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Abstract—TIn this paper we present and evaluate a true random
number generator (TRNG) design that is compatible with the
restrictions imposed by cloud-based FPGA providers such as
Amazon Web Services (AWS) EC2 F1. Because cloud FPGA
providers disallow the ring oscillator circuits that conventionally
generate TRNG entropy, our design is oscillator-free and uses
clock jitter as its entropy source. The clock jitter is harvested with
a time-to-digital converter (TDC) and a controllable delay line
that is continuously tuned to compensate for process, voltage, and
temperature variations. After describing the design, we present
and validate a stochastic model that conservatively quantifies its
worst-case entropy. We deploy and model the design in the cloud
on 60 EC2 F1 FPGA instances to ensure sufficient randomness
is captured. TRNG entropy is further validated using NIST test
suites, and experiments are performed to understand how the
TRNG responds to on-die power attacks that disturb the FPGA
supply voltage in the vicinity of the TRNG.

I. INTRODUCTION

Random numbers are fundamental to cryptographic systems
and widely used for generating keys, nonces, and initialization
vectors. The quality of randomness required in these applica-
tions necessitates the use of true-random number generators
(TRNGs). TRNGs exploit the inherent physical properties of
the system in which they are embedded to generate statistically
random and unpredictable numbers. This characteristic makes
the outputs of a TRNG unpredictable even to an adversary
that knows the current state of the circuit. Physical sources of
entropy commonly used in FPGAs by on-chip TRNGs include
thermal noise and clock or oscillator jitter. The randomness of
the numbers created by TRNGs is typically evaluated using
stochastic models and statistical tests [1]].

FPGAs are increasingly being used in cloud-based systems
for prototyping and acceleration, and to support secure soft
processors which require a source of random numbers. Yet
to protect their infrastructure from malicious voltage attacks
[2], cloud providers such as AWS impose restrictions on the
types of circuits that are allowed on their FPGAs. Circuits
that deviate from standard digital design flows, including
logic-driven clocks and combinational loops as found in ring
oscillators (ROs), are detected during bitstream compilation
and disallowed from being loaded onto the FPGA [3]. This
restriction causes difficulty in creating and characterizing jitter-
based TRNG circuits for cloud applications.

In this work, we present a TRNG design and validation
procedure that is tailored around the restrictions of cloud-based
FPGAs. Our design is able to harvest jitter without creating os-
cillators or being able to manipulate clocks. The design adjusts
to changing environmental conditions and can be characterized

without requiring ground truth delay measurements that are
commonly obtained by counting oscillations. We make several
specific contributions in this work:

« A TRNG for Virtex UltraScale+ FPGAs used in the cloud
is detailed, implemented, and analyzed across numerous
AWS EC2 F1 instances. The design, which is based on
tunable delay chains and a time-to-digital converter (TDC)
that harvests entropy from clock jitter, avoids primitives
such as combinational loops that are common in TRNGs
but disallowed by AWS and other cloud providers.

o A novel procedure is proposed for computing the min-
entropy per sample using a stochastic model. The model
empirically relates component delays to clock jitter by
least-squares fitting. The delays computed by the model
during entropy evaluation strongly correlate to the FPGA’s
own timing report, which supports the validity of our
approach.

o The robustness of our TRNG is evaluated by implementing
a voltage attack against it on F1 and showing how
the TRNG adjusts in response to the attack without
compromising its ability to create random numbers.
Demonstrating resilience to environmental changes is
important for a TRNG that will be used in cloud settings,
and is a novel feature of the work.

The remainder of this paper is structured as follows. Section
provides background on previous FPGA TRNG approaches.
Section |[1I| describes the structure of our TRNG and modeling
is discussed in Section Sections [V] and [V1] evaluate and
discuss the TRNG entropy, resilience, and costs. Section [VII
concludes the paper.

II. BACKGROUND AND RELATED WORK

The implementation of TRNGs in FPGAs has been widely
studied, although none of the prior approaches address the
unique constraints of cloud FPGAs. A large majority of
these previous implementations rely on ROs to generate high-
frequency signals that exhibit significant jitter. For example,
Kohlbrenner and Gaj [4] use two ROs and a sampling circuit
to measure jitter and Maiti et al. [5] deploy up to 128 ROs to
amplify uncertainty. Some TRNGs augment ROs with delay
paths to increase timing sensitivity. Like our approach, Rozic et
al. [6] and Yang et al. [7] use carry logic-based delay chains to
assist with entropy extraction. These approaches do not include
tunable delays to combat environmental factors and an RO is
used to excite the delays.

