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Abstract

Sensitive attributes such as race are rarely avail-
able to learners in real world settings as their col-
lection is often restricted by laws and regulations.
We give a scheme that allows individuals to re-
lease their sensitive information privately while
still allowing any downstream entity to learn non-
discriminatory predictors. We show how to adapt
non-discriminatory learners to work with priva-
tized protected attributes giving theoretical guar-
antees on performance. Finally, we highlight how
the methodology could apply to learning fair pre-
dictors in settings where protected attributes are
only available for a subset of the data.

1. Introduction

As algorithmic systems driven by machine learning start
to play an increasingly important role in society, concerns
arise over their compliance with laws, regulations and so-
cietal norms. In particular, machine learning systems have
been found to be discriminating against certain demographic
groups in applications of criminal assessment, lending and
facial recognition (Barocas et al., 2019). To ensure non-
discrimination in learning tasks, knowledge of the sensitive
attributes is essential, however, laws and regulation often
prohibit access and use of this sensitive data. As an ex-
ample, credit card companies do not have the right to ask
about an individual’s race when applying for credit, while
at the same time they have to prove that their decisions are
non-discriminatory (Commission, 2013; Chen et al., 2019).

Apple Card, a credit card offered by Apple and Goldman
Sachs, was recently accused of being discriminatory
(Vigdor, 2019). Married couples rushed to Twitter to report
that there were significant differences in the credit limit
given individually to each of them even though they had
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shared finances and similar income levels. Supposing
Apple was trying to make sure its learned model was non
discriminatory, it would have been forced to use proxies
for gender and recent work has shown that proxies can be
problematic by potentially underestimating discrimination
(Kallus et al., 2019). We are then faced with what seems
to be two opposing societal notions to satisfy: we want
our system to be non-discriminatory while maintaining
the privacy of our sensitive attributes. Note that even if
the features that our model uses are independent of the
sensitive attributes, it is not enough to guarantee notions of
non-discrimination that further condition on the truth, e.g.
equalized odds. One potential workaround to this problem,
ignoring legal feasibility, is to allow the individuals to
release their data in a locally differentially private manner
Dwork et al. (2006) and then try to learn from this privatized
data a non-discriminatory predictor. This allows us to
guarantee that our decisions are fair while maintaining a
degree of individual privacy to each user.

In this work, we consider a binary classification frame-
work where we have access to non-sensitive features X
and locally-private versions of the sensitive attributes A
denoted by Z. The details of the problem formulation are
given in Section 3. Our contributions are as follows:

e We first give sufficient conditions on our predictor for
non-discrimination to be equivalent under A and Z and
derive estimators to measure discrimination using the
private attributes Z. (Section 4)

e We give a learning algorithm based on the two-step pro-
cedure of Woodworth et al. (2017) and provide statistical
guarantees for both the error and discrimination of the
resulting predictor. The main innovation in terms of both
the algorithm and its analysis is in accessing properties of
the sensitive attribute A by carefully inverting the sample
statistics of the private attributes Z. (Section 5)

e We highlight how some of the same approach can handle
other forms of deficiency in demographic information,
by giving an auditing algorithm with guarantees, when
protected attributes are available only for a subset of the
data. (Section 6)

Beyond the original motivation, this work conveys addi-
tional insight on the subtle trade-offs between error and
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discrimination. In this perspective, privacy is not in itself
a requirement, but rather an analytic tool. We give some
experimental illustrations of these trade-offs.

2. Related Work

Enforcing non-discrimination constraints in supervised
learning has been extensively explored with many algo-
rithms proposed to learn fair predictors with methods that
fall generally in one category among pre-processing (Zemel
et al., 2013), in-processing (Cotter et al., 2018; Agarwal
et al., 2018), or post-processing (Hardt et al., 2016). In this
work we focus on group-wise statistical notions of discrimi-
nation, setting aside critical concerns of individual fairness
(Dwork et al., 2012).

Kilbertus et al. (2018) were the first to propose to learn a fair
predictor without disclosing information about protected at-
tributes, using secure multi-party computation (MPC). How-
ever, as Jagielski et al. (2018) noted, MPC does not guar-
antee that the predictor cannot leak individual information.
In response, Jagielski et al. (2018) proposed differentially
private (DP) (Dwork et al., 2006) variants of fair learning
algorithms. More recent work have similarly explored learn-
ing fair and DP predictors (Cummings et al., 2019; Xu et al.,
2019; Alabi, 2019; Bagdasaryan & Shmatikov, 2019). In our
setting local privacy maintains all the guarantees of DP in
addition to not allowing the learner to know for certain any
sensitive information about a particular data point. Related
work has also considered fair learning when the protected
attribute is missing or noisy (Hashimoto et al., 2018; Gupta
et al., 2018; Lamy et al., 2019; Awasthi et al., 2019; Kallus
et al., 2019; Wang et al., 2020).

