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Abstract
Consider the following distributed graph sketching model: There

is a referee and n vertices in an undirected graph G sharing public

randomness. Each vertex v only knows its neighborhood in G and

the referee receives no input initially. The vertices simultaneously

each sends a message, called a sketch, to the referee who then based

on the received sketches outputs a solution to some combinatorial

problem on G, say, the minimum spanning tree problem.

Previous work on graph sketching have shown that numerous

problems, including connectivity, minimum spanning tree, edge or

vertex connectivity, cut or spectral sparsifiers, and (∆+1)-vertex col-
oring, all admit efficient algorithms in this model that only require

sketches of size polylog(n) per vertex. In contrast, we prove that

the two fundamental problems of maximal matching and maximal

independent set do not admit such efficient solutions: Any algo-

rithm for either problem that errs with a small constant probability

requires sketches of size Ω(n1/2−ε ) for any constant ε > 0.

We prove our results by analyzing communication complexity

of these problems in a communication model that allows sharing of

inputs between limited number of players, and hence lies between

the standard number-in-hand and number-on-forehead multi-party

communication models. Our proofs are based on a family of hard

instances using Ruzsa-Szemerédi graphs and information-theoretic

arguments to establish the communication lower bounds.
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1 Introduction
We consider the following distributed sketching model: There are n
vertices indexed by [n] in an undirected graphG(V ,E) and we want
to solve some combinatorial problem P on G, say, find a spanning

forest of G. Any given vertex v only knows its own index and the

set of indices of its neighbors denoted by N (v). The vertices also
have access to a shared random string referred to as public coins.

Then, each vertex v sends a message—called a sketch sk(v)—to a

referee, who based on the received sketches and the public coins

must output a solution to P(G) with constant probability. The task

is to minimize the size of the sketches measured in number of bits

(the problem is trivial with sketches of size Θ(n) by sending the

entire neighborhood of each vertex to the referee).

At first glance, it may not be clear that this model allows for

interesting solutions to non-trivial graph problems. For instance,

consider the spanning forest problem and suppose the input graph

consists of two disjoint random graphs connected by an edge (u,v).
Clearly edge (u,v) is part of any spanning forest but from the

perspective of verticesu andv , edge (u,v) is indistinguishable from
their other edges. This seems to suggest that unless sk(u) or sk(v)
is of size Ω(n), the referee should not be able to find (u,v). This
intuition is however not correct: since each edge in this model is

seen by both its endpoints, vertices other than u and v can also

“inform” the referee about other edges incident on u and v . Hence,
by combining this information with sketches of u and v , we should
be able to use much smaller sketches and still allow the referee

to recover the edge (u,v)1. Indeed, an elegant algorithm by [1],

referred to as AGM sketches, shows that for finding spanning forest

of any given graph with high probability, we only need messages

size O(log3 n) bits.

Starting from the AGM sketches of [1], there has been tremen-

dous progress in obtaining efficient graph sketching algorithms

for various problems, including minimum spanning trees and edge

connectivity [1], subgraph counting [2], vertex connectivity [37],

cut sparsifiers and approximate min/max cuts [2], spectral spar-

sifiers [3, 43], densest subgraph [22, 48], graph degeneracy [31],

and (∆ + 1) vertex coloring [11]. Despite this however, obtaining
similarly efficient sketches for the two fundamental and closely

related problems of maximal matching and maximal independent

set has remained elusive. Our goal in this work is to address this

gap in our understanding of these two key problems.

1
For the interested reader, here is a concrete solution to this particular example. Firstly,

sending O (logn) incident edges uniformly at random per vertex ensures that the

referee can identify the partition of vertices w.h.p. Each vertexw also computes the

number sw :=
∑
z∈N (w ):z>w (z · n +w ) −

∑
z∈N (w ):z<w (w · n + z) and sends it to

the referee. The referee then sums up all the numbers sent by vertices inside one of

the partitions: it is easy to see that the value of this sum uniquely identifies the edge

(u, v) as the contribution of all edges inside the partition cancels out.

https://doi.org/10.1145/3382734.3405732
https://doi.org/10.1145/3382734.3405732
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1.1 Our Contributions

We prove that in contrast to all the aforementioned problems, nei-

ther maximal matching nor maximal independent set admit efficient

polylog(n) size sketches in the distributed sketching model.

Result 1. Any public-coin distributed sketching protocol
for computing a maximal matching or a maximal independent
set with constant probability of success requires Ω(n1/2−ε ) size
sketches for any constant ε > 0.

Result 1 should be contrasted in particular with the complexity

of another closely related symmetry breaking problem, the (∆ + 1)
coloring problem, that admits sketches of size O(log3 n) bits [11].
Result 1 can also be interpreted directly as a lower bound in the

broadcast congested clique model for one-round algorithms (see,

e.g. [30, 39] for the definition of this model and in particular its

equivalence to the distributed sketching model).

It is also worth comparing Result 1 to the lower bounds for these

two problems in the related streaming model. Assadi et al. [14]
have shown a lower bound for approximate matching in dynamic

graph streams and Assadi et al. [11] and Cormode et al. [26] have
proven a lower bound for maximal independent set in insertion-

only streams. By straightforward reductions (see, e.g. [1]), these

results imply that any distributed sketching algorithm that uses

linear sketches require Ω(n) size sketches for either problem (a

linear sketch is a linear transformation of the input of players as

opposed to an arbitrary sketch). However, unlike our Result 1, these

results do not imply any lower bounds for general sketches (see,

e.g. [8], for a separation between general vs linear sketches).

