The Flajolet-Martin Sketch Itself Preserves
Differential Privacy:
Private Counting with Minimal Space

Adam Smith Shuang Song Abhradeep Thakurta
Boston University Google Research, Brain Team Google Research, Brain Team
ads22@bu.edu shuangsong@google.com athakurta@google.com

Abstract

We revisit the problem of counting the number of distinct elements [(D) in a data
stream D, over a domain [u]. We propose an (g, 0)-differentially private algorithm
that approximates [(D) within a factor of (1 £), and with additive error of

O(+/In(1/8) /), using space O(In(In(u)/v)/v?). We improve on the prior work
at least quadratically and up to exponentially, in terms of both space and additive

error. Our additive error guarantee is optimal up to a factor of O(,/In(1/4)),

and the space bound is optimal up to a factor of O (min {ln (1n§")> , v% }) We

assume the existence of an ideal uniform random hash function, and ignore the
space required to store it. We later relax this requirement by assuming pseudo-
random functions and appealing to a computational variant of differential privacy,
SIM-CDP.

Our algorithm is built on top of the celebrated Flajolet-Martin (FM) sketch.
We show that FM-sketch is differentially private as is, as long as there are
~ /In(1/0)/(e7y) distinct elements in the data set. Along the way, we prove
a structural result showing that the maximum of % i.i.d. random variables is statisti-
cally close (in the sense of e-differential privacy) to the maximum of (k + 1) i.i.d.
samples from the same distribution, as long as k = Q (1).

Finally, experiments show that our algorithms introduces error within an order
of magnitude of the non-private analogues for streams with thousands of distinct
elements, even while providing strong privacy guarantee (¢ < 1).

1 Introduction

Counting distinct elements in a data stream (a.k.a. cardinality estimation) is one of the fundamental
problems in streaming computation [10]. The simplest algorithm would just keep track of the set
of distinct elements in the stream. This requires space that grows linearly with the set’s cardinality,
making it infeasible to be deployed at scale. For example, one might want to count the number of
distinct search queries on google.com [25], or the number of unique users who clicked on an
advertisement campaign [43]. For such large streams, one would like to count distinct elements
approximately using a very small amount of additional space—perhaps just a few kilobytes [1].
Beyond web applications, counting distinct elements is an essential component in many other
fields, such as computational biology [9, 4], graph analysis [38, 37], query optimization [40, 39],
datamining [42, 3, 25, 35], and network traffic monitoring [19].

There has been a tremendous amount of work both on the theoretical front (see [29] for a brief survey),
and on the applied front [31, 24, 2] on cardinality estimation. Variants of the classic Flajolet-Martin
(FM) sketch [21] are theoretically optimal [29] and achieve the best known empirical space-accuracy

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

trade-offs [25, 20]. The accuracy of cardinality estimation algorithms is typically measured by their
multiplicative error. The algorithm with the best known theoretical bound estimates the true distinct
count up to a multiplicative factor of (1 4 +), with space O(1/92 +1InIn(u)) [29], where w is the size
of the universe from which data elements are drawn (or simply an upper bound on the stream length).

Desfontaines et al. [13] showed that a large class of sketches used to count distinct elements allow an
attacker to test whether a particular individual is in the stream (a type of attack called “tracing” [17]
or “membership inference” [41]). Designing sketch algorithms that do not reveal individual-level
information thus requires considerable care.

In this paper, we give new differentially private algorithms for counting distinct elements. While there
has been prior work on this problem [32, 36, 5], their space-utility trade-offs are exponentially worse
(in the universe size u) than that of non-private variants. We bridge this gap by achieving (nearly)
optimal space-utility trade-off, assuming the existence of an ideal uniform random hash function
(sometimes called a “random oracle” [29]). This assumption can be removed at some additional space
cost. Our algorithm is (g, §)-differentially private and uses space O(In(In(u)/v)/~?) to estimate
cardinality up to multiplicative factor of (1 &) with an additive error of O(4/In(1/9)/e). The

additive error is optimal up to a factor of /In(1/d) for any differentially private algorithm that counts
the number of distinct elements in a data set, even without space constraints.

One main advantage of our algorithm is its simplicity. We show that if one has at least
~ /In(1/6)/(ey)-distinct elements in the data stream, then the original FM sketch [21, 14] is
differentially private as is, assuming hash values for different elements are independent. We guaran-
tee this condition by padding the stream with enough new, “phantom" elements.

Problem definition: Let D = [dy,...,d,] be a stream of data samples where each d; is from a
domain [u]. The objective is to estimate the number of distinct elements in D, denoted Fo(D). The
algorithm A is given privacy parameters £ and 0 as well as a space bound S. When the data stream
has been read completely, it produces a final output .A(D). A must satisfy (e, §)-differential privacy
(Definition 1.1). We say that the algorithm .4 has multiplicative error v and additive error A with
failure probability f if, for every data stream D, with probability at least 1 — 3 over .A’s random

coins, the output A(D) satisfies [(ngg — A< A(D) < (1+v)Fo(D)+ A, sometimes abbreviated

A(D) € (1+£7)Fo(D) £ A.

