as

r(k) ≥ 0 always. By Corollary 1, 2ε(0)

γ ≥ µ
2 r

(0), so it suffices to run k ≥
⌈√

2κ
γ log+

(
3ε(0)

γε

)⌉
iterations.

Theorem 1 If f is L-smooth and (γ, µ)-strongly quasar-convex with γ ∈ (0, 1] and µ > 0,
then Algorithm 3 produces an ε-optimal point after O

(
γ−1κ1/2 log

(
γ−1κ

)
log+

(
f(x(0))−f(x∗)

γε

))
function and gradient evaluations.

Proof Lemma 5 implies that O
(√

κ
γ log+

(
ε(0)

γε

))
iterations are needed to get an ε-optimal

point. Lemma 4 implies that each iteration uses O
(
log+

(
(1 + c)min

{
L‖x−v‖2

ε̃ , L
3

b3

}))
function and gradient evaluations. In this case, b = γµ

2 , c =
√

L(k)

µ ∈
[√

γ
2 ,

2L
µ

]
, and ε̃ = 0.

Thus, this reduces to O(log+(
√
κ L3

γ3µ3)) = O(log(κγ)). So, the total number of required

function and gradient evaluations is O
(√

κ
γ log

(
κ
γ

)
log+

(
ε(0)

γε

))
as claimed.

Note that Lemma 5 shows that x(k) will be ε-optimal if k =
⌈√

2κ
γ log+

(
3ε(0)

γε

)⌉
, while the

above argument shows that O
(√

κ
γ log

(
κ
γ

)
log+

(
ε(0)

γε

))
function and gradient evaluations

are required to compute such an x(k). Thus, Algorithm 3 produces an ε-optimal point using
at most this many evaluations; however, of course, the algorithm need not return instantly
and may still continue to run if the specified number of iterations K is larger. (Future iterates
will also be ε-optimal.)

C.4. Quasar-convex algorithm analysis

Lemma 9 Suppose ω(−1) = 1 and ω(k) = 1
2

(
ω(k−1)

(√(
ω(k−1)

)2
+ 4− ω(k−1)

))
for k ≥ 0.

In the following sub-lemmas, we prove various simple properties of this sequence:

Lemma 9.1 ω(k) ≤ 4

k + 6
for all k ≥ 0.

Proof The case k = 0 is clearly true as ω(0) =
√
5−1
2 < 2

3 . Suppose that ω(i−1) ≤ 4

i+ 5
for

some i ≥ 1. ω(i) =
ω(i−1)

2

(√(
ω(i−1)

)2
+ 4− ω(i−1)

)
. Using the fact that

√
x2 + 1 ≤ 1+ x2

2

27

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

for all x and the fact that ω(i−1) ∈ (0, 1),

ω(i) ≤ ω(i−1)

2

(
2− ω(i−1) +

(
ω(i−1)

)2
2

)
≤ ω(i−1)

(
1− ω(i−1)

4

)
.

If y > 0, then x(1− x
4) <

4
y+1 for all 0 ≤ x ≤ 4

y . Thus, setting y = i+5 yields that ω(i) ≤ 4
i+6

by the inductive hypothesis.

Lemma 9.2 ω(k) ≥ 1

k + 2
for all k ≥ 0.

Proof The case k = 0 is clearly true as ω(0) =
√
5−1
2 > 1

2 . Suppose that ω(i−1) ≥
1

i+ 1
for some i ≥ 1. Observe that the function h(x) = 1

2(x(
√
x2 + 4 − x)) is increas-

ing for all x. Therefore, ω(i) = h(ω(i−1)) ≥ h(1
i+1) = 1

2(i+1)

(√
1

(i+1)2
+ 4− 1

i+1

)
=

1
2(i+1)2

(√
4(i+ 1)2 + 1− 1

)
.

Now, it just remains to show that
√
4x2 + 1 ≥ 2x2

x+ 1
+ 1 for all x ≥ 0. To prove this, note

that 4x2(x+ 1)2 = 4x4 + 8x3 + 4x2, so

4x2 + 1 =
4x4 + 8x3 + 4x2

(x+ 1)2
+ 1 ≥ 4x4 + 4x3 + 4x2

(x+ 1)2
+ 1 =

(
2x2

x+ 1
+ 1

)2

.

Thus,

ω(i) ≥ 1

2(i+ 1)2

(√
4(i+ 1)2 + 1− 1

)
≥ 1

2(i+ 1)2
· 2(i+ 1)2

(i+ 2)
=

1

i+ 2
.

Lemma 9.3 ω(k) ∈ (0, 1) for all k ≥ 0. Additionally, ω(k) < ω(k−1) for all k ≥ 0.

Proof The fact that ω(k) > 0 follows from Lemma 9.2. To show the rest, we simply observe
that 1

2(
√
x2 + 4 − x) < 2

2 = 1 for all x > 0; as ω(−1) = 1 and ω(k) = 1
2(
√

(ω(k−1))2 + 4 −
ω(k−1)) · ω(k−1) for all k ≥ 0, the result follows.

Lemma 9.4 Define s(k) = 1 +
k−1∑
i=0

1

ω(i)
. Then,

(
s(k)
)−1 ≤ 8

(k + 2)2
for all k ≥ 0.

Proof Applying Lemma 9.1, s(k) ≥ 1 +

k−1∑
i=0

(
i+ 6

4

)
=

k(k + 11) + 8

8
≥ k(k + 4) + 4

8
=

1
8(k + 2)2, and so

(
s(k)
)−1 ≤ 8

(k + 2)2
.

28

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Lemma 9.5
1

(ω(k))2
− 1

ω(k)
=

k−1∑
i=−1

1

ω(i)
= s(k) for all k ≥ 0.

Proof Notice that (ω(k))2 = (1− ω(k))(ω(k−1))2 for all k ≥ 0, by definition of the sequence

{ω(k)}. Thus, since w(k) ∈ (0, 1) for all k ≥ 0,
1

(ω(k))2
− 1

ω(k)
=

1

(ω(k−1))2
. This proves

the base case k = 0, since ω(−1) = 1. Now, for k ≥ 0 define B(k) =
1

(ω(k))2
− 1

ω(k)
.

Then for all k ≥ 0, B(k+1) −
(
B(k) +

1

ω(k)

)
=

1

(ω(k+1))2
− 1

ω(k+1)
− 1

(ω(k))2
= 0. Thus

B(k+1) = B(k) +
1

ω(k)
=

1

ω(k)
+

k−1∑
i=−1

1

ω(i)
by the inductive hypothesis.

Lemma 6 (Non-Strongly Quasar-Convex AGD Convergence) If f is L-smooth
and γ-quasar-convex with respect to a minimizer x∗, with γ ∈ (0, 1], then in each itera-
tion k ≥ 0 of Algorithm 4,

ε(k) ≤ 8

(k + 2)2

[
ε(0) +

L

2γ2
r(0)
]
+

ε

2
, (10)

where ε(k) , f(x(k))− f(x∗) and r(k) ,
∥∥v(k) − x∗

∥∥2. Therefore, if R ≥
∥∥x(0) − x∗

∥∥ and the
number of iterations K ≥

⌊
8γ−1L1/2Rε−1/2

⌋
, then the output x(K) satisfies f(x(K)) ≤ f(x∗) + ε.

Proof In the non-strongly quasar-convex case, µ = 0 and β = 1. For all k, η(k) = γ
L(k)ω(k) ≥

γ
L(k) since ω(k) ∈ (0, 1) by Lemma 9.3. Additionally, α(k) is in [0, 1] and (α, x, yα, v) =

(α(k), x(k), y(k), v(k)) satisfies (7) with b = 1−β
2η(k)

= 0, c = L(k)η(k)−γ
β = Lη(k)−γ by construction.