Finally, Result 1 leaves a gap of roughly n1/2 between the lower

bound and the trivial upper bound ofO(n). Closing this gap remains

an interesting open question. We note that even though we are not

aware of any better upper bound for either problem in our model, if
one allows only one extra round of sketching, then both problems

admit (adaptive) sketches of sizeO(n1/2) by results of [46] and [35]

for maximal matching and maximal independent set, respectively.

1.2 Our Techniques

The starting point of our work is the lower bound approach of [14]

for linear sketches of approximate matching. In [14], the authors

gave a communication complexity lower bound for approximating

matching in the following communication model: The input graph

is edge-partitioned between a small number of no(1) players and the
players need to simultaneously send a message to the referee to

solve the problem. By picking the input graph of each player to

locally be a dense Ruzsa-Szemerédi graph (a graph with a “large”

number of “large” induced matchings; see Section 2.2) that are

“incompressible” in the context of matching problem, [14] manages

to ensure that the players need to communicate almost their entire

graph to the referee in order to compute a large matching.

To lift this approach to our model, we need to address several

key aspects of the distributed sketching model that are missing

from the communication model of [14]. Firstly, the input graph in

our model is vertex-partitioned between the players in that each

player gets to see all edges incident on a vertex. This property

right away breaks the “incompressibility”-type arguments in [14]

based on Ruzsa-Szemerédi graphs as seeing all edges incident on
vertices allows some of the players to figure out on their own which

induced matching in the Ruzsa-Szemerédi graph is the important
one and solely focus on communicating edges of that matching.

Secondly, since each edge is seen by both its endpoint in our model,

i.e., the inputs are shared in a limited way, a player can inform

the referee about the edges of another player as well (a simple

example is outlined in Footnote 1). Combining this with the first

challenge above means that we will have some players that not

only know which parts of the graph are more important to focus

on and communicate to the referee, but can also inform the referee

about the input of other players in those parts of the graph!

We manage to address the challenges above through a combina-

tion of ideas. We first change the input distribution of [14] in order

to limit the number of players that have extra knowledge about

the important parts of the graph (which we call public players).
The main step is then to “decompose” the information revealed by

messages of players to the referee between the public players and

non-public players and bound each part separately. This requires

entirely foregoing the combinatorial arguments in lower bound

of [14] and instead use information-theoretic tools for the analysis

of the lower bound. Imposing the limit on the number of public

players then allow us to argue that even though they have a good

knowledge of which parts of the graph to communicate, their total

bandwidth is not enough for solving the problem on their own.

Finally, we show that the non-public players will not be able to

communicate much about their important edges with low com-

munication as they are unaware of the identity of their important

edges and combine these to finalize the proof.

1.3 Related Work

To our knowledge, the distributed sketching model we study in this

paper was first considered by Becker et al. in [17, 18]. In particu-

lar, [17] proved lower bounds for deterministic algorithms for com-

puting some local properties of the graph such as triangle-freeness

and [18] extended some of these lower bounds to randomized al-

gorithms. Moreover, [18] proved separations between power of

deterministic, private-coin, and public-coin algorithms. Designing

algorithms in this and related graph sketching models has been

a subject of extensive study after the breakthrough result of Ahn,

Guha, and McGregor [1] on obtaining an O(log3 n) size sketches
for the spanning tree problem which paved the path for various

algorithmic results mentioned earlier. Finally, on the lower bound

front, Nelson and Yu [50], building on [44], proved that any public-

coin problem for the spanning tree problem requires Ω(log3 n) size
sketches. Proving super-logarithmic lower bounds for the spanning

tree problem for private-coin or deterministic protocols remains a

fascinating open problem in this area [21].

The distributed sketching model in our paper is equivalent to

the broadcast congested clique model when restricted to one-round

protocols. This model has been studied in several recent papers from

both upper and lower bounds perspectives; see, e.g. [16, 30, 39–41]

and references therein. For instance, Jurdzinski and Nowicki study

deterministic algorithms for graph connectivity in this model [40,

41], Becker et al. [19] consider algorithms and lower bounds for
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finding small cycles, Montealegre et al. [49] study reconstruction

of hereditary graph classes, and Drucker et al. [30] prove lower
bounds for multi-round algorithms for several problems including

testing triangle-freeness or K4-freeness.

Another model similar to our setting is when the input graph is

bipartite and there is a player for each vertex in only one side of the
bipartition [6, 9, 24, 29] (this model has application to algorithmic

game theory where players correspond to bidders in an auction

and the other side of the graph are items they are interested in).

Unlike our model, this setting no longer has shared inputs between

the players and strong lower bounds are known in this problem

for problems such as approximating matching [6, 24, 29] and even

computing a spanning forest which is an “easy” problem in our

model. Roughly speaking, the source of hardness in all these lower

bounds are vertices of degree one on the non-player-side of the

bipartition that are hard to find for the player-side. When allowing

all vertices to send amessage in ourmodel, these degree one vertices

can easily identify themselves and break the lower bound.

We refer the interested reader to [1, 2, 17, 30, 33, 39, 50] for

further discussion of related work and connection of this model to

related models such as CONGEST and dynamic streams.

2 Notation and Preliminaries

For any integer t ∈ N, we use [t] := {1, . . . , t}. For a graph G =
(V ,E), n = |V | denote the number of vertices andm = |E | denote
the number of edges. We use san-serif fonts to denote random

variables to avoid ambiguity with the value they can take.