When £ is not specified, we take it to be 1/3. Non-private algorithms [10] typically guarantee A = 0.
However, differentially private cardinality estimators must have additive error A = €2 (1/¢), even
without a space constraint.

Definition 1.1 (Differential privacy [16, 15]). A randomized algorithm A is (g, 0)-differentially
private if for any pair of data sets D and D' that differ in one record (i.e., |DAD’| = 1), and for all
S in the output range of A, we have

Pr[A(D) € S] < ¢ - PrlA(D') € 8] + 6,

where the probability is over the randomness of A.

Typically, ¢ is taken to be a small constant, say 0.1, and J is a small quantity that captures the
probability of a significant privacy leak (often it is chosen smaller than 1/n [30]).

Our Contributions: In Section 2, we provide an (&, §)-differentially private algorithm (Algorithm 3)

that achieves additive error of O(+/In(1/8)/e) using O(In(In(w)/v)/+?) bits of space. A variant
of the algorithm is (e, 0)-differentially private, but has additive error O(1/~¢). These algorithms
improve significantly on previous work, which had additive error and space bounds that (a) grow
polynomially in In(u) rather than InIn(u) and (b) have additive error at least In(u)/(%y?)—worse
than ours by at least a quadratic factor, even for small universes. Table 1 provides a brief comparison;
see Appendix A for more related work.

To ensure differential privacy, Algorithm 3 requires access to an ideal random hash function mapping
[u] x [m] to N, where m is (roughly) the space usage of the sketch, each hash value is geometrically
distributed with parameter /(1 + 7) and hash values are independent (Assumption 2.1). In the
above space bound, we do not consider the space required to store the seed to the hash function.
Section 2.3 explains how to practically emulate such hash functions with a single pseudorandom

Table 1: Comparison between various differentially private algorithms for estimating the number
of distinct elements (Fo(D)) up to a multiplicative factor of (1 + +) for v < 1. ¢* denotes the
maximum count for each element. The comparison ignores the space to store the hash function seed,
and assumes compute time for hashing any element « € [u] is O(1). (}) Privacy guarantee in [12]
is conditioned on [(D) being large enough. We analyzed a variant of it with “phantom” elements
added to ensure the condition. [12] did not have any accuracy guarantees. (x) The algorithm of [32]
can be modified to satisfy “pan-privacy"” (that is, they remain private even when an attacker sees the
algorithm’s internal state at one point in time).

Algorithm Privacy Additive error Space Ideal uniform Time (per update)
hash function

Algorithm3 (e, 8)-DP 0] (7\’“21/‘”) o) (W) Yes o (7%)

Algorithm 3 &-DP o(%) O (lntntp/o)) Yes o(%)
21t &-DP — 16) (“‘“”2% Yes o)

In(u) m Yes

[36] e-DP o (5272) o (e2+2) (For utility only) O (In(u))
[32] e-DP* poly (ln(u), In(c*), 1, %) poly(In(u)) No (@] (712)
129] Non-private 0 o (%2 +ln 1n(u)) No o (1)

functions (PRF) [44]. Generically, this approach results in a weakening of the differential privacy
definition to a computational variant, SIM-CDP [33]. In fact, sufficiently strong PRFs allow us
to achieve actual differential privacy, though they still require a complexity-theoretic assumption
(their existence implies that of one-way functions). In practice, the space required to store the hash
functions is not significant: it suffices store a seed of one PREF, e.g., a block cipher like AES whose
seed is at most 256 bits. See Section 2.3 for details.

The privacy-space-utility trade-off our algorithm offers is (almost) tight. Every differentially private
algorithm for counting distinct elements has an additive error of ((1/¢) (by the optimality of the
geometric mechanism [23]). Every algorithm, private or not, requires space ©(1/42) [28]. Relative
to prior work on private low-space counting [36, 32], our algorithm reduces both the additive error
and space requirement exponentially in the dependence on the domain size w. (That said, our use of a
pseudorandom function makes the privacy guarantees incomparable.)

Algorithm 3 is based on the celebrated FM sketch [26, 21, 14, 20], described formally in Algorithm 1.
The idea is to map each distinct element of the stream to a geometric random variable, so that
repeated elements map to the same value. One stores the maximum observed value of all the random
variables. This value is an integer « such that the true cardinality Fo(D) lies in [(147)®, (1++)*H]
with reasonable probability. This “basic unit” is repeated about 1/4? times in parallel to get a
high-confidence estimate. We show that, roughly,

v In(1/6)

the FM sketch is differentially private as is, as long as there are at least ky ~ =

distinct elements in the data stream.

To be exact, we also need to impose a lower bound on each of the stored maximum hash values.
That bound is small enough that it does not affect accuracy. We can get an algorithm that is truly
differentially private by adding k, “phantom” elements (guaranteed to be not in the data set) to the
sketch before processing the data, and subtracting k, from the final estimate. This step guarantees
enough distinct elements for the privacy guarantee to kick in.

Our analysis relies on a structural result, Lemma 2.3, which might be of independent interest: The
maximum of & i.i.d. Uniform (0, 1) random variables, when lower bounded by e~¢, is e-close (in
the sense of differential privacy) to the maximum of (k + 1) i.i.d. Uniform (0, 1) r.v.’s, as long as
k=Q (%) This allows us to show that each “basic unit" of the FM sketch is (e, 0)-differentially
private as long as the data stream has at least (roughly) 1/e distinct elements. The privacy of the
entire sketch follows by standard composition results.

