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Abstract

In this paper we settle the sampling com-
plexity of solving discounted two-player turn-
based zero-sum stochastic games up to poly-
logarithmic factors. Given a stochastic game
with discount factor γ ∈ (0, 1) we provide
an algorithm that computes an ε-optimal
strategy with high-probability given Õ((1−
γ)−3ε−2) samples from the transition function
for each state-action-pair. Our algorithm runs
in time nearly linear in the number of samples
and uses space nearly linear in the number of
state-action pairs. As stochastic games gener-
alize Markov decision processes (MDPs) our
runtime and sample complexities are optimal
due to Azar et al. (2013). We achieve our
results by showing how to generalize a near-
optimal Q-learning based algorithms for MDP,
in particular Sidford et al. (2018a), to two-
player strategy computation algorithms. This
overcomes limitations of standard Q-learning
and strategy iteration or alternating minimiza-
tion based approaches and we hope will pave
the way for future reinforcement learning re-
sults by facilitating the extension of MDP
results to multi-agent settings with little loss.

1 Introduction

In this paper we study the sample complexity of learn-
ing a near-optimal strategy in discounted two-player
turn-based zero-sum stochastic games Shapley (1953);
Hansen et al. (2013), which we refer to more concisely
as stochastic games. Stochastic games model dynamic
strategic settings in which two players take turns and

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

the state of game evolves stochastically according to
some transition law. This model encapsulates a major
challenge in multi-agent learning: other agents may
be learning and adapting as well. Further, stochas-
tic games are a generalization of the Markov decision
process (MDP), a fundamental model for reinforce-
ment learning, to the two-player setting Littman (1994).
MDPs can be viewed as degenerate stochastic games in
which one of the players has no influence. Consequently,
understanding stochastic games is a natural step to-
wards resolving challenges in reinforcement learning of
extending single-agent learning to multi-agent settings.

There is a long line of research in both MDPs and
stochastic games (for a more thorough introduction,
see Filar and Vrieze (2012); Hansen et al. (2013) and
references therein). Strikingly, Hansen et al. (2013)
showed that there exists a pure-strategy Nash equilib-
rium which can be computed in strongly polynomial
time for stochastic games, if the game matrix is fully
accessible and the discount factor is fixed. In reinforce-
ment learning settings, however, the transition function
of the game is unknown and a common goal is to ob-
tain an approximately optimal strategy (a function
that maps states to actions) that is able to obtain an
expected cumulative reward of at least (or at most) the
Nash equilibrium value no matter what the other player
does. Unfortunately, despite interest in generalizing
MDP results to stochastic games, currently the best
known running times/sample complexity for solving
stochastic games in a variety of settings are worse than
for solving MDPs. This may not be surprising since
in general stochastic games are harder to solve than
MDPs, e.g., whereas MDPS can be solved in (weakly)
polynomial time it remains open whether or not the
same can be done for stochastic games.

There are two natural approaches towards achieving
sample complexity bounds for solving stochastic games.
The first is to note that the popular stochastic value
iteration, dynamic programming, and Q-learning meth-
ods all apply to stochastic games Littman (1994); Hu
and Wellman (2003); Littman (2001a); Perolat et al.
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(2015). Consequently, recent advances in these meth-
ods Kearns and Singh (1999); Sidford et al. (2018b)
developed for MDPs can be directly generalized to solv-
ing stochastic games (though the sample complexity
of these generalized methods has not been analyzed
previously). It is tempting to generalize the analy-
sis of sample optimal methods for estimating values
Azar et al. (2013) and estimating policies Sidford et al.
(2018a) of MDPs to stochastic games. However, this
is challenging as these methods rely on monotonicities
in MDPs induced by the linear program nature of the
problem Azar et al. (2013); Sidford et al. (2018a).

The second approach would be to apply strategy it-
eration or alternating minimization / maximization
to reduce solving stochastic games to approximately
solving a sequence of MDPs. Unfortunately, the best
analysis of such a method Hansen et al. (2013) requires
solving Ω(1/(1− γ)) MDPs. Consequently, even if this
approach could be carried out with approximate MDP
solvers, the resulting sample complexity for solving
stochastic games would be larger than that needed for
solving MDPs. More discussion of related literatures
is given in Section 1.4.

Given the importance of solving stochastic games in
reinforcement learning (e.g. Hu et al. (1998); Bowling
and Veloso (2000, 2001); Hu and Wellman (2003); Ar-
slan and Yüksel (2017)), this suggests the following
fundamental open problem:

Can we design stochastic game learning algorithms that
provably match the performance of MDP algorithms
and achieve near-optimal sample complexities?

In this paper, we answer this question in the affirmative
in the particular case of solving discounted stochas-
tic games with a generative model, i.e. an oracle for
sampling from the transition function for state-action
pairs. We provide an algorithm with the same near-
optimal sample complexity that is known for solving
discounted MDPs. Further, we achieve this result by
showing how to transform particular MDP algorithms
to solving stochastic games that satisfy particular two-
sided monotonicity constraints. Therefore, while there
is a major gap between MDPs and stochastic games
in terms of computation time for obtaining the exact
solutions, this gap disappears when considering the
sampling complexity between the two. We hope this
work opens the door to more generally extend results
for MDP to stochastic games and thereby enable the ap-
plication of the rich research on reinforcement learning
to a broader multi-player settings with little overhead.

1.1 The Model

Formally, throughout this paper, we con-
sider discounted turn-based two-player zero-

sum stochastic games described as the tuple
G = (Smin,Smax,A,P , r, γ). In these games there
are two players, a min or minimization player which
seeks to minimize the cumulative reward in the game
and a max or maximization player which seeks to
maximize the cumulative reward. Here, Smin and
Smax are disjoint finite sets of states controlled by
the min-player and the max-player respectively and
their union S := Smin ∪ Smax is the set of all possible
states of the game. Further, A is a finite set of actions
available at each state, P : S × A × S 7→ [0, 1] is a
transition probability function, r : S ×A 7→ [0, 1] is the
payoff or reward function and γ ∈ (0, 1) is a discount
factor.1

Stochastic games G = (Smin,Smax,A,P , r, γ) are
played dynamically in a sequence of turns, {t}∞t=0, start-
ing from some initial state s0 ∈ S at turn t = 0. In
each turn t ≥ 0, the game is in one of the states
st ∈ S and the player who controls the state st

chooses or plays an action at from the action space
A. This action yields reward rt := r(st, at) for the
turn and causes the next state st+1 to be chosen
at random from S where the transition probability
Pr[st+1 = s′|s1, ..., st, a1, ..., at] = P (s′ | st, at). The
goal of the min-player (resp. max-player) is to choose
actions to minimize (resp. maximize) the expected
infinite-horizon discounted-reward or value of the game∑∞

t=0 γ
trt.

In this paper we focus on the case where the players play
pure (deterministic) stationary strategies (policies),
i.e. strategies which depend only on the current state.
That is we wish to compute a min-player strategy or
policy πmin : Smin → A which defines the action the
min player chooses at a state in Smin and max-player
strategy πmax : Smax → A which defines the action the
max player chooses at a state in Smax. We call a pair of
min-player and max-player strategies σ = (πmin, πmax)
simply a strategy. Further, we let σ(s) := πmin(s) for
s ∈ Smin and σ(s) := πmax(s) for s ∈ Smax and define
the value function or expected discounted cumulative
reward by vσ where

vσ(s) = v[σ](s) := E
[ ∞∑

t=0

γtr(st, σ(st))
∣∣∣ s0 = s

]
for all s ∈ S

and the expectation is over the random sequence of
states, s0, s1, s2, . . . generated according to P under
the strategy σ, i.e. Pr[st+1 = s′ | st, st−1, ...., s0] =
P (s′ | st, σ(st)) for all t > 0.

1Standard reductions allow this result to be applied for
rewards of a broader range Sidford et al. (2018a). Further,
while we assume there are the same number of actions per-
state, our results easily extend to the case where this is
non-uniform; in this case our dependencies on |S||A| can
be replaced with the number of state-action pairs.
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Our goal in solving a game is to compute an approxi-
mate Nash equilibrium restricted to stationary strate-
gies Nash (1951); Maskin and Tirole (2001). We call
a strategy σ = (πmin, πmax) an equilibrium strategy or
optimal if

max
π′
max:Smax→A

v(πmin,π
′
max) ≤ vσ ≤ min

π′
min:Smin→A

v(π′
min,πmax).

and we call it ε-optimal if these same inequalities hold
up to an additive ε entrywise. It is worth noting that
the best response strategy to a stationary policy is
also stationary Fudenberg and Tirole (1991) and there
always exists a pure stationary strategy attaining the
Nash equilibrium Shapley (1953). Consequently, it is
sufficient to focus on deterministic strategies.

Throughout this paper we focus on solving stochastic
games in the learning setting where the game is not
fully specified. We assume that a generative model is
available which given any state-action pair, i.e. s ∈ S
and a ∈ A, can sample a random s′ independently at
random from the transition probability function, i.e.
Pr[s′ = t] = P (t | s, a). Accessibility to a generative
model is a standard and natural assumption (Kakade
(2003); Azar et al. (2013); Sidford et al. (2018a); Agar-
wal et al. (2019)) and corresponds to PAC learning.
The special case of solving a MDP given a generative
model has been studied extensively (Kakade (2003);
Azar et al. (2013); Sidford et al. (2018b,a); Agarwal
et al. (2019)) and is a natural proving ground towards
designing theoretically motivated reinforcement learn-
ing algorithms.