2.1 Communication Model

The communication model we work with can be defined formally

as follows. Consider an undirected graph G = (V ,E). There is

one player per every vertex of the graph and a central referee (or

coordinator). The input to player corresponding to vertex u ∈ V
is the number of vertices n, the ID of node u which is a unique

integer in {1, . . . ,n}, and the set of all neighbors v of u in G or

alternatively all edges (u,v) ∈ E. It is important to emphasize that

any edge (u,v) ∈ E is thus given as input to two players, namely, u
and v . The referee receives no input.

In this paper, we are interested in computing amaximal matching

or a maximal independent set (MIS) of the graph G. In order to do

this, each player is allowed to, simultaneously with other players,

send a single message to the referee based solely on the player’s

input, who upon receiving the input messages computes the final

output. A protocol in this model describes the algorithms of players

(for computing the messages) and the algorithm of the referee

(for recovering the solution from received messages). We define

communication cost of a protocol as the worst case length of the

message sent by any player in the protocol (measured in number

of bits). For randomized protocols, we allow the players and the

referee to have access to public-coins, i.e., a shared random string

that can be used by the algorithms of players and the referee.

Types of error: Naturally, we allow randomized protocols to make

error (with some fixed probability). This means a protocol for max-

imal matching may err by outputting a matching that contains an

edge not in the graph, or a matching which is not maximal. Simi-

larly, a protocol for maximal independent set may err by outputting

a set which is not an independent set or is not maximal.

We shall note that many lower bounds in the literature for ap-

proximate matching, e.g. in [12, 36, 42, 45] make this implicit as-

sumption that the output of the protocol is always a valid matching

(but may not necessarily be sufficiently large) which weakens the

lower bound. Moreover, in order for our reduction for maximal

independent set to work, we truly need to prove the lower bound

for matching algorithms that are allowed outputting edges that

may not be part of the graph with some small error probability.

We point out that the communication model studied in this paper

lies between the two key multiparty communication models, the

number-in-hand (NIH) model (in which the inputs of players are

disjoint) and the number-on-forehead (NOF) model (in which the

inputs of players can be arbitrarily overlapping). Compared to the

NIHmodel, proving communication complexity lower bounds in the

NOF model are considerably more challenging (see, e.g. [15, 25, 47]).

2.2 Ruzsa-Szemerédi Graphs

A graph GRS(V ,E) is a called an (r , t)-Ruzsa-Szemerédi graph (RS

graph for short) iff its edge-set E can be partitioned into t induced
matchings MRS

1
, . . . ,MRS

t , each of size r . We use the original con-

struction of RS graphs due to Ruzsa and Szemerédi [51], based on

the existence of large sets of integers with no 3-term arithmetic pro-

gression, proven by Behrend [20] (we note that there are multiple

other constructions with different parameters; see, e.g. [5, 32, 34, 36]

and references therein).

Proposition 2.1 ([51]). For infinitely many integer N , there are
(r , t)-RS graphs on N vertices with r = N

eΘ(
√
logN )

and t = N/3.

RS graphs have been extensively studied as they arise naturally in

property testing, PCP constructions, additive combinatorics, stream-

ing algorithms, graph sparsification, etc. (see, e.g., [4, 5, 7, 10, 13, 14,

23, 26, 28, 32, 34, 36, 38, 42, 45, 47, 52]). In particular, a line of work

initiated by Goel, Kapralov, and Khanna [36] have used different

constructions of these graphs to prove communication complexity

lower bounds for (approximate) matching algorithms in different

settings [13, 14, 26, 36, 42, 45].

2.3 Basic Information Theory Facts
Our proof relies on basic concepts from information theory which

we summarize below. We refer the interested reader to the excellent

text by Cover and Thomas [27] for a broader introduction.

For random variables A,B, we use H(A) and I(A ;B) to denote

the Shannon entropy and mutual information, respectively. We

shall use the following basic properties of entropy and mutual

information in the paper.

Fact 2.2. Let A, B, C, and D be four random variables.

(1) 0 ≤ H(A) ≤ log |supp(A)| (where supp(A) denote the support
of A). The right equality holds iff A is uniformly distributed.

(2) I(A ;B) ≥ 0. The equality holds iff A and B are independent.
(3) Conditioning on a random variable reduces entropy: H(A |

B,C) ≤ H(A | B). The equality holds iff A ⊥ C | B.
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(4) Chain rule for entropy:H(A,B | C) = H(A | C)+H(B | C,A).
(5) Chain rule for mutual information: I(A,B ;C | D) = I(A ;C |

D) + I(B ;C | A,D).

We will use the following two standard inequalities regarding the

effect of conditioning on mutual information.

Proposition 2.3. If A ⊥ D | C: I(A ;B | C) ≤ I(A ;B | C,D).

Proof. By Fact 2.2-(3), since A ⊥ D | C, we have H(A | C) =
H(A | C,D) and since conditioning can only decrease the entropy,

H(A | C,B) ≥ H(A | C,B,D). As such,

I(A ;B | C) = H(A | C) − H(A | C,B)

≤ H(A | C,D) − H(A | C,B,D) = I(A ;B | C,D),

concluding the proof.

Proposition 2.4. If A ⊥ D | B,C: I(A ;B | C) ≥ I(A ;B | C,D).