The idea that certain sketching algorithms are already differentially private is not new to this paper.
Blocki et al. [8] showed that the Johnson-Lindenstrauss transform (commonly used for dimensionality

reduction) is also differentially private. Our results suggests a potentially more general connection.
In a recent concurrent work, Choi et al. [12] made a similar observation that FM sketch preserves
differential privacy as is. However, their privacy guarantee is conditioned on the fact that there are
sufficient number of distinct elements in the data stream. Using our idea of explicitly adding phantom
elements, one can make the privacy guarantee in [12] unconditional. The additive error is hard to
estimate unless [(D) is really large. This is due to splitting of the data stream in [12]. However,
according to the variance guarantees of these style of estimators [20], one cannot expect the additive
error to be any better than O(1/(¢)). While the privacy analysis in [12] is only for geometric
distribution, our privacy argument is more general: it applies to any distribution over the reals.

Experiments: One important attribute of our algorithm is that the entire final value of the sketch—
including all 1/2 “basic units” but not the hash function descriptions—is differentially private. This
means an analyst could use any function to convert these basic units into a final cardinality estimate.
In Algorithm 3, we use the quantile estimator, whose performance is simplest to analyse. However,
one can use other estimators, e.g., the geometric [14] or harmonic means [20]. In our empirical
evaluation, we compare these estimators on the private and the non-private variant of FM sketch. The
harmonic mean (corresponding to the Hyper-log-log sketch) is most commonly used in practice [25].

In Section 3, we show that with € = 1.0, all three estimators reach nearly the same relative error as
the non-private estimator, which is below 2% using 4096 hash functions. Comparing the estimators,
we can see that the harmonic mean generally performs best, though for streams with few distinct
elements the quantile estimator is more accurate. We further compare our empirical results with prior
(and concurrent) works [36, 12, 32]. We demonstrate that our algorithm has a superior empirical
performance in practice too.

2 Counting Distinct Elements Privately

In this section, we provide an (e, §)-differentially private streaming algorithm that estimates Fo (D),
the number of distinct elements in D, with multiplicate error 1+~ and additive error O(1/In(1/9)/e)

for v € (0, 1). The algorithm uses space O (ln 108 (14 (u))y/In(1/8)/7?)

In Section 2.1, we first revisit the FM sketch. Then, in Section 2.2 we provide a differentially private
variant of the FM sketch. The algorithms in this section are built assuming the existence of ideal
uniform random hash functions. In Section 2.3, we provide the details on practical implementation
using pseudorandom functions.

2.1 Revisiting Flajolet-Martin Sketch

For completeness, we first recall a variant of the Flajolet-Martin (FM) sketch [21, 14, 20]. We will use
Algorithm Appm (Algorithm 1) as a building block in our differentially private estimation algorithm.

The idea behind Algorithm Agy is the following' Let o be the maximum of £ geometric random
variables' with parameter () Then (1 +)¢ ﬁ,

More specifically, the probability that (1 +) lies to the left of the interval is about 1/e — ~; the
probability that it lies to the right is roughly 1/e + ~. Hence, if there are k-distinct elements in a
data stream, and each distinct element is assigned an independent geometric r.v., then the maximum
of these r.v.s can be used to estimate & within a multiplicative factor of (1 +). The probability of
success can be boosted by running multiple independent copies of this procedure, and taking the
1/e-th quantile of these maxima as the final estimator. The original FM-sketch [21] is an instantiation
of Algorithm Apy with v = 1 and using the artihmetic mean, rather than a quantile, of the maxima
to get the final estimator.

k- (1 4 ~y)| with reasonable probability.

Our version of Algorithm 4w relies on the existence of an idealized geometric hash function defined
in Assumption 2.1. (We discuss more realistic hash functions in Section 2.3.)

"For p € (0,1], Geometric (p) denotes the discrete distribution with CDF F(w) = 1 — (1 — p)* for
w e N+.

Algorithm 1 Agy: Flajolet-Martin (FM) sketch for distinct elements

Input: Data set: D = {di,...,d,}, domain: [u], accuracy constraint: v € (0,1), Hash
function H : S x [u] — Ny such that for each d € [u], Hy(d) ~ Geometric (ﬁ) when
s ~ Uniform (S)
s = Uniform (S) {sample a random seed for the hash function}, a <— 0
for i <— 1ton do
Y; « Hy(d;), a + max(a, Y;)
end for
return «

AE A

Assumption 2.1. We say H : S x [u] — Ny is an ideal geometric-valued hash function (with

parameter ﬁ if, for every finite set of distinct inputs x1, ..., xy, if s ~ Uniform (S), the values

H(x1), ..., Hs(xy) are i.i.d. Geometric (ﬁ) random variables.