Lemmas 1 and 3 thus imply that for all k ≥ 0,

2(η(k))2L(k)ε(k+1) + r(k+1) ≤ r(k) + 2η(k)
(
L(k)η(k) − γ

)
ε(k) + 2η(k)ε̃ . (12)

Define A(k) , 2
(
η(k)

)2
L(k)−2η(k)γ. So, (A(k)+2η(k)γ)ε(k+1)+r(k+1) ≤ A(k)ε(k)+r(k)+2η(k)ε̃.

Recall that (ω(k+1))2 = (1− ω(k+1))(ω(k))2 and ω(k) ∈ (0, 1) for all k ≥ 0. So,

A(k+1) − (A(k) + 2η(k)γ) =

2(η(k+1))2L(k+1) − 2η(k+1)γ − 2(η(k))2L(k) =

2

(
γ2L(k+1)

(L(k+1))2(ω(k+1))2
− γ2

L(k+1)ω(k+1)
− γ2L(k)

(L(k))2(ω(k))2

)
=

2γ2

(
1

L(k+1)
· 1− ω(k+1)

(ω(k+1))2
− 1

L(k)
· 1

(ω(k))2

)
=

2γ2
(

1

L(k+1)
· 1

(ω(k))2
− 1

L(k)
· 1

(ω(k))2

)
≤ 0 .

29

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

The final inequality comes from the fact that L(k+1) ≥ L(k), by definition of the sequence
{L(k)} in Algorithm 4. So, A(k+1) = L(k)

L(k+1) (A
(k) + 2η(k)γ) ≤ A(k) + 2η(k)γ and thus

A(k+1)ε(k+1) + r(k+1) ≤ (A(k) + 2η(k)γ)ε(k+1) + r(k+1) ≤ A(k)ε(k) + r(k) + 2η(k)ε̃. Applying
(12) repeatedly, we thus have

A(k)ε(k) + r(k) ≤ A(k−1)ε(k−1) + r(k−1) + 2η(k−1)ε̃ ≤ · · · ≤ A(0)ε(0) + r(0) + 2ε̃

k−1∑
i=0

η(i). (13)

By Lemma 9.5, A(k) = 2(η(k))2L(k) − 2η(k)γ =
2γ2

L(k)

(
1

(ω(k))2
− 1

ω(k)

)
=

2γ2

L(k)
s(k), where

s(k) ,

(
1 +

k−1∑
i=0

1

ω(i)

)
. Since 0 < L(k) < 2L for all k ≥ 0, we thus have A(k) ≥ γ2

L
s(k).

Also, A(0) = 2(η(0))2L(0) − 2η(0)γ = 2
γ2

L(0)(ω(0))2
− 2

γ2

L(0)ω(0)
=

2γ2

L(0)
, as ω(0) =

√
5− 1

2
.

So, as r(k) ≥ 0,

ε(k) ≤ (A(k))−1
(
A(0)ε(0) + r(0)

)
+ 2(A(k))−1ε̃

k−1∑
i=0

η(i)

≤ L

γ2
(s(k))−1

(
2γ2

L(0)
ε(0) + r(0)

)
+

2ε̃L

γ
(s(k))−1

k−1∑
i=0

η(i)


We henceforth assume for simplicity of exposition that L(k) = L for all k ≥ 0. The
general case can be handled by tightening the above analysis (using the fact that A(k+1) =
L(k)

L(k+1) (A
(k) + 2η(k)γ)), analogously to the analysis of standard AGD on convex functions

with adaptive step size.

Then, the previous expression becomes (s(k))−1

(
2ε(0) +

L

γ2
r(0)
)
+γ−1ε̃. ε̃ =

γε

2
by definition

and
(
s(k)
)−1 ≤ 8

(k + 2)2
by Lemma 9.4, which proves the bound on ε(k).

For the iteration bound, we simply require K large enough such that 8
(K+2)2

(
ε(0) + L

2γ2 r
(0)
)
≤

ε
2 . Observe that as f(x(0)) ≤ f(x∗) + L

2

∥∥x(0) − x∗
∥∥2 by Fact 3, 2ε(0) ≤ Lr(0) ≤ L

γ2 r
(0).

So, it suffices to have 8
(K+2)2

(
2L
γ2 r

(0)
)
≤ ε

2 . Rearranging, this is equivalent to K + 2 ≥
8γ−1L1/2Rε−1/2, as r(0) = R2. As K must be a nonnegative integer, it suffices to have
K ≥

⌊
8γ−1L1/2Rε−1/2

⌋
.

Theorem 2 If f is L-smooth and γ-quasar-convex with respect to a minimizer x∗, with
γ ∈ (0, 1] and

∥∥x(0) − x∗
∥∥ ≤ R, then Algorithm 4 produces an ε-optimal point after

O
(
γ−1L1/2Rε−1/2 log+

(
γ−1L1/2Rε−1/2

))
function and gradient evaluations.

Proof Lemma 6 implies O(γ−1L1/2Rε−1/2) iterations are needed to get an ε-optimal point.

Lemma 4 implies that each line search uses O

(
log+

(
(1 + c)min

{
L‖x(k)−v(k)‖2

ε̃ , L
3

b3

}))
30

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

function and gradient evaluations. Again, for simplicity we focus on the case where L(k) = L
for all k ≥ 0; the analysis for the general case proceeds analogously. In this case, b = 0,
c = Lη(k) − γ = γ

(
1

ω(k) − 1
)
, and ε̃ = γε

2 . By Lemma 9.2 and 9.3, 1 < 1
ω(k) ≤ k + 2 for all

k ≥ 0. Thus, the number of function and gradient evaluations required for the line search at

iteration k of Algorithm 4 is O

(
log+

(
(γk + 1)

L‖x(k)−v(k)‖2
γε

))
.

Now, we bound
∥∥x(k) − v(k)

∥∥2. To do so, we first bound
∥∥v(k) − x∗

∥∥2 = r(k). Recall that

equation (13) in the proof of Lemma 6 says that A(k)ε(k) + r(k) ≤ A(0)ε(0) + r(0) + 2ε̃
k−1∑
i=0

η(i),

where A(j) , 2γ2

L

(
1 +

j−1∑
i=0

1
ω(i)

)
. As A(k), ε(k) ≥ 0, this means that

r(k) ≤ A(0)ε(0) + r(0) + 2ε̃

k−1∑
i=0

η(i) =
2γ2

L
ε(0) + r(0) +

γ2ε

L

k−1∑
i=0

1

ω(i)
,

using that η(i) = γ
Lω(i) , ε̃ =

γε
2 , and A(0) = 2γ2

L (as previously shown in the proof of Lemma 6).

Now, by Lemma 9.2 we have that
k−1∑
i=0

1
ω(i) ≤

k−1∑
i=0

(i+ 2) = k(k+3)
2 , and by L-smoothness of f

and Fact 3 we have that ε(0) ≤ L
2 r

(0) ≤ L
2γ2 r

(0). Thus, for all k ≥ 1, we have

r(k) ≤ 2r(0) + γ2εk(k+3)
2L ≤ 2(R2 + γ2εk2

L) ,

as r(0) = R2 and k + 3 ≤ 4k for all k ≥ 1. In fact, the above holds for k = 0 as well, because
r(k) is simply r(0) in this case.