Among these, the most related setting is that of (Lamy et al.,
2019), but it has several critical contrasting points with
the present work. The simplest difference is the general-
ization here to non-binary groups, and the corresponding
precise characterization of the equivalence between exact
non-discrimination with respect to the original and private
attributes. More importantly, their approach is only the first
step of our algorithm. As we show in Lemma 2, the first step
makes the non-discrimination guarantee depend on both the
privacy level and the complexity of the hypothesis class,
which could be very costly. We remedy this using the sec-
ond step of our algorithm. (Awasthi et al., 2019) consider
a more general noise model for the protected attributes in
the training data, but assume access to the actual protected
attributes at test time. The fact that at test time A is pro-
vided guarantees that the predictor is not a function of Z
and hence for the LDP noise mechanism by Proposition 1,
we know that it is enough to guarantee non-discrimination
with respect to Z to be non-discriminatory with respect to
A, which considerably simplifies the problem.

3. Problem Formulation

A predictor Y of a binary target Y € {0, 1} is a function of
non-sensitive attributes X € X" and possibly also of a sensi-
tive (or protected) attribute A € A denoted as YV = h(X)
or Y := h(X, A). We consider a binary classification task
where the goal is to learn such a predictor, while ensuring
a specified notion of non-discrimination with respect to A.
As an example, when deciding to extend credit to a given
individual, the protected attribute could denote someone’s
race and sex and the features X could contain the person’s
financial history, level of education and housing information.
Note that X could very well include proxies for A such as
zip code which could reliably infer race (Bureau, 2014).

Our focus here is on statistical notions of group-wise non-
discrimination amongst which are the following:

Definition 1 (Fairness Definitions). A classifier Y satisfies:
e Equalized odds (EO) if Ya € A

P(Y=1lA=a,Y =y)=P(Y =1]Y =y) Vy € {0,1},
e Demographic parity (DP) if Ya € A

P(Y =1|A=a) =P(Y = 1),
e Accuracy parity (AP) if Ya € A

P(Y #Y|A=0a)=P(Y £Y),

e False discovery (3 = 1)/ omission (y = 0) rates parity if
Ya € A

PY#AY|Y =§,A=a)=P(Y £Y|Y =9).

Our treatment extends to a very broad family of demo-
graphic fairness constraints, let £1,& be two probabil-
ity events defined with respect to (X,Y,Y’), then define
(&1, E2)-non-discrimination with respect to A as having:

]P’(51|52,A:a):P(51|52,A:a’) Va,a’eA (1)
All the notions considered in Definition 1 can be cast into
the above formulation for one or more set of events (&1, &).
Additionally, one can naturally define approximate versions
of the above fairness constraints. As an example, for the
notion of equalized odds, let A = {0,1,--- ,|.A| — 1} and
define 7y, ,(Y) = P(Y = 1]Y =y, A = a), then Y satis-
fies a-EO if:

max  Tye = |7a(Y) —v0(Y)| <o

ye{0,1},aeA

While it is clear that learning or auditing fair predictors
requires knowledge of the protected attributes, laws and
regulations often restrict the use and the collection of this
data (Jagielski et al., 2018). Moreover, even if there are
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no restrictions on the usage of the protected attribute, it
is desirable that this information is not leaked by (1) the
algorithm’s output and (2) the data collected. Local differ-
ential privacy (LDP) guarantees that the entity holding the
data does not know for certain the protected attribute of
any data point, which in turn makes sure that any algorithm
built on this data is differentially private. Formally a locally
e—differentially private mechanism () is defined as follows:

Definition 2. @ is e—differentially private if (Duchi et al.

(2013)):
Q(Z = 2|a)

max ——— < e

z,a,a’ Q (Z = z|a’) -

€

The mechanism we employ is the randomized response
mechanism (Warner, 1965; Kairouz et al., 2014):

eE
[A]—1+e®
1
|A]—14e®

=7 ifz=a

Qela) = { o2

=T

The choice of the randomized response mechanism is mo-
tivated by its optimality for distribution estimation under
LDP constraints (Kairouz et al., 2014; 2016)

The hope is that LDP samples of A are sufficient to en-
sure non-discrimination, allowing us to refrain from the
problematic use of proxies for A. For the remainder of
this paper, we assume that we have access to n samples
S = {(x;,yi, z;) }_, which are the result of an i.i.d draw
from an unknown distribution P over X x ) x A where
A={0,1,---,|A] — 1} and Y = {0, 1}, but where A is
not observed and instead Z is sampled from Q(.| A) indepen-
dently from X and Y. We call Z the privatized protected at-
tribute. To emphasize the difference between A and Z with
respect to fairness, let ¢, o(Y) = P(Y = 1|Y =y, Z = a),
note that Y satisfies a-EO with respect to Z if:

(V) = gyo(¥)] < e
ye(01} aez Iy.a(Y) = qyo(Y)| <

4. Auditing for Discrimination

The two main questions we answer in this section is whether
non-discrimination with respect to A and Z are equivalent
and how to estimate the non-discrimination of a given pre-
dictor.