Proof. By Fact 2.2-(3), since A ⊥ D | B,C, we have H(A |

B,C) = H(A | B,C,D) and since conditioning can only reduce the

entropy, H(A | C) ≥ H(A | D,C). As such,

I(A ;B | C) = H(A | C) − H(A | B,C)

≥ H(A | D,C) − H(A | B,C,D) = I(A ;B | C,D),

concluding the proof.

3 A Lower Bound for Maximal Matching
We prove the following theorem in this section, which implies Re-

sult 1 for matching.

Theorem 1. Any public-coin distributed sketching protocol for
computing a maximal matching with probability at least 0.99 must

communicate Ω
(

n1/2

eΘ(
√
logn)

)
bits from at least one player.

We shall remark that the extension of Theorem 1 to the case

when instead of at least one player, the average communication per

player is Ω

( √
n

eΘ(
√
logn)

)
is standard. Basically, one needs to provide

the “hard” input of the vertex communicating a large message to

every vertex of the graph with constant probability and use the fact

that simultaneous protocol cannot distinguish these two cases. We

omit the details and instead refer the reader to [50, Section 3].

In the following, we first present our hard distribution for dis-

tributed sketching algorithms of maximal matching and then use it

to prove a lower bound on sketch sizes and prove Theorem 1.

3.1 A Hard Distribution for Maximal Matching
Let N ∈ N be sufficiently large and consider the the distribution

DMM on graphs with n := n(N ) vertices given below.

Distribution DMM:
Parameters: r = N

eΘ(
√
logN )
, t = N

3
, k = t , n = N − 2r + k · 2r .

(1) Fix an (r , t)-RS graph GRS
with vertex set [N ] using Propo-

sition 2.1. LetMRS
1
, . . . ,MRS

t be its induced matchings.

(2) Pick j⋆ ∈ [t] uniformly at random and define V⋆
as the set

of 2r vertices incident onMRS
j⋆ .

(3) For i = 1 to k independently:
(a) Let Gi be obtained from GRS

by dropping each edge w.p.

1/2 independently and keeping the remaining edges.

(4) Pick a random permutation σ of [n] and use it to relabel the
vertices of the Gi graphs:

(a) Enumerate the N − 2r vertices of GRS
not in V⋆

(from

the one with the smallest label to the largest). Let v be

the ℓth vertex in the enumeration. Relabel the k vertices

corresponding to v in G1, . . . ,Gk by the same label σ (ℓ).

(b) For i = 1 to k :
Enumerate the 2r vertices of Gi corresponding to ver-

tices inV⋆
inGRS

(from the one with the smallest label

to the largest). Relabel the ℓth vertex in the enumeration

by σ (N − 2r + (i − 1) · 2r + ℓ).

(5) Let G = (V ,E) be the union of the graphs G1, . . . ,Gk . That

is, V = [n] and for u,v ∈ V , (u,v) ∈ E if and only if there

exists i ∈ [k] such that (u,v) is in the edge set of Gi .

Figure 1 gives an illustration of this distribution. From the de-

scription of the distribution, it can be seen that we are dealing with

two different types of vertices that need to be treated differently.

We define these vertices as follows:

• Public vertices: The vertices with labels σ (1), . . . ,σ (N−2r )
are called public vertices. These are vertices that appear in
every graph G1, . . . ,Gk .

• Unique vertices: For any i ∈ [k], the vertices with labels

σ (N − 2r + (i − 1) · 2r + 1), . . . ,σ (N − 2r + (i − 1) · 2r + 2r )
are called unique vertices (ofGi ). These vertices only appear

in the graph Gi .

The very first step in the proof of Theorem 1 is the following

claim regarding maximal matchings in graphs sampled from the

distribution DMM.

Claim 3.1. With probability at least 1 − 2
−kr/10 over the choice

of graph G ∼ DMM, every maximal matching M of G has at least
k · r/4 edges whose both endpoints are unique vertices.

Proof. For i ∈ [k], let Mi be the matching in Gi correspond-

ing to induced matching MRS
j⋆ in GRS

. Recall that the matchings

M1, . . . ,Mk are on disjoint vertex sets and that |Mi | ≤ |MRS
j⋆ | = r .

Also recall that each of the potential kr edges in ∪ki=1Mi is removed

with probability 1/2, independently. Thus, E
���∪ki=1Mi

��� = k · r/2

and by Chernoff bound, the size of ∪ki=1Mi is at least k · r/3 with

probability at least 1 − 2
−kr/10

. In the following, we condition on

this event.

SupposeM is a maximal matching of G. Since there are N − 2r
public vertices, at most N − 2r edges ofM can have a public vertex
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(a) Graph G1 and its special matching M1

(blue thick edges).
(b) Graph G2 and its special matching M2

(blue thick edges).
(c) Graph G = G1 ∪G2.

Figure 1: An illustration of the graphs in the hard distributionDMM for maximal matching. Each graphGi is an RS graph with
a “large” number of “large” induced matchings (for the purpose of this illustration, we have not removed half the edges of
the RS graph randomly). Here, in the final graphG, the top blocks of vertices (yellow) of eachGi form the public vertices and
the bottom block (green and brown) form the unique vertices (unlike this figure, the number of public vertices in graph G in
general is much smaller than the total number of unique vertices).

as one endpoint. This leaves out at least

k · r/3 − (N − 2r ) > k · r/3 − 3k ≫ k · r/4
(for sufficiently large N so r = N

eΘ(
√
logN )

> 36)

edges amongM1, . . . ,Mk where both of their end points are unique

and free to get matched byM . These edges must be inM , asM is

maximal and since there are no additional edges inG supported on

the end points of these edges (by the induced property of matchings

in the RS graphs). This implies the claim as both endpoints of these

edges are unique vertices.