1.2 Our Results

In this paper we provide an algorithm that computes an
ε-optimal strategy using a sample size that matches the
best known sample complexity for solving discounted
MDPs. Further, our algorithm runs in time propor-
tional to the number of samples and space proportional
to |S||A|. Interestingly, we achieve this result by show-
ing how to run two-player variant of Q-learning such
that the value-strategy sequences induced enjoy certain
monotonicity properties. Essentially, we show that pro-
vided a value improving algorithm is sufficiently stable,
then it can be extended to the two-player setting with
limited loss. This allows us to leverage recent advances
in solving single player games to solve stochastic games
with limited overhead. Our main result is given below.

Theorem 1.1 (Main Theorem). There is an algorithm
which given a stochastic game, G = (Smin,Smax,P , r, γ)
with a generative model, outputs, with probability at
least 1 − δ, an ε-optimal strategy σ by querying Z =
Õ(|S||A|(1 − γ)−3ε−2) samples, where ε ∈ (0, 1) and

Õ(·) hides polylogarithmic factors. The algorithm runs
in time O(Z) and uses space O(|S||A|).

Our sample and time complexities are optimal due to
a known lower bound in the single player case by Azar
et al. (2013). It was shown in Azar et al. (2013) that
solving any one-player MDP to ε-optimality with high
probability needs at least Ω(|S||A|(1− γ)−3ε−2) sam-
ples. Our sample complexity upper bound generalizes
the recent sharp sample complexity results for solving
the discounted MDP Sidford et al. (2018a); Agarwal
et al. (2019), and tightly matches the information-
theoretic sample complexity up to polylogarithmic fac-
tors. This result provides the first and near-optimal
sample complexity for solving the two-person stochastic
game.

1.3 Notations and Preliminaries

Notation: We use 1 to denote the all-ones vector
whose dimension is adapted to the context. We use the
operators | · |, (·)2,

√
·,≤,≥ as entrywise operators on

vectors. We identify the transition probability function
P as a matrix in R(S×A)×S and each row P (· | s, a) ∈
RS as a vector. We denote v as a vector in RS and
Q as a vector in RS×A. Therefore Pv is a vector in
RS×A. We use σ to denote strategy pairs and π for the
min-player or max-player strategy. For any strategy σ,
we define Qσ ∈ RS as Qσ(s) := Q(s, σ(s)) for ∀s ∈ S.
We denote P σ as a linear operator defined as

∀s ∈ S : [P σv](s) = P (· | s, σ(s))>v,
∀s, a ∈ S ×A : [P σQ](s, a) = P (· | s, a)>Qσ.

Min-value and max-value: For a min-player strat-
egy πmin, we define its value as

vπmin := max
πmax : Smax→A

v(πmin,πmax), (1)

We let σmax(πmin) denote a maximizing argument of
the above and call it an optimal counter strategy of
πmin. Thus a value of a min-player strategy gives his
expected reward in the worst case. We say a min-player
strategy πmin is ε-optimal if

vπmin ≤ min
π′
min : Smin→A

vπ′
min + ε · 1, entrywisely.

The value and ε-optimality for the max player is defined
similarly. We denote by σ∗ the optimal strategy and
by v∗ the value function of the optimal strategy.

Q-function: For a strategy σ, we denote its Q-
function (or action value) as Qσ ∈ RS×A by Qσ := r+
γPvσ. For a vector v ∈ RS we denoteQ(v) := r+γPv.
Given a Q ∈ RS×A, we denote the greedy value of Q
as

V [Q](s) := min
a∈A

Q(s, a) if s ∈ Smin

and V [Q](s) := max
a∈A

Q(s, a) if s ∈ Smax.
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Bellman Operator: We denote the Bellman operator,
T , as follows: T [v] ∈ RS , and

T [v](s) := V [r + γPv].

We also denote the greedy strategy, σ(v) or σ(Q), as
the maximization/minimization argument of the T
operator. Moreover, for a given strategy σ, we denote
Tσ[v] = Q(v)σ. For a given min-player strategy πmin,
we define the half Bellman operator Hπmin

Hπmin [v](s) = r(s, πmin(s)) + γP (· | s, πmin(s))
>v

if s ∈ Smin;

Hπmin [v](s) if s ∈ Smax.

We define Hπmax
similarly. Note that v∗ is the unique

fixed point of the Bellman operator, i.e., T [v∗] = v∗

(known as the Bellman equation Bellman (1957)). Sim-
ilarly, vπmin (resp. vπmax) is the unique fixed point for
Hπmin

(resp. Hπmax
). The (half) Bellman-operators

satisfy the following properties (see. e.g. Hansen et al.
(2013); Puterman (2014))

1. contraction: ‖T [v1]− T [v2]‖∞ ≤ γ‖v1 − v2‖∞;

2. monotonicity : v1 ≤ v2 ⇒ T [v1] ≤ T [v2].

High Probability: we say an algorithm has a prop-
erty “with high probability” if for any δ by increasing
the time and sample complexity by O(log(1/δ)) it has
the property with probability 1 − δ.

1.4 Previous Work

Here we provide a more detailed survey of previous
works related to stochastic games and MDPs. Two-
person stochastic games generalize MDPs Shapley
(1953). When one of the players has only one action to
choose from, the problem reduces to a MDP. A related
game is the stochastic game where both players choose
their respective actions simultaneously at each state
and the process transitions to the next state under
the control of both players Shapley (1953). The turn-
based stochastic game can be reduced to the game with
simultaneous moves Pérolat et al. (2015).

Computing an optimal strategy for a two-player turn-
based zero-sum stochastic game is known to be in NP
∩ co-NP Condon (1992). Later Hansen et al. (2013)
showed that the strategy iteration, a generalization
of Howard’s policy iteration algorithm Howard (1960),
solves the discounted problem in strongly polynomial
time when the discount factor is fixed. Their work uses
ideas from Ye (2011) which proved that the policy iter-
ation algorithm solves the discounted MDP (DMDP)
in strongly polynomial time when the discount factor
is fixed. In general (e.g., if the discount factor is part
of the input size), it is open if stochastic games can

be solved in polynomial time Littman (1996). This is
in contrast to MDPs which can be solved in (weakly)
polynomial time as they are a special case of linear
programming.

The algorithms and complexity theory for solving two-
player stochastic games is closely related to that of
solving MDPs. Their is vast literature on solving
MDPs which dates back to Bellman who developed
value iteration in 1957 Bellman (1957). The policy iter-
ation was introduced shortly after by Howard Howard
(1960), and its complexity has been extensive stud-
ied in Mansour and Singh (1999); Ye (2011); Scher-
rer (2013). Then d’Epenoux (1963) and De Ghellinck
(1960) discovered that MDPs are special cases of a lin-
ear program, which leads to the insight that the simplex
method, when applied to solving DMDPs, is a simple
policy iteration method. Ye Ye (2011) showed that
policy iteration (which is a variant of the general sim-
plex method for linear programming) and the simplex
method are strongly polynomial for DMDP and termi-
nate in O(|S|2|A|(1−γ)−1 log(|S|(1−γ)−1)) iterations.
Hansen et al. (2013) and Scherrer (2013) improved the
iteration bound to O(|S||A|(1−γ)−1 log(|S|(1−γ)−1))
for Howard’s policy iteration method. The best known
convergence result for policy and strategy iteration are
given by Ye (2005) and Hansen et al. (2013). The best
known iteration complexities for both problems are
of the order (1− γ)−1, which becomes unbounded as
γ → 1. It is worth mentioning that Ye (2005) designed
a combinatorial interior-point algorithm (CIPA) that
solves the DMDP in strongly polynomial time.

Sample-based algorithms for learning value and policy
functions for MDP have been studied in Kearns and
Singh (1999); Kakade (2003); Singh and Yee (1994);
Azar et al. (2011b, 2013); Sidford et al. (2018b,a); Agar-
wal et al. (2019) and many others. Among these papers,
Azar et al. (2013) obtains the first tight sample bound
for finding an ε-optimal value function and for finding
ε-optimal policies in a restricted ε regime and Sidford
et al. (2018a) obtains the first tight sample bound for
finding an ε-optimal policy for any ε. Both sample
complexities are of the form Õ[|S||A|(1− γ)−3]. Lower
bounds have been shown in Azar et al. (2011a); Even-
Dar et al. (2006) and Azar et al. (2013). Azar et al.
(2013) give the first tight lower bound Ω[|S||A|(1−γ)−3].
For undiscounted average-reward MDP, a primal-dual
based method was proposed in Wang (2017) which

achieves sample complexity Õ(|S||A|t2mixc
2
max/c

2
min),

where tmix is the worst-case mixing time and cmax/cmin

is the ergodicity ratio. Sampling-based method for two-
player stochastic game has been considered in Wei et al.
(2017) in an online learning setting. However, their
algorithm leads to a sub-optimal sample-complexity
when generalized to the generative model setting.
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As for general stochastic games, the minimax Q-
learning algorithm and the friend-and-foe Q-learning
algorithm were introduced in Littman (1994) and
Littman (2001a), respectively. The Nash Q-learning
algorithm was proposed for zero-sum games in Hu and
Wellman (2003) and for general-sum games in Littman
(2001b); Hu and Wellman (1999).