First, note that if a certain predictor Y = h(X, Z) uses
Z for predictions and is non-discriminatory with respect
to Z, then it is possible for it to in fact be discriminatory
with respect to A. In Appendix A, we give an explicit
example of such a predictor, that violates the equivalence
for EO. This illustrates that naive implementations of fair
learning methods can be more discriminatory than perceived.
Any method that naively uses the attribute Z for its final

predictions cannot immediately guarantee any level of non-
discrimination with respect to A especially post-processing
methods.

This however is not the case when predictors do not avail
themselves of the privatized protected attribute Z. Namely,
let’s consider Y that are only a function of X. Since the
randomness in the privatization mechanism is independent
of X, this implies in particular that Y is independent of Z
given A. Our first result is that exact non-discrimination is
invariant under local privacy:

Proposition 1. Consider any exact non-discrimination no-
tion among equalized odds, demographic parity, accu-
racy parity, or equality of false discovery/omission rates.
Let Y := h(X) be a binary predictor, then Y is non-
discriminatory with respect to A if and only if it is non-
discriminatory with respect to Z.

Proof Sketch. We consider a general formulation of the con-
straints we previously mentioned, let &, &> be two proba-
bility events defined with respect to (X, YY), then define
non-discrimination with respect to A as having:

P(&1]€s, A=a) =P (&), A=d") Va,a € A
Define this notion similarly with respect to Z. We can obtain
the following relation for the conditional probabilities

}P’(c‘fl\c‘fg,Z:a)
o - WP(A:LL,SQ)
= P(51|52,A = (I)) 7IP(Z — a’52)
oy ﬁIP(A:a’,Eg)
+ Z P(gl‘g%A_a’)) P(Z:a’52)

a’eA\{a}

Let P be the following |.A| x |.A| matrix:

TP(A=).65) 2)

Py =200 for j e A
fori,j € As.ti#j

P(Z=i,E2)
Fij = Fz=it)

Then we have the following linear system of equations:

P(&1]E2, Z = 0) P(£1]E2, A = 0)
) _p 2
P(&1|Ex, A= |A] - 1)

3)

P(E1]€2, Z = | A~ 1)

The matrix P is row-stochastic and invertible, from this
linear system we can deduce that non-discrimination with
respect to Z and A are equivalent; details are left to Ap-
pendix A. O

Note that while Y not being a function of Z is a sufficient
condition for the conclusion in Proposition 1 to hold, the
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more general condition for EO is that Y is independent of Z
given A and Y, however actualizing this condition beyond
simply ignoring Z at test time is unclear. We next study how
to measure non-discrimination from samples. Unfortunately,
Proposition 1 applies only in the population-limit. For ex-
ample for the EO notion, despite what it seems to suggest,
naive sample a-discrimination relative to Z underestimates
discrimination relative to A. Interestingly however, for any
of the considered fairness notions, we can recover the statis-
tics of the population with respect to A via a linear system of
equations relating them to those of Z as in (3). This is done
by inverting the matrix P defined in (2), however more care
is needed: to compute the matrix P one needs to compute
quantities involving the attribute A, which then all have to be
related back to Z. Using this relation, we derive an estima-
tor for the discrimination of a predictor that does not suffer
from the bias of the naive approach. First we set key nota-
tions for the rest of the paper: Py, :=P(Y =y, A = a),
Qu =PY =y,Z=a)and C = \AL*%TG The latter
captures the scale of privatization: C ~ O(e™1) if e < 1.

Let P be the A x A matrix as such:

{Pi,i = 7'('Pyi‘ fori e A

Qyi
_Poy; . L,
P ;= T fori,j € As.ti#j

Then one can relate g, and v, via:

qy0 Yy,0
. - p

dy,|Al-1 Vy,|Al-1

And thus by inverting P we can recover v, ,, however,
the matrix P involves estimating the probabilities P(Y =
y, A = a) which we do not have access to but can similarly
recover by noting that:

Qy: =P, + Y 7Py,
aF#z

Let the matrix IT € RIAIXIAl be as follows I, ; = = if
i=jandIl;; = 7 if i # j. Therefore II,'Q, =P(Y =
y, A = k) where H;l is the k’th row of II~!. Hence we
can plug this estimate in to compute P and invert the linear
system to measure our discrimination. In Lemma 1, we
characterize the sample complexity needed by our estimator
to bound the violation in discrimination, specifically for the
EO constraint. The privacy penalty C arises from || P|| .