By the triangle inequality,
∥∥v(k) − v(k−1)

∥∥ ≤ ∥∥v(k) − x∗
∥∥+∥∥v(k−1) − x∗

∥∥ ≤ 2

√
2(R2 + γ2εk2

L).
Since β = 1, we have that v(k−1)−η(k−1)∇f(y(k−1)) and so

∥∥v(k) − v(k−1)
∥∥ = η(k−1)

∥∥∇f(y(k−1))
∥∥.

Thus,∥∥∥∇f(y(k−1))
∥∥∥ ≤ (η(k−1))−1 · 2

√
2(R2 + γ2εk2

L) = Lω(k−1)γ−1
√

8(R2 + γ2εk2

L) . (14)

Now, by definition of x(k), v(k), and y(k−1),

x(k) − v(k) = y(k−1) − 1
L∇f(y

(k−1))− v(k)

= α(k−1)x(k−1) + (1− α(k−1))v(k−1) − 1
L∇f(y

(k−1))− v(k)

= α(k−1)x(k−1) + (1− α(k−1))v(k−1) − 1
L∇f(y

(k−1))−
(
v(k−1) − η(k−1)∇f(y(k−1))

)
= α(k−1)(x(k−1) − v(k−1)) + (η(k−1) − 1

L)∇f(y
(k−1)) .

31

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Therefore, ∥∥∥x(k) − v(k)
∥∥∥ ≤ α(k−1)

∥∥∥x(k−1) − v(k−1)
∥∥∥+ ∣∣∣η(k−1) − 1

L

∣∣∣ · ∥∥∥∇f(y(k−1))
∥∥∥

≤
∥∥∥x(k−1) − v(k−1)

∥∥∥+ (η(k−1) + 1
L

)
·
∥∥∥∇f(y(k−1))

∥∥∥
≤
∥∥∥x(k−1) − v(k−1)

∥∥∥+ 2
Lω(k−1) ·

∥∥∥∇f(y(k−1))
∥∥∥

≤
∥∥∥x(k−1) − v(k−1)

∥∥∥+ γ−1
√
32(R2 + γ2εk2

L)

≤
∥∥∥x(k−1) − v(k−1)

∥∥∥+√32γ−1
(
R+ γk

√
ε
L

)
,

where the first inequality is the triangle inequality, the third inequality uses that η(k−1) =
γ

Lω(k−1) and that γ, ω(k−1) ∈ (0, 1], the fourth inequality uses (14), and the final inequality
uses that

√
a+ b ≤

√
a+
√
b for any a, b ≥ 0.

As this holds for all k ≥ 1, we have by induction that for all k ≥ 0,

∥∥∥x(k) − v(k)
∥∥∥ ≤ ∥∥∥x(0) − v(0)

∥∥∥+ k∑
j=1

√
32γ−1

(
R+ γj

√
ε
L

)
=
√
32γ−1

k∑
j=1

(
R+ γj

√
ε
L

)
,

since x(0) = v(0). Simplification yields
∥∥x(k) − v(k)

∥∥ ≤ √32kγ−1R +
√
8k(k + 1)

√
ε
L . For

all k ≥ 1, it is the case that k + 1 ≤ 2k, so
∥∥x(k) − v(k)

∥∥ ≤ √32 (kγ−1R+ k2
√

ε
L

)
; this

inequality holds for k = 0 as well, as
∥∥x(0) − v(0)

∥∥ = 0 in this case.
Suppose k ≤

⌊
4γ−1L1/2Rε−1/2

⌋
. Then∥∥∥x(k) − v(k)

∥∥∥ ≤ √32(4γ−1L1/2Rε−1/2 · γ−1R+ 16γ−2LR2ε−1 ·
√

ε
L

)
= 80

√
2 · γ−2L1/2R2ε−1/2 .

Recall that the line search at iteration k requires O
(
log+

(
(γk + 1)

L‖x(k)−v(k)‖2
γε

))
function

and gradient evaluations. (γk + 1)
L‖x(k)−v(k)‖2

γε ≤ (4L1/2Rε−1/2 + 1) · 12800(γ−5L2R4ε−2).
Therefore, each line search indeed requires O

(
log+

(
γ−1L1/2Rε−1/2

))
function and gradient

evaluations.
As the number of iterations k is O(γ−1L1/2Rε−1/2), the total number of function and gradient
evaluations required is thus O

(
γ−1L1/2Rε−1/2 log+

(
γ−1L1/2Rε−1/2

))
, as claimed.

As in the strongly convex case, the algorithm may continue to run if the specified number of
iterations K is larger; however, this theorem combined with Lemma 6 shows that x(k) will be ε-
optimal if k =

⌊
4γ−1L1/2Rε−1/2

⌋
, and this x(k) will be produced using

O
(
γ−1L1/2Rε−1/2 log+

(
γ−1L1/2Rε−1/2

))
function and gradient evaluations. (Future it-

erates x(k
′) with k′ >

⌊
4γ−1L1/2Rε−1/2

⌋
will also be ε-optimal.)

Remark 1 If f is L-smooth and γ-quasar-convex with γ ∈ (0, 1] and
∥∥x(0) − x∗

∥∥ ≤ R, then
gradient descent with step size 1

L returns a point x with f(x) ≤ f(x∗)+ε after O
(
γ−1LR2ε−1

)
function and gradient evaluations.

32

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Proof See Theorem 1 in (Guminov and Gasnikov, 2017).

C.5. Line Search Initial Guess

We note that in special cases, specifying an “initial guess” for α in the binary line search
(Algorithm 2) can speed up our algorithms, by allowing the line search to be circumvented
a large portion of the time. For instance, at each step k we could use the α(k) prescribed

by the standard version of AGD as a guess: this is
√

L(k)/µ√
L(k)/µ+1

in the strongly quasar-convex

case (Algorithm 3), and 1− ω(k) in the non-strongly quasar-convex case (Algorithm 4). In
this case, if f is convex or strongly convex (and thus γ = 1), the respective algorithms are
equivalent to standard AGD (as described in (Nesterov, 2004)), since this initial guess always
satisfies the necessary condition (7) by convexity [in fact, it satisfies the stronger (6)] and
will thus be chosen as the value of α(k). Aside from the choice of α(k), our algorithms are
otherwise equivalent to standard AGD with adaptive step size when γ = 1; thus, this “initial
guess” modification makes the behavior of our algorithms identical to that of standard AGD
in the convex case. Moreover, even when f is nonconvex, checking this initial guess costs at
most one extra function and gradient evaluation each per invocation of Algorithm 2.

C.6. Analysis Techniques

We remark that our analysis can also be recast in the framework of estimate sequences (for
instance, following (Nesterov, 2004)), by generalizing the analysis for standard AGD. The
analysis presented in this paper is an adaptation of a somewhat different style of analysis
of standard AGD, based on analyzing the one-step decrease in the more general potential
function presented in Lemma 1. Indeed, as mentioned, the standard AGD algorithms for
both convex and strongly convex minimization are also specific instances of the framework
presented in Algorithm 1.

Appendix D. The structure of quasar-convex functions

In this section, we prove various properties of quasar-convex functions. First, we state a
slightly more general definition of quasar-convexity on a convex domain.

Definition 3 Let X ⊆ Rn be convex. Furthermore, suppose that either X is open or n = 1.
Let γ ∈ (0, 1] and let x∗ ∈ X be a minimizer of the differentiable function f : X → R. The
function f is γ-quasar-convex on X with respect to x∗ if for all x ∈ X ,

f(x∗) ≥ f(x) +
1

γ
∇f(x)>(x∗ − x).