2 Technique Overview

Since stochastic games are a generalization of MDPs,
many techniques for solving MDPs can be immedi-
ately generalized to stochastic games. However, as we
have discussed, some of the techniques used to achieve
optimal sample complexities for solving MDPs in a
generative model do not have a clear generalization
to stochastic games. Nevertheless, we show how to
design an algorithm that carefully extends particular
Q-learning based methods, i.e. methods that always
maintain an estimator for the optimal value function
(or Q∗), to achieve our goals.

Q-Learning: To motivate our approach we first briefly
review previous Q-learning based methods and the core
technique that achieves near-optimal sample complex-
ity. To motivate Q-learning, we first recall the value
iteration algorithm solving an MDP. Given a full model
for the MDP value iteration updates the iterates as
follows

v(i) ← T [v(i−1)] := V [Q(v(i−1))]

where v(0) can be an arbitrary vector. Since the Bell-
man operator is contractive and v∗ is a fix point of
T , this method gives an ε-optimal value in O[(1 −
γ)−1 log(ε−1)] iterations. In the learning setting, T
cannot be exactly computed. The Q-learning approach
estimates T by its approximate version, i.e., to compute
P (· | s, a)>v(i−1), we obtain samples from P (· | s, a),
and then compute the empirical average. Then we
compute the approximate Q-value at the i-th iteration
as

Q(i) = Q̂[v(i−1)] := r + P̂ v(i−1)

and T̂ (v(i−1)) := V [Q̂(v(i−1))],

where

P̂ (· | s, a)>v =
1

m

∑
si∼P (·|s,a), i∈[m]

v(si)

for some m > 0. Then the estimation error per step is
defined as

ε(i) = Q[v(i−1)]− Q̂[v(i−1)].

Since the exact value iteration takes at least Ω[(1 −
γ)−1] iterations to converge, the Q-learning (or ap-
proximated value iteration) takes at least Ω[(1 − γ)−1]
iterations. The total number of samples used over all
the iterations is the sample complexity of the algorithm.

Variance Control and Monotonicity Techniques:
To obtain the optimal sample complexity for one-player
MDP, one approach is to carefully bound each entry
of ε(i). By Bernstein inequality (Azar et al. (2013);
Sidford et al. (2018a); Agarwal et al. (2019)), we have,
with high probability,

|ε(i)| .
√

var(v(i−1))/m ≤
√

var(v∗)/m

+ lower-order terms.

where var(v) = Pv2 − (Pv)2 is the variance-of-value
vector and “.” means “approximately less than.” Let
π(i) be a policy maintained in the i-th iteration (e.g.
the greedy policy of the current Q-value). Due to the
estimation error ε(i), the per step error bound reads,

Q∗ −Q(i) . γP π∗
Q∗ − γP π(i−1)

Q(i−1) + ε(i).

To derive the overall error accumulation, Sidford et al.
(2018a) use the crucial monotonicity property, i.e., since

π(i−1)(s) = argmaxa Q
(i−1)(s, a), we have

Q(i−1)(s, π∗(s)) ≤ Q(i)(s, π(i−1)(s)). (2)

We thus have

Q∗ −Q(i) . γP π∗
Q∗ − γP π∗

Q(i−1) + ε(i).

By induction, we have

Q∗ −Q(i) ≤ (I − γP π∗
)−1

√
var(v∗)/m

+ lower-order terms. (3)

The leading-order error accumulation term (I −
γP π∗

)−1
√

var(v∗)/m satisfies the so-called total vari-
ance property, and can be upper bounded uniformly
by

√
(1− γ)−3m−1, resulting the correct dependence

on (1−γ). Therefore the monotonicity property allows
us to use π∗ as a proxy policy, which carefully bounds
the error accumulation. For the additional subtlety of
how to obtain an optimal policy, please refer to Sidford
et al. (2018a) for the variance reduction technique and
the monotone-policy technique.

Similar observations regarding MDPs was used in Agar-
wal et al. (2019) as well. This powerful technique, how-
ever, does not generalize to the game case due to the
lack of monotonicity. Indeed, (2) does not hold for
stochastic games due to the existence of both mini-
mization and maximization operations in the Bellman
operator. This is the critical issue which this paper
seeks to overcome.

Finding Monotone Value-Strategy Sequences
for Stochastic Games: Analogously to the MDP
case, one approach is to bound error accumulation for
stochastic games is to bound each entry of the error
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vector ε(i) carefully. In fact, our method for solving
stochastic games is very much like the MDP method
used in Sidford et al. (2018a). However, the analy-
sis is much different in order to resolve the difficulty
introduced by the lack of monotonicity.

Since a stochastic game has two players, we modify
the variance reduced Q-value iteration (vQVI) method
in Sidford et al. (2018a) to obtain a min-player strat-
egy and a max-player strategy respectively. Since the
two players are symmetric, let us focus on introducing
and analyzing the algorithm for the min-player. By a
slight modification of the vQVI method, we can guar-
antee to obtain a sequence of strategies and values,
{v(i),Q(i), σ(i), ε(i)}Ri=0, that satisfy, with high proba-
bility,
1. v(0) ≥ v(1) ≥ . . .v(R) ≥ v∗;

2. Tσ(i) [v(i)] ≤ v(i), T [v(i)] ≤ v(i),H
π
(i)
min

[v(i)] ≤ v(i);

3. Q(i) ≤ Q[v(i−1)] + ε(i);

4. v(i) ≤ V [Q(i)]. (4)

where σ(i) = (π
(i)
max, π

(i)
min). The first property guar-

antees that the value sequences are monotonically de-
creasing, the second property guarantees v(i) is always

an upper bound of the value vπ
(i)
min , and the third and

fourth inequality guarantees that v(i) is well approx-
imated by V [Q(i)] and the estimation error satisfy

|ε(i)| .
√
var(v(i))/m, where m is the total number of

samples used per state-action pair. Note that, as long as
we can guarantee that v(R)−v∗ ≤ ε, we can guarantee

the min-strategy π
(R)
min is also good: v∗ ≤ vπ

(R)
min ≤ v(R).

Controlling Error Accumulation using Auxil-
iary Markovian Strategy: Due to the lack of mono-
tonicity (2), we cannot use the optimal strategy σ∗ as
a proxy strategy to carefully account for the error ac-
cumulation. To resolve this issue, we construct a new
proxy strategy σ∞. This strategy is a Markovian strat-
egy, which is time-dependent but not history dependent,
i.e., at time t, the strategy played is a deterministic
map σ∞

t : S → A. The proxy strategy satisfies the
following:
Underestimation. its value, v[σ∞

i ], (expected dis-
counted cumulative reward starting from any time) is
upper bounded by v∗;
Contraction.

v(i)(s)− v[σ∞
i ](s) ≤ γP (·|s, σ∞

i (s))>
(
v(i−1) − v[σ∞

i−1]
)

+ ε(i)(s, σ∞
i (s)),

Similarly, we can bound the error ε(i)(s, σ∞
i (s)) by the

variance-of-value of the proxy strategy

ε(i)(s, σ∞
i (s)) ≤

√
var(v[σ∞

i ])(s, σ∞
i (s))/m

+ lower-order terms.

Based on the first property, we can upper bound

v(i) − v∗ ≤ v(i) − v[σ∞
i ].

Based on the second property, and induction on i, we
can now write a new form of error accumulation,

v(R) − v∗ .
R∑
i=1

γR−iP σ∞
R · P σ∞

R−1 · . . . · P σ∞
i+1

·
√

var(v[σ∞
i−1])σ∞

i
/m+ lower-order terms,

where var(v[σ∞
i−1])σ∞

i
(s) := var(v[σ∞

i ])(s, σ∞
i (s)) for

all s ∈ S. We derive a new law of total variance
bound for the first term and ultimately prove an error
accumulation upper bound:

v(R) − v∗ .
√

(1− γ)−3m+ lower-order terms,

giving the optimal sample bound.

3 Sample Complexity of Stochastic
Games

In this section, we provide and analyze our sampling-
based algorithm for solving stochastic games. Recall
that we have a generative model for the game such that
we can obtain samples from state-action pairs. Each
sample is obtained in time O(1). As such we care about
the total number of samples used or the total amount
of time consumed by the algorithm. We will provide
an efficient algorithm that takes input a generative
model and obtains a good strategy for the underlying
stochastic game.

We now describe the algorithm. Since the min-player
and max-player are symmetric, let us focus on the min-
player strategy. For the max player strategy, we can
either consider the game G′ = (Smin,Smax,P ,1−r, γ),
in which the roles of the max and min players switched,
or use the corresponding algorithm for the max-player
defined in Section A.4, an algorithm that is a direct
generalization from the min-player algorithm.

The Full Algorithm. For simplicity, let us denote
β = 1/(1 − γ). Our full algorithm will use the
QVI-MDVSS algorithm (Algorithm 1) as a subrou-
tine. As we will show shortly, this subroutine main-
tains a monotonic value strategy sequence with high
probability. Suppose the algorithm is specified by
an accuracy parameter ε ∈ (0, 1]. We initialize a
value vector v(0) = β 1, and an arbitrary strategy

σ(0) = (π
(0)
min, π

(0)
max). Let u(0) = β. Then our initial

value and strategy satisfy the requirement of the input
specified by Algorithm 1:

v∗ ≤ v(0) ≤ v∗ + u(0) 1, v(0) ≥ T [v(0)],

and v(0) ≥ Tσ(0) [v(0)];
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Algorithm 1 QVI-MDVSS: algorithm for computing monotone decreasing value-strategy sequences.