Several non-RO based TRNGs have been built for FPGAs,
but they also have limitations that make them inappropriate



AWS Interface

A

coarse_cfg fine_cfg core_output

5 5y 2561

TRNG Module
clk —® TRNG random
rst—» %n CORE ‘g ’
stop —» gt% 256,
debug § GC_J % gl sample_vid
t1h 'y = entropy_vid
CTRLUNIT |
— . _

Fig. 1: Structure of TRNG design and interface.

for cloud deployment. Majzoobi et al. [§] use programmable
delay lines built from LUTs that can be difficult to characterize
on a per-FPGA basis. Dedk et al. [9] use the jitter from an
on-FPGA phase locked loop (PLL) to create a TRNG using

clock settings that are a challenge to replicate in a cloud setting.

Perhaps the most similar TRNG approach to ours [10] uses a

standard clock input, tunable delay buffers, and a delay path.

However, unlike our approach, the delay path is made from a
chain of LUTs which have variable logic and routing delays
across stages.

III. STRUCTURE OF PROPOSED TRNG

Fig. [T] shows the top-level view of our TRNG design. It
is a hardware module that serially generates 8-bit random
numbers. We instantiate the TRNG module within a hardware
testbench for analysis. The design is created for AWS EC2
F1 instances, which contain Xilinx Virtex UltraScale+ VU9P
FPGAs. The bitstream is generated using Amazon’s Hardware
Development Kit (HDK), and then converted to an Amazon
FPGA Image (AFI) that is reused for deployment across F1
instances. Amazon provides a runtime tool to interact with the
deployed design by reading and writing 32-bit data to or from
user-defined registers using AXI4 over PCle. We make the
signals at the top of Fig. [T] accessible to the runtime tool only
when the TRNG hardware is set to debug mode. The debug
mode allows us to control the TRNG and observe sample
values from the TRNG core, which is useful for data collection
and analysis in the cloud, but would be insecure if enabled in
production.

Internally, the TRNG module gets entropy from the TRNG

core, and hashes it into a local entropy pool by XOR operation.

The control unit keeps a conservative estimate of the current
entropy in the pool by counting the number of valid samples
provided to it. Once enough entropy is collected, a signal from
the control unit is asserted and the 8-bit random value in the
registers can be read out, upon which the entropy count is reset
to 0. We now describe in more detail the components of the
TRNG core (Fig. [2).

A. Carry Chain Description

The TDC in our circuit (Fig. 2a)) consists of 32 8-bit carry
stages, and each output bit from the carry chain is the data input

to a D flip-flop in the same slice. The controller repeatedly
generates a single rising edge that propagates into the carry
chain with appropriate delay such that it will be propagating
through the carry chain when the next rising clock edge occurs.
The number of 1-values captured in the 256 flip-flops, i.e. the
Hamming weight of the sample, is an indication of how far
up the chain the rising edge has propagated by the time of
the rising clock edge. The Hamming weight of samples will
fluctuate slightly in each trial due to clock jitter, which is our
source of randomness.

B. Tunable Delay Elements and Feedback Control

Our circuit uses tunable delay elements and feedback to
ensure that the rising edge from the delay line is within the
TDC chain when the clock arrives. Increasing the propagation
delay will cause the rising edge to reach fewer TDC stages and
thereby will reduce the Hamming weight of samples. Similarly,
decreasing the delay will increase the Hamming weight. In this
way the tunable delay circuits are the knob used for adjusting
the Hamming weight. The controller uses the delay knob to
position the rising edge in the TDC chain during clock arrival,
as is required to generate randomness.

Ideally, the Hamming weight of the samples should be
centered at around 128, which gives a maximum margin against
delay changes in either direction that could detune the circuit.
The controller configures the coarse-tuning and fine-tuning
stages using the simple feedback scheme of Eq. |1} where (¢, f)
and (¢, f') are the current and next values of the coarse and
fine tuning settings, and HW is the Hamming weight of the
current sample; note in Eq. [I| that f;,,;4 represents the middle
setting for fine tuning, which in our case is 15. Furthermore,
as the controller monitors samples it credits entropy to the
entropy pool only when the Hamming weight is between 30
and 225 so that samples are not counted as random when the
rising edge is approaching either end of the carry chain where
jitter may not be captured.