Suppose also µ ≥ 0. The function f is (γ, µ)-strongly quasar-convex on X if for all x ∈ X ,

f(x∗) ≥ f(x) +
1

γ
∇f(x)>(x∗ − x) +

µ

2
‖x∗ − x‖2.

If X is of the form [a, b] ⊆ R, then ∇f(a) and ∇f(b) here denote lim
h→0+

f(a+h)−f(a)
h and

lim
h→0−

f(b+h)−f(b)
h , respectively. Differentiability simply means that ∇f(x) exists for all x ∈ X .

33

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Definition 3 is exactly the same as Definition 1 if the domain X = Rn. We remark that it is
possible to generalize Definition 3 even further to the case where X is a star-convex set with
star center x∗.

D.1. Proof of Observation 1

Observation 1 Let a < b and let f : [a, b]→ R be continuously differentiable. The function
f is γ-quasar-convex for some γ ∈ (0, 1] iff f is unimodal and all critical points of f are
minimizers. Additionally, if h : Rn → R is γ-quasar-convex with respect to a minimizer x∗,
then for any d ∈ Rn with ‖d‖ = 1, the 1-D function f(θ) , h(x∗ + θd) is γ-quasar-convex.

Proof First, we prove that if f is continuously differentiable and unimodal with nonzero
derivative except at minimizers, then f is γ-quasar-convex for some γ > 0.
Let x∗ be a minimizer of f on [a, b], and let x ∈ [a, b] be arbitrary. Define gx(t) =
f((1 − t)x∗ + tx). By unimodality of f , gx is differentiable and increasing on [0, 1], so
g′x(t) ≥ 0 for t ∈ [0, 1], and

f(x)− f(x∗) = gx(1)− gx(0) =

1∫
0

g′x(t) dt .

Also, g′x(1) = f ′(x)(x − x∗) 6= 0 by assumption for all x with f(x) > f(x∗). Note that if
f(x) = f(x∗), then gx(t) is constant on [0, 1] by unimodality and so g′x(t) = 0 for all t ∈ [0, 1].

Define Cx∗ = sup
x∈[a,b]

sup
t∈[0,1]

g′x(t)

g′x(1)
, where we define the inner supremum to be 1 if f(x) = f(x∗).

By continuity of each g′x over [0, 1] and the fact that g′x(1) > 0 for all x ∈ [a, b] with
f(x) > f(x∗), supt∈[0,1]

g′x(t)
g′x(1)

is a continuous function of x. Thus as the outer supremum is
over the compact interval [a, b], Cx∗ indeed exists; note that Cx∗ ∈ [1,∞).

For any x ∈ [a, b] with f(x) > f(x∗), we thus have
f(x)− f(x∗)

f ′(x)(x− x∗)
=

∫ 1
0 g′x(t) dt

g′x(1)
≤ Cx∗ ,

meaning f(x∗) ≥ f(x)+Cx∗(f ′(x)(x∗−x)). This also holds for all x such that f(x) = f(x∗),
as either x = x∗ or f ′(x) = 0 in these cases. Thus, f is 1

Cx∗
quasar-convex on [a, b] with

respect to x∗. Finally, if we define Cmax = max
x∗∈argminx∈[a,b] f(x)

Cx∗ , we have that f is 1
Cmax

quasar-convex on [a, b] where 1
Cmax

∈ (0, 1] is a constant depending only on f , a, and b. This
completes the proof.
Now, we prove the other direction (which is much simpler). Suppose that f : [a, b]→ R is
differentiable and quasar-convex for some γ ∈ (0, 1]. Then 1

γ f
′(x)(x−x∗) ≥ f(x)−f(x∗) ≥ 0.

If x is not a minimizer of f , then the last inequality is strict; otherwise, either x ∈ {a, b} or
f ′(x) = 0. In other words, assuming x is not a minimizer, when x < x∗ [i.e. to the left of
x∗], f ′ < 0 and so f is strictly decreasing, while when x > x∗ [i.e. to the right of x∗], f ′ > 0
and so f is strictly increasing. This implies that f is unimodal.
Finally, suppose h : Rn → R is γ-quasar-convex with respect to a minimizer x∗, suppose
d ∈ Rn has ‖d‖ = 1, and define f(θ) , h(x∗ + θd). Note that f ′(θ) = d>∇h(x∗ + θd) and
that θ = 0 minimizes f . By γ-quasar-convexity of h with respect to x∗, we have for all θ ∈ R

34

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

that

f(0) = h(x∗) ≥ h(x∗ + θd) + 1
γ∇h(x

∗ + θd)>(x∗ − (x∗ + θd)) = f(θ) + 1
γ f

′(θ)(0− θ) ,

meaning that f is γ-quasar-convex.

D.2. Characterizations of quasar-convexity

Lemma 10 Let f : X → R be differentiable with a minimizer x∗ ∈ X , where the domain
X ⊆ Rn is open and convex.7 Then, the following two statements:

f(tx∗ + (1− t)x) + t

(
1− t

2− γ

)
γµ

2
‖x∗ − x‖2 ≤ γtf(x∗) + (1− γt)f(x) ∀x ∈ X , t ∈ [0, 1]

(15)

f(x∗) ≥ f(x) +
1

γ
∇f(x)>(x∗ − x) +

µ

2
‖x∗ − x‖2 ∀x ∈ X (16)

are equivalent for all µ ≥ 0, γ ∈ (0, 1].

Proof First, we prove that (16) implies (15).
Suppose (16) holds and µ = 0. Let x ∈ X be arbitrary and for all t ∈ [0, 1] let xt , (1− t)x∗+
tx and let g(t) , f(xt)− f(x∗). Since g′(t) = ∇f(xt)>(x− x∗) and x∗ − xt = −t(x∗ − x),
substituting these equalities into (16) yields that g(t) ≤ t

γ g
′(t) for all t ∈ [0, 1].

Rearranging, we see that the inequality in (15) [for fixed x] is equivalent to the condition that
g(t) ≤ `(t) for all t ∈ [0, 1], where `(t) , (1− γ(1− t))g(1). We proceed by contradiction:
suppose that for some α ∈ [0, 1] it is the case that g(α) > `(α). Note that α > 0 necessarily.
Let β be the minimum element of the set {t ∈ [α, 1] : g(t) = `(t)}. Since g(1) = `(1), such a
β exists with α < β. Consequently, for all t ∈ (α, β) we have g(t) ≥ `(t) and so∫ β

α
g′(t) dt = g(β)− g(α) < `(β)− `(α) = γ(β − α)g(1) (17)

and

(β − α)g(1) =

∫ β

α

`(t)

1− γ(1− t)
dt ≤

∫ β

α

g(t)

1− γ(1− t)
dt . (18)

Combining (17) and (18) and using that g(t) ≤ t
γ g

′(t), we have∫ β

α

[
1

t
− 1

1− γ(1− t)

]
g(t) dt ≤

∫ β

α

g′(t)

γ
dt−

∫ β

α

g(t)

1− γ(1− t)
dt < 0

As g(t) = f(xt)− f(x∗) ≥ 0 and 1/t ≥ 1/(1− γ(1− t)) for all t ∈ [α, β] ⊂ (0, 1], we have a
contradiction.

7. We remark that this lemma still holds if X is open and star-convex with star center x∗, or if X is any
subinterval of R.

35

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Now, suppose µ > 0. Define h(x) , f(x)− γµ

2(2− γ)
‖x∗ − x‖2. Observe that h(x∗) = f(x∗),

∇h(x) = ∇f(x)− γµ

2− γ
(x− x∗), and ∇h(x)>(x∗− x) = ∇f(x)>(x∗− x) +

γµ

2− γ
‖x∗ − x‖2.

