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Abstract
The inner ear is essential for maintaining balance and hearing predator and prey in the environment. Each inner ear contains 
three  CaCO3 otolith polycrystals, which are calcified within an alkaline,  K+-rich endolymph secreted by the surround-
ing epithelium. However, the underlying cellular mechanisms are poorly understood, especially in marine fish. Here, we 
investigated the presence and cellular localization of several ion-transporting proteins within the saccular epithelium of the 
Pacific Chub Mackerel (Scomber japonicus). Western blotting revealed the presence of  Na+/K+-ATPase (NKA), carbonic 
anhydrase (CA),  Na+-K+-2Cl−-co-transporter (NKCC), vacuolar-type  H+-ATPase (VHA), plasma membrane  Ca2+ ATPase 
(PMCA), and soluble adenylyl cyclase (sAC). Immunohistochemistry analysis identified two distinct ionocytes types in the 
saccular epithelium: Type-I ionocytes were mitochondrion-rich and abundantly expressed NKA and NKCC in their baso-
lateral membrane, indicating a role in secreting  K+ into the endolymph. On the other hand, Type-II ionocytes were enriched 
in cytoplasmic CA and VHA, suggesting they help transport  HCO3

− into the endolymph and remove  H+. In addition, both 
types of ionocytes expressed cytoplasmic PMCA, which is likely involved in  Ca2+ transport and homeostasis, as well as sAC, 
an evolutionary conserved acid–base sensing enzyme that regulates epithelial ion transport. Furthermore, CA, VHA, and 
sAC were also expressed within the capillaries that supply blood to the meshwork area, suggesting additional mechanisms 
that contribute to otolith calcification. This information improves our knowledge about the cellular mechanisms responsible 
for endolymph ion regulation and otolith formation, and can help understand responses to environmental stressors such as 
ocean acidification.
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Introduction

The inner ear senses gravity and sound waves, which is 
essential for maintaining balance and hearing predator and 
prey in the environment (Dijkgraaf 1960; Furukawa and 
Ishii 1967; reviewed in Ladich and Schulz-Mirbach 2016). 
Enclosed within each inner ear are the sagittal, lapilli, and 
asterisci otoliths, which are composed of a protein matrix 
and calcium carbonate  (CaCO3). The higher density of the 
otolith compared to the inner ear fluid (“endolymph”) results 

in differential inertia that stimulates the adjacent sensory 
hair cells, which the brain interprets as soundwaves or 
movement.

Being the largest of the three otoliths, the sagitta and its 
surrounding saccular epithelium have been most extensively 
studied. The saccular epithelium has been previously char-
acterized as the macula, meshwork, patches, and interme-
diate areas (Mayer-Gostan et al. 1997; Pisam et al. 1998). 
The macula contains the sensory hair cells that detect oto-
lith vibration and movement. This area is flanked by the 
meshwork area, which contains large ion-transporting cells 
(“ionocytes”). The patches area is positioned directly across 
from the macula and contains patches of smaller ionocytes. 
The intermediate area is largely devoid of ionocytes, but 
does contain some ionocytes in the area bordering the 
meshwork area and smaller ionocytes bordering the patches 
area. Each otolith is calcified within an alkaline,  K+-rich 
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endolymph secreted by its respective saccule, utricle and 
lagena inner ear epithelium.

In the Rainbow Trout (Oncorhynchus mykiss), the endo-
lymph has a pH of ~ 8, ~ 30 mmol of  HCO3

−, ~ 124 mmol 
of  K+, ~ 90 mmol of  Na+, and ~ 1.1 mmol of  Ca2+ (Payan 
et al. 1997). When compared to its blood plasma, the endo-
lymph is roughly 0.8 pH unit higher, has twice as much 
 HCO3

−, ~ 40-fold higher  K+, half as much  Na+, and twice 
as much  Ca2+ (Payan et al. 1997). This dramatic differences 
between the endolymph and blood plasma are thought to be 
attributed to the surrounding ionocytes’ activity. To date, 
two different types of ionocytes have been characterized: 
one is mitochondrion-rich (MR), has well-developed baso-
lateral membrane infoldings (Mayer-Gostan et al. 1997), 
and abundantly expresses  Na+/K+-ATPase (NKA) (Takagi 
1997), whereas the other one has abundant cytoplasmic 
carbonic anhydrase (CA) (Tohse et al. 2004, 2006). The 
NKA-rich ionocytes are proposed to be responsible for 
transporting  K+ (Payan et al. 1999),  Ca2+ (Mugiya and 
Yoshida 1995) and removing  H+ (Payan et al. 1997) from 
the endolymph, whereas the CA-rich ionocytes are thought 
to transport  HCO3

− into the endolymph (Tohse and Mugiya 
2001; reviewed in Payan et al. 2004). These models would 
imply the NKA-rich ionocytes should have different ion-
transporting proteins than the CA-rich ionocytes.