Theorem 2.2 (Utility guarantee of the non-private FM sketch). Consider an input stream D € [u]*

with Fo(D) distinct elements. Let {1, ..., an} denote the values returned by m independent
executions of the FM sketch (Algorithm 1) on D with parameter . Let & be the (% - %)—th quantile

of {ar,...,am}, andlet k = (1 4+ ~)% Ifm = L0vIn1/5) Vl:/lz(l/ﬁ) then with probability at least 1 — 3,

Fo(D)
(1+7)

<R <Fo(D)-(147), aslongasFo(D) > 2. (1)
Y

2.2 Differentially Private Flajolet-Martin Sketch

Algorithms 2 and 3 specify a differentially private variant of the Flajolet-Martin (FM) sketch, where
Algorithm 2 is the sketch itself, and Algorithm 3 is the estimator.

The privacy guarantee comes from a proof that the non-private sketch as is satisfies differential
privacy, as long as there are at least {2 (w /In(1/6)/ 5) distinct elements in the data stream, and the
value of the sketch is bounded below by a specific constant.

In a bit more detail: The FM sketch (in Algorithm 1) can be thought of as the maximum of F (D)
geometric random variables. We make two key observations, Lemma 2.3 and Corollary 2.4, which
may be of independent interest. Lemma 2.3 shows that the maximum of k i.i.d. Uniform (0, 1), when
lower bounded by e™¢, is statistically close to the maximum of (k + 1) i.i.d. Uniform (0, 1), as long
as k > ei i % Corollary 2.4 extends the guarantee to maximum of geometric random variables,

with a lower bound of roughly log(1/¢) instead of 1/e.

In order to be able to apply Corollary 2.4 and get a differentially private sketch, we make two changes.
First, since Corollary 2.4 requires k > —, we add k, = —— “phantom” elements (in Line 2)
to the maximum. One may think of these as imaginary elements that do not overlap with D. We
subtract k, from the final estimate to account for these new elements. Second, we enforce the lower

bound (denoted armin) When the sketch is finalized.

The space requirement of the resulting algorithm is the same as the non-private sketch. The utility
analysis follows almost directly from the utility of the nonprivate estimator. Adding the phantom
elements (and later subtracting them from the estimate) does not affect the multiplicative error, but
does induce some extra additive error.

For any two random variables W7 an Ws with the same range space R, we say W7 ~. Ws, or
W is e-statistically close to Wy, if e Pr[Wy € S] < Pr[W; € S] < e Pr [W; € 5] for all
measurable sets S C R. We now state Lemma 2.3 and Corollary 2.4. (See Appendix B.2 for the
proof of Corollary 2.4.)

Lemma 2.3. Let Z1,. .., Zit1 be independent random variables where each Z; ~ Uniform (0, 1).
Let W1 = max{Zy,...,Zy,b} and Wy = max{Zy,..., Zy41,b}. Foranye, ifk > 651_1 and
b> e "¢, then Wy =, Whs.

Algorithm 2 App_py-Differentially private Flajolet-Martin (FM) sketch

Input: Data set: D = {dy,--- ,d,}, domain: [u], accuracy constraint: v € (0, 1), privacy
parameter: &’

1: kp — ’Vefl%l-‘ =0 (%), Qmin < ’VIOg(l-t,—'y) 1_6%5'-‘ =0 (log(l-i-’Y) %)
2: ap < max(Yy, ..., Yy,) where Yy ~; ; 4. Geometric (ﬁ) for ¢ € [k)

3: ap + Arm (D, [u],7).
4: return o = max (OzD, Qp, amin) {N.B.: The seed of the hash function is not output.}

Algorithm 3 App_gsiimator: Differentially private distinct elements estimator

Input: Data set: D = {dy,--- ,d,}, domain: [u], accuracy constraint: v € (0, 1), privacy
parameters: (&, d), number of runs: m {N.8: Our utiity analysis requires m ~ 1/+2.}
. ! £ . m
1: & + e Apriv < 0
for j € [m] do
Aprivm + Abp-rm (D, U, 7, 5/)
end for

bpriv + ((£ — %) ~th quantile of Apyy)

AN AN S

return Ky, = (1 +)% — L’il—lw

Proof. The distributions of Wy and W5 are both supported on [b, 1]. They have nonzero probability
mass at the value b, and a continuous densities, which we will denote f; and f5 on the interval (b, 1].

To show that W ~_. Wh, it is sufficient to show that % € [e¢, €], and that ﬁfgzg € [e7¢, €]
forall w € (b, 1).

Let W] = max{Z; :i € [k]} and W} = max{Z; : i € [k + 1]}. That is, W] and W} are the
maximum of k and k + 1 independent uniform random variables (without the maximum with b).
Since the Z;’s are independent and uniform, the CDF of W7 is Fy(w) = w* and the CDF of W} is
Fi(w) = w**! forw € [0, 1].

At the point b (the only one with nonzero probability), we have
Pr(W,=0b) Fy(b) br!
Pr(W,=0b) () b

=bele 1]

For w € (b, 1], the CDF of W (resp. W5) is the same as that for W] (resp. W3). We thus have
/ k
fo(w) Fyw) (k+ ll)w —(1+ 1 w
filw) F{(w) kwk—1 k

Recall that k is chosen so that 1 4 % = €%, and w lies in [e~ %, 1]. The ratio of densities thus lies in
[1, €], as desired. O

This lemma in fact applies to essentially any distribution over the real numbers, as long as the lower
bound is chosen to lie above the e~ *-quantile of the distribution. We consider geometric distribution
with support N, which is the distribution of times one flips a coin with a specific bias until one
“heads" is observed. We get the following corollary:

Corollary 2.4. Let Zl, R Zk+1 be independent random variables where each ZAz ~ Geometric (p).
Let W1 = max {Zl, ce Zk, 3} and Wg = max {Zl, e Zk+1,5}. For any ¢, if k > ﬁ and
b > [logl/(lfp) #—‘, then W1 S WQ.