Thus, by algebraic simplification and then application of (16) by assumption,

h(x) +
1

γ
∇h(x)>(x∗ − x) = f(x)− γµ

2(2− γ)
‖x∗ − x‖2 + 1

γ
∇f(x)>(x∗ − x) +

µ

2− γ
‖x∗ − x‖2

= f(x) +
1

γ
∇f(x)>(x∗ − x) +

µ

2
‖x∗ − x‖2

(
− γ

2− γ
+

2

2− γ

)
= f(x) +

1

γ
∇f(x)>(x∗ − x) +

µ

2
‖x∗ − x‖2

≤ f(x∗) = h(x∗) .

As we earlier showed that (16) implies (15) in the µ = 0 case, we have that

h(tx∗ + (1− t)x) ≤ γth(x∗) + (1− γt)h(x) .

Substituting in the definition of h:

f(tx∗ + (1− t)x)− γµ

2(2− γ)
‖x∗ − tx∗ − (1− t)x‖2

≤ γtf(x∗) + (1− γt)f(x)− (1− γt)
γµ

2(2− γ)
‖x∗ − x‖2 .

Rearranging terms and simplifying yields

f(tx∗ + (1− t)x) +
γµ

2(2− γ)

(
(1− γt) ‖x∗ − x‖2 − (1− t)2 ‖x∗ − x‖2

)
≤ γtf(x∗) + (1− γt)f(x) .

Finally, (1− γt)− (1− t)2 = t((2− γ)− t), which gives the desired result.
Now, we prove that (15) implies (16).
This time, define g(t) , f(tx∗ + (1− t)x). For t ∈ [0, 1), g′(t) = ∇f(tx∗ + (1− t)x)>(x∗− x).

By assumption, g(t)+t

(
1− t

2− γ

)
γµ

2
‖x∗ − x‖2 ≤ γtg(1)+(1−γt)g(0) for all t ∈ [0, 1], so

g(1) ≥ g(0)+
g(t)− g(0)

γt
+

(
1− t

2− γ

)
µ

2
‖x∗ − x‖2 for all t ∈ (0, 1]. Taking the limit as t ↓ 0

yields f(x∗) = g(1) ≥ g(0)+
1

γ
g′(0)+

µ

2
‖x∗ − x‖2 = f(x)+

1

γ
∇f(x)>(x∗−x)+

µ

2
‖x∗ − x‖2.

Remark 2 A modified version of Lemma 10 holds if x∗ is replaced with any point x̂ ∈ X ,
where either γ = 1 or (15) and (16) hold for all x ∈ X with f(x) ≥ f(x̂). If f satisfies
either of these equivalent properties, we then say that f is “(γ, µ)-strongly quasar-convex with
respect to x̂.”

36

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Remark 3 Using Remark 2, we can show that even if x̂ is not a minimizer of the function
f , Algorithms 3 and 4 can still be applied to efficiently finding a point that has an objective
value of at most f(x̂) + ε; the respective runtime bounds are the same, and the proofs remain
essentially unchanged.

Note that when γ = 1, µ = 0, and (15) is required to hold for all minimizers of f , it
becomes the standard definition of star-convexity (Nesterov and Polyak, 2006).

Corollary 1 If f is (γ, µ)-strongly quasar-convex with minimizer x∗, then

f(x) ≥ f(x∗) +
γµ

2(2− γ)
‖x∗ − x‖2 , ∀x

Proof Plug in t = 1 to (15) to get

f(x∗) +

(
1− 1

2− γ

)
γµ

2
‖x∗ − x‖2 ≤ γf(x∗) + (1− γ)f(x) .

Simplifying yields

f(x) ≥ f(x∗) +

(
1− 1

2− γ

)
γµ

2(1− γ)
‖x∗ − x‖2 = f(x∗) +

γµ

2(2− γ)
‖x∗ − x‖2 .

Fact 3 If f : X → R is L-smooth, x∗ is a minimizer of f , and the domain X ⊆ Rn is open
and star-convex with star center x∗, then f(y) ≤ f(x∗) + L

2 ‖y − x∗‖2 for all y ∈ X .

Proof This is a simple and well-known fact that is true of any L-smooth function (whether
or not it is quasar-convex); for completeness, we provide the proof.
Define g(t) , f((1 − t)x∗ + ty), for t ∈ [0, 1]. So, g′(t) = ∇f((1− t)x∗ + ty)>(y − x∗),
g(0) = f(x∗), and g(1) = f(y). Since g′(0) = 0 and f is L-smooth, ‖∇f((1− t)x∗ + ty)‖ ≤
L ‖(1− t)x∗ + ty − x∗‖ = Lt ‖y − x∗‖. So, g′(t) ≤ |g′(t)| ≤ Lt ‖y − x∗‖2, and thus f(y) =

g(1) =

1∫
0

g′(t) dt+ g(0) ≤
1∫

0

Lt ‖y − x∗‖2 dt+ g(0) = L
2 ‖y − x∗‖2 + f(x∗).

Observation 2 If f is (γ, µ)-strongly quasar-convex, then f is not L-smooth for any
L < γµ

2−γ .

Proof If f is (γ, µ)-strongly quasar-convex, Corollary 1 says that f(x) ≥ f(x∗)+ γµ
2(2−γ) ‖x

∗ − x‖2

for all x. If f is L-smooth, Fact 3 says that f(x) ≤ f(x∗) + L
2 ‖x

∗ − x‖2 for all x.
Thus, if f is (γ, µ)-strongly quasar-convex and L-smooth, we have γµ

2(2−γ) ‖x
∗ − x‖2 ≤

L
2 ‖x

∗ − x‖2 for all x, which means that we must have L ≥ γµ
2−γ .

Observation 3 If f is γ-quasar convex, the set of its minimizers is star-convex.

37

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Proof Recall that a set S is termed star-convex (with star center x0) if there exists an
x0 ∈ S such that for all x ∈ S and t ∈ [0, 1], it is the case that tx0 + (1− t)x ∈ S (Munkres,
1975).
Suppose f : X → R is γ-quasar-convex with respect to a minimizer x∗ ∈ X , where X is
convex. Suppose y ∈ X also minimizes f . Then for any t ∈ [0, 1], equation (15) implies
that f(tx∗ + (1 − t)y) ≤ γtf(x∗) + (1 − γt)f(y) = γtf(x∗) + (1 − γt)f(x∗) = f(x∗). So,
tx∗ + (1− t)y is in X and also minimizes f . Thus, the set of minimizers of f is star-convex,
with star center x∗.

Observation 4 If f is (γ, µ)-strongly quasar-convex with µ > 0, f has a unique minimizer.

Proof By Corollary 1, f(x) > f(x∗) if µ > 0 and x 6= x∗, implying that x minimizes f iff
x = x∗.

Observation 5 Suppose f is differentiable and (γ, µ)-strongly quasar-convex. Then f is
also (θγ, µ/θ)-strongly quasar-convex for any θ ∈ (0, 1].

Proof (γ, µ)-strong quasar-convexity states that 0 ≥ f(x∗) − f(x) ≥ 1
γ∇f(x)

>(x∗ − x) +
µ
2 ‖x

∗ − x‖2 for some x∗ and all x in the domain of f . Multiplying by 1
θ − 1 ≥ 0, it follows

that
f(x∗) ≥ f(x) + 1

γ∇f(x)
>(x∗ − x) + µ

2 ‖x− x∗‖2 ≥ f(x) + 1
γθ∇f(x)

>(x∗ − x) + µ
2θ ‖x

∗ − x‖2.
Note that any (γ, µ)-strongly quasar-convex function is also (γ, µ̃)-strongly quasar-convex
for any µ̃ ∈ [0, µ]. Thus, the restriction γ ∈ (0, 1] in the definition of quasar-convexity may
be made without any loss of generality compared to the restriction γ > 0.