Moreover, the endolymph’s composition is not homoge-
neous (Payan et al. 1999; Borelli et al. 2003). The proxi-
mal endolymph, which is located between the otolith and 
the macula and meshwork area, has lower  [K+] and total 
 CO2 compared to the distal endolymph, which is located 
between the other side of the otolith and the intermediate 
and patches area (Payan et al. 1999). Though  [Ca2+] does 
not differ between the proximal and distal endolymph (Payan 
et al. 1999; Borelli et al. 2003), the proximal endolymph has 
a threefold higher concentration of glycoprotein (Payan et al. 
1999), which may chelate  Ca2+ and catalyze aragonite crys-
tallization (Murayama et al. 2002; Ibsch et al. 2004). Cor-
respondingly, the otolith’s proximal surface calcifies faster 
than the distal surface (Payan et al. 1999; Borelli et al. 2003; 
Beier et al. 2006). And although it was not directly meas-
ured, it was further hypothesized that the pH in the proximal 
endolymph is lower than the distal endolymph as increased 
otolith calcification would locally increase  [H+] (Payan et al. 
1999). This heterogeneity of the proximal and distal endo-
lymph was proposed to be the result of differential ion trans-
porting activity of meshwork and patches ionocytes. Under 
this model, the larger NKA-rich ionocytes in the meshwork 
area remove  K+ from the proximal endolymph, whereas the 
smaller NKA-rich ionocytes in the patches area secrete  K+ 
and absorb  H+ at the distal endolymph (Payan et al. 1999; 
Allemand et al. 2008). Similarly, other studies speculated 
that the larger meshwork CA-rich ionocytes remove  H+ 
from the proximal endolymph (Tohse et al. 2006). These 

models imply that NKA-rich and CA-rich ionocytes in the 
meshwork area should express different proteins than their 
counterparts in the patches area.

Although many other proteins are known to be 
expressed in the fish inner ear, to our knowledge NKA 
and CA are the only two ion-transporting proteins estab-
lished to be specifically present in ionocytes. Basolateral 
 Na+-K+-2Cl−-co-transporter (NKCC1; slc12a2), NKCC1) is 
expressed in their developing inner ear of Zebrafish (Danio 
renio) larvae (Abbas and Whitfield 2009). Although the lack 
of endolymph accumulation upon NKCC1 genetic disruption 
indicated a role in  K+ and fluid secretion, the specific cell 
type, where this protein is expressed was not established. 
Another study detected abundant intracellular acidic com-
partments in a subset of trout inner ear epithelial cells and 
hypothesized it indicated removal of  H+ from the endolymph 
by V-type  H+-ATPase (VHA) (Mayer-Gostan et al. 1997). 
However, a subsequent study did not find VHA in Zebrafish 
inner ear ionocytes, and instead reported VHA expression 
within inner ear sensory hair cells and proposed it acidified 
the proximal endolymph to retard otolith calcification and 
maintain distance with the hair cells (Shiao et al. 2005). 
The plasma membrane  Ca2+-ATPase (PMCA; atp2b1a) was 
proposed to be expressed in MR-ionocytes and to transport 
 Ca2+ for otolith calcification (Mugiya and Yoshida, 1995; 
Payan et al. 2002). In situ hybridization showed the presence 
of PMCA mRNA in some epithelial cells surrounding the 
sensory macula of the developing inner ear of Zebrafish lar-
vae; however, attempts to immunolocalize the protein were 
unsuccessful in both larval and adult tissues and thus remain 
unknown whether PMCA is expressed in ionocytes (Cruz 
et al. 2009). More recently, a comprehensive transcriptomic 
and proteomic study concluded NKA, CA, VHA, and PMCA 
are expressed in the inner ear of black bream (Acanthopa-
grus butcheri) (Thomas et al. 2019). However, those analy-
ses were conducted on samples that contained both inner 
ear and brain tissue, and thus did not provide insights about 
protein expression in specific cells. In summary, there are 
many excellent studies about the ion-transporting proteins 
involved in otolith calcification, but their use of different 
fish species, life stages, and techniques greatly complicates 
attempts to synthesize the available information into a sin-
gle model describing the ion transporting mechanisms that 
maintain the distinctive endolymph composition necessary 
for proper inner ear function.

Although the cellular mechanisms underlying otolith cal-
cification are not completely understood, it is clear that they 
activities are sensitive to acid–base conditions (reviewed 
in Allemand et al. 2008). Indeed, diurnal fluctuations in 
plasma  [HCO3

−] is one of the underlying causes of the oto-
lith’s characteristic concentric rings (Tohse and Mugiya, 
2008) used to estimate age and growth in stock assessment 
studies (Pannella 1971; Campana and Neilson, 1985). And 
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more recently, exposure to ocean acidification conditions has 
been reported to induce increased otolith size and density in 
multiple fish species (Checkley et al. 2009; Bignami et al. 
2013; Maneja et al. 2013; Munday et al. 2011; Pimentel 
et al. 2014; Schade et al. 2014; Shen et al. 2016), which 
has been linked to plasma  [HCO3