A Slight Change of The model: Public and
Unique Players

Recall that in our model defined in Section 2, there is one player per

every vertex of the graph. It turns out that for proving the lower

bound, it is more convenient to consider the more general setting

defined as follows. Instead of n players, we have N − 2r + k · N >
n (= N − 2r + k · 2r ) players partitioned into two groups, called

public and unique players. There are in total N − 2r public players
denoted by P := {p1, . . . ,pN−2r }; each public player pj gets all

edges incident on the jth public vertex inG (when the public vertices

are enumerated from the one with the smallest label to the largest).

We also have a set U of k · N unique players, consisting of a N
players per each Gi , denoted by Ui . Each unique player ui, j ∈ Ui
for i ∈ [k] and j ∈ [N ] only sees the edges in G that correspond to

edges incident on vertex j inGi . Note that this implies that a unique

player corresponding to a unique vertex u in G sees all the edges

incident on vertex u in G (this is not the case for unique players

that correspond to public vertices in G).

The only difference between this model and the original one

is that there are now additionally k new “unique” copies of each

public vertex, where the ith copy can only see the edges of this

vertex inside the graphsGi . In our proof, we reveal to the referee

for free the permutation σ and index j⋆ (we stress that σ and j⋆ are

not revealed to the players), and hence also reveal the partitioning

of vertices into public and unique vertices. As such, this new model

can only be stronger than the old one for algorithms, as the referee

can simply ignore the messages of unique players holding extra

copies of the public vertices and run the protocol in the old model.

3.2 The Lower Bound for Distribution DMM

We now prove the lower bound under this new model. Fix a de-
terministic protocol π for finding a maximal matching on graphs

sampled from DMM with error probability at most 0.01. At the

end, we will extend the lower bound to randomized algorithms on

this distribution using an averaging argument (namely, the easy

direction of Yao’s minimax principle [53]).

We use Π(P) := π (p1), . . . ,π (pN−2r ) to denote the collective

messages of public players. For any i ∈ [k], we further use Π(Ui ) :=
π (ui,1), . . . ,π (ui,N ) to denote the collective messages of unique

players in Gi . Finally Π(U ) := Π(U1), . . . ,Π(Uk ) is the messages of

all unique players and Π := Π(P),Π(U ) denotes all messages.

Let Σ, J be random variables representing the values of σ , j⋆ in

the distributionDMM. Let Π be a random variable representing the

transcript of π (namely Π defined above). For i ∈ [k] and j ∈ [t], let

Mi, j ∈ {0, 1}
MRS
j

be a vector-valued random variable that indicates

for each edge e in the matchings in MRS
j whether or not e was

removed when constructing Gi . Namely,Mi, j (e) = 1 if the edge e
was not removed when constructing Gi , or exists in Mi, j .

Recall that we assumed the referee is additionally provided with

σ and j⋆ for free. Hence, the matching output by the referee, de-

noted by Mπ , is a function of Π,σ and j⋆. We further write MU
π



PODC ’20, August 3–7, 2020, Virtual Event, Italy Sepehr Assadi, Gillat Kol, and Rotem Oshman

to denote the set of edges in Mπ where both their endpoints are

unique vertices. We use Claim 3.1 to lower bound the size ofMU
π .

Claim 3.2. E
��MU

π
�� ≥ k · r/5.

Proof. With probability 0.01 the protocol errs, and with proba-

bility 1 − 2
−rk/10 ≫ 0.01 the event in Claim 3.1 does not hold. By

union bound, this means that with probability 0.98, the size ofMU
π

should be at least k · r/4, which implies the desired bound on the

expectation.

By Claim 3.2, MU
π is rather large in expectation. We use this

to argue that the messages of the players need to reveal a lot of

information about the edges that exist in the graph, and in particular

the edges corresponding to matchings between unique vertices, to

enable the referee to output a large matchingMU
π . This is intuitive

as the referee is outputting a large matching between the unique

vertices and thus should know which edges exist to output them.

Lemma 3.3. I(M1,J, . . . ,Mk,J ;Π | Σ, J) ≥ k · r/6.

Proof. Firstly, note that edges of MU
π all belong to MRS

j⋆ in

the graphs G1, . . . ,Gk , as both their endpoints are unique ver-

tices. We use Mout (π ,σ , j
⋆) ⊆ M

1, j⋆ , . . . ,Mk, j⋆ to denote the

random variables corresponding to edges inMU
π (output by the ref-

eree) and Mout to denote the remaining random variables among

M
1, j⋆ , . . . ,Mk, j⋆ (throughout this proof, we only focus on edges

between unique vertices captured inM
1, j⋆ , . . . ,Mk, j⋆ ).

By definition of mutual information,

I(M1,J, . . . ,Mk,J ;Π | Σ, J)

= H(M1,J, . . . ,Mk,J | Σ, J) − H(M1,J, . . . ,Mk,J | Π, Σ, J)

= k · r − H(M1,J, . . . ,Mk,J | Π, Σ, J), (1)

as conditioned on Σ, J (but not Π),M1,J, . . . ,Mk,J is uniform over its

support, which has size 2
rk
, and thus we get the equality by Fact 2.2-

(1). Our goal is now to upper bound the RHS of Eq (1).