Observation 6 The parameter γ is a dimensionless quantity, in the sense that if f is
γ-quasar-convex on Rn, the function g(x) , a · f(bx) is also γ-quasar-convex on Rn, for any
a ≥ 0, b ∈ R.

Proof If a or b is 0, then g is constant so the claim is trivial. Now suppose a, b 6= 0. Let x∗

denote the quasar-convex point of f . Observe that as x∗ minimizes f , x∗/b minimizes g. By
(15), for all x ∈ Rn we have

1
ag((tx

∗ + (1− t)x)/b) = f(tx∗ + (1− t)x)

≤ γtf(x∗) + (1− γt)f(x)

= γt · 1ag(x
∗/b) + (1− γt) · 1ag(x/b) .

Multiplying by a, we have g(t(x∗/b) + (1 − t)(x/b)) ≤ γtg(x∗/b) + (1 − γt)g(x/b) for all
x ∈ Rn. Since x/b can take on any value in Rn, this means that g is γ-quasar-convex with
respect to x∗/b.

38

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Appendix E. Lower bound proofs

In this section, we use 0 to denote a vector with all entries equal to 0 and 1 to denote a
vector with all entries equal to 1.

E.1. Proof of Lemma 7

Before we prove Lemma 7, we prove two useful results related to the properties of q and Υ.
For convenience, these functions are restated below:

Υ(θ) , 120

∫ θ

1

t2(t− 1)

1 + t2
dt

q(x) ,
1

4
(x1 − 1)2 +

1

4

T−1∑
i=1

(xi − xi+1)
2.

Observation 7 q is convex and 2-smooth with minimizer x∗ = 1. Also, for any 1 ≤ j1 <
j2 ≤ T ,

q(x) =
1

2
∇q(x)>(x− x∗) ≥ max

{
1

4
(x1 − 1)2,

(xj1 − xj2)
2

4(j2 − j1)

}
.

Proof Convexity and 2-smoothness of q follow from definitions. It is easy to see that q is
always nonnegative and q(1) = 0, so 1 minimizes q. In fact 1 is the unique minimizer, since
q is strictly positive for all nonconstant vectors and all vectors with x1 6= 1.
Notice that as q is a convex quadratic, q(x) = 1

2(x− x∗)>∇2q(x)(x− x∗) where ∇2q(x) is a
constant matrix. Therefore ∇q(x) = ∇2q(x)(x−x∗). It follows that q(x) = 1

2∇q(x)
>(x−x∗).

By definition q(x) ≥ 1
4(x1−1)

2. Furthermore, 1
j2−j1

∑j2
i=j1

(xi−xi+1)
2 ≥

(
1

j2−j1

∑j2
i=j1

(xi − xi+1)
)2

=
(xj1

−xj2
)2

(j2−j1)2
, where the inequality uses that the expectation of the square of a random variable

is greater than the square of its expectation. The result follows.

Properties of Υ that we will use are listed below.

Lemma 11 The function Υ satisfies the following.

1. Υ′(0) = Υ′(1) = 0.

2. For all θ ≤ 1, Υ′(θ) ≤ 0, and for all θ ≥ 1, Υ′(θ) ≥ 0.

3. For all θ ∈ R we have Υ(θ) ≥ Υ(1) = 0, and Υ(0) ≤ 10.

4. Υ′(θ) < −1 for all θ ∈ (−∞,−0.1] ∪ [0.1, 0.9].

5. Υ is 180-smooth.

6. For all θ ∈ R we have Υ(θ) ≤ min{30θ4 − 40θ3 + 10, 60(θ − 1)2}, and Υ(0) ≥ 5.

7. For all θ 6∈ (−0.1, 0.1) we have 40(θ − 1)Υ′(θ) ≥ Υ(θ).

39

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Proof Properties 1-4 were proved in (Carmon et al., 2019b, Lemma 2).
Property 5. |Υ′′(θ)| = 120

∣∣∣ θ(θ3+3θ−2)
(1+θ2)2

∣∣∣ ≤ 120 · 32 = 180 for all θ ∈ R. Thus, for any θ1, θ2 ∈ R,
|Υ′(θ1)−Υ′(θ2)| ≤ max

θ∈[θ1,θ2]
|Υ′′(θ)| · |θ1 − θ2| ≤ 180|θ1 − θ2|.

Property 6. We have Υ(0) = 120
∫ 1
0

t2(1−t)
1+t2

dt ≥ 120
∫ 1
0

t2(1−t)
2 dt = 120

2·12 = 5. For all

θ ∈ R we have Υ(θ) = 120
∫ θ
1

t2(t−1)
1+t2

dt ≤ 120
∫ θ
1 t2(t − 1) dt = 120((θ4/4 + θ3/3) − (1/4 −

1/3)) = 30θ4 − 40θ3 + 10. In addition, since t2

1+t2
≤ 1 for all t, we have for all θ ∈ R that

Υ(θ) ≤ 120
∫ θ
1 (t− 1) dt = 120(θ − 1)2/2.

Property 7. If θ ∈ (∞,−1.0] ∪ [1.0,∞) then θ2

1+θ2
≥ 1

2 , so by property 6 we have

Υ(θ) + 40(1− θ)Υ′(θ) ≤ 60(θ − 1)2 − 40 · 120θ
2(θ − 1)2

1 + θ2

≤ 60(θ − 1)2 − 40 · 60(θ − 1)2

= −60 · 39(θ − 1)2

≤ 0.

Alternatively, if θ ∈ [−1.0,−0.1] ∪ [0.1, 1.0] then 1
1+θ2

≥ 1
2 , so by property 6 we have

Υ(θ) + 40(1− θ)Υ′(θ) ≤ 10 + 30θ4 − 40θ3 − 40 · 120θ
2(θ − 1)2

1 + θ2

≤ 10
(
1 + θ2

(
3θ2 − 4θ − 240(θ − 1)2

))
= 10

(
1− 237θ4 + 476θ3 − 240θ2

)
= 10P (θ) ,

where we define P (θ) , 1−237θ4+476θ3−240θ2. Observe that P ′(θ) = −12θ(40− 119θ + 79θ2)
has exactly three roots: at θ = 0, θ = 1 and θ = 40/79. Furthermore, at θ = 1, θ = 40/79
and θ = 0.1 we have P (θ) ≤ 0, which implies P (θ) ≤ 0 for θ ∈ [0.1, 1]. We conclude that
Υ(θ)+40(1− θ)Υ′(θ) ≤ 0 for θ ∈ [0.1, 1]. In addition, P (θ) is negative while P ′(θ) is positive
for θ = −0.1, which means that P (θ) and thus Υ(θ) + 40(1− θ)Υ′(θ) are also negative on
[−1.0,−0.1].