−] accumulation result-
ing from blood acid–base regulation [c.f. (Esbaugh et al. 
2012, 2016)]. One possibility is that otolith overgrowth is 
the direct result of increased transport of plasma  [HCO3

−] 
into the endolymph. However, increased otolith calcifica-
tion rate also requires increased secretion of  Ca2+ and gly-
coprotein into the endolymph, and increased  H+ removal. 
With this in mind, we explored whether the soluble adenylyl 
cyclase (sAC, adcy10) is expressed within inner ear epithe-
lial ionocytes. This evolutionary conserved acid–base sens-
ing enzyme is stimulated by  HCO3

− to produce cyclic adeno-
sine monophosphate (cAMP), a messenger molecule that 
can regulate multiple cellular processes via protein kinase 
A mediated phosphorylation on target proteins (reviewed in 
Tresguerres et al. 2010a; Tresguerres 2014).

The goal of the current study was to determine how many 
types of ionocytes are present in the inner ear epithelium of a 
single species, the Pacific Chub Mackerel (Scomber japoni-
cus, Houttuyn, 1782). To this end, we performed thorough 
immunohistochemical analyses using specific antibodies 
against NKA, CA, NKCC, VHA, PMCA, and sAC. Unex-
pectedly, we also detected high abundance of some of these 
proteins in the cells that form the arterioles that supply blood 
to the meshwork area. The resulting model about the ion-
transporting and regulatory mechanisms underlying endo-
lymph’s unique composition improves our understanding 
about how otoliths are calcified, and will inform subsequent 
experimental studies to determine if and how they might be 
affected during environmental stress.

Methods

Tissue sampling and preparation

Pacific Chub Mackerel were caught by hook and line off 
the Scripps pier in San Diego, United States (standard 
length = 15.3 ± 0.3 cm; weight = 26.9 ± 2.2 g; n = 19). In 
accordance to protocol S10320 of the University of Califor-
nia, San Diego Institutional of Animal Care and Use Com-
mittee, fish were euthanized by spinal pithing and its inner 
ear tissue dissected. Tissue was either flash frozen in liquid 
nitrogen and stored in − 80 °C, or fixed in 4% paraform-
aldehyde in phosphate buffer saline (PBS) at 4 °C for 8 h, 
incubated in 50% ethanol for 8 h, and stored in 70% ethanol 
for immunohistochemistry. Protein integrity was prioritized; 
therefore, the length and weight of the fish were recorded 
after dissection.

Antibodies

Mitochondria were labeled using a mouse monoclonal 
antibody against human cytochrome c oxidase complex IV 
(MTC02, catalog #: MA5-12,017, Invitrogen, Grand Island, 
New York, USA); this antibody demonstrates specificity 
against a broad range of species including coral (Barott et al. 
2015b) and shark (Roa et al. 2014). The mouse monoclonal 
anti-NKA antibody α5 (Lebovitz et al. 1989) was purchased 
from the Developmental Studies Hybridoma Bank (DSHB, 
The University of Iowa, Iowa City, IA, USA). This antibody 
has been extensively validated in fish and is routinely used 
to detect NKA in multiple fish tissues (Wilson et al. 2000, 
2002; Roa et al. 2014; Roa and Tresguerres 2017; Kwan 
et al. 2019). In addition, NKA was immunodetected using 
rabbit polyclonal antibodies against the mammalian NKA 
α-subunit (H300, catalog # SC-28800, Santa Cruz Bio-
technology, Dallas, USA), which recognize NKA in gills 
from multiple fish (Roa et al. 2014; Michael et al. 2016; 
Allmon and Esbaugh, 2017). Rabbit polyclonal antibodies 
against human CA II were purchased from Rockland Inc., 
Gilbertsville, USA (catalog #: 100-401-136); these antibod-
ies are routinely used to immunodetect CA from teleost fish 
[e.g., (Georgalis et al. 2006; Qin et al. 2010)], including 
in the saccular epithelium of Masu Salmon (Oncorhyn-
chus masou) (Tohse et al. 2004). The mouse monoclonal 
anti-NKCC antibody T4 (Lytle et al. 1995) was obtained 
from DSHB; and has been widely used to detect NKCC in 
fish tissues (Tresguerres et al. 2010b; Esbaugh and Cutler 
2016), including Zebrafish saccular epithelium (Abbas and 
Whitfield 2009). VHA was immunodetected using custom-
made rabbit polyclonal antibodies against a peptide in the 
B subunit (epitope: AREEVPGRRGFPGY; GenScript, Pis-
cataway, USA); this peptide is conserved from cnidarians to 
mammals (Barott et al. 2015a, b), and has been successfully 
used to immunodetect VHA in elasmobranch tissues (Roa 
et al. 2014; Roa and Tresguerres 2017). However, T4 can 
also recognize  Na+/Cl−-co-transporter (Hiroi et al. 2008; 
Inokuchi et al. 2008) and should be validated. The mouse 
monoclonal anti-PMCA antibody 5F10 against human eryth-
rocyte PMCA was purchased from ThermoFisher Scientific, 
Waltham, USA (catalog #: MA3-914). sAC was immuno-
detected using custom-made rabbit polyclonal antibodies 
against a peptide in the first catalytic domain of Rainbow 
Trout sAC (epitope: LSSKKGYGADELTR; GenScript). 
The secondary antibodies were goat anti-mouse IgG-HRP 
and goat anti-rabbit IgG-HRP conjugate (Bio-Rad, Hercu-
les, CA, USA) for western blot, and goat anti-mouse Alexa 
Fluor 546, goat anti-rabbit Alexa Fluor 488, and/or goat anti-
rabbit Alexa Fluor 555 (Invitrogen, Grand Island, USA) for 
immunohistochemistry. Each antibody was tested in inner 
ear samples from at least three different fishes.
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Western blotting