Lemma 1. For any § € (0,1/2), any binary predictor
Y := h(X), denote by Iy, our proposed estimator for T,
based on S, ifn > %@f), we have:

mingq
~ log(1 4C?
P (max |F5a —Tyal > 0g(16/9) ¢ )

. : 2
ya 2n  mingy, Py,

<9

5. Learning Fair Predictors

In this section, we give a strategy to learn a non-
discriminatory predictor with respect to A from the data
S, which only contains the privatized attribute Z. As in
Lemma 1, for concreteness and clarity we restrict the anal-
ysis to the notion of equalized odds (EO) — most of the
analysis extends directly to other constraints. In light of the
limitation identified by Proposition 1, let  be a hypothe-
sis class of functions that depend only on X. Instead of a
single predictor in the class, we exhibit a distribution over
hypotheses, which we interpret as a randomized predictor.
Let A4 be the set of all distributions over #, and denote
such a randomized predictor by Q € Ay,. The goal is to
learn a predictor that approximates the performance of the
optimal non-discriminatory distribution:

Y* = arg min PQ(X) #Y) )
st 1a(Q) =710(Q) Yy € 0,1}, Vac A (5)

A first natural approach would be to treat the private attribute
Z as if it were A and ensure on S that the learned predictor
is non-discriminatory. Since the hypothesis class H consists
of functions that depend only on X, Proposition 1 applies
and offers hope that, if we are able to achieve exact non
discriminatory with respect to Z, we would be in fact non-
discriminatory with respect to A. There are two problems
with the above approach. First, exact non-discrimination
is computationally hard to achieve and approximate non-
discrimination underestimates the discrimination by the pri-
vacy penalty C. And second, using an in-processing learn-
ing method, such as the reductions approach of (Agarwal
et al., 2018), results in a discrimination guarantee that scales
with the complexity of H.

Our approach is to adapt the two-step procedure of (Wood-
worth et al., 2017) to our setting. We start by dividing our
data set S into two equal parts S; and S3. The first step
is to learn an approximately non-discriminatory predictor
Yy = Q(X) with respect to Z on S; via the reductions ap-
proach of (Agarwal et al., 2018) which we detail in the next
subsection. This predictor has low error, but may be highly
discriminatory due to the complexity of the class affecting
the generalization of non-discrimination of Y. The aim of
the second step is to produce a final predictor Y that cor-
rects for this discrimination, without increasing its error by
much. We modify the post-processing procedure of (Hardt
etal., 2016) to give us non-discrimination with respect to
A directly for the derived predictor Y = f(V,Z). The
predictor in the second step does use Z, however with a
careful analysis we are able to show that it indeed guaran-
tees non-discrimination with respect to A; note that naively
using the post-processing procedure of (Hardt et al., 2016)
fails. Two relationships link the first step to the second:
how discrimination with respect to Z and with respect to A
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relate and how the discrimination from the first step affects
the error of the derived predictor. In the following subsec-
tions we describe each of the steps, along with the statistical
guarantees on their performance.

5.1. Step 1: Approximate Non-Discrimination with
respect to Z

The first step aims to learn a predictor Y that is approxi-
mately «,-discriminatory with respect to Z defined as:

Y =arg Qmin err”1(Q(X)) (6)

EAy

. su(@Q) -y Q) <an (7
® yg%%ﬁ}wy,a(Q) qy:a(Q” =a @

where for Q € Ay, we use the shorthand err(Q) =
P(Q(X) # Y) and quantities with a superscript .S indi-
cate their empirical counterparts. To solve the optimization
problem defined in (6), we reduce the constrained optimiza-
tion problem to a weighted unconstrained problem follow-
ing the approach of (Agarwal et al., 2018). As is typical
with the family of fairness criteria considered, the constraint
in (7) can be rewritten as a linear constraint on Y explic-
itly. Let 7 = Y x A K=Y x A\ {0} x {—,+} and
define v(Q) € RV with v(Q)(,0) = Vy,0(Q), with the
matrix M € RI®¥I71 having entries: M, 4 4).(ay) =
H(a = a/7y = y/)v M(y,a,—),(a’,y’) = 7H(a’ = a/a Yy =
y/)v M(y,a,+)a(0,y’) =1I(y = y/)a M(y,a,—),(O,y’) =-I(y =
y'). With this reparametrization, we can write a,,-EO as:

M~(Q) < apl (®)

K]
L and

Let us introduce the Lagrange multiplier A € R
define the Lagrangian:

LQ,X) =err(Q) + AT (Mv(Q) —al) (9

We constrain the norm of A with B € R and consider the
following two dual problems:

L(Q,A) (10)

min max
QEAM AeRI ||| <B

max min L(Q, ) (11)
Aer || <B Q€A

Note that L is linear in both () and A and their domains
are convex and compact, hence the respective solution of
both problems form a saddle point of L (Agarwal et al.,
2018). To find the saddle point, we treat our problem as a
zero-sum game between two players: the Q-player “learner”
and the A-player “auditor” and use the strategy of (Freund
& Schapire, 1996). The auditor follows the exponentiated
gradient algorithm and the learner picks it’s best response to
the auditor. The approach is fully described in Algorithm 1.

Algorithm 1 Exp. gradient reduction for fair classification
(Agarwal et al., 2018)

Input: training data (X, Y;, Zi)?:/f, bound B, learning rate

7, rounds T’
0, «+ 0 € RIXI
fort=1,2,--- ,Tdo
X (9t, ')
Atk Biprf:;exp"(ew)v}e ek

he  BEST# (Ar)
0141 <+ Oy + (M~ (hy) — 1)

end
Yo p i he A 1 A
Return (Y, )

Faced with a given vector A the learner’s best response,
BEST} (A)), puts all the mass on a single predictor h € H
as the Lagrangian L is linear in ). (Agarwal et al., 2018)
shows that finding the learner’s best response amounts to
solving a cost-sensitive classification problem. We reestab-
lish the reduction in detail in Appendix A, as there are
slight differences with our setup. In particular, in Lemma
2, we establish a generalization bound on the error of the
first step predictor Y and on its discrimination, defined
as the maximum violation in the EO constraint. To de-
note tpe latter similarly to the error, we use the shorthand
disc(Y) = maxye(0,1},ae4 Lya-

Lemma 2. Given a hypothesis class H, a distribution over
(X,A)Y), BeR" andany § € (0,1/2), then with prob-
ability greater than 1 — 0, if n > 16log 8| A)/6

« =
=  minygg Pyq ’ n

2\/% and we let ) = R,, 5 (H) + \/@, then

running Algorithm 1 on data set S with T > %

and learning rate n = % returns a predictor Y satisfying

the following:

y log 8/4
err(Y) <50 err(Y™) + 4R, 2(H) + 4@

5C 2
- ( + 6% minga nPye (H)
ya 4

: 2
min,, P B

disc(Y) <s5/2

2log 64|.A4]/6

. (discrimination guarantee)
nming, Py,

Proof of Lemma 2 can be found in Appendix A. Note that
the error bound in Lemma 2 does not scale with the privacy
level, however the discrimination bound is not only hit by
the privacy, through C, but is further multiplied by the
Rademacher complexity 2R, (%) of H. Our goal in the
next step is to reduce the sample complexity required to
achieve low discrimination by removing the dependence
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on the complexity of the model class in the discrimination
bound.

Comparison with Differentially Private predictor.
Jagielski et al. (2018) modifies Algorithm 1 to ensure that
the model is differentially private with respect to A assum-
ing access to data with the non-private attribute A. The
error and discrimination generalization bounds obtained
(Theorem 4.4 (Jagielski et al., 2018)) both scale with the
privacy level € and the complexity of H, meaning the excess
terms in the bounds of Lemma 2 are both in the order of
O(MR,,(H)/€) in their work. Contrast this with our error
bound that is independent of ¢, the catch is that discrimina-
tion obtained with LDP is significantly more impacted by
the privacy level e. Thus, central differential privacy and
local differential privacy in this context give rise to a very
different set of trade-offs.

5.2. Step 2: Post-hoc correction to achieve
non-discrimination with respect to A

We correct the predictor we learned in step 1 using a mod-
ified version of the post-processing procedure of Hardt
et al. (2016) on the data set S2. The derived second step
predictor Y is fully characterized by 2|.4| probabilities
PY = 1Y = §,Z = a) = Dy,-- If we naively de-
rive the predictor applying the post-processing procedure of
Hardt et al. (2016) on S then this does not imply that the
predictor satisfies EO as the derived predictor is an explicit
function of Z, cf. the discussion in Section 4. Our approach
is to directly ensure non-discrimination with respect to A to
achieve our goal. Two facts make this possible. First, the
base predictor of step 1 is not a function of Z and hence we
can measure its false negative and positive rates using the
estimator from Lemma 1. And second, to compute these
rates for Y, we can exploit its special structure. In particular,
note the following decomposition:

PY=1Y =y, A=a) = (12)
P(Y =1]Y =0,A=a)P(Y =0]Y =y, A =a)
+PY =1y =1, A=a)P(Y = 1|Y =y, A=q)

and we have that:

P(Y = 1|V

§,A=a)=mpjat® Y Pga = Dpa
a’'eA\a

and IP’(}A’|Y = y, A = a) can be recovered by Lemma 1,
denote P52 (Y = = g|Y = y,A = a) our estimator based
on the empirical P%2(Y'|Y, Z). Therefore we can compute
sample versions of the conditional probabilities (12).