Before proving Lemma 7, we prove an “unscaled version” in Lemma 12. This is the
critical and most difficult part of the proof of the result. The argument rests on showing
that the quasar-convexity inequality 1

100T
√
σ
(f̄T,σ(x)− f̄T,σ(1)) ≤ ∇f̄T,σ(x)>(x−1) holds for

all x ∈ RT . The nontrivial situation is when there exists some j1 < j2 such that xj1 ≥ 0.9,
xj2 ≤ 0.1, and 0.1 ≤ xi ≤ 0.9 for i ∈ {j1 + 1, . . . , j2 − 1}. In this situation, we use ideas
closely related to the transition region arguments made in Lemma 3 of Carmon, Duchi,
Hinder, and Sidford (2019b). The intuition is as follows. If the gaps xi+1− xi are large, then
the convex function q(x) dominates the function value and gradient of f̄T,σ(x), allowing us
to establish quasar-convexity. Conversely, if the xi+1 − xi’s are small, then a large portion
of the xi’s must lie in the quasar-convex region of Υ, and the corresponding Υ′(xi)(xi − 1)
terms make ∇f̄T,σ(x)>(x− 1) sufficiently positive.

40

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Lemma 12 Let σ ∈ (0, 10−4], T ∈
[
σ−1/2,∞

)
∩ Z. The function f̄T,σ is 1

100T
√
σ
-quasar-

convex and 3-smooth, with unique minimizer x∗ = 1. Furthermore, if xt = 0 for all
t = dT/2e , . . . , T , then f̄T,σ(x)− f̄T,σ(1) ≥ 2Tσ.

Proof Since σ ∈ (0, 10−4], Υ is 180-smooth, and q is 2-smooth, we deduce f̄T,σ is 3-smooth.
By Observation 7 and Lemma 11.3 we deduce f̄T,σ(1) = 0 < f̄T,σ(x) for all x 6= 1. Therefore,
x∗ = 1 is the unique minimizer of f̄T,σ.
Now, we will show f̄T,σ is 1

100T
√
σ
-quasar-convex, i.e. that ∇f̄T,σ(x)>(x−1) ≥ f̄T,σ(x)−f̄T,σ(1)

100T
√
σ

for all x ∈ RT . Define

A , {i : xi ∈ (−∞,−0.1] ∪ (0.9,∞)}
B , {i : xi ∈ (−0.1, 0.1)}
C , {i : xi ∈ [0.1, 0.9]}.

First, we derive two useful inequalities. By Observation 7 and the fact that Υ′(xi) ≤ 0 for
i ∈ B,

∇f̄T,σ(x)>(x− 1) = ∇q(x)>(x− 1) + σ
∑

i∈A∪B∪C

(xi − 1)Υ′(xi)

≥ 2q(x) + σ
∑

i∈A∪C
(xi − 1)Υ′(xi) . (19)

By Lemma 11.2 and 11.6 we deduce
∑

i∈B∪C Υ(xi) ≤ |B∪C|Υ(−0.1) ≤ 11T , so it follows that
f̄T,σ(x) ≤ q(x) + 11Tσ + σ

∑
i∈AΥ(xi), and therefore using T ≥ σ−1/2 and nonnegativity of

Υ and q, we have

f̄T,σ(x)− f̄T,σ(1)

100T
√
σ

=
f̄T,σ(x)

100T
√
σ

≤ 11Tσ

100T
√
σ
+

σ

100T
√
σ

∑
i∈A

Υ(xi) +
1

100T
√
σ
q(x)

≤ 11

100
σ1/2 +

σ

100

∑
i∈A

Υ(xi) +
1

100
q(x)

≤ 11

100
σ1/2 +

σ

40

∑
i∈A

Υ(xi) + q(x) (20)

We now consider three possible cases for the values of x.

41

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

1. Consider the case that x1 6∈ [0.9, 1.1]. We have

∇f̄T,σ(x)>(x− 1) ≥ 2q(x) +
σ

40

∑
i∈A∪C

Υ(xi)

≥ 0.12

4
+ q(x) +

σ

40

∑
i∈A∪C

Υ(xi)

=
1√
104σ

·
√
σ

4
+

σ

40

∑
i∈A∪C

Υ(xi) + q(x)

≥
√
σ

4
+

σ

40

∑
i∈A∪C

Υ(xi) + q(x)

≥
f̄T,σ(x)− f̄T,σ(1)

100T
√
σ

where the first inequality uses (19) and Lemma 11.7, the second inequality uses
Observation 7 and x1 6∈ [0.9, 1.1], the penultimate inequality uses σ ∈ (0, 10−6] ⊂
(0, 10−4], and the final inequality uses (20) and nonnegativity of Υ.

2. Consider the case that B = ∅. By Lemma 11.7 and convexity of q(x),

∇f̄T,σ(x)>(x− 1) = ∇q(x)>(x− 1) + σ
∑

i∈A∪C

(xi − 1)Υ′(xi)

≥ q(x)− q(1) +
σ

40

∑
i∈A∪C

Υ(xi)

=
1

40

q(x) + σ

T∑
i=1

Υ(xi)

− f̄T,σ(1) +
39

40
q(x)

≥
f̄T,σ(x)− f̄T,σ(1)

40

≥
f̄T,σ(x)− f̄T,σ(1)

100T
√
σ

.

3. Suppose cases 1-2 do not hold, i.e., x1 ∈ [0.9, 1.1] and B 6= ∅. Then there exist some
m ≥ 1 and j ∈ {1, . . . , T −m} such that xj ≥ 0.9, xj+m ≤ 0.1, and xi ∈ C for all

42

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

i ∈ {j + 1, . . . , j +m− 1}. Then,

∇f̄T,σ(x)>(x− 1) ≥ q(x) + σ
∑

i∈A∪C
(xi − 1)Υ′(xi) + q(x)

≥ 0.82

4m
+ σ

∑
i∈C

(xi − 1)Υ′(xi) + σ
∑
i∈A

(xi − 1)Υ′(xi) + q(x)

≥ 0.82

4m
+ 0.1σ(m− 2) +

σ

40

∑
i∈A

Υ(xi) + q(x)

≥ 0.16√
1.6

σ1/2 +
σ

40

∑
i∈A

Υ(xi) + q(x)

≥
f̄T,σ(x)− f̄T,σ(1)

100T
√
σ

where the the first inequality holds by (19), the second inequality uses Observation 7,
the third inequality uses Lemma 11.4 and 11.7, the fourth inequality uses that m =√
1.6σ−0.5 ≥ 2 minimizes the previous expression, and the final inequality uses (20)

[and the fact that 0.16/
√
1.6 > 0.11].

Finally, suppose xt = 0 for all t = dT/2e , . . . , T . Then we have f̄T,σ(x)− f̄T,σ(1) = f̄T,σ(x) ≥
σ dT/2eΥ(0) ≥ 2Tσ, where the first inequality uses that Υ ≥ 0 and q ≥ 0, and the last
inequality uses that T ≥ 1 and Υ(0) ≥ 5.

With Lemma 12 in hand, we are able to establish Lemma 7 which is a scaled version of
Lemma 12.

Lemma 7 Let ε ∈ (0,∞), γ ∈ (0, 10−2], T =
⌈
10−3γ−1L1/2Rε−1/2

⌉
, and σ = 1

104T 2γ2 , and
assume L1/2Rε−1/2 ≥ 103. Consider the function

f̂(x) , 1
3LR

2T−1 · f̄T,σ(xT 1/2R−1). (11)

This function is L-smooth and γ-quasar-convex, and its minimizer x∗ is unique and has
‖x∗‖ = R. Furthermore, if xt = 0 ∀t ∈ Z ∩ [T/2, T], then f̂(x)− infz f̂(z) > ε.