Define O ∈ {0, 1} which is 1 if and only if the output of the

protocol is correct. By applying chain rule of entropy (Fact 2.2-(4))

and since M1,J, . . . ,Mk,J = Mout ,Mout , we have,

H(M1,J, . . . ,Mk,J | Π, Σ, J)

≤ H(Mout ,Mout | O,Π, Σ, J) + H(O)

≤ H(Mout | O,Π, Σ, J) + H(Mout | Mout ,O,Π, Σ, J) + 1,
(2)

as H(O) ≤ 1 (by Fact 2.2-(1)). We now bound each of the remaining

terms separately.

For the first term of Eq (2),

H(Mout | O,Π, Σ, J) = Pr (O = 0) · H(Mout | O = 0,Π, Σ, J)

+ Pr (O = 1) · H(Mout | O = 1,Π, Σ, J)

≤ Pr (O = 0) · k · r ≤ k · r/100,

where we used the fact thatMout has support 2
rk

(and Fact 2.2-(1)),

and that conditioned on O = 1 and Π, Σ, J, entropy of Mout is zero

because in this case, the correctness of the protocol (by conditioning

O = 1) ensures that all edges inMU
π belong to the graph.

For the second term of Eq (2),

H(Mout | Mout ,O,Π, Σ, J)

≤ H(Mout | Π, Σ, J)
(conditioning can only decrease entropy, Fact 2.2-(3))

= E
Π,σ , j⋆

[
H(Mout | Π = Π, Σ = σ , J = j⋆)

]
= E

Π,σ , j⋆

[
log

(
supp(Mout | Π = Π, Σ = σ , J = j⋆)

)]
(by Fact 2.2-(1))

= E
Π,σ , j⋆

[
k · r −

���MU
π (Π,σ , j⋆)

���]
(

���Mout

��� = k · r − |Mout |)

= k · r − E
���MU

π

��� ≤ 4

5

· k · r . (by Claim 3.2)

Plugging in these bounds in Eq (2) and in Eq (1), we obtain that,

I(M1,J, . . . ,Mk,J ;Π | Σ, J) ≥ k · r −

(
k · r/100 +

4

5

· k · r + 1

)
≥ k · r/6,

concluding the proof.

Our goal is now to upper bound I(M1,J, . . . ,Mk,J ;Π | Σ, J), the
information about M1,J, . . . ,Mk,J revealed to the referee. The next

lemma bounds this information by decomposing it to the infor-

mation revealed by the public players P , and the sum of the infor-

mations revealed by each group Ui of unique players about their
matching Mi,J. Intuitively, this can be done as the inputs of unique

players from different Gi ’s are independent of each other (these in-

puts are only functions of which edges exists fromGRS
in eachGi ).

As a result, the messages communicated by unique players inside

one graph do not give extra information about another graph.

Lemma 3.4. We have,

I(M1,J, . . . ,Mk,J ;Π | Σ, J) ≤ H(Π(P)) +
k∑
i=1
I(Mi,J ;Π(Ui ) | Σ, J).

Proof. Firstly, by chain rule of mutual information (Fact 2.2-(5))

and since Π = Π(P),Π(U ),

I(M1,J, . . . ,Mk,J ;Π | Σ, J)

= I(M1,J, . . . ,Mk,J ;Π(U ) | Σ, J)

+ I(M1,J, . . . ,Mk,J ;Π(P) | Π(U ), Σ, J)

≤ I(M1,J, . . . ,Mk,J ;Π(U ) | Σ, J) + H(Π(P)). (3)

We thus only need to upper bound the first term above.

Recall Π(U ) = Π(U1), . . . ,Π(Uk ). For i ∈ [k], denote Π(U <i ) =

Π(U1), . . . ,Π(Ui−1). By chain rule (Fact 2.2-(5)),

I(M1,J, . . . ,Mk,J ;Π(U ) | Σ, J)

=

k∑
i=1
I(M1,J, . . . ,Mk,J ;Π(Ui ) | Π(U

<i ), Σ, J).

We first show that for each i ∈ [k],

I(M1,J, . . . ,Mk,J ;Π(Ui ) | Π(U
<i ), Σ, J)

≤ I(M1,J, . . . ,Mk,J ;Π(Ui ) | Σ, J), (4)
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i.e., “dropping” the conditioning on Π(U <i ) only increases the in-

formation. This is because, after conditioning on Σ and J and any

subset of {M1,J, . . . ,Mk,J}, the input of ui, j only depends on the

(remaining) random coins used for deciding which edges of GRS
to

remove to obtain Gi . Since Gi is constructed independently from

all other Gi′ , we get that the inputs of the unique players ui, j and
ui′, j′ are independent of each other, for every i ′ , i (we emphasize

that this is after conditioning on σ and by input we mean which

edges exist from GRS
). This also implies that Π(Ui ) ⊥ Π(U <i ) |

M1,J, . . . ,Mk,J, Σ, J, as Π(Ui ) and Π(U <i ) are deterministic func-

tions of unique players’ inputs. Hence, we can apply Proposition 2.4.

Denote M−i,J = M1,J, . . . ,Mi−1,J,Mi+1,J, . . . ,Mk,J. By chain

rule of mutual information,

I(M1,J, . . . ,Mk,J ;Π(Ui ) | Σ, J)

= I(Mi,J ;Π(Ui ) | Σ, J) + I(M−i,J ;Π(Ui ) | Mi,J, Σ, J)

= I(Mi,J ;Π(Ui ) | Σ, J),

since I(M−i,J ;Π(Ui ) | Mi,J, Σ, J) = 0, as Π(Ui ) ⊥ M−i,J | Mi,J, Σ, J.
The lemma now follows from this and Eq (3), Eq (4).