Our modified post-hoc correction reduces to solving the

following constrained linear program:

>~<

Y = argmi (P(V = 5,2 =a,Y =0
arg min % Y=92=a )

“P2(Y =9,Z=a,Y

I
=
~——
i
<
IS

‘50 PRV =0]Y =y, A =a)

+P1aPSQ( =1Y =y,A=q)

*poo]P’ ( =0Y =y, A=0)

—proP (Y =1]Y =y, A=0)| < )@
0<pja<1 Vje{0,1},Vaec A (13)

The following Theorem illustrates the performance of our
proposed estimator Y.

Theorem 1. For any hypothesis class H, any distribution
over (X A,Y) and any 6 € (0,1/2), then with probability

16 log(8|.A]/5) _ 8log 64/8 ~
lfﬂ 2 mingg Pya » O = nming. Q- and G, =
log(64/8) 4|A|C?

2n mingq me
step procedure satisfies:

, the predictor resulting from the two-

- 5C 2
V) <serr(Y) + ——— [ = + 10R minga nPy
err(Y) s erx( )+minyaP,2a (B+ 0R minye neye (M)
21og 64|A|/5
FI8JA| | B2 |A|/>
nming, Py,

~ log (84 2
disc(Y) <s 0g(5) _8lAIC

2n miny, P2,
Proof Sketch. Since the predictor obtained in step 1 is only a
function of X, we can prove the following guarantees on its
performance with Y* being an optimal non-discriminatory
derived predictor from Y:

log(32|A/9)

err(Y) <5/2 err(Y ™

*) + 4| A|IC

log(%‘l) 8JA|C?

; 2
2n  miny, P

disc(Y) <s5/2

Next, we have to relate the loss of the optimal derived pre-
dictor from Y, denoted by Y*, to the loss of the optimal
non-discriminatory predictor in H. We can apply Lemma
4 in Woodworth et al. (2017) as the solution of our derived
LP is in expectation equal to that in terms of A. Lemma 4
in Woodworth et al. (2017) tells us that the optimal derived
predictor has a loss that is no greater than the sum of the
loss of the base predictor and its discrimination:

err(Y*) < err(Y) + disc(Y)
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Figure 1. Plots of discrimination violation and accuracy of the step
1 predictor Y and the two-step predictor Y versus the privacy level
€ on the Adult Income dataset (Kohavi, 1996). Error bars show
95% confidence interval for the average.

Plugging in the error and discriminating proved in Lemma 2
we obtain the theorem statement. A detailed proof is given
in Appendix A.2.4. O

Our final predictor Y has a discrimination guarantee that is
independent of the model complexity, however this comes
at a cost of a privacy penalty entering the error bound. This
creates a new set of trade-offs that do not appear in the
absence of the privacy constraint, fairness and error start to
trade-off more severely with increasing levels of privacy.

5.3. Experimental Illustration

Data. We use the adult income data set (Kohavi, 1996)
containing 48,842 examples. The task is to predict whether
a person’s income is higher than $50k. Each data point
has 14 features including education and occupation, the
protected attribute A we use is gender: male or female.

Approach. We use a logistic regression model for classifi-
cation. For the reductions approach, we use the implementa-
tion in the fairlearn package '. We set T' = 50, n = 2.0 and
B =100 for all experiments. We split the data into 75% for
training and 25% for testing. We repeat the splitting over 10
trials.

Effect of privacy. We plot in Figure 1 the resulting dis-
crimination violation and model accuracy against increasing
privacy levels € for the predictor Y resulting from step 1,
trained on all the training data, and the two-step predictor
Y trained on S; and S>. We observe that Y achieves lower
discrimination than Y across the different privacy levels.

1https ://github.com/fairlearn/fairlearn

This comes at a cost of lower accuracy, which improves at
lower privacy regimes (large epsilon). The predictor of step
1 only begins to suffer on accuracy when the privacy level is
low enough as the fairness constraint is void at high levels
of privacy (small epsilon).

Code to reproduce Figure 1 is publicly available 2.