(c+1, fnig) if 208 < HW

C, +1) if 158 < HW < 208
(. f)= ( U . (1)

(c, f—1) if 48 < HW <98

(c—1, fmia) if HW < 48

The coarse and fine tuning stages are implemented as follows.
Each coarse tuning stage adds or bypasses a LUT1 primitive
that implements a logical buffer, as shown in Fig. Each
fine-tuning stage selects between a shorter and longer pin-to-
pin delay of a LUTS, where the enabled path through the LUT
is set by the control input, as shown in Fig. The stages are
controlled using thermometer encoding, so that incrementing
or decrementing their configuration settings will change only
one stage along the delay line, which helps ensure predictable
control but has higher area cost than a binary-encoded tunable
delay in which each stage has twice the delay of the next. Fig.[3]
shows the Hamming weight of samples for all combinations
of tuning; note that debug mode is used to generate this plot,
as it overrides the feedback of the controller, and allows the
samples from the TRNG core to be logged.
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Fig. 3: Heatmap showing the Hamming weight of samples on
a single F1 instance for all possible tuning settings. Increasing
the coarse or fine tuning reduces the Hamming weight. Sampled
values indicative of a poorly-tuned TDC, colored gray, would
not cause the entropy count to be incremented.

C. Post-processing Circuit

The 256-bit samples from the TRNG core are hashed into
the 8-bit state of the entropy pool using a simple scheme as
shown in Fig. ] Each update includes a 1-bit circular shift
of the 8-bit entropy pool, which ensures that randomness will
get distributed through the 8 bits even if always coming from
the same position in the 256-bit sample. We have used this
particular scheme for simplicity, but it could be replaced with
any number of other hash functions for the same effect. A

counter tracks the number of valid samples produced by the
TRNG core, and requires that 80 valid samples are hashed
into the entropy pool before its is considered to be random,
which assumes 0.1 bits of entropy per sample. Section [[V] of
the paper will show that the actual entropy per sample exceeds
this conservative estimate by a factor of more than 2 using
both a stochastic model and NIST tests.

IV. MODELING OF TRNG

The randomness of the TRNG comes from the samples of
the delay line in the TDC. Even if the propagation delay of the
delay line does not change across trials, the TDC can produce
different samples if it has fine enough time resolution and its
sampling clock has sufficient jitter. The time resolution on the
TDC is a consequence of the low propagation delay of the
stages in the hard carry chains of Xilinx Ultrascale+ devices.
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Fig. 5: TDC position in normal distribution CDF for modeling.

A larger clock jitter or finer time resolution will both have
the same effect of making the TDC samples more random
because both changes will make the jitter relatively larger
in comparison to the TDC time resolution. Accordingly, the
relevant consideration for modeling a TRNG such as ours is
to quantify how the amount of jitter compares to the time
resolution of the TDC.

In our stochastic model of the TRNG, we relate jitter to
TDC time resolution without relying on conservative timing
reports or jitter estimates. We rely in modeling only on the
simplifying assumption that jitter is normally distributed, which
is in particular consistent with the jitter component caused by
thermal noise [11]] [[12]. We also assume its standard deviation
is invariant with respect to the tuning settings of the delay
line. From this we calculate the time resolution of each TDC
stage in terms of the standard deviation of jitter, which we
use as the unit delay in our model. After calculating the time
resolution of each stage, we use the same model to calculate a
lower bound on min-entropy per sample. The next subsection
describes our modeling approach.

A. Empirical Model Relating TDC Delay to Jitter

In a given trial, the flip-flop associated with each TDC stage
will sample a 0 value if its clock arrives before its rising data
input from the delay line, and will sample a 1 otherwise. If the
delay tuning settings are held constant across samples, the 0-
probability (1-probability) of the stage indicates the proportion
of trials in which its clock arrives before (after) its rising data
input from the delay line.