1: Input: A generative model for stochastic game,M = (S,A, r,P , γ);
2: Input: Precision parameter u ∈ [0, (1− γ)−1], and error probability δ ∈ (0, 1);

3: Input: Initial values v+(0), σ+(0) that satisfies monotonicity:

v∗ ≤ v+(0) ≤ v∗ + u1, v+(0) ≥ T [v+(0)], and v+(0) ≥ Tσ+(0) [v
+(0)]; (5)

4: Output: {v+(i),Q+(i), σ+(i), ξ+(i)}Ri=0 which is an MDVSS with probability at least 1 − δ;
5:
6: INITIALIZATION:
7: Let c1, c2, c3, c be some tunable absolute constants;
8: \\Initialize constants:
9: β ← (1− γ)−1, and R← dc1β ln[βu−1]e; m1 ← c2β

3 ·min(1, u−2) · log(8|S||A|δ−1);
10: m2 ← c3β

2 log[2R|S||A|δ−1]; α1 ← L/m1 where L = c log(|S||A|δ−1(1− γ)−1u−1);
11: \\Obtain an initial batch of samples:

12: For each (s, a) ∈ S ×A: obtain independent samples s
(1)
s,a, s

(2)
s,a, . . . , s

(m1)
s,a from P (·|s, a);

13: Initialize: w+ = w̃+ = σ̂+ = Q+(0) = Q+(1) ← β · 1S×A and i← 0;
14: for each (s, a) ∈ S ×A do

15: \\Compute empirical estimates of P>
s,av

+(0) and var(v+(0))(s, a):

16: w̃+(s, a)← 1
m1

∑m1
j=1 v

+(0)(s
(j)
s,a); σ̂+(s, a)← 1

m1

∑m1
j=1(v

+(0))2(s
(j)
s,a)− (w̃+)2(s, a) ;

17: \\Shift the empirical estimate to have one-sided error and guarantee monotonicity:

18: w+(s, a)← w̃+(s, a) +
√

α1σ̂
+(s, a) + α

3/4
1 β

19: \\Compute coarse estimate of the Q-function and make sure its value is in [0, β]:

20: Q+(0)(s, a)← min[r(s, a) + γw+(s, a), β]
21: end for
22:
23: REPEAT: \\successively improve
24: for i = 1 to R do
25: \\Compute the one-step dynamic programming:

26: Let v+(i) ← ṽ+(i) ← T [Q+(i−1)], σ+(i) ← σ̃+(i) ← σ(Q+(i−1));
27: \\Compute strategy and value and maintain monotonicity:

28: For each s ∈ S if v+(i)(s) ≥ v+(i−1)(s), then v+(i)(s)← v+(i−1)(s) and σ+(i)(s)← σ+(i−1)(s);
29: \\Obtaining a small batch of samples:

30: For each (s, a) ∈ S ×A: draw independent samples s̃
(1)
s,a, s̃

(2)
s,a, . . . , s̃

(m2)
s,a from P (·|s, a);

31: \\Compute the expected value, g±(i), the estimate of P
[
v±(i) − v±(0)

]
with one-sided error:

32: Let g̃+(i)(s, a)← 1
m2

∑m2
j=1

[
v+(i)(s̃

(j)
s,a)− v+(0)(s̃

(j)
s,a)

]
;

33: Let g+(i)(s, a)← g̃+(i)(s, a) + C(1− γ)u, where C > 0 is an absolute constant;
34: \\Estimate the approximation error:

35: ξ+(i) ← 2
√
α1σv+(0) + 2[α

3/4
1 β + C(1− γ)u] · 1

36: \\Improve Q+(i) and make sure its value is in [0, β]:

37: Q+(i+1) ← min
[
r + γ · [w+ + g+(i)], β

]
;

38: end for
39: return {v+(i),Q+(i), σ+(i), ξ+(i)}Ri=0

Let u(j) ← β/2j and δ ← 1/ poly(log(β/ε)).
We run Algorithm 1 repeatedly:

(v(j+1), σ(j+1))←QVI-MDVSS

← (v(j), σ(j), u(j), δ), (6)

where σ(j) = (π
(j)
min, π

(j)
max) and we take the terminal

value and strategy of the output sequence of Algo-
rithm 1 as the input for the next iteration. In total
we run (6) R′ = Θ(log(β/ε)) iterations. In the end,

we output π
(R′)
min from σ(R′) = (π

(R′)
min , π

(R′)
max) as our

min-player strategy.

The formal guarantee of the algorithm is presented in
the following theorem.

Theorem 3.1 (Restatement of Theorem 1.1). Given a
stochastic game G = (Smin,Smax,P , r, γ) with a gener-
ative model, there exists (constructively) an algorithm
that outputs, with probability at least 1−δ, an ε-optimal
strategy σ by querying Z := Õ(|S||A|(1−γ)−3ε−2) sam-
ples in time O(Z) using space O(|S||A|) where ε ∈ (0, 1)

and Õ(·) hides poly log[|S||A|/(1− γ)/ε/δ] factors.

The formal proof of Theorem 3.1 is given in the next
section. Here we give a sketch of the proof.

Proof Sketch of Theorem 3.1: We first show the
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high-level idea. Considering one iteration of (6), we
claim that if the input value and strategy σ(j),v(j), u(j)

satisfies the input condition (5), then with probability
at least 1− δ, the terminal value and strategy of the
output sequence, σ(j+1),v(j+1), satisfies,

vπj+1
min ≤ vj+1 ≤ v∗ + u(j) 1 /2 =: v∗ + u(j+1) 1; (7)

and (σ(j+1),v(j+1), u(j+1)) satisfies the the input con-
dition (5). Namely, with high probability, the error of
the output is decreased by at least half and the output
can be used as an input to the QVI-MDVSS algorithm
again. Suppose we run the subroutine of Algorithm 1
for R′ times, and conditioning on the event that all
the instances of QVI-MDVSS succeed, the final error

of π
(R′)
min is then at most u(R′) = 2−R′

β = ε, as desired.
By setting δ = δ′/R′ for some δ′ > 0, we have that
all QVI-MDVSS instances succeed with probability at
least 1 − δ′. It remains to show that the algorithm
QVI-MDVSS works as claimed.

High-level Structure of Algorithm 1. To outline the
proof, we denote a monotone decreasing value-strategy
sequence (MDVSS) as {v(i),Q(i), σ(i), ε(i)}Ri=0, satis-

fying (4), where v(i), ε(i) ∈ RS ,Q(i) ∈ RS×A and

σ(i) = (π
(i)
min, π

(i)
max) ∈ AS . A more formal treatment of

the sequence is presented in Section A.2.

We next introduce the high-level idea of Algorithm 1.
The basic step of the algorithm is to do approximate
value-iteration while preserving all monotonic prop-
erties required by an MDVSS, i.e., we would like to
approximate

Q(i) = Q[v(i−1)] := r + Pv(i−1)

and T [v(i−1)] := V [Q(v(i−1))].

We would like to approximate Pv(i−1) using samples,
but we do not want to use the same amount of samples
per iteration (as it become costly if the number of iter-
ations is large). Instead, we compute only the first iter-
ation (i.e., estimate Pv(0)) up to high accuracy with a
large number of samples (m1 samples, defined in Line 9).
These computations are presented in Line 15-20. To
maintain an upper bound of the of the estimation error,
we also compute the empirical variances of the updates
in Line 16. We shift upwards our estimates by the
estimation error upper bounds to make our estimators
one-sided, which is crucial to maintain the MDVSS
properties. For the subsequent steps (Line 26 - 37), we
use m2 samples per iteration (m2 � m1) to estimate
P (v(i) − v(0)). The expectation is that (v(i) − v(0))
has a small `∞ norm, and hence P (v(i) − v(0)) can
be estimated up to high accuracy with only a small
number of samples. The estimator of P (v(i) − v(0))
plus the estimator of Pv(0) in the initialization steps
gives a high-accuracy estimator (Line 37) for the value

iteration. Since m2 � m1, the total number of samples
per state-action pair is dominated by m1. This idea is
formally known as variance-reduction, firstly proposed
for solving MDP in Sidford et al. (2018b). Similarly, we
shift our estimators to be one-sided. We additionally
maintain carefully-designed strategies in Line 26-28 to
preserve monotonicity. Hence the algorithm can be
viewed as a value-strategy iteration algorithm.

Correctness of Algorithm 1. We now sketch the
proof of correctness for Algorithm 1. Firstly
Proposition (A.3) shows that the if an MDVSS,

e.g., {v+(i),Q+(i), σ+(i), ε+(i)}Ri=0, satisfies ‖v+(R) −
v∗‖∞ ≤ ε for some ε > 0 then their terminal strategies
and values satisfy

vπ
+(R)
min ≤ v+(R) ≤ v∗ + ε1 .

This indicates that as long as we can show ε ≤ u/2,
then the halving-error-property (7) holds.

Proposition A.4 shows the halving-error-property can
be achieved by setting

ε+(i) .
√

var(v+(0))/m+ lower-order terms,

where var(v+(0)) is the variance-of-value vector of v+(0)

and m &
√

β3u−2. This proof is based on construct-
ing an auxiliary Markovian strategy for analyzing the
error accumulation throughout the value-strategy iter-
ations. The Markovian strategy is a time-dependent
strategy used as a proxy for analyzing the entrywise
error recursion (Lemmas A.4-A.11).