Theorem 2.5. If H satisfies Assumption 2.1, then App.gm (Algorithm 2) is (¢',0)-differentially
private, and App_gstimator (Algorithm 3) is (g, 0)-differentially private as long as € < 21n(1/9).

Proof. We will first prove the privacy guarantee for App_pm and then compose over m runs to get
the guarantee for App_gstimator-

The output of Apm(D, [u],) follows the same distribution as max {Yi}fi(lD), where Y; ~

Geometric (ﬁ) Therefore, the output of App.rm(D, [u],7,€’), max (ap, ap, min), follows

the same distribution as max {Yl, s Y (D) ky s amin} where Y; ~ Geometric (ﬁ)

Consider neighboring data sets D and D’. Without loss of generality, we assume F(D’) = Fo(D) +
1. Since Fo(D) + k, > es,%l and amin = [log(pw) ?1_5,1, according to Corollary 2.4, we

have App.em(D, [u],7,€") e App-pm(D’, [u], 7, €’). Therefore, App.pv guarantees ’-differential
privacy, which also translate to (C ,2¢ (¢)2) -RDP for ¢ > 1.

Now, we compose over j € [m] and have that publishing Api, in App.Estimator gUarantees
(¢,2¢m (£')?)-RDP. We can translate it to (e, §)-differential privacy with £, = 2¢m (/)2 + 2021/9)

-1
;o . _ Jlog(1/8) 1 _ \/10g(1/6) 4y/mlog(1/5) _ 4log(1/9)
Recall e/ = mese) We can take (= \/71w o= pon - = = > 2,

and have, e, = 2(m () + bgé(# <2Am () + 21%(1/5) = 4¢&’\/mlog(1/§) = e. This com-
pletes the proof. O

In the following, we provide the utility guarantee for our private FM sketch. The proof goes via a
reduction to the nonprivate algorithm (Theorem 2.2). To do so, we show that the lower bound of amin
(in Algorithm 2) does not interfere with the quantile estimator. (See Appendix B.3 for the proof.)

Theorem 2.6 (Utility guarantee of the private FM). Suppose v,¢,6, 5 € (0,1). Let kyriy be the output
1004/In(1/8)
72

of Algorithm 3 with inputs vy, €, §, using m = . Suppose H satisfies Assumption 2.1. For

any stream D € [u]*, w.p. at least 1 — 3,
([FIOELD)) —0 (1og1/2(1/6)€log1/4(1/5)) < kipriy < Fo(D)-(147)+0 (10g1/2(1/5)€10g1/4(1/5)> 7
v
where (D) is the number of distinct elements in D.

An (¢,0)-DP variant: One can obtain an e-differential privacy guarantee (with § = 0) for Algo-
rithm 3 by setting ¢’ = £/m in Line 1, and using standard composition in Theorem 2.5. The additive
error in Theorem 2.6 correspondingly becomes O(1/(g7)).

Implementation details: In Algorithm 1 (and consequently in its differentially private variant),
we used ideal geometric-valued hash functions, the hash values can potentially be arbitrarily large
numbers in N . Since we are guaranteed to have at most v distinct elements, the utility guarantees
in Theorems 2.2 and 2.6 will not be affected if we truncate the range of the hash functions to
[10g(14)(u)]. In Section 2.3, we provide more details on constructing these hash functions.

Theorem 2.7 (Space complexity). Let T be the space required to store the seed for each of the hash
functions Hy, ..., Hy, corresponding to the m i.i.d. instances of the Algorithm 1 (Apm) spawned by
Algorithm 3 (App.Estimator)- Following the setting of Theorem 2.6, the overall space requirement for

Algorithm -ADP-Estimator is O ((111(108;(14”) (U)2)+T) (/8)

~

Proof. There are m = O («/ In(1/5) /72) instances of Algorithm Agy spawned by Algorithm
Abp_Estimator- FOr €ach instance, the total space required to store the maximum in Line 2 of Algorithm
App.Fm is O <ln(log(1+7) (u))) = O (In(In(u)/7v)). This completes the proof. O

The per-record update time for Algorithm App._gstimator is m = O(1/In(1/3)/~?) assuming that
hash evaluations take constant time, since each of the m sketches must be updated.

2.3 From Ideal Hashing to Pseudorandom Functions

Our algorithms are described in terms of ideal hash functions, but such functions are prohibitively
expensive in both space and time to simulate exactly. We therefore consider their simulation using
cryptographic pseudorandom functions (PRFs). (See definition below.)