If the flip-flop of stage ¢ samples O with probability 0.159,
then 15.9 percent of clock edges arrive there before the rising
data input, and 84.1 percent of clock edges arrive after. Under
the assumption that jitter is normally distributed, the observation
that 15.9 percent of clock edges arrive before the rising
data input reveals that rising data input coincides with the
clock being —1.0 * 0;;; away from its mean value, because
®~1(0.159) = —1.0, where ®~! is the inverse CDF of a
normal distribution. This scenario is depicted graphically in
Fig. Bl

In these same trials, if the flip-flop of stage 7 samples O
with probability 0.933, then we similarly conclude that its
rising data input coincides with its clock being +1.5 * o
away from its mean because @1 (0.933) = 1.5. If there is no

clock skew between the flip-flops of ¢ and j, then these two
findings together indicate that the time difference between the
rising data inputs on ¢ and j is equal to 2.5 * g;;. If clock
skew is allowed, then we generalize the claim slightly to more
formally conclude only the difference in criticality (i.e. timing
slack) between the two flops is equal to 2.5 * 0j;;, although
for our purposes it is actually the criticality that matters so we
need not worry about skew. The delay or criticality difference
between any two stages can therefore be estimated from their
O-probabilities in a set of trials. Because the estimate is noisy
when the associated O-probabilities are close to O or close to
1, we apply it only when the O-probabilities indicate that both
stages are within £20;;; of their means. Note that the delay
difference is being calculated in units of o;;; even though
the value of o0j;; is not known in absolute terms. Using this
approach, two flip-flops ¢ and j have arrival times (denoted
T; and T}) that are related as shown in Eq. |2, where P; and
]3j are their respective O-probabilities for a particular tuning
setting.

LT = (7' (P) 07 () oy @

B. Calculating Stage Arrival Times

Given that O-probabilities from each tuning setting will relate
the arrival times of some of the TDC stages, and that the same
stages can be related to each other by multiple different tunings,
we can solve a set of equations to obtain for each stage 7 the
arrival time 7;. The set of equations is as described in Eq. [3]
where T is the n-element column vector of unknown arrival
times, A is the m-by-n matrix of coefficients in which all
entries are 0 except for a single +1 and single -1 in each row
for the two stages that are related, and B is an m-by-1 column
vector of the arrival time differences, calculated as shown on
the right hand side of Eq. 2] We then find the least-squares
solution to AT = B (Eq.[3) which gives stage arrival times in
terms of 0;;;. Because the formulation deals with differences
in arrival times, we adopt the convention that Tj, the arrival
time of the first stage, is 0; other 7} values therefore represent
the arrival time of stage 7 relative to first stage.

AT = Bajit (3)

Fig. [@ shows, for one instance of the TRNG, the stage arrival
times (To, ..., T555) obtained by solving Eq. 3] The arrival
times across the 256 stages cover a span of approximately 84
times o0;;:, which implies o;;; to be around 12ps in absolute
terms. While the arrival time generally increases while moving
up the TDC chain, note that the trend is not smooth. Although
the rising edge does propagate through the carry chains in
sequential order, the anomalies in this trend imply that it does
not reach the d input of the flip-flops in sequential order. This
can occur because the delays between carry chain and flip-flop
of each stage are not uniform, and because clock skew at
the flip-flop aliases to delay on its data input; both of these
artifacts are captured in the timing report so it is instructive to
compare the modeled arrival times to the slack from the timing
report. Fig [6b] shows the same modeled arrival times from
Fig. [6a] but now plotted against the reported timing slack for
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Fig. 7: Precision of each stage in TDC chain from one FPGA
instance, obtained from characterization procedure.

the corresponding flip-flop which accounts for all delays and
clock skew. There is a high correlation (r = —0.997) between
the arrival times from the model and the reported slack. Given
that the model was fitted to data measured on the board, the
high correlation between the two quantities supports the validity
of the model for correctly resolving on-chip delays, and hence

also for capturing the difference in criticality between stages.