Inner ear tissue was immersed in liquid nitrogen, pulver-
ized in a porcelain grinder, and submerged in an ice-cold, 
protease inhibiting buffer (250 mmol l−1 sucrose, 1 mmol l−1 
EDTA, 30 mmol l−1 Tris, 10 mmol l−1 benzamidine hydro-
chloride hydrate, 200 mmol  l−1 phenylmethanesulfonyl 
fluoride, 1 mol l−1 dithiothreitol, pH 7.5). Next, debris was 
removed by low speed centrifugation (3000xg, 10 min, 
4 °C). Total protein concentration in the crude homoge-
nate was determined by the Bradford assay (Bradford 
1976). Samples were mixed with an equal volume of 90% 
2 × Laemmli buffer and 10% β-mercaptoethanol, and heated 
at 70 °C for 5 min. Protein (10 µg per lane) were loaded 
onto a 7.5% polyacrylamide mini gel (Bio-Rad, Hercules, 
CA, USA) and ran at 200 V for 40 min, then transferred 
to a polyvinylidene difluoride (PVDF) membrane using a 
Trans-Blot SD Semi-Dry Transfer Cell (Bio-Rad). PVDF 
membranes were then incubated in tris-buffered saline with 
1% tween (TBS-T) with milk powder (0.1 g/mL) at room 
temperature (RT) for 1 h, then incubated with primary anti-
body (a5: 10.5 ng/ml; H300: 100 ng/ml; CA II antibody: 
8 µg/ml; T4: 10.4 ng/ml; VHA b-subunit: 1.5 µg/ml; Rain-
bow Trout sAC: 3 µg/ml; 5F10: diluted 1:10,000 from com-
mercial stock) in blocking buffer at 4 °C overnight. On the 
following day, PVDF membranes were washed in TBS-T 
(three times; 10 min each), incubated in the appropriate anti-
rabbit or anti-mouse secondary antibodies (1:10,000) at RT 
for 1 h, and washed again in TBS-T (three times; 10 min 
each). Bands were made visible through addition of ECL 
Prime Western Blotting Detection Reagent (GE Healthcare, 
Waukesha, WI) and imaged and analyzed in a BioRad Uni-
versal III Hood using Image Lab software (version 6.0.1; 
BioRad). Peptide preabsorption with excess peptide (1:5 
antibody to peptide ratio; preabsorbed overnight at 4 °C on 
shaker) was performed to verify antibody specificity.

Immunostaining

After fixation, samples were immersed in decalcifying solu-
tion (NaCl 450 mM, KCL 10 mM, MgCl 58 mM, Hepes 
100 mM, EDTA 0.5 M, pH 7.5, changed daily) for 3 days at 
4 °C on a shake table to dissolve the otolith. Once the otolith 
dissolved, samples were incubated overnight in 70% ethanol 
and dehydrated through a series of increasing ethanol steps 
(70%, 95%, 100%, 10 min each), SafeClear (three times; 
10 min each), warm paraffin (65 °C; three times; 10 min 
each), before embedding tissue in a paraffin block on an 
ice pack overnight. The next day, samples were sectioned 
using a microtome (~ 10 µm thickness) and mounted onto 
glass slides. After drying overnight, paraffin was removed 
by incubation in SafeClear (three times; 10 min each), and 
rehydrated in a series of decreasing ethanol steps (100%, 