We first note that it is straightforward to convert hash functions that output uniformly random bit
strings to the geometric distributions needed using standard sampling techniques. Specifically,
given a uniform random value in A € [0, 1], we can exactly sample B ~ Geometric (p) by setting
B = [In1_p(A)] = [Iny/(1—p)(1/A)]. If we are instead given A’ which is uniform in [2], then B =
[y /(1) (2¢/A’)] approximates the correct distribution up to total variation distance O(% - 27).

Cryptographic PRFs: Given a security parameter « and desired input and output lengths 4;, and
Cout» a pseudorandom function is an efficiently computable map F' : {0,1}" x {0, 1}fn — {0, 1},
The first input, called the seed or key, specifies a curried function Fs(-) = F(s,-). APRFis (¢, u)-
pseudorandom if a circuit with size at most ¢ has advantage at most p, over random guessing when
attempting to distinguish an oracle computing F(-), where s is a uniform seed in {0, 1}*, from a
uniformly random function from {0, 1} to {0, 1}%ex.

If we fix an injection from [u] X [m] to £,, and an algorithm for sampling from (a distribution
sufficiently close to) Geometric (p) from a uniform string in {0, 1}%, we can use a single (¢, 11)-PRF
in place of the m ideal hash functions to execute Algorithm 3. The resulting algorithm will be
indistinguishable from the original to an observer implemented by a circuit of size at most ¢ — v,
where v is the complexity of running the original algorithm (roughly n - m In(log 1.y (u))). The
final algorithm will thus satisfy (t — v, i, €, §)-SIM-CDP [33] (meaning that a time ¢ — v distinguisher
will have advantage at most 4 in distinguishing it from an algorithm that is actually (&, §)-DP).

Because the output of the algorithm can be written in at most log, (log; 4 (u)) bits, one can actually

cap the complexity of the distinguisher at roughly tm.x = v + O(In(u)/7), and achieve actual
(e,6 + p)-differential privacy when the PRF is sufficiently powerful (i.e. for ¢ > tmnax)-

All this relies on the existence of a sufficiently good PRF. In theory, (families of) PRFs secure
against polynomial-time adversaries are equivalent to the existence of one-way functions. Assuming
exponentially hard pseudorandom generators, one can get actual differential privacy with a hash
function seed of length O(log tmax + log(1/p)) = O(logn + logm + log(u) + log(1/4)) (setting
1 = 6). In practice, block ciphers like AES are widely accepted to have PRF properties [7], and
hence can be used as an instantiation of the PRFs.

Explicit hash functions and PRGs for space-bounded computation: The above discussion high-
lights that one need not handle arbitrary distinguishers to get an explicit version of our result. It is
entirely possible that a much simpler notion of pseudorandomness, such as ¢-wise independence,
suffices for proving privacy in this setting. One promising direction, which we do not develop here, is
to adapt Nisan’s pseudorandom generator for space-bounded distinguishers [34] to our setting. Indyk
[27] showed that a natural class of streaming estimators can be derandomized using this approach;
we are not aware of a similar result that encompasses the algorithms discussed here.

3 Empirical Evaluation

In this section, we present simulation results on our private FM-sketch (Algorithms 2 and 3) and
comparison to prior work [12, 36, 32]. We provide more evaluations results in Appendix D and E.

In Theorem 2.5, we show that releasing Ay in Algorithm 3 guarantees differential privacy. Therefore,
even if our utility analysis is for quantile estimator in Line 5 of Algorithm 3, we can use any other
estimator as long as it is post-processing of Apyy. In the empirical evaluation, we consider two other
popular estimators, the geometric mean [14] and harmonic mean [25] of {(1 +)" : a € Apriv }. We
refer to the estimators as Geometric, Harmonic, and Quantile. We note that we do not split the data
stream as was done in [14, 25] since our tight utility/privacy/space trade-offs are for the non-splitting
version. However, in our implementation of the prior (and contemporary) work [12, 36, 32], we do
split the data streams as mentioned in the corresponding papers. Additionally, we apply standard
nearest neighbor debiasing as in [25] to all algorithms. Details of the debiasing algorithm can be
found in Appendix C.

Setting: We consider datasets with true cardinality Fo(D) ranging approximately from 2'2 to
220 ~ 10°. We run our algorithm and estimate the cardinality with all three estimators mentioned
above. The utility is measured by the mean relative error (MRE), i.e, |koriv — Fo(D)|/Fo(D). We
run 100 simulations for each configuration and plot the mean and standard deviation of the MRE.

- m=1024 -+ m=4096 - m=32768
0.06 u.uo 0.06

0.04 0.04 0.04
-t ——0--0-e-—a—-t--0 L 0NN S i Gk S SR S S
D s ST S S

0.02 0.02 0.02
—

0.00 0.00 0.00

mean relative error

912 313 oli 9l5 916 9l7 gIs 19 920 212 313 oli 9i5 9i6 oIT IS 919 20 512 913 git oi5 9i6 9l oIs 919 920

Fy Fy ., Fy
(a) Non-private.