6. Discussion and Extensions

Could this approach for private demographic data be used
to learn non-discriminatory predictors under other forms of
deficiency in demographic information? In this section, we
consider another case of interest: when individuals retain the
choice of whether to release their sensitive information or
not, as in the example of credit card companies. Practically,
this means that the learner’s data contains one part that has
protected attribute labels and another that doesn’t.

Privacy as effective number of labeled samples. As
a first step towards understanding this setting, sup-
pose we are given ny fully labeled samples: S, =
{(z1,01,91)s -, (Tn,, Qnys Yn, )} drawn i.i.d from an un-
known distribution P over X x A x ) where A =
{0,1,---,]A] =1} and ¥ = {0,1,---,|Y| — 1}, and
n, samples that are missing the protected attribute: .S,, =
{(z1,91), -+, (Tn,,Yn,)} drawn i.i.d from the marginal
of P over X x ). Define n := ny+n,, S = Sy;US, and let
B > 0 be such that ny := fn and n,, = (1 — 8)n. This data
assumption is equivalent to having individuals not reporting
their attributes uniformly at random with probability 1 — .
The objective is to learn a non-discriminatory predictor Y
from the data S.

To mimic step 1 of our methodology, we propose to modify
the reductions approach, so as to allow the learner, Q-player,
to learn on the entirety of .S while the auditor, A-player, uses
only Sy. We do this by first defining a two data set version
of the Lagrangian, as such:

L99(Q, ) = err®(Q) + AT (M7 (Q) — a1). (14)

This changes Algorithm 1 in two key ways: first, the update
of 6 now only relies on .Sy and, second, the best response of
the learner is still a cost-sensitive learning problem, however
now the cost depends on whether sample i is in Sy or \S,,.
If it is in .9,,, i.e. it does not have a group label, then the
instance loss is the misclassification loss, while if it is in
Sy its loss is defined as before. Lemma 3 characterizes the
performance of the learned predictor Y using the approach
just described.

Lemma 3. Given a hypothesis class H, a distribution
over (X,AY), B € R" and any § € (0,1/2), then
with probability greater than 1 — 9§, if ng > 8log4|A41/9

ming, Pyq ’

2https ://github.com/husseinmozannar/
fairlearn_private_data
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log 32|.A|/d

Qn = ng Mingg Pyg

and we let 9 = R, (H) + 1/ %,
then running the modified Algorithm 1 on data set S and S,
with T > % and learning rate n = 8% returns

a predictor Y satisfying the following:

err(Y) <s err(Y™*) + 4R, (1) + 44/ log4/0
n

N 2
disc(Y) <s = 4+ 6Rminya nPya (H 10 -
ise(Y) <5 B + e (H) + Ny Ming, Py,

A short proof of Lemma 3 can be found in Appendix A.
Notice the similarities between Lemma 2 and 3. The error
bound we obtain depends on the entire number of samples
n as in the privacy case and the discrimination guarantee
is forcibly controlled by the number of labeled group sam-
ples ny. We can thus interpret the discrimination bound in
Lemma 2 as having an effective number of samples con-
trolled by the privacy level e.

Individual choice of reporting It may be more realis-
tic to assume that the choice of individuals to report their
protected attributes may depend on their own character-
istics, let t(z,y,a) € (0,1] (reporting probability func-
tion) be the probability that an individual (x,y, a) chooses
to report their protected attributes. This can be codi-
fied using a binary reporting random variable 7" where
P(T = 11X =2,Y = y,A = a) = t(z,y,a). Note
that in the setting of Lemma 3, ¢(x,y,a) = 3, a constant.
Starting from a dataset S of n individuals sampled i.i.d.
from PP, each individual 7 flips a coin with bias t(z;, y;, a;)
and accordingly chooses to include their attribute a; in S.
The result of this process is a splitting of .S into S, =
{(z1,01,y1), -, (Tny, Gnys Yn, )} (individuals who report
their attributes) and S, = {(x1,91), - , (Tn,,Yn, )} (indi-
viduals who do not report). The goal again is to learn a non
discriminatory predictor Y.

The immediate question is whether we can use our modified
algorithm with the two-dataset Langragian (14) and obtain
similar guarantees to those in Lemma 3 in this more general
setting. This question boils down to asking if the naive
empirical estimate of discrimination is consistent and the
answer depends both on the reporting probability function ¢
and the notion of discrimination considered as illustrated in
the following proposition.

Proposition 2. Consider (€1, Es)-non-discrimination with
respect to A. Fix a reporting probability function t : X x
Y x A — (0,1]. If the resulting T and &, are conditionally

independent given { A, &>}, then for all a € A we have
PS5 (£1]E9, A = a) =, P(&1]E2, A=a), asn — cc.

where, for each n, Sy is generated via individual random
reporting through t.