95%, 70%, 10 min each). To counter native autofluorescence, 
samples were immersed with sodium borohydride (1 mg/ml) 
in ice cold PBS (six times; 10 min each). Samples were then 
washed in PBS + 0.1% tween (PBS-T) at RT for 5 min, incu-
bated in blocking buffer (PBS-T, 0.02% normal goat serum, 
0.0002% keyhole limpet hemocyanin) at RT for 1 h, and 
with the primary antibodies (MTC02: 2 µg/ml; a5: 42 ng/
ml; H300: 4 µg/ml; CA II antibody: 160 µg/ml; T4: 104 ng/
ml; VHA b-subunit: 6 µg/ml; Rainbow Trout sAC: 6 µg/
ml; 5F10: diluted 1:500 from commercial stock) in blocking 
buffer and kept in a humid chamber at RT overnight. On the 
following day, samples were washed in PBS-T (three times; 
10 min each) and incubated with the appropriate anti-rabbit 
or anti-mouse fluorescent secondary antibodies (1:1,000) 
and nuclear stain Hoechst 33,342 (5 µg/ml; Invitrogen) at 
RT for 1 h. Samples were washed in PBS-T (three times; 
10 min each), then mounted in Fluoro-gel with Tris (Elec-
tron Microscopy Sciences). Samples were examined and 
imaged on an epifluorescence microscope (Zeiss AxioO-
bserver Z1). Digital images were adjusted, for brightness 
and contrast, using Zeiss Axiovision software. Some low 
magnification images were stitched together to provide pic-
tures of the entire saccular epithelium using Helicon Focus 
6 (Helicon Soft Ltd., Kharkov, Ukraine). Peptide preabsorp-
tion with excess peptide (1:10 antibody to peptide ratio; pre-
absorbed overnight at 4 °C on shaker) was performed to 
verify antibody specificity against VHA and sAC.

Results

Western blotting revealed high abundance of NKA, CA, 
NKCC, VHA, sAC, and PMCA protein in Pacific Chub 
Mackerel inner ears (Fig. 1). The immunoreactive bands 
matched the predicted size of each target protein (NKA-α 
subunit: ~ 100 kDa with both mono- and polyclonal anti-
bodies; CA: ~ 30 kDa; NKCC: ~ 200 kDa; VHA-b subu-
nit: ~ 55  kDa; PMCA: ~ 140  kDa; sAC: ~ 180, 110, and 
50 kDa), were sharp and distinct, and were absent in control 
blots in which the primary antibody was omitted. No bands 
were detected in anti-VHA and anti-sAC antibodies’ pre-
immune and peptide pre-absorption controls.

Next, we examined the expression of these proteins within 
specific saccular epithelial cells using immunohistochemis-
try. NKA was abundantly expressed within cells adjacent 
to the endolymph (Fig. 2a). Higher magnification images 
revealed NKA immunostaining produced a dense intracel-
lular speckled pattern (Fig. 2b), which indicates NKA is 
present in the highly infolded basolateral membrane. Double 
immunolabeling with anti-complex IV antibodies revealed 
the NKA-rich ionocytes are MR (Fig. 2c) and contain abun-
dant NKCC (Fig. 2d). Furthermore, the resulting “yellow” 
signal from dual NKA and NKCC immunolabeling indicated 
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Fig. 1  Western blot analysis of inner ear homogenates. Anti-
bodies against monoclonal  Na+/K+-ATPase (mNKA), poly-
clonal  Na+/K+-ATPase (pNKA), carbonic anhydrase (CA), 
 Na+-K+-Cl−-co-transporter (NKCC), V-type  H+ ATPase (VHA), 

plasma membrane calcium ATPase (PMCA), and soluble adenylyl 
cyclase (sAC) reveal bands matching the predicted size of respective 
proteins. Molecular marker is shown on the left of each respective 
blot

Fig. 2  Characterization of 
Type-I ionocytes within the sac-
cular epithelium. Histological 
saggital section immunostained 
with (a)  Na+/K+-ATPase (NKA, 
green). b Magnified view of the 
NKA-rich ionocytes revealed 
abundant staining in a dense, 
speckled pattern resembling a 
developed basolateral infolding. 
Dual-immunostaining revealed 
the NKA-rich (green) ionocyte 
is also (c) mitochondrion-rich 
(red) and contain abundant (d) 
 Na+-K+-2Cl−-co-transporter 
(NKCC, red). Nuclei are stained 
blue. EN endolymph, SO sagit-
tal otolith protein, SHC sensory 
hair cell (color figure online)
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a strong overlap in the basolateral membrane. CA was also 
highly expressed in specific saccular epithelial cells; how-
ever, double immunolabeling revealed CA was present in 
cells that were not labeled for NKA (Fig. 3a) or NKCC1 
(Fig. 3b). Similarly, double immunolabeling of NKA and 
VHA (Fig. 4a, b, c) revealed that these two proteins were 
expressed in different cells. By default, this indicates the 
CA and VHA were expressed in the same cell type. Overall, 
these results indicate the presence of two types of ionocytes 
in the saccular epithelium. “Type-I” ionocytes abundantly 
express NKA and NKCC1 and are MR, and “Type-I” iono-
cytes abundantly express CA and VHA.

PMCA was also abundantly expressed in saccular epithe-
lial cells adjacent to the endolymph. The pattern observed 
following dual immunostaining with NKA indicates 
PMCA is present in Type-I and Type-II ionocytes (Fig. 5a, 
b). Unlike NKA and NKCC1 (Fig. 2d), NKA and PMCA 

immunofluorescent signals did not overlap significantly 
(Fig. 5c), suggesting PMCA is predominantly present in 
cytoplasmic vesicles and not in the basolateral membrane.