- m=1024 -+ m=4096 =+ m=32768

= 0.06 u.uo 0.06
5
g
£
5
£ 0.04 0.041 ®-~e-_ 0.04
z [I e T S .
s >~ _
< R ==& -
=0.021 45— 0.021 &—u 0.02
El ‘\-.\‘_l—‘—‘—b—h—‘
g S N ——— S s TR e
=0.00 0.00 0.00

DI TR VRS FRpS M TR a7 P TIS TR VRS MBS TS s Epge P EJ T YRS FRpS T T P g

R
(b)e =1.0

Figure 1: From left to right, Quantile (v = 0.01), Geometric (v = 1.0), and Harmonic (v = 1.0).
With debiasing.

- Ours Ours (pure DP) 12] with phantom -+~ [36] 32) (non-private)
0.06 0.06 0.06
a

0.04 0.044 *- 0.04
N - .4

mean relative error

0.02 B 0.02 . 0.02
Mnngnnren S v f 353 - X

0.00 - — 0.00 - — 0.00 - —
912 313 oli 9l5 916 9I7 oIs 19 920 202 313 gli 9i5 916 IT is 919 20 512 913 gi1 i5 916 97 I8 919 920

Fy Fy Fy
(a) Non-private. (b)e = 1.0. (c)e =0.1.

Figure 2: Comparison with previous work. For our methods and [12], we use Harmonic with v = 0.01
(as v = 1.0 is not as stable for [12]). For our methods, [12] and [36], we use m = 4096. For [32],
we only present the non-private result.

In Figure 1, we compare the non-private and private (with (g,8) = (1.0,107?)) MRE, under
m = 1024, 4096 and 32768. For Geometric and Harmonic, we set v = 1.0 which corresponds to the
setting of the FM-sketches in [14, 25]. On the other hand, as Quantile takes the quantile of A, and
the final estimation is a power of (1 + =), larger ~ can introduce a quite significant bias as compared
to the other two estimators. We thus use v = 0.01 for Quantile. Notice that we choose the value of
m independently from -, and thus the three estimators has the same space and time requirement.

Results for our algorithm: Comparing Figure la and 1b, for all three estimators, with ¢ = 1.0,
we can reach roughly the same utility as that of non-private estimation, especially when the actual
cardinality is large. Comparing the estimators, we can see that Harmonic usually performs better,
and for small F (D) with large m, Quantile performs better. With m = 4096, the MRE is at most
2% for all of them. In general, MRE decreases as m grows, i.e., we achieve higher utility at the cost
of increased space and update time.

Comparison with [12, 36, 32]: We also provide empirical comparisons with related works. As
noted in the work itself, the algorithm in [32] requires a computationally expensive noise sampling
step. We therefore only conduct simulation of their non-private correspondence [10, Algorithm 13],
and demonstrate that it does not perform better than our private algorithm. For our algorithm, we
use the Harmonic estimator as it usually performs the best. As the related works guarantee pure
differential privacy, we also run the pure differentially private variant of our algorithm as described
in Section 2.2. Figure 2 shows the results for non-private, ¢ = 1.0 and 0.1 for all algorithms with
empirical debiasing.

We can see that our algorithm under (1.0, 10~?)-differential privacy outperforms the non-private
correspondence of [32]. Our algorithm with § = 0 has smaller error than both [12] and [36], especially
for relatively small cardinality. More details and results can be found in Appendix E.

Broader Impact

Counting distinct elements with space constraints is one of the fundamental problems encountered in
web-scale systems [1, 2]. As more organizations attempt to adopt differential privacy in their data
processing pipeline (e.g., Apple, Google, Facebook, and US Census), having a practical differentially
private cardinality estimator is becoming all the more important. Furthermore, [13] showed that many
non-private estimators can leak “significant” sensitive information about individuals. Hence, we
believe our differentially private solution will help control the information leakage about individuals
through cardinality estimation sketches. We hope that reducing leakage enables better security and
more responsible data management overall; the simplicity of our algorithm means that its adoption
need not be limited to highly sophisticated organizations.

Acknowledgements

We would like to thank Vivek Kulkarni and Jalaj Upadhyay for providing feedback on the manuscript.
Adam Smith is supported in part by a grant from the Sloan foundation, and NSF grant CCF-1763786.

References
[1] Google Cloud SQL documentation.

[2] Presto: Distributed sql query engine for big data.

[3] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. The aqua
approximate query answering system. In Proceedings of the 1999 ACM SIGMOD international
conference on Management of data, pages 574-576, 1999.

[4] Daniel N Baker and Ben Langmead. Dashing: fast and accurate genomic distances with
hyperloglog. Genome Biology, 20(1):265, 2019.

[5] Victor Balcer, Albert Cheu, Matthew Joseph, and Jieming Mao. Connecting robust shuffle
privacy and pan-privacy. arXiv preprint arXiv:2004.09481, 2020.

[6] Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. Differentially private summation
with multi-message shuffling. arXiv preprint arXiv:1906.09116, 2019.

[7] Boaz Barak. An intense introduction to cryptography. Lecture notes.

[8] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss
transform itself preserves differential privacy. In 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, pages 410-419. IEEE, 2012.

[9] FP Breitwieser, DN Baker, and Steven L Salzberg. Krakenuniq: confident and fast metagenomics
classification using unique k-mer counts. Genome biology, 19(1):1-10, 2018.

[10] Amit Chakrabarti. Data stream algorithms. Lecture Notes.

[11] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev. Distributed
differential privacy via shuffling. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 375-403. Springer, 2019.