Lemma 3.4 upper bounds the contribution of public players to
revealing information about M1,J, . . . ,Mk,J simply by the length

(entropy) of their entire message. While quite a weak upper bound,

this seems unavoidable as public players have a “good knowledge”

of which edges of the graph are important and thus can directly

inform the referee about those edges.

On the other hand, we now prove that, unlike public players,

unique players in each Ui cannot reveal much information about

their matchings without communicating much larger messages (by

a factor of t , i.e., the total number of induced matchings in GRS
).

This is established via a direct sum style argument which argues

that since the players in Ui are collectively unaware of the identity

of matching Mi,J, they need to reveal enough information about

every induced matching inGi in order to reveal enough information

about the (unknown) matchingMi,J.

Lemma 3.5. For any i ∈ [k], I(Mi,J ;Π(Ui ) | Σ, J) ≤ 1

t · H(Π(Ui )).

Proof. Denote by Σi be the random variable representing the

(partial) labeling function that was used by the algorithm for sam-

pling from DMM to relabel the vertices of the graph Gi . Formally,

Σi is the restriction of the permutation Σ : [n] → [n] to the domain

Si = [N − 2r ] ∪ {N − 2r + (i − 1) · 2r + 1, . . . ,N − 2r + i · 2r }. Denote
by Σ−i the random variable representing the restriction of Σ to the

domain [n] \ Si . We identify Σ with (Σi , Σ−i ).

The input to playersUi (and consequently the message Π(Ui )) is
uniquely determined by the matchingsMi,1, . . . ,Mi,t and the la-

beling function Σi , as these fully determine the graphGi . Therefore,

Π(Ui ) ⊥ Σ−i | Mi,J, Σi , J. By Proposition 2.4, it holds that

I(Mi,J ;Π(Ui ) | Σ, J) ≤ I(Mi,J ;Π(Ui ) | Σi , J).

We bound the the RHS of the above equation as follows,

I(Mi,J ;Π(Ui ) | Σi , J) = E
j∼J

[
I(Mi, j ;Π(Ui ) | Σi , J = j)

]
=

1

t
·

t∑
j=1
I(Mi, j ;Π(Ui ) | Σi ),

where the second equality is as the distribution of (Mi, j ,Π(Ui ), Σi )
is independent of the event J = j (in an informal sense, the unique

players in Ui are unaware of which matching in the graph Gi is

special even if they can all see the input of each other as well).

Since (Mi, j+1, . . . ,Mi,t ) ⊥ Mi, j | Σi and by Proposition 2.3,

1

t
·

t∑
j=1
I(Mi, j ;Π(Ui ) | Σi )

≤
1

t
·

t∑
j=1
I(Mi, j ;Π(Ui ) | Σi ,Mi, j+1, . . . ,Mi,t ).

By the chain rule of mutual information (Fact 2.2-(5)), the right

hand side term simplifies to

1

t
· I(Mi,1, . . . ,Mi,t ;Π(Ui ) | Σi ) ≤

1

t
· H(Π(Ui )),

finalizing the proof.

Proof of Theorem 1. Let π be any protocol (deterministic or

randomized) for the maximal matching problem over the distribu-

tion DMM. By an averaging argument, we can fix the randomness

of the protocol and obtain a deterministic protocol with the same

worst-case length messages and probability of success. Fix such a

protocol in the following and assume every player communicates b
bits to the referee in the worst-case.

By combining Lemma 3.3, Lemma 3.4, and Lemma 3.5, and since

k = t , we obtain that,

k · r/6 ≤ I(M1,J, . . . ,Mk,J ;Π | Σ, J) ≤ H(Π(P)) +
1

t
·

k∑
i=1
H(Π(Ui ))

≤ |P | · b +
kN · b

t
≤ Nb +

k

t
· Nb = 2Nb .

Hence, we should have 2Nb ≥ kr/6 and so (since k = t = N /3),

b ≥
1

12N
· kr =

1

12N
·
N

3

· r =
r

36

=
N

eΘ(
√
logN )

.

The total number of vertices, n, in the graph G, satisfies n ≥ N
and n ≤ kN = N 2/3, and hence N = Θ(

√
n). This implies that the

per-player communication cost has to be at least

b = Ω

( √
n

eΘ(
√
logn)

)
,

finalizing the proof of Theorem 1.

We conclude this section by making the following remark that

summarizes some key aspects of this lower bound.

Remark 3.6. The lower bound in distribution DMM proven in this
section holds even under all the following conditions:

(i) The base graph GRS is known by all players and the referee
(before dropping the edges);

(ii) The choice of j⋆ and σ is known to the referee (not the players);
(iii) Public vertices know that they are public and additionally

know the identity of all other public vertices;
(iv) The referee only needs to output a matching of size k · r/4

between the unique vertices (even if it is not maximal).
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Remark 3.6 follows directly from the proof of Theorem 1 in this

section. We will use these properties to establish our lower bound

for maximal independent set problem in the next section.

4 A Lower Bound for Maximal Independent Set
We now use a reduction from Theorem 1 to prove the following

theorem.