Proposition A.12 shows, with high probability,
Algorithm 1 produces value-strategy sequences
{v+(i),Q+(i), σ+(i), ξ+(i)}Ri=0, which is indeed an MD-

VSS and ξ+(i) satisfies Proposition A.4. The proof
involves analyzing the probability of “good events” on
which monotonicity is preserved at every iteration by
using confidence estimates computed during the it-
erations and concentration arguments. See Lemmas
A.13-A.18 for the full proof of Proposition A.12.

Putting Everything Together. Finally by putting to-
gether the strategies, we conclude that the terminal
strategy of the iteration (6) is always an approximately
optimal min-player strategy to the game, with high
probability. For implementation, since our algorithm
only computes the inner product based on samples, the
total computation time is proportional to the number
of samples. Moreover, since we can update as sam-
ples are drawn and output the monotone sequences as
they are generated, we do not need to store samples or
the value-strategy sequences, thus the overall space is
O(|S||A|).
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A Proof of Main Results

The remainder of this section is devoted to proving Theorem 1.1. We prove this by formally providing a notion of
monotone value-strategy sequences. With this, we show if an algorithm outputs some monotone value-strategy
sequence, then the terminal strategy of the sequence is always an approximately optimal strategy to the game.
We then show that Algorithm 1 produces monotone value-strategy sequences with high probability.

A.1 Additional Notation

First we provide additional notation critical to our proofs.

Markovian Strategies: We denote a Markovian strategy σ∞ as an infinitely long sequence of pre-defined
strategies

σ∞ := (σ1, σ2, . . .),

where each σi is a normal deterministic strategy. We denote

σ∞
t = (σt, σt+1, . . .)

as another Markovian strategy. We denote σ∞
min and σ∞

max as the min-player strategy and the max-player strategy
respectively. When using the strategy, players uses σt at time t. The strategy is Markovian because it does not
depend on the historical moves. Note that a stationary strategy σ is a special case of the Markovian strategy:
σ = (σ, σ, σ, . . .). The value of a Markovian strategy is defined as before, but the states are generated by playing
the action σt(s

t) at time t. Since the strategy has a time dependence, we denote

vσ∞

t := v[σ∞
t ] and Qσ∞

t = r + γPvσ∞

t+1.

The (half) Bellman operators are defined similarly to that of stationary policies.

A.2 Monotone Value-Strategy Sequence

In this section we formally define monotone strategy value sequences. Such a sequence, although not explicitly
stated in Sidford et al. (2018b,a), are crucial for these algorithms to obtain good policy while obtaining a good
value for an MDP. In the following sections, we denote m ≥ 1, L ≥ 1 and ε ∈ [0, (1 − γ)−1] as parameters.
Monotone value-strategy sequences are formally defined as follows.

Definition A.1 (Monotone Decreasing Value-Strategy Sequence). A monotone decreasing value-strategy sequence

(MDVSS) is a sequence of {v(i),Q(i), σ(i), ε(i)}Ri=0 where v(i), ε(i) ∈ RS ,Q(i) ∈ RS×A and σ(i) = (π
(i)
min, π

(i)
max) ∈

AS satisfy

1. v(0) ≥ v(1) ≥ . . .v(R) ≥ v∗;

2. ∀i ∈ [0, R], Tσ(i) [v(i)] ≤ v(i), T [v(i)] ≤ v(i),H
π
(i)
min

[v(i)] ≤ v(i);

3. ∀i ∈ [R], Q(i) ≤ r + γPv(i−1) + ε(i);

4. ∀i ∈ [R], v(i) ≤ V [Q(i)].

Note that Q(0), ε(0) can be arbitrary.

Here, we explain the intuition of the sequence. The first property guarantees that the value-estimator v(i)s always
upper bound the optimal value. The second property guarantees that vπmin ≤ v(i). Indeed

vπmin = lim
t→∞

Ht
πmin

[v(i)] ≤ v(i),

where Ht
πmin

denotes applying Hπmin
for t times. Therefore, as long as v(R) − v∗ ≤ ε1, we have

v∗ ≤ vπmin ≤ v∗ + ε1 .
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The third and the fourth property guarantees v(R) is good by requiring that v(i) and Q(i) satisfy the approximate
value iteration with one-sided error. However the overall error v(R) − v∗ is controlled by the per-step error term
ε(i).

Similarly, we define monotone increasing value-strategy sequence(MIVSS) analagously with every inequality
reversed.

Definition A.2 (Monotone Increasing Value-Strategy Sequence). A monotone increasing value-strategy sequence

(MIVSS) is a sequence of {v(i),Q(i), σ(i), ε(i)}Ri=0 where v(i) ∈ RS ,Q(i) ∈ RS×A and σ(i) ∈ AS that satisfies,

1. v(0) ≤ v(1) ≤ . . .v(R) ≤ v∗;

2. ∀i ∈ [0, R], Tσ(i) [v(i)] ≥ v(i), T v(i) ≥ [v(i)],H
π
(i)
max

[v(i)] ≥ v(i);

3. ∀i ∈ [R], Q(i) ≥ r + γPv(i−1) − ε(i);

4. ∀i ∈ [R], v(i) ≥ V [Q(i)].

Note that Q(0), ε(0) can be arbitrary.

A.3 Monotone Value-Strategy Sequence Implies Good Strategy

Next, we show that MDVSS or MIVSS implies a good terminal value/strategy. First we show that if the terminal
value v(R) is close to the optimal value, then we are guaranteed to have good strategies as well.

Proposition A.3. Suppose we have an MDVSS, {v(i),Q(i), σ(i), ε(i)}Ri=0, with ‖v(R)−v∗‖∞ ≤ ε for some ε ≥ 0.
Then we have

vπ
(R)
min ≤ v∗ + ε1 .

Similarly, suppose {v(i),Q(i), σ(i), ε(i)}Ri=0 is an MIVSS, then

vπ(R)
max ≥ v∗ − ε1 .

Proof. By the property of an MDVSS, we have

vπ
(R)
min ≤ v(R).

Since v(R) ≤ v∗ + ε1, we prove the first inequality. The second inequality follows similarly.

Next we consider when it is the case we achieve a good terminal value. The following proposition shows that an
MDVSS(MVISS) with an appropriate error parameters has a better terminal value than its initial value.

Proposition A.4. Let u ∈ (0, β), β = (1 − γ)−1, R = Θ[β log(β/u)]. Suppose an MDVSS (or MIVSS)

{v(i),Q(i), σ(i), ε(i)}Ri=0 satisfies

‖v(0) − v∗‖∞ ≤ u and ε(i) =
√
L · var(v(0))/m+ β · (L/m)3/4 + u/(CR),

for some large constant C > 1 and m ≥ 1. Then we have

‖v(R) − v∗‖∞ ≤ u/2 for m = Ω̃

(
1

min(1, u2) · (1− γ)3

)
.

Note that Proposition A.4 shows that in an MDVSS/MIVSS, the distance to the optimal value of the terminal
value reduces by at least half of its initial value. Starting from some v(0) with distance at most β to v∗, by
concatenating O(log(β/ε)) many MDVSS/MIVSS’s, with the initial value of one sequence set as the terminal
value of the last sequence, an ε-optimal value can be obtained. The remainder of this subsection devotes to
proving the above proposition. Since MIVSS and MDVSS are symmetric, in the following analysis, we focus on
MDVSS and the analysis follows similarly for MIVSS.
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A.3.1 Auxiliary Markovian Strategy

Due to the lack of monotonicity we do not know how to use the optimal strategy σ∗ to carefully account for
the error accumulation of the MDVSS. To resolve this issue, we instead use the following auxiliary Markovian
strategy as such a proxy.

Definition A.5 (Auxiliary Strategy). Given a MDVSS, {v(i),Q(i), σ(i), ε(i)}Ri=0, we denote the Markovian
auxiliary strategy for the max-player as

π∞(i)
auxmax = (π(i)

auxmax, π
(i−1)
auxmax, . . . , π

(1)
auxmax, π

∗
max, π

∗
max, π

∗
max . . .),

where π
(i)
auxmax(s) = argmaxa Q

(i)(s, a) for s ∈ Smax. We denote the auxiliary strategy for the min-player as

π
∞(i)
auxmin = σmin[π

∞(i)
auxmax] = (π

(i)
auxmin, π

(i−1)
auxmin, . . . , π

(1)
auxmin, π

∗
min, π

∗
min, π

∗
min . . .),

which is the optimal counter Markovian policy of π
∞(i)
auxmax, i.e.,

∀s ∈ Smin : π
∞(i)
auxmin(s) = argmin

a

[
r(s, a) + γP (·|s, a)>v[π∞(i−1)

aux ]
]
.

We also denote

σ∞(i)
aux =

[
(π

(i)
auxmin, π

(i)
auxmax), (π

(i−1)
auxmin, π

(i−1)
auxmax), . . . , (π

(1)
auxmin, π

(1)
auxmax), σ

∗, σ∗, σ∗ . . .

]
.

Furthermore, we denote σ
(i)
aux = (π

(i)
auxmin, π

(i)
auxmax) for i ≥ 1 and σ

(i)
aux = σ∗ for i ≤ 0.

For a Markovian strategy, we first show that the strategy has a value always smaller than the optimal value.