2log 32|.A]/6

Proof. Given a € A, our estimate P (£,|&2, A = a)
is nothing but the empirical estimator of
P(&1|62,A=a,T =1) where {T' = 1} denotes the
event that an individual does report their attributes and are
thus included in Sy;. As an immediate consequence we
have:

P (£1]E2, A = a) —, P(&1]E2, A =a,T = 1)

Now, by assumption, 7" and &; are conditionally indepen-
dent given {A, &} and thus:

P(£1|£Q,A = a7T = 1) :P(51|52,A = a)

which completes the proof. Note that the event & has
strictly positive probability given {€3, A = a,T = 1}, as
the reporting probability function is strictly positive. O

If the independence condition in Proposition 2 is satisfied,
then this immediately suggests that we can run Algorithm
(1) and obtain learning guarantees.

To illustrate this concretely, suppose the notion of non-
discrimination is EO. Consider any reporting probability
function of the form t; : Y x A — (0, 1] (does not de-
pend on the non-sensitive attributes). Furthermore suppose
our hypothesis class consists of functions that depend only
on X. The conditional independence condition in Propo-
sition 2 thus holds and we can estimate the discrimination
of any predictor in our class. The only change to Lemma
3 in this setup is that the effective number of samples in
the discrimination bound is now: n miny, Py, - Ty, where
T, =PI =1]Y =y, A = a) (T is the r.v. that denotes
reporting); the proof of this observation is immediate.

Trade-offs and proxies To complete the parallel with
the proposed methodology, what remains is to mimic step
2, to devise ways to have lower sample complexities to
achieve non-discrimination. Clearly the dependence on n,
in Lemma 3 is statistically necessary without any assump-
tions on the data generating process and the only area of
improvement is to remove the dependence on the complex-
ity of the model class. If the sensitive attribute is never
available at test time, we cannot apply the post-processing
procedure of (Hardt et al., 2016) in a two-stage fashion
(Woodworth et al., 2017).

In practice, to compensate for the missing direct informa-
tion, if legally permitted, the learner may leverage multiple
sources of data and combine them to obtain indirect access
to the sensitive information (Kallus et al., 2019) of individu-
als. The way this is modeled mathematically is by having
recourse to proxies. One of the most widely used proxies is
the Bayesian Improved Surname Geocoding (BISG) method,
BISG is used to estimate race membership given the last
name and geolocation of an individual (Adjaye-Gbewonyo
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et al., 2014; Fiscella & Fremont, 2006). Using this proxy,
one can impute the missing membership labels and then
proceed to audit or learn a predictor. But a big issue with
proxies is that they may lead to biased estimators for dis-
crimination (Kallus et al., 2019). In order to avoid these
pitfalls, one promising line of investigation is to learn it
simultaneously with the predictor.

What form of proxies can help us measure the discrimi-
nation of a certain predictor Y X — Y? Some of the
aforementioned issues are due to the fact that features X are
in general insufficient to estimate group membership, even
through the complete probabilistic proxy P(A|X). In partic-
ular for EO, if A is not completely identifiable from X then
using this proxy leads to inconsistent estimates. In contrast,
if we have access to the probabilistic proxy P(A|X,Y), we
then propose the following estimator (see also Chen et al.
(2019))

~S Z?:l Y (z:)1(y; = y)P(A = alx;, y;)
Wya(Y) a E?:l 1(yi = y)P(A = alzy, yi)

, (15)

which enjoys consistency, via a relatively straightforward
proof found in Appendix A.

Lemmad. Let S = {(x;,a;,y;)}, iid. ~P"(A, X,Y),
the estimator 55(1 is consistent. As n — 00

~S
,Yya _>p 'Yya .

We end our discussion here by pointing out that if such a
proxy can be efficiently learned from samples, then it can
reduce a missing attribute problem effectively to a private
attribute problem, allowing us to use much of the same
machinery presented in this paper.

7. Conclusion

We studied learning non-discriminatory predictors when the
protected attributes are privatized or noisy. We observed that,
in the population limit, non-discrimination against noisy at-
tributes is equivalent to that against original attributes. We
showed this to hold for various fairness criteria. We then
characterized the amount of difficulty, in sample complex-
ity, that privacy adds to testing non-discrimination. Using
this relationship, we proposed how to carefully adapt ex-
isting non-discriminatory learners to work with privatized
protected attributes. Care is crucial, as naively using these
learners may create the illusion of non-discrimination, while
continuing to be highly discriminatory. With the same ap-
proach and without recourse to proxy information, we ended
by highlighting when and how we can learn predictors when
individuals can choose to withhold their protected attributes.
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