Now that the empirical timing model is validated, we use it as

the basis for estimating the worst-case entropy of our TRNG.
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Fig. 8: Largest share of clock arrival times that will cause TDC
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C. Stochastic Model for Entropy Estimation

Based on the precision of each stage in Fig. [], we can
estimate a lower bound on min-entropy of the samples. The
worst-case min-entropy corresponds to the sampled value that
can be produced with highest probability. This would occur
when the mean arrival time of the clock coincides with the
center of the largest timing gap of any stage, which we denote
here as A, 4. This is illustrated in Fig. |§| where the shaded
region represents all the clock arrival times that would result in
the same sample being produced. The probability of producing
this sample would then be the probability associated with the
shaded region, which we denote as P,,,,, and calculate from
the normal CDF as in Eq. @ The min-entropy of an outcome
with probability P,,q, is given by Eq. [5] For the specific
instance used to generate these results, the largest interval is
2.268 *0j;; shown in Fig. [/, which corresponds to a shaded
area in Fig. [§] with P, of 0.743, and hence min-entropy of

0.429 bits.
A —-A
anz - d mazx ;) mazx 4
(P3) o (%) o

1
entropYmin = log, (P) 5)
max

D. Impact of Routing and Clock Skew on Entropy

The previous subsection explains that worst-case min-entropy
is limited by the largest timing gap among all the stages. It is
therefore desirable to make all of the timing gaps uniform so
that none are unusually large. We now present further results
and discussion to explain why routing makes this objective
difficult to accomplish in practice.

Fig. O] shows the difference in arrival time between the FF of
each stage and that of the next stage by index. Here, instead of
using indices from 0 to 255 to represent the stages across all 32
CLBs as was done in Fig.[6a] we use indices 0-7 for each CLB
as annotated in Fig. @a] and have occurrences of each index
from all 32 CLBs. Fig. @ shows, for each stage index, the 32
differences in arrival time between that stage and the next. The
differences in arrival time are predictable for stages 0,1,2 and
for stages 4,5,6. In stages 3 and 7, the arrival time difference



®
2, 3
ls 2 ¥ Ll i
Js ccik2 g .
i .i.
2, E
©
; 13 ) < 10
O $2 8
=
o
$1 \clkl -”05)-15
lo °
»
7 . 6 1 2 3 4 5 6 7
: FF stage index within CLB

(a) CLB stage indices.

Fig. 9: Across the 32 CLBs in the TDC, the difference in
arrival time between one index and the next is predictable for
indices 0,1,2 and 4,5,6. Indices 3 and 7 are each followed by a
stage that is on a different clock leaf, and there the difference
in arrival time is inconsistent due to clock skew. Error bars
extend one standard deviation from the mean.

(b) Differences in arrival times by index.

is inconsistent from CLB to CLB. This inconsistency occurs
because Ultrascale+ uses different clock inputs for the upper
and lower halves of the CLB, which causes stages 3 and 7 to
span two different clock leaf nodes (clkl and clk2 in Fig. Da);
the skew between the clock leaf nodes aliases to arrival time
as discussed in Sec. [[V-B] For the TRNG design, one must
therefore be careful to avoid large positive clock skew at these
points as it can reduce worst-case entropy by causing highly
probable outcomes for certain unlucky conditions. Negative
skew causes no such problem, as can be observed in Fig. [f] so
the one-sided restriction on skew is easy to satisfy in practice.

V. TRNG QUALITY EVALUATION

In this section, we use three different techniques to test
the quality of the random numbers produced by our design.
As described in the following three subsections, the results
support 1) that our design exceeds the 0.1 bits of min-entropy
per trial that was assumed as a security parameter; 2) that our
stochastic model gives a reasonable estimate of min-entropy;
and 3) the random numbers generated pass tests for statistical
randomness.

A. Stochastic Model Applied Across EC2 F1 Instances

The stochastic model from Section is our primary
strategy for estimating the worst-case min-entropy for each
single instance of the TRNG. To test across FPGAs, we load
the same bitstream onto 60 different EC2 F1 instances, and on
each machine apply our characterization procedure to evaluate
the worst-case min-entropy. The distribution of calculated min-
entropy values (Fig. [I0) range from 0.250 to 0.972. These
values indicate that across all 60 instances our design exceeds,
by at least a margin of 2.5x, the 0.1 bits of min-entropy per
sample that was assumed.
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B. Stochastic Model vs. NIST Entropy Assessment

Next, to check our stochastic model, we apply the NIST
SP800-90B entropy assessment suite [[13]] to obtain an inde-
pendently calculated estimate of min-entropy. To generate data
for the NIST assessment, we apply on one instance all tuning
settings and collect 1,000,000 samples from the TDC with
each setting applied [[14]]. We keep the data from any settings
in which the average Hamming weight of samples is in our
allowed range of 30 to 225, which corresponds to a total of
234 tuning settings. The NIST assessment is applied separately
to each of these 234 datasets, and the distribution of results
are shown as a histogram in Fig. [T} The NIST estimate of
min-entropy for most of the tuning settings fall above the
estimate of 0.429 bits per sample from the stochastic model on
this instance. Because the NIST entropy values tend to exceed
our estimated worst-case, we gain some confidence that our
stochastic model is not overestimating entropy.