Lemma A.6. For all i ∈ [R], we have
v
[
σ∞(i)
aux

]
≤ v∗.

Proof. Denote

σ̃∞(i)
aux =

[
(π∗

min, π
(i)
auxmax), (π

∗
min, π

(i−1)
auxmax), . . . , (π

∗
min, π

(1)
auxmax), σ

∗, σ∗, σ∗ . . .

]
.

Denote σ
∞(0)
aux = σ̃

∞(0)
aux = (σ∗, σ∗, . . . , ). We first show that for all i ∈ [R], v

[
σ
∞(i)
aux

]
≤ v

[
σ̃
∞(i)
aux

]
. Indeed it holds

trivially for i = 0. Suppose it holds for some i ≥ 0. Then, for each s ∈ Smin, we have,

v[σ∞(i)
aux ](s) = min

a

[
r(s, a) + γP (· | s, a)>v(σ∞(i−1)

aux )
]

≤
[
r(s, σ∗(s)) + γP (· | s, σ∗(s))>v(σ∞(i−1)

aux )
]

≤
[
r(s, σ∗(s)) + γP (· | s, σ∗(s))>v(σ̃∞(i−1)

aux )
]

(due to v
[
σ∞(i−1)
aux

]
≤ v

[
σ̃∞(i−1)
aux

]
)

= v[σ̃∞(i)
aux ](s).

For each s ∈ Smax, we have,

v[σ∞(i)
aux ](s) =

[
r(s, σ(i)

aux(s)) + γP (·|s, σ(i)
aux(s))

>v(σ∞(i−1)
aux )

]
≤

[
r(s, σ(i)

aux(s)) + γP (·|s, σ(i)
aux(s))

>v(σ̃∞(i−1)
aux )

]
(due to v

[
σ∞(i−1)
aux

]
≤ v

[
σ̃∞(i−1)
aux

]
)

= v[σ̃∞(i)
aux ](s).

Now, since (π∗
max, π

∗
max, . . .) is the optimal counter strategy of (π∗

min, π
∗
min, . . .), we have

v[σ̃∞(i)
aux ] ≤ v∗

holds similarly. This concludes the proof.

Consider the error vector ε(i). Recall that ε
(i)

σ
(i)
aux

denotes a vector in RS whose s-th entry is given by ε(i)(s, σ
(i)
aux(s)).

The next lemma shows a recursive relation between a Markovian strategy and the corresponding MDVSS values.
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Lemma A.7. For all i ∈ [R], we have

v(i) − v[σ∞(i)
aux ] ≤ γP σ(i)

aux
(
v(i−1) − v[σ∞(i−1)

aux ]
)
+ ε

(i)

σ
(i)
aux

Proof. Note that v(i) ≥ v∗ ≥ v[σ
∞(i)
aux ]. For each s ∈ Smin, we have

v(i)(s) ≤ min
a

Q(i)(s, a) ≤ Q(i)(s, σ(i)
aux(s))

≤ r(s, σ(i)
aux(s)) + γP (·|s, σ(i)

aux(s))
>v(i−1) + ε(i)(s, σ(i)

aux(s)),

and

v[σ∞(i)
aux ](s) = r(s, σ(i)

aux(s)) + γP (·|s, σ(i)
aux(s))

>v[σ∞(i−1)
aux ].

Thus
v(i)(s)− v[σ∞(i)

aux ](s) ≤ γP (·|s, σ(i)
aux(s))

>(v(i−1) − v[σ∞(i−1)
aux ]

)
+ ε(i)(s, σ(i)

aux(s)).

Similarly, for each s ∈ Smax, we have, v(i)(s) ≤ maxa Q
(i)(s, a) := Q(i)(s, σ

(i)
aux(s)), thus

v(i)(s)− v[σ∞(i)
aux ](s) ≤ Q(i)(s, σ(i)

aux(s))− v[σ∞(i)
aux ](s)

≤ γP (·|s, σ(i)
aux(s))

>(v(i−1) − v[σ∞(i−1)
aux ]

)
+ ε(i)(s, σ(i)

aux(s))

as desired.

With an inductive application of the above lemma, we obtain the following corollary, which states an upper bound

between the difference of v(R) and v[σ
∞(R)
aux ]. It connects the upper bound with a recursive propagation of the

error.

Corollary A.8.

v(R) − v[σ∞(R)
aux ] ≤ γRP σ(R)

aux · P σ(R−1)
aux · . . .P σ(1)

aux
(
v(0) − v∗)

+

R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux ε

(i)

σ
(i)
aux

.

By this corollary, we know that the major error accumulation term is the second term.

A.3.2 Error Accumulation

We now consider the error accumulation in the sequence. As will show shortly, we relate ε(i) to the variance

vector

√
var(v[σ

∞(i−1)
aux ]) ∈ RS×A, where var(v)[s, a] := vars′∼P (·|s,a)[v(s

′)], ∀(s, a),v. Therefore, it suffices to
consider the following bound.

Lemma A.9.

R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux

√
var(v[σ

∞(i−1)
aux ])

σ
(i)
aux

≤

√√√√R

R∑
i=1

γ2(R−i)P σ
(R)
aux · P σ

(R−1)
aux · . . .P σ

(i+1)
aux var(v[σ

∞(i−1)
aux ])

σ
(i)
aux

Proof. Follows from Cauchy-Schwarz and that the P matrices are non-negative with each row summing to 1.

The following lemma establishes a Bellman-like equation for the variance vector of a Markovian strategy.

Lemma A.10. For any Markovian strategy π∞ = (π(0), π(1), . . . , ), we have, for all s ∈ S

var

[ ∞∑
t=0

γtr(st, π(t)(s))

∣∣∣∣s0 = s

]
=

[ ∞∑
t=0

γ2(t+1)P π(0)

P π(1)

P π(2)

. . .P π(t−1)

var[v(π∞(t+1))]π(t)

]
(s) (8)
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Proof.

var

[ ∞∑
t=0

γtr(st, π(t)(st))

∣∣∣∣s0 = s

]
= E

[( ∞∑
t=0

γtr(st, π(t)(st))

)2∣∣∣∣s0 = s

]
− E

[ ∞∑
t=0

γtr(st, π(t)(st))

∣∣∣∣s0 = s

]2
.

For the second term, we have

E
[ ∞∑

t=0

γtr(st, π(t)(st))

∣∣∣∣s0 = s

]2
= v[π∞(0)]2(s) = r(s, π(0)(s))2

+ γ2(P π(0)

v[π∞(1)])2(s) + 2γr(s, π(0)(s))(P π(0)

v[π∞(1)])(s).

For the first term, we have( ∞∑
t=0

γtr(st, π(t)(st))

)2

= r(s, π(0)(s))2 + 2r(s, π(0)(s))

( ∞∑
t=1

γtr(st, π(t)(st))

)
+

( ∞∑
t=1

γtr(st, π(t)(st))

)2

Note that

E
[( ∞∑

t=1

γtr(st, π(t)(st))

)2∣∣∣∣s0 = s

]

= E
[( ∞∑

t=1

γtr(st, π(t)(st))

)2∣∣∣∣s0 = s

]
− γ2

∑
s′

P π(0)

(s′|s)v2[π∞(1)](s′) + γ2
∑
s′

P π(0)

(s′|s)v2[π∞(1)](s′)

= γ2
∑
s′

P π(0)

(s′|s)var
[ ∞∑

t=0

γtr(st+1, π(t+1)(s))

∣∣∣∣s1 = s′
]
+ γ2

∑
s′

P π(0)

(s′|s)v2[π∞(1)](s′)

Combining the above two equations, we have,

E
[( ∞∑

t=0

γtr(st, π(t)(st))

)2∣∣∣∣s0 = s

]
= r(s, π(0)(s))2 + 2γr(s, π(0)(s))

∑
s′

P π(0)

(s′|s)v[π∞(1)](s′)

+ γ2
∑
s′

P π(0)

(s′|s)var
[ ∞∑

t=0

γtr(st+1, π(t+1)(s))

∣∣∣∣s1 = s′
]

+ γ2
∑
s′

P π(0)

(s′|s)v2[π∞(1)](s′)

We thus obtain

var

[ ∞∑
t=0

γtr(st, π(t)(st))

∣∣∣∣s0 = s

]
= γ2

∑
s′

P π(0)

(s′|s)var
[ ∞∑

t=0

γtr(st+1, π(t+1)(s))

∣∣∣∣s1 = s′
]

+ γ2
∑
s′

P π(0)

(s′|s)v2[π∞(1)](s′)− γ2(P π(0)

v[π∞(1)])2(s)

= γ2
∑
s′

P π(0)

(s′|s)var
[ ∞∑

t=0

γtr(st+1, π(t+1)(s))

∣∣∣∣s1 = s′
]
+ γ2var((v[π∞(1)]))π(0)

Let LHS and RHS be the left hand side and right hand side of (8) respectively. Then we have,

LHS = γ2
∑
s′

P π(0)

(s′|s)var
[ ∞∑

t=0

γtr(st+1, π(t+1)(s))

∣∣∣∣s1 = s′
]
+ γ2var((v[π∞(1)]))π(0)

= γ4
∑
s′,s′′

P π(0)

(s′|s)P π(1)

(s′′|s′)var
[ ∞∑

t=0

γtr(st+2, π(t+2)(s))

∣∣∣∣s2 = s′′
]
+ γ4P π(0)

var((v[π∞(2)]))π(1)

+ γ2var((v[π∞(1)]))π(0) .