In addition, abundant sAC immunolabeling was detected 
throughout the saccular epithelium (Fig. 5d). Dual immu-
nostaining of sAC and NKA (Fig. 5e, f) and sAC and PMCA 
(Fig. 5g, h, i) revealed sAC was abundantly expressed in 
both Type-I and Type-II ionocytes.

Type-I and Type-II ionocytes in the meshwork area were 
larger than in the patches area (~ 40 µm vs. ~ 10 µm wide, 
respectively; Fig. 4b, c). However, the protein expression 
profile in each ionocyte type was identical regardless of size. 
In addition to the previously reported presence of PMCA 
(Cruz et al. 2009) and VHA (Shiao et al. 2005), we detected 
NKA (Fig. 2a) and sAC (Fig. 5d) within the sensory hair 
cells. Unexpectedly, we also observed intense CA (Fig. 6a, 
b), VHA (Fig. 6c, d), and sAC (Fig. 6e, f) immunoreactivity 
within the endothelial cells that form the abundant capillar-
ies surrounding the meshwork area.

Discussion

Here, we characterized two types of ionocytes within the 
Pacific Chub Mackerel’s saccular epithelium: Type-I iono-
cytes are MR and express abundant NKA, NKCC1, PMCA, 
and sAC, whereas Type-II ionocytes express abundant CA, 
VHA, PMCA, and sAC (Fig. 7). Ionocyte distribution and 
size patterns were similar to those reported in most previous 
studies (Mayer-Gostan et al. 1997; Pisam et al. 1998): larger 
ionocytes bordered the meshwork area, while smaller iono-
cytes were found in the patches area. However, there were no 
differences in protein expression between the larger Type-I 
and Type-II meshwork ionocytes and the smaller Type-I and 
Type-II patches ionocytes, further supporting the idea that 
only two types of ionocytes exist within the saccular epithe-
lium. This suggests that the differences in ionic composition 
between the proximal and distal endolymph are the result 
of different ion transporting rates in these two regions and 
not due to the presence of different ion transporting mecha-
nisms. Additional factors that surely contribute to the hetero-
geneous endolymph ionic composition and otolith calcifica-
tion rates include the activity of hair cells and the secretion 
of glycoproteins that promote carbonate precipitation, both 
taking place in the meshwork area and proximal endolymph 
(reviewed in Payan et al. 2004; Allemand et al. 2008).

Our results on the marine Pacific Chub Mackerel gener-
ally agree with the literature about ion transporting mech-
anisms in fish inner ear epithelia, which is largely based 
on research on freshwater fishes. The main differences 
were the localization of VHA and PMCA. The former was 
reported to be exclusively expressed in sensory hair cells 
in the inner ear of Zebrafish embryos (Shiao et al. 2005), 

Fig. 3  Evidence for two types of ionocytes within the saccular epi-
thelium. Dual-immunostaining of ionocytes within the saccular epi-
thelium revealed carbonic anhydrase (CA; red) is expressed in cells 
that are different from the (a)  Na+/K+-ATPase (NKA; green) and (b) 
 Na+-K+-2Cl−-co-transporter (NKCC, green)-rich Type-I ionocyte. 
Nuclei are stained blue. EN endolymph (color figure online)
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and the latter was only studied at the mRNA level and pre-
dominantly found in hair cells as well (Cruz et al. 2009). 
Future experiments should confirm whether the differences 
between Pacific Chub Mackerel and Zebrafish are species or 
life stage-specific, environmentally based (i.e., freshwater 
vs. seawater), or due to different immunostaining techniques 
and antibodies.

Putative functions of fish inner ear epithelial 
ionocyte function

Based on the presence of NKA and NKCC1, the Type-I 
ionocytes are likely responsible for secreting  K+ into the 
endolymph, where it can reach concentrations > 40 fold 
higher than in blood plasma (Payan et al. 1997, 1999; Gha-
nem et al. 2008). Given that NKCC1 knockout results in 
inner ear collapses due to lack of fluid in Zebrafish larvae 
(Abbas and Whitfield 2009), one of the roles of NKCC1-
driven  K+ secretion is to osmotically drive fluid transport. 

In addition, the  K+-rich endolymph is essential for mecha-
noreception by the sensory hair cells (Zdebik et al. 2009). 
This model would imply that Type-I ionocytes express  K+ 
channels in their apical membrane, and should be further 
investigated in future studies. The outwardly conducting 
KCNQ1/KCNE1  K+ channels found on the apical membrane 
of the analogous “dark” cells of mammalian inner ear are 
promising candidates (Nicolas et al. 2001).