C. End-to-End NIST Statistical Tests

Although the evaluation of the entropy source in the prior
subsections is the primary validation for a TRNG, we also apply
statistical tests to the post-processed 8-bit values produced
by the TRNG as a further validation. The NIST Statistical
Test Suite [15]], which is widely used with random number
generators, applies a collection of statistical tests and for each
test reports whether the sequences of bits are consistent with
being random. The report shows how often the P-values from



[ Statistical tests [[CI1[C2]C3]C4][C5]C6]C7]C8]CI[C10][P-value[ % |

Frequency 1012] 6 |12|11| 4 |11|14] 4 | 16 || 0.091 | 98
BlockFrequency I15(17] 8 |7 |7 |7 (12/9]6|12]] 0.163 | 99
CumulativeSums 1316 (10| 7 |10(15(13|9 9| 8 || 0.596 |99
CumulativeSums 1118 [13| 8|12 7 158 [11| 7 || 0.637 |98

Runs 9188 |8([16]6[15[15]7| 8 || 0.172 |98
LongestRun 9112| 8 [11|16] 6|9 [10|11| 8 || 0.657 |98
Rank 9 (12|13(10(12| 5 |11| 9 |13| 6 || 0.637 {100

FFT 9 [12{12(15| 8 | 5|11|10{|12| 6 || 0.494 {100
NonOverlap. Template|| 8 | 4 | 7 |11{13| 9 [15]|13|10| 10 || 0.401 |100
Overlapping Template|| 8 | 9 [11| 8 | 8 [15[12|9 |8 | 12 || 0.817 | 98
Universal 8|8 |8|12(14|12{14| 6 | 8| 10 || 0.616 | 99
Approximate Entropy ||18(10[12| 6 | 8 |14 6 |12/ 6| 8 || 0.109 | 99
Serial 5(10{ 8|9 |11[12]{10| 9 |16 10 || 0.616 | 99

Serial 6|8 |10(11|6 [13]11]{10]12] 13 || 0.740 {100
LinearComplexity 13/ 8|4 1413|7159 |8 | 9 || 0.249 {100

TABLE I: Results from applying NIST statistical test suite
to 100M generated bits shows that the TRNG outputs are
evaluated as consistent with being random.

each test fall within uniformly sized bins C1 through C10, and
should tend toward being uniformly distributed when enough
random data is tested. The test suite is applied to a dataset
comprising 100 sequences of 1,000,000 bits from the TRNG
and the results are displayed in Tab. [Il The final column of
the table shows the proportion of sequences that pass the
test, indicating that the sequences have statistical properties
consistent with being random.

VI. TRNG PERFORMANCE AND COST EVALUATIONS

Aside from requirement of avoiding circuits such as oscilla-
tors that are disallowed in certain clouds, the large capacity of
cloud FPGAs implies that the TRNG must also be resilient to
any noise, voltage, or temperature fluctuations that are caused
by high-powered circuitry around the TRNG.

A. Resilience to Environmental Fluctuations

We subject the TRNG design to intentional environmental
disruptions to check that its feedback is able to adapt appropri-
ately. Specifically, we build a configurable power consumption
circuit that is next to the TRNG on the F1 instance. The power
waster consists of 32 different levels of power consumption
that can be enabled. Each level turns on one instance of a
circuit comprising four combinational rounds of the Advanced
Encryption Standard (AES) block cipher, with additional feed-
forward paths added to increase glitching [16]. The power
consumption of the circuit is measured as the average power
reported by the fpga-describe-local-image command provided
in the AWS management tools. Because the reported power
updates only once per minute, we perform separate experiments
to characterize the consumption of the power wasters instead of
measuring their power in real-time when using them to disturb
the TRNG. The baseline power consumption of the instance
is 8W, and each enabled level of power waster consumes an
additional 3W. Turning on the power wasters can disrupt the
TRNG by causing heating and voltage droop.