Proof We have σ−1/2 = 102Tγ ≤ T and σ = 1
104T 2γ2 ≤ 1

(L1/2Rε−1/2)2
≤ 10−6, so f̄T,σ satisfies

the conditions of Lemma 12.
Let us verify the properties of f̂ . The optimum of f̄T,σ is 1, but after this rescaling it becomes
x∗ = R√

T
1, for which ‖x∗‖ = R. For all x, y ∈ RT , by 3-smoothness of f̄T,σ we have∥∥∥∇f̂(x)−∇f̂(y)∥∥∥ = 1

3(LR
2T−1) · (T 1/2R−1)

∥∥∥∇f̄T,σ(xT 1/2R−1)−∇f̄T,σ(yT 1/2R−1)
∥∥∥

≤ (LR2T−1) · (T 1/2R−1)2 ‖x− y‖
= L ‖x− y‖ .

43

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Therefore f̂ is L-smooth. By the definition of σ we have 1
100T

√
σ
= γ, so f̄T,σ is γ-quasar-

convex. As quasar-convexity is invariant to scaling (Observation 6), we deduce that f̂ is
γ-quasar-convex as well. Finally, given x

(k)
t = 0 for t = dT/2e , . . . , T , we have

f̂(x(k))− inf
z
f̂(z) ≥ 2Tσ · LR

2

3T
= 2

3LR
2σ = 2

3(10
−2γ−1L1/2RT−1)2 ≥ 50

3 ε,

where the first transition uses Lemma 12, the third transition uses that σ = 1
104T 2γ2 , and

the last transition uses that T =
⌈
10−3γ−1L1/2Rε−1/2

⌉
≤ 2 · 10−3γ−1L1/2Rε−1/2 since

10−3γ−1(L1/2Rε−1/2) ≥ 1.

E.2. Proof of Theorem 3

Before proving Theorem 3 we recap definitions that were originally provided in Carmon,
Duchi, Hinder, and Sidford (2019a).

Definition 4 A function f is a first-order zero-chain if for every x ∈ Rn,

xi = 0 ∀i ≥ t ⇒ ∇if(x) = 0 ∀i > t.

Definition 5 An algorithm is a first-order zero-respecting algorithm (FOZRA) if, for all
i ∈ {1, . . . , n}, its iterates x(0), x(1), ... ∈ Rn satisfy

∇if(x
(k)) = 0 ∀k ≤ t ⇒ x

(t+1)
i = 0

for all i ∈ {1, . . . , n}.

Definition 6 An algorithm A is a first-order deterministic algorithm (FODA) if there exists
a sequence of functions Ak such the algorithm’s iterates satisfy

x(k+1) = Ak(x
(0), . . . , x(k),∇f(x(0)), . . . ,∇f(x(k)))

for all k ∈ N, input functions f , and starting points x(0).

Observation 8 Consider ε > 0, a function class F , and K ∈ N. If f : Rn → R satisfies

1. f is a first-order zero-chain,

2. f belongs to the function class F , i.e. f ∈ F , and

3. f(x)− infz f(z) ≥ ε for every x such that xt = 0 for all t ∈ {K,K + 1, . . . , n};

then it takes at least K iterations for any FOZRA to find an ε-optimal solution of f .

Proof Cosmetic modification of the proof of Observation 2 in (Carmon et al., 2019a).

44

Near-Optimal Methods for Minimizing Star-Convex Functions and Beyond

Theorem 3 Let ε, R, L ∈ (0,∞), γ ∈ (0, 1], and assume L1/2Rε−1/2 ≥ 1. Let F denote the
set of L-smooth functions that are γ-quasar-convex with respect to some point with Euclidean
norm less than or equal to R. Then, given any deterministic first-order method, there exists a
function f ∈ F such that the method requires at least Ω(γ−1L1/2Rε−1/2) gradient evaluations
to find an ε-optimal point of f .

Proof Applying Lemma 7 and Observation 8 implies this result for any first-order zero-
respecting method. Applying Proposition 1 from (Carmon et al., 2019a), which states that
lower bounds for first-order zero-respecting methods also apply to deterministic first-order
methods, gives the result.

Remark 4 If we have an algorithm that can approximately minimize a strongly quasar-
convex function, we can use it to approximately minimize a quasar-convex function.

Proof This follows from the fact that if f is γ-quasar-convex with respect to a minimizer x∗,
then the function gε(x) = f(x) + ε

2

∥∥x− x(0)
∥∥2 is (γ, ε)-strongly quasar-convex with respect

to x∗ (recall this terminology from Remark 2). Note that x∗ is not necessarily a minimizer
of gε, but gε(x

∗) ≤ f(x∗) + εR2/2, where R =
∥∥x(0) − x∗

∥∥. Therefore, if we obtain a point x̃
with gε(x̃) ≤ infx g(x) + εR2/2, then f(x̃) ≤ gε(x̃) ≤ gε(x

∗) + ε/2 ≤ f(x∗) + εR2.

Remark 5 Given any deterministic first-order method, there exists an L-smooth, (γ, µ)-
strongly quasar-convex function such that the method requires at least Ω(max{γ−1L1/2µ−1/2,
γ−1L1/2µ−1/2 log+(ε−1)}) gradient evaluations to find an ε-optimal point of f .

Proof Suppose there was a deterministic first-order method for minimizing L-smooth (γ, µ)-
strongly quasar-convex functions which required o(γ−1κ−1/2) gradient evaluations to find
an ε-minimizer, where κ = L

µ . Let f be an L-smooth function that is γ-quasar-convex with
respect to a minimizer x∗, let ε > 0, and let R =

∥∥x(0) − x∗
∥∥. Then, the function gε/R2 is

(L+ ε
R2)-smooth and (γ, ε

R2)-strongly quasar-convex with respect to x∗ as shown in Remark 4,
so the condition number of gε/R2 is κ = 1+ LR2

ε . Thus, we could apply the method to find an
ε

2R2 -minimizer of gε/R2 , and it would do so using o(γ−1
⌈
L1/2Rε−1/2

⌉
) gradient evaluations.

But an ε
2R2 -minimizer of gε/R2 is an ε-minimizer of f , as argued in Remark 4; thus, this

violates the lower bound on the complexity of minimizing quasar-convex functions shown in
Theorem 3.
To prove the second part of the lower bound, we first note that any (γ, µ)-quasar-convex
quadratic is also (1, (2γ − 1)−1µ)-quasar-convex and thus (1, γµ2)-quasar-convex, and in
fact γµ

2 -strongly convex ; this follows from definitions. Thus, direct application of the
Ω((L/µ)1/2 log+(ε−1)) lower bound on the complexity of finding an ε-minimizer of an L-
smooth µ-strongly convex quadratic with a deterministic first-order method (Nemirovski
and Yudin, 1983, Chapter 7) yields a lower bound of Ω(γ−1/2(L/µ)1/2 log+(ε−1)) on the
complexity of first-order minimization of L-smooth (γ, µ)-quasar-convex functions.

45

	Introduction
	Quasar-convexity: definition, motivation and prior work
	Our results

	Quasar-Convex Minimization Framework
	Algorithms
	Strongly Quasar-Convex Minimization
	Non-Strongly Quasar-Convex Minimization

	Lower bounds
	Conclusion
	Related Work
	Related function classes

	Numerical Experiments
	Additional Experimental Details

	Algorithm analysis
	One step analysis
	Analysis of Algorithm 2
	Strongly quasar-convex algorithm analysis
	Quasar-convex algorithm analysis
	Line Search Initial Guess
	Analysis Techniques

	The structure of quasar-convex functions
	Proof of Observation 1
	Characterizations of quasar-convexity

	Lower bound proofs
	Proof of Lemma 7
	Proof of thm:main-lb-quasar