In contrast, the high abundance of CA and VHA in Type-
II ionocytes suggests these cells are involved in promoting 
otolith calcification by secreting  HCO3

− into the endolymph 
and removing  H+. The CA-catalyzed hydration of  CO2 (for 
example from the abundant mitochondria from the adjacent 
Type-I ionocytes) would provide  HCO3

− to be secreted into 
the endolymph by yet unidentified apical anion exchangers. 
The  H+ that is simultaneously produced might be removed 
by VHA, either into intracellular vesicles as proposed by 
Mayer-Gostan et al (1997) or upon VHA insertion into the 
basolateral membrane as reported in the base-secreting 

Fig. 4  Characterization of 
Type-II ionocytes within 
the saccular epithelium. a 
Histological saggital section 
immunostained with  Na+/
K+-ATPase (NKA, green) and 
V-type  H+-ATPase (VHA, 
red). b Higher magnification 
image of saccular ionocytes of 
the larger meshwork ionocytes 
and (c) the smaller patches 
ionocytes indicate NKA-rich 
and VHA-rich cells are different 
cells. Nuclei are stained blue. 
EN endolymph; SO sagittal oto-
lith protein, SHC sensory hair 
cell (color figure online)
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cells of elasmobranch gills (Tresguerres et al. 2005; Roa 
and Tresguerres 2016).

Both Type-I and Type-II ionocytes also expressed 
PMCA, which has been previously shown to be impor-
tant for otolith calcification based on the effects of genetic 
knockdown (Cruz et al. 2009) and pharmacological inhibi-
tion of calmodulin-antagonist of PMCA activity (Mugiya 
and Yoshida 1995). The presence of PMCA throughout 
the cytoplasm suggests  Ca2+ sequestration in vesicles, 

which may be transported to the apical membrane and its 
contents exocytosed into the calcifying fluid as proposed 
in coral calcifying cells (Barott et al. 2015b; Barron et al. 
2018). Other proposed transcellular pathways for  Ca2+ 
transport include  Ca2+ channels and  Na+/Ca2+ exchang-
ers (Mugiya and Yoshida 1995; Thomas et al. 2019), and 
the identification of their cellular and subcellular localiza-
tions would contribute greatly to the mechanistic model of 
otolith calcification.

Fig. 5  Presence of plasma mem-
brane  Ca2+ ATPase and soluble 
adenylyl cyclase in Type-I 
and Type-II ionocytes. (a, b, 
c) Dual immunostaining of 
plasma membrane  Ca2+-ATPase 
(PMCA, green) with  Na+/K+-
ATPase (NKA, red). Notice that 
PMCA is present in all NKA-
rich cells (Type-I ionocyte), 
as well as in adjacent cells 
without NKA signal (Type-
II ionocytes). d Histological 
saggital section immunostained 
with soluble adenylyl cyclase 
(sAC, red) and  Na+/K+-ATPase 
(NKA, green). e, f Higher mag-
nification images reveal sAC is 
present in both the NKA-rich 
Type-I ionocytes (green) and 
Type-II ionocytes (indicated by 
ionocytes lacking NKA signal). 
g, h, i The presence of PMCA 
(green) and sAC (red) in both 
Type-I and Type-II ionocytes 
was further conformed by 
dual-staining. Nuclei are stained 
blue. EN endolymph; SO sagit-
tal otolith protein, SHC sensory 
hair cell (color figure online)
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Fig. 6  Inner ear saccu-
lar epithelium capillaries 
express CA, VHA, and sAC. 
Histological section dual-
stained with (a, b) carbonic 
anhydrase (CA, red) and 
 Na+-K+-2Cl−-co-transporter 
(NKCC, green), (c, d) V-type 
 H+-ATPase-rich (VHA, green) 
and  Na+/K+-ATPase (NKA, 
green), and (e, f) soluble adeny-
lyl cyclase (sAC, red) and NKA 
(green). Nuclei are stained blue. 
EN endolymph; CAP capillary 
(color figure online)

Fig. 7  Proposed model for 
otolith calcification by the two 
types of ionocytes within the 
inner ear saccular epithelium. 
NKA  Na+/K+-ATPase, NKCC 
 Na+-K+-Cl−-co-transporter, 
mito mitochondria, CA car-
bonic anhydrase, VHA V-type 
 H+ ATPase, PMCA plasma 
membrane calcium ATPase, 
sAC soluble adenylyl cyclase, 
AE anion exchanger, KC  K+ 
channel, ClC  Cl− channel. 
Capillaries that supply  O2 (and 
potentially  HCO3

−) are not 
shown for simplicity, though 
they are especially important in 
the meshwork area. Ion trans-
port is indicated by a solid line, 
and gas diffusion is indicated by 
a dashed, squiggly line
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A potential regulatory mechanism of otolith 
calcification

Both Type-I and Type-II ionocytes contained sAC, an evo-
lutionary conserved acid–base sensing enzyme that pro-
duces the messenger molecule cAMP (Chen et al. 2000; 
Tresguerres, 2014). The effects of plasma and endolymph 
acid–base status on otolith calcification are well established 
(Takagi, 2002; Payan et al. 2004; Allemand et al. 2008), and 
sAC may be one of the underlying signaling mechanisms 
that senses and regulates the activity of calcification-rele-
vant ion transporting proteins. Supporting this possibility, 
some of the same ion-transporting proteins found in Type-I 
and Type-II ionocytes have been shown to be under sAC 
regulation in many other epithelia. In the intestine of marine 
teleosts, sAC senses elevations in  [HCO3