Fig. [2a) shows how the TRNG adapts when 56W of power
consumption is enabled after the first 1,000 samples are

collected. The blue line shows the Hamming weight of the
samples when feedback is disabled, and the orange line shows
the Hamming weight when feedback is enabled. The 56W of
power draw causes the Hamming weight to have a quick drop,
presumably due to voltage droop, followed by a slower decline
as the circuit heats up. Both voltage droop and increasing
temperature increase propagation delay between the controller
and the TDC, which can explain the drop in Hamming weight.
The feedback allows the TRNG to compensate for this.

Fig. shows a similar experiment, except now the power
wasting circuit is toggled on and off every 1,000 samples, and
each time it is switched on an additional five of the 32 power
waster instances are enabled, which corresponds to around
15W of additional power consumption. When the feedback is
disabled, we can again see by the Hamming weight that the
magnitude of power consumption has a direct relation on the
delay of the circuit. As before, the controller uses feedback
to adapt, and is able to keep the TRNG tuned and operating
correctly.

For an end-to-end validation of the TRNG under disturbance
from power wasters, we repeat the analysis of Section [V-C|
As before, the NIST test suite is applied to 100 sequences of
1,000,000 bits, and now 32 power waster instances are running
during the data collection. The power wasting circuitry toggles
between on and off with every 1,000,000 TRNG bits collected.
Similar to Table [, the TRNG again passes the tests, which
indicates that these environmental fluctuations are not observed
to compromise the TRNG quality.

B. Comparison to Prior Work

The distinguishing feature of our work is its suitability for,
and deployment on, cloud FPGAs. As we’ve described, this
imposes limitations on the types of circuitry that can be used,
and increases the importance of the TRNG being robust to
environmental changes. Despite these challenges, the costs
of our TRNG are found to be reasonable for a large cloud
FPGA. Table [II[| compares the throughput and logic utilization
of our TRNG to other recently published TRNGs that are
implemented on Xilinx FPGAs. Our TRNG design (Fig.
consumes 791 LUTs (0.067% of available), 33 CARRYS8s, and
559 flip-flops (0.024%) across a total of 184 slices. Among
these resources, the controller logic that configures the coarse-
and fine-tuning consumes 92 LUTs and 34 flip-flops, while
the remainder of the resources are consumed by the TRNG
core itself. Our design generates random numbers at a rate of
2.43Mbps, which is sufficient for most applications, but could
be increased through parallelization if needed.

VII. CONCLUSION

Cloud FPGAs are commonly used for accelerating compu-
tationally expensive cryptographic operations that rely on the
generation of random numbers. In this paper, we introduced and
evaluated a true random number generator (TRNG) design that
is compatible with the design restrictions imposed by cloud-
based FPGA providers. The TRNG oscillator-free design that
we impose uses a controllable delay and harvests clock jitter
as an entropy source using a circuit that is similar to a time-to-
digital converter. The effectiveness of the design is supported by
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Fig. 12: Control loop adapts to changes in localized power
consumption on the FPGA in order to keep the TRNG tuned.

Work | FPGA type | Throughput Utilization Approach
7] Spartan 6 | 100 Mbps 46 slices self-timed ring
9] Spartan 6 | 14.3 Mbps 67 slices ring oscillator
17 Spartan 6 | 1.15 Mbps 3 slices ring oscillator
18] Virtex-4 12.5 Mbps 580 slices RS latches

metastability

119] Virtex-6 50 Mbps 224 slices timing
nonuniformity
E Virtex-5 2 Mbps 32 slices metastability
I 20] Spartan 6 3.3 Mbps 27 slices ring oscillator

This Virtex 2.43 Mbps 184 slices clock jitter

work | UltraScale+

TABLE II: Comparison with related TRNGs implemented on
Xilinx FPGAs.

NIST test results and a stochastic model of the entropy source.
Furthermore, the design is shown to be able to compensate
for voltage droop that may occur during a power attack, and
its entropy is not compromised in this scenario. Future work
can consider further increases in entropy-per-sample and the
impact of advanced clocking features.
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