[12] Seung Geol Choi, Dana Dachman-Soled, Mukul Kulkarni, and Arkady Yerukhimovich.
Differentially-private multi-party sketching for large-scale statistics. Proceedings on Privacy
Enhancing Technologies, 3:153-174, 2020.

[13] Damien Desfontaines, Andreas Lochbihler, and David Basin. Cardinality estimators do not
preserve privacy. Proceedings on Privacy Enhancing Technologies, 2019(2):26—46, 2019.

[14] Marianne Durand and Philippe Flajolet. Loglog counting of large cardinalities. In European
Symposium on Algorithms, pages 605-617. Springer, 2003.

10

[15] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Advances in Cryptology—
EUROCRYPT, pages 486503, 2006.

[16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Proc. of the Third Conf. on Theory of Cryptography
(TCC), pages 265-284, 2006.

[17] Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan. Robust
traceability from trace amounts. In 2015 IEEE 56th Annual Symposium on Foundations of
Computer Science, pages 650-669. IEEE, 2015.

[18] Ulfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and
Abhradeep Thakurta. Amplification by shuffling: From local to central differential privacy
via anonymity. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2468-2479. SIAM, 2019.

[19] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active flows
on high speed links. In Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pages 153-166, 2003.

[20] Philippe Flajolet, Eric Fusy, Olivier Gandouet, and Frédéric Meunier. Hyperloglog: the analysis
of a near-optimal cardinality estimation algorithm. 2007.

[21] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base applica-
tions. Journal of computer and system sciences, 1985.

[22] Badih Ghazi, Rasmus Pagh, and Ameya Velingker. Scalable and differentially private distributed
aggregation in the shuffled model. arXiv preprint arXiv:1906.08320, 2019.

[23] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. Universally utility-maximizing
privacy mechanisms. SIAM Journal on Computing, 41(6):1673-1693, 2012.

[24] Alexander Hall, Olaf Bachmann, Robert Biissow, Silviu Géanceanu, and Marc Nunkesser.
Processing a trillion cells per mouse click. arXiv preprint arXiv:1208.0225, 2012.

[25] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in practice: algorithmic
engineering of a state of the art cardinality estimation algorithm. In Proceedings of the 16th
International Conference on Extending Database Technology, pages 683-692, 2013.

[26] Piotr Indyk. Sketching, streaming and sublinear-space algorithms.

[27] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307-323, 2006.

[28] Piotr Indyk and David Woodruff. Tight lower bounds for the distinct elements problem. In
44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., pages
283-288. IEEE, 2003.

[29] Daniel M Kane, Jelani Nelson, and David P Woodruff. An optimal algorithm for the dis-
tinct elements problem. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 41-52, 2010.

[30] Shiva P Kasiviswanathan and Adam Smith. On the’semantics’ of differential privacy: A
bayesian formulation. Journal of Privacy and Confidentiality, 2014.

[31] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale datasets. Proceedings of
the VLDB Endowment, 3(1-2):330-339, 2010.

[32] Darakhshan Mir, Shan Muthukrishnan, Aleksandar Nikolov, and Rebecca N Wright. Pan-private
algorithms via statistics on sketches. In Proceedings of the thirtieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 37-48, 2011.

11

[33] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. Computational differential
privacy. In Annual International Cryptology Conference, pages 126—142. Springer, 2009.

[34] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449-461, 1992.

[35] Sriram Padmanabhan, Bishwaranjan Bhattacharjee, Tim Malkemus, Leslie Cranston, and
Matthew Huras. Multi-dimensional clustering: A new data layout scheme in db2. In Proceedings
of the 2003 ACM SIGMOD international conference on Management of data, pages 637-641,
2003.

[36] Rasmus Pagh and Nina Mesing Stausholm. Efficient differentially private Fj linear sketching.
arXiv preprint arXiv:2001.11932, 2020.

[37] Christopher R Palmer, Phillip B Gibbons, and Christos Faloutsos. Anf: A fast and scalable tool
for data mining in massive graphs. In Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 81-90, 2002.

[38] Christopher R Palmer, Georgos Siganos, Michalis Faloutsos, Christos Faloutsos, and Phillip B
Gibbons. The connectivity and fault-tolerance of the internet topology. 2001.

[39] Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J Shekita. Improved his-
tograms for selectivity estimation of range predicates. ACM Sigmod Record, 25(2):294-305,
1996.

[40] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A Lorie, and
Thomas G Price. Access path selection in a relational database management system. In
Proceedings of the 1979 ACM SIGMOD international conference on Management of data,
pages 23-34, 1979.

[41] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models. In 2017 IEEE Symposium on Security and Privacy
(SP), pages 3—18, 2017.

[42] Amit Shukla, Prasad Deshpande, Jeffrey F Naughton, and Karthikeyan Ramasamy. Storage
estimation for multidimensional aggregates in the presence of hierarchies. In VLDB, volume 96,
pages 522-531, 1996.

[43] Daniel Ting. Streamed approximate counting of distinct elements: Beating optimal batch
methods. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 442-451, 2014.

[44] Salil P Vadhan. Pseudorandomness. Foundations and Trends®) in Theoretical Computer
Science, 2012.

12