Applying the above equality recursively for var((v[π∞(i)])) completes the proof.
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Based on the above two lemmas, we immediately obtain the following worst-case bound for the error accumulation.

Corollary A.11.√√√√R

R∑
i=1

γ2(R−i)P σ
(R)
aux · P σ

(R−1)
aux · . . .P σ

(i+1)
aux var(v[σ

∞(i−1)
aux ])

σ
(i)
aux
≤

√
R

γ2(1− γ)2
.

Proof. We use that

[ R∑
i=1

γ2(R−i)P σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux var(v[σ∞(i−1)

aux ])
σ
(R−i)
aux

]
(s)

≤ 1

γ2
· var

[ ∞∑
i=0

γir(si, σ(R−i)
aux (s))

∣∣∣∣s0 = s

]
.

Since
∑∞

i=0 γ
ir(si, σ

(i)
aux(s)) ≤ (1− γ)−1, we have var(v[σ

∞(i−1)
aux ])

σ
(R−i)
aux

≤ (1− γ)−2 as desired.

A.3.3 Putting Everything Together

Proof of Proposition A.4. By Corollary A.8, we have,

v(R) − v∗ ≤ v(R) − v[σ(R)
aux] ≤ γRP σ(R)

aux · P σ(R−1)
aux · . . .P σ(1)

aux
(
v(0) − v∗)

+

R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux ε

(i)

σ
(i)
aux

≤ u/4 +

R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux ε

(i)

σ
(i)
aux

1©

,

where the first inequality holds for sufficiently large R. Consider the second term. Since

ε(i) =
√
L · var(v(0))/m+ β · (L/m)3/4 + u/(CR).

We bound
R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux · β · (L/m)3/4 ≤ Rβ · (L/m)3/4

and
R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux · u/(CR) ≤ Ru/(CR).

We thus have,

1© ≤
R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux

√
L · var(v(0))

σ
(i)
aux

/m+Rβ · (L/m)3/4 +R · u/(CR).

Note that √
var(v(0))

σ
(i)
aux
≤

√
var(vσ

(i−1)
aux )

σ
(i)
aux

+ ‖v[σ(i−1)
aux ]− v(0)‖∞.

Now consider

‖v[σ(i−1)
aux ]− v(0)‖∞ ≤ ‖v(0) − v(R)‖∞ + ‖v[σ(i−1)

aux ]− v(i−1)‖∞.
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We bound ‖v(0) − v(R)‖∞ ≤ u. Applying Corollary A.8 again, we have

‖v[σ(i−1)
aux ]− v(i−1)‖∞ ≤ u/4 +

R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux ε

(i)

σ
(i)
aux

≤ u/4 +

R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux

√
L · var(v(0))

σ
(i)
aux

/m

+Rβ · (L/m)3/4 +R · u/(CR)

With a natural bound, var[v(0)] ≤ β2 · 1, we have

‖v[σ(i−1)
aux ]− v(0)‖∞ ≤ u+ ‖v[σ(i−1)

aux ]− v(i−1)‖∞ ≤ Rβ
√

L/m+Rβ(L/m)3/4 + u/C ′

for some constant C ′ > 0. Therefore,

v(R) − v∗ ≤
R∑
i=1

γR−iP σ(R)
aux · P σ(R−1)

aux · . . .P σ(i+1)
aux

√
Lvar(v[σ

(i−1)
aux ])

π
(i)
aux

m

+R

(
Rβ

√
L

m
+Rβ

( L

m

)3/4

+
u

C ′

)
·
√

L

m
+

u

4
+

u

C
+Rβ ·

( L

m

)3/4

≤

√
LRβ2

γ2m
+R

(
Rβ

√
L

m
+Rβ

( L

m

)3/4

+
u

C ′

)
·
√

L

m
+

u

4
+

u

C
+Rβ ·

( L

m

)3/4

≤ u/2

for large enough constants, C, and that in m.

A.4 Algorithm that Computes a Monotone Sequence

Here we show that Algorithm 1 or Algorithm 2 computes an MDVSS or MIVSS respectively.

Proposition A.12. Let u ∈ (0, β], β = (1 − γ)−1, δ ∈ (0, 1), and R = Θ[β log(β/u)]. Further, let L =
Θ(log[δ−1βR|S||A|]), and m = Ω(β3 ·max(u−2, 1) · log(|S||A|δ−1)). Then there exists an algorithm, on input a
stochastic game with a generative model with a sampling oracle, G = (S := Smin ∪ Smax,P , r, γ), a value-strategy
pair (π(0),v(0)) satisfying Tπ(0) [v(0)] ≤ v(0), T [v(0)] ≤ v(0) (or Tπ(0) [v(0)] ≥ v(0), T [v(0)] ≥ v(0)), and ‖v(0) −
v∗‖∞ ≤ u for some u > 0, outputs, with probability at least 1− δ, an MDVSS (or MIVSS) {v(i),Q(i), π(i), ε(i)}Ri=0

by querying
Z = O

[
|S||A| · (m+Rβ2 log[R|S||A|δ−1])

]
samples, where

ε(i) =
√
Lσv(0)/m+ β · (L/m)3/4 + u/(CR),

for some large constant C > 1 and σv(0) := var[v(0)] is the variance vector for vector v(0). The algorithms uses
space O(|S||A|) and halts in time O(Z).

This section is devoted to proving Proposition A.12. The algorithm of obtaining MDVSS and MIVSS is provided
in Algorithm 1 and 2.

The Good Events Suppose we are given an arbitrary input vector v−(0),v+(0) ∈ [0, (1−γ)−1]S with v∗−u1 ≤
v−(0) ≤ v∗ ≤ v+(0) ≤ v∗ + u1, v−(0) ≤ T [v−(0)], v−(0) ≤ Tπ− [v−(0)], T [v+(0)] ≤ v+(0) and Tπ+ [v+(0)] ≤ v+(0).
Since the algorithm is randomized, to begin our analysis, we define a sequence of events for the iterates. We will
show that these events happen with high probability via concentration inequalities.

Definition A.13. Let w̃− and w̃+ be the estimate defined in Line 16 (of Algorithm 1 or Algorithm 2 respectively).
Denote α1 ← L/m1 ≤ 1. Let E0 be the event that

|w̃± − Pv±(0)| ≤ √α1σv±(0) + α
3/4
1 · ‖v±(0)‖∞ · 1 . (9)
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For each i > 0, let g̃±(i) be given in Line 32. Let Ei be the event that

|g̃±(i) − P [v±(i) − v±(0)]| ≤ C(1− γ)u · 1 . (10)

for some sufficiently small constant C > 0.

Lemma A.14. For some sufficiently large constant c in L, Pr[E0] ≥ 1−O(δ/R).

Proof. Note that ‖v±(0)‖∞ ≤ (1− γ)−1. By a straightforward application of a Hoeffding bound and Bernstein
inequality and a union bound over all (s, a), we reach the desired inequality. More details can be find in the proof
of Lemma 5.1 in Sidford et al. (2018a).

The Implications of the Good Events We now illustrate the consequences of these good events.

Lemma A.15 (Implications of E0). On E0, we have, for all (s, a) ∈ S ×A,

0 ≤ r(s, a) + γP (·|s, a)>v−(0) −Q−(0)(s, a) ≤ 2
√
α1σv−(0) + 2α

3/4
1 ‖v−(0)‖∞ and

0 ≤ Q−(0)(s, a) ≤ Q∗(s, a),

and

0 ≤ Q+(0)(s, a)− r(s, a)− γP (·|s, a)>v+(0) ≤ 2
√
α1σv+(0) + 2α

3/4
1 ‖v+(0)‖∞ and

Q∗(s, a) ≤ Q+(0)(s, a) ≤ β,

where α1 = L/m1.

Proof. We prove the first inequality and the second inequality follows similarly. Condition on E0, we have

|r + γw̃− − r − γPv−(0)| ≤ √α1σv−(0) + α
3/4
1 ‖v−(0)‖∞.

Since
Q−(0) = max

[
r + γw̃− −√α1σv−(0) − α

3/4
1 ‖v−(0)‖∞,0

]
,

we have
0 ≤ r + γPv−(0) −Q−(0) ≤ 2

√
α1σv−(0) + 2α

3/4
1 ‖v−(0)‖∞.

Moreover, since v(0) ≤ v∗, we have

Q−(0) ≤ r(s, a) + γP (·|s, a)>v−(0) ≤ Q∗,

completing the proof.

Lemma A.16 (Implications of Ei, (1)). Then for any i > 0, conditioning on E0, E1, . . . , ER, we have

{v−(i),Q−(i), π−(i), ξ−(i)}Ri=0 is an MIVSS and {v+(i),Q+(i), π+(i), ξ+(i)}Ri=0 is an MDVSS where

ξ±(i) = 2
√
α1σv±(0) + 2[α

3/4
1 β + C(1− γ)u] · 1

for some sufficiently small C > 0.

Proof. We prove the first part of the lemma, i.e., {v−(i),Q−(i), π−(i), ξ−(i)}Ri=0 is an MIVSS. Then the second
part follows similarly. It is clear from the definition (Line 32) that

v−(0) ≤ v−(1) . . . ≤ v−(R).

To prove property 1 of MIVSS, we need additionally to show

v−(R) ≤ v∗.