−] and regulates 
NKA and NKCC activity to promote luminal carbonate 
precipitation and fluid transport (Tresguerres et al. 2010b; 
Carvalho et al. 2012). In marine elasmobranchs gills, sAC 
senses blood alkalosis and activates VHA -and possibly 
the apical anion exchanger pendrin- to mediate compen-
satory  HCO3

− secretion and  H+ absorption (Tresguerres 
et al. 2010c; Roa et al. 2014; Roa and Tresguerres, 2016). 
In addition to being directly stimulated by  HCO3

−, sAC is 
stimulated by  Ca2+ (Litvin et al. 2003), providing another 
potential regulatory mechanism for otolith calcification. 
Interestingly, sAC is also abundantly expressed in coral cal-
cifying cells (Barott et al. 2017) and in oyster mantle (Bar-
ron et al. 2012), suggesting a conserved role in regulating 
transepithelial ion transport for calcification.

A novel regulatory role of capillaries in regulating 
otolith calcification?

The connective tissues surrounding the inner ear contain 
numerous capillaries, which are especially abundant near 
the meshwork area (Saitoh 1990; Mayer-Gostan et al. 1997). 
Unexpectedly, we found the endothelial cells that form such 
capillaries to abundantly express CA, VHA, and sAC. This 
is consistent with previous reports of CA within the cyto-
plasm of capillaries in the analogous mammalian inner ear 
(Watanabe and Ogawa 1984). We tentatively propose that 
the activities of these proteins are relevant for otolith cal-
cification by mediating the transport of  CO2/HCO3

− from 
the blood to the endolymph, and by facilitating the removal 
of excess  H+ generated as a result of  CaCO3 precipitation. 
In addition, the local acidification of the capillary lumen 
could trigger the Root effect in circulating red blood cells, 
thus promoting  O2 offloading to sustain aerobic metabo-
lism of ionocytes and sensory hair cells within the saccu-
lar epithelium. Such a mechanism was originally described 
in fish swim bladder and eye (reviewed in Pelster 2001), 
and more recently proposed to apply more broadly to other 

highly aerobic fish tissues including the eye (Fairbanks et al. 
1969), muscle (Rummer et al. 2013), and intestine (Cooper 
et al. 2014).

Conclusions, future directions and significance

Our proposed model is consistent with previous functional 
studies conducted on isolated fish inner ear organ that 
suggested the involvement of NKA, CA, and PMCA (as 
well as  Na+/Ca2+ exchanger,  Ca2+ channels, and  Na+/H+ 
exchanger) based on acid–base titration and 45Ca2+ incor-
poration experiments in combination with pharmacological 
inhibitors (Mugiya and Yoshida 1995; Payan et al. 1997). 
Furthermore, functional evidence for the roles of NKCC1 
(Abbas and Whitfield 2009) and PMCA (Cruz et al. 2009) 
is available through the genetic downregulation experiments 
on Zebrafish larvae mentioned above. More recently, the 
presence of many of those proteins as well as VHA has 
been confirmed through an extensive proteomic and tran-
scriptomic survey (Thomas et al. 2019) (with the caveat that 
analyses were conducted on samples that contain both inner 
ear and brain tissue). Our results expand and complement 
those previous studies by establishing the transporter’s cel-
lular and subcellular localization, ultimately leading to the 
identification of two types of ionocytes. In addition, our 
results revealed sAC is present in both types of ionocytes, 
providing a potential mechanism that can regulate otolith 
calcification in response to acid–base variations. Ongo-
ing efforts in our laboratory are attempting to functionally 
characterize the putative regulatory role of sAC on inner 
ear function; however, sAC’s presence within both types of 
ionocytes, sensory hair cells, and capillaries is a significant 
hurdle for studies at the organ and whole organism level. For 
example, putative changes in protein or mRNA abundance in 
ionocytes in response to experimental manipulations would 
be confounded by the background provided by all the other 
cell types in the tissue, which are the majority. Thus, detailed 
functional studies on the underlying ion transport mecha-
nism would require the development of ionocyte primary 
cultures. Similar considerations apply to efforts to elucidat-
ing the functional roles of CA, VHA, and sAC in the capil-
laries near the meshwork area.

The inner ear organ allows fish to sense and respond to its 
environment and, therefore, is essential for survival. In addi-
tion, analyses on otolith rings provide valuable information 
regarding daily and seasonal growth bands, trace element 
signatures (Swearer et al. 1999), exposure to environmental 
salinity and temperature (Campana 1999; Elsdon and Gil-
landers 2002), and diet (Radtke et al. 1996; Nelson et al. 
2011; von Biela et al. 2015). Thus, in addition to its intrin-
sic value from physiological and evolutionary perspectives, 
information about the cellular mechanisms underlying oto-
lith calcification can improve current fisheries assessment 
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tools and help predict the effects of environmental stressors, 
and in particular ocean acidification, on otolith growth and 
function from a mechanistic perspective.
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