This follows if property 2, i.e.,

∀i ∈ [0, R] : v−(i) ≤ Tπ−(i) [v−(i)], v−(i) ≤ T [v−(i)].
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Indeed,
v−(i) ≤ T [v−(i)] ≤ T 2[v−(i)] . . . ≤ T ∞[v−(i)] = v∗.

We now prove property 2 by induction on i. It immediately follows from the initial condition that

v−(0) ≤ Tπ−(0) [v−(0)], v−(0) ≤ T [v−(0)].

Suppose this property holds for all 0, 1, . . . , i − 1 for some i > 1. We now consider the case i. Let Q̃
−(i)

=

r + γPv−(i−1). Since ‖g̃−(i) − P (v−(i−1) − v−(0))‖∞ ≤ C(1− γ)ε, we have

|Q̃
−(i)
− r − γw−(i−1) − γg−(i−1)| ≤ ξ−(i)/2. (11)

Since

Q−(i)(s, a)y = max
[
r(s, a) + γw−(i−1)(s, a) + γg−(i−1)(s, a), 0

]
≤ r(s, a) + γP (·|s, a)>v−(i−1)

= Q̃
−(i)

(s, a)

we have, for any s ∈ S

min
a

Q−(i)(s, a) ≤ min
a

Q̃
−(i)

(s, a) and max
a

Q−(i)(s, a) ≤ max
a

Q̃
−(i)

(s, a).

For each s ∈ S, denote
ṽ−(i)(s) = Q−(i)(s, π̃−(i)(s)),

where π̃−(i) is given in Line 26 (that achieves maxa Q
−(i)(s, a) or mina Q

−(i)(s, a)). To show v−(i) ≤ T [v−(i)]
and v−(i) ≤ Tπ−(i) [v−(i)], we do a case analysis for a state in S. Firstly, we consider state s ∈ Smin. For each

state s ∈ Smin, note that π̃−(i)(s) := argmina Q
−(i)(s, a). By Line 32, v−(i)(s) and π−(i)(s) have the following

two possibilities,

1. v−(i−1)(s) ≤ ṽ−(i)(s) ⇒ v−(i)(s) = ṽ−(i)(s) and π−(i)(s) = π̃−(i)(s);

2. v−(i−1)(s) > ṽ−(i)(s) ⇒ v−(i)(s) = v−(i−1)(s) and π−(i)(s) = π−(i−1)(s).

Considering case 1., we have,

v−(i)(s) = Q−(i−1)(s, π−(i)(s)) ≤ min
a

Q̃
−(i)

(s, a) = T [v−(i−1)](s) ≤ T [v−(i)](s) and

v−(i)(s) = Q−(i−1)(s, π−(i)(s)) ≤ Q̃
−(i)

(s, π−(i)(s)) = Tπ−(i) [v−(i−1)](s) ≤ Tπ−(i) [v−(i)](s).

Considering case 2., we have, by induction hypothesis v−(i−1)(s) ≤ T [v−(i−1)](s), v−(i−1)(s) ≤
Tπ−(i−1) [v−(i−1)](s). Thus

v−(i)(s) ≤ T [v−(i−1)](s) ≤ T [v−(i)](s) ,

v−(i)(s) ≤ Tπ(i−1) [v−(i−1)](s) ≤ Tπ−(i−1) [v−(i)](s) = Tπ−(i) [v−(i)](s).

It follows similarly for the case of s ∈ Smax (by just replacing the min by max in the above argument). This
completes the induction step and hence the property 2.

We now prove property 3 and 4. By Equation 11, we immediately have,

Q−(i) ≥ r + γP (v−(i))− ξ−(i)

proving property 3. Lastly, by Line 32, we have

v−(i) ≥ T [Q−(i)],

completing the proof of property 4 and the lemma.
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The Probability of Good Events Note that the random samples in the successive improvement phase are
independent with event E0. We then have the following lemma.

Lemma A.17. Suppose the algorithm does not halt at iteration i ≥ 1, then,

Pr[Ei|E0, E1, . . . , Ei−1] ≥ 1−O(δ/R).

Proof. On E0, E1, . . . , Ei−1, we have v−(0) ≤ v−(i) ≤ v∗ ≤ v+(i) ≤ v+(0), thus ‖v±(i) − v±(0)‖ ≤ u. Applying
Hoeffding bound, Bernstein’s inequality and a union bound over all (s, a), we have that with probability at least
1−O(δ/R), ‖g(i) − P [v(i) − v(0)]‖∞ ≤ (1− γ)ε/32, completing the proof.

Therefore, we have the following lemma.

Lemma A.18. Let R = dc1β ln[βε−1]e be an integer for some constant c1. Then, with probability at least 1−O(δ),
E0, {Ei}Ri=1 all happen.

Proof. By a straightforward calculation, we have
Pr[∩Ri=0Ei] = Pr[E0] Pr[E1|E0] Pr[E2|E0, E1] . . .Pr[ER|E0, E1, . . . , ER−1] ≥ 1−O(δ).

Putting It Together

Proof of Proposition A.12. Let E = ∩Ri=0Ei, we have shown, on E , the outputs of Algorithm 1 and 2,

{v−(i),Q−(i), π−(i), ξ−(i)}Ri=0 is an MIVSS and {v+(i),Q+(i), π+(i), ξ+(i)}Ri=0 is an MDVSS. By the above lemmas,
E happens with probability at least 1 −Θ(δ). This completes the proof of the proposition.

Proof of Theorem 1.1. The theorem is proved by combining Proposition A.3, A.4, and A.12.
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Algorithm 2 QVI-MIVSS: algorithm for computing monotone increasing value-strategy sequences.

1: Input: A generative model for stochastic gameM = (S,A, r,P , γ);
2: Input: Precision parameter u ∈ [0, (1− γ)−1]; and error probability δ ∈ (0, 1)

3: Input: Initial values v−(0), π−(0) that satisfies monotonicity:

v∗ − u1 ≤ v−(0) ≤ v∗, v−(0) ≤ T v−(0), and v−(0) ≤ Tπ−(0)v
−(0);

4: Output: {v−(i),Q−(i), π−(i), ξ−(i)}Ri=0 which is an MIVSS with high probability.
5:
6: INITIALIZATION:
7: Let c1, c2, c3, c be some tunable absolute constants;
8: \\Initialize constants:
9: β ← (1− γ)−1, and R← dc1β ln[βu−1]e;
10: m1 ← c2β

3 ·min(1, u−2) · log(8|S||A|δ−1);
11: m2 ← c3β

2 log[2R|S||A|δ−1];
12: α1 ← L/m1 where L = c log(|S||A|δ−1(1− γ)−1ε−1);
13: \\Obtain an initial batch of samples:r

14: For each (s, a) ∈ S ×A: obtain independent samples s
(1)
s,a, s

(2)
s,a, . . . , s

(m1)
s,a from P (·|s, a);

15: Initialize: w− = w̃− = σ̂− = Q−(0) = Q−(1) ← 0S×A and i← 0;
16: for each (s, a) ∈ S ×A do

17: \\Compute empirical estimates of P>
s,av

−(0) and var(v−(0))(s, a):

18: w̃−(s, a)← 1
m1

∑m1
j=1 v

−(0)(s
(j)
s,a);

19: σ̂−(s, a)← 1
m1

∑m1
j=1(v

−(0))2(s
(j)
s,a)− (w̃−)2(s, a) ;

20: \\Shift the empirical estimate to have one-sided error and guarantee monotonicity:

21: w−(s, a)← w̃−(s, a)−
√

α1σ̂
−(s, a)− α

3/4
1 β;

22: \\Compute coarse estimate of the Q-function and make sure its value is in [0, β]:

23: Q−(1)(s, a)← clip[r(s, a) + γw−(s, a), 0, β]
24: end for
25:
26: REPEAT: \\successively improve
27: for i = 1 to R do
28: \\Compute the one-step dynamic programming:

29: Let v−(i) ← ṽ−(i) ← TQ−(i−1), π−(i) ← π̃−(i) ← π(Q−(i−1));
30: \\Compute strategy and value and maintain monotonicity:
31: For each s ∈ S:
32: if v−(i)(s) ≤ v−(i−1)(s), then v−(i)(s)← v−(i−1)(s) and π−(i)(s)← π−(i−1)(s);
33: \\Obtaining a small batch of samples:

34: For each (s, a) ∈ S ×A: draw independent samples s̃
(1)
s,a, s̃

(2)
s,a, . . . , s̃

(m2)
s,a from P (·|s, a);

35: \\Compute the expected value, g±(i), the estimate of P
[
v±(i) − v±(0)

]
with one-sided error:

36: Let g̃−(i)(s, a)← 1
m2

∑m2
j=1

[
v−(i)(s̃

(j)
s,a)− v−(0)(s̃

(j)
s,a)

]
;

37: Let g−(i)(s, a)← g̃−(i)(s, a)− C(1− γ)u, where C is sufficiently small;
38: \\Estimate the approximation error:

39: ξ−(i) ← 2
√
α1σv−(0) + 2[α

3/4
1 β + C(1− γ)u] · 1

40: \\Improve Q−(i) make sure its value is in [0, β]:

41: Q−(i+1) ← clip
[
r + γ · [w− + g−(i)], 0, β

]
;

42: end for
43: return {v−(i),Q−(i), π−(i), ξ−(i)}Ri=0
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