Theorem 2. Any public-coin distributed sketching protocol for
computing a maximal independent set with probability at least 0.99

must communicate Ω
(

n1/2

eΘ(
√
logn)

)
bits from at least one player.

We prove Theorem 2 using a reduction from our lower bound

in Theorem 1. We shall note that we are not giving a complete re-

duction from maximal matching to maximal independent set in the

distributed sketching model. Our reduction crucially uses various

properties of the hard distribution for Theorem 1, stated in Re-

mark 3.6, and thus act as a reduction only for such instances. We

are not aware of any general reduction between the two problems

in the distributed sketching model (known reductions through line

graphs in the LOCAL model are infeasible in this model as they

would blow up communication complexity of protocols drastically).

A Reduction From Maximal Matching on
Distribution DMM

We design a reduction that given a graphG ∼ DMM, turns it into a

graph H and uses a protocol for maximal independent set on H to

find a maximal matching in G (or rather a large matching between

unique vertices of G). To continue we need a definition.

Recall that in DMM, each graphG1, . . . ,Gk was a copy of a base

RS graph GRS
with edges dropped randomly with probability 1/2.

For any i ∈ [k], we defineMRS
i, j⋆ to be a matching on vertices of Gi

that is a copy of the j⋆th

induced matching of GRS before dropping
its edges in Gi randomly (hence,MRS

i, j⋆ is a superset of the induced

matching ofGi ). Also note thatM
RS
i, j⋆ for every i ∈ [k] is supported

on unique vertices. By construction,MRS
i, j⋆ is only a function of σ

and j⋆ (to determine which matching to pick, and which vertices

in G are endpoints of this matching).

We are now ready to give our reduction. Figure 2 gives an illus-

tration of this reduction.

Reduction from maximal matching on DMM:
(1) Suppose G is an n-vertex graph sampled from DMM. The

players collectively create the graph H on 2n vertices as

follows:

(a) Each vertex u ∈ G creates two copies uℓ and ur of the

same vertex, and connect uℓ to vℓ and ur to vr for every
neighborv ofu inG . This step creates two identical copies

of G on two disjoint sets of vertices denoted by V ℓ
and

V r
.

(b) Each public vertex u in G adds an edge between uℓ and

vr , and also between ur and vℓ , for every public vertex

v in G (by Remark 3.6 we assume public vertices know

identity of other public vertices). Let H be this new graph.

(2) The players run the distributed sketching protocol for maxi-

mal independent set on H by each vertex u simulating the

protocol for both vertices uℓ and ur and sending their mes-

sages to the referee. The referee computes the maximal in-

dependent set M of H .

(3) The referee computes the matchingsMRS
i, j⋆ for every i ∈ [k]

(by Remark 3.6, referee knows (σ , j⋆) and can construct this

matching). Then, the referee creates two matchingsMℓ
and

Mr
as follows: for any pair of vertices (u,v) ∈ MRS

i, j⋆ for

i ∈ [k], if uℓ ,vℓ (resp., ur ,vr ) are not both in M, add an

edge (uℓ ,vℓ) toMℓ
(resp. (ur ,vr ) toMr

).

(4) If |Mℓ | ≥ |Mr |, the referee outputs the pre-image of edges

ofMℓ
inG as the final matching (that is, for every (uℓ ,vℓ) ∈

Mℓ
, the final matching contains the edge (u,v)). Otherwise,

the referee outputs the pre-image of the edges ofMr
.

Similar to Section 3, we use Pℓ , Pr , and U ℓ ,U r
, to denote the

copies of public vertices and unique vertices ofG in H , respectively.

We prove the lower bound by showing that the matching output by

the reduction is a valid matching of size at least k ·r/4 inG between

unique vertices, and apply the last part of Remark 3.6 to conclude

the lower bound. The main step of the proof is the following lemma

that establishes the correctness of the reduction.

Lemma 4.1. Suppose S is any maximal independent set in H such
that S∩Pℓ = ∅ (resp. S∩Pr = ∅). Let (u,v) be any edge in anyMRS

i, j⋆
for i ∈ [k]. Then (u,v) survived the random sampling (inDMM) inG
if and only if not both of uℓ ,vℓ belong to S (resp. not both of ur ,vr

belong to S).

Proof. We only prove the lemma for Pℓ ; the case for Pr follows
by symmetry.

Since S is an independent set inH , there can be no edge between

uℓ ,vℓ if they both belong to S , and hence their pre-image u,v
cannot have an edge in G. As such, (u,v) has not survived the

random sampling, proving the first direction of the lemma.

Now consider any pair of vertices uℓ ,vℓ where the edge (u,v)

has not survived the random sampling in G. Since Pℓ has no in-

tersection with S and vertices in U ℓ
have no edges to Pr ,U r

, the

maximality of S ensures that S ∩U ℓ
is a maximal independent set

on the induced subgraph onU ℓ
. However, the induced subgraph

of U ℓ
is the collection of induced matchings of Gi ’s and hence the

only possible edge incident on at least one of the vertices uℓ ,vℓ is

the potential edge (uℓ ,vℓ). As (u,v) has not survived the random

sampling, (uℓ ,vℓ) does not exists in H , and thus, by maximality

of S , both uℓ ,vℓ should be part of S (as no edges are incident on

neither of them).

Proof of Theorem 2. Let π be any protocol (deterministic or

randomized) for maximal independent set and let b denote the

worst-case length of messages communicated by any player.



Lower Bounds for Distributed Sketching of Maximal Matchings and Maximal Independent Sets PODC ’20, August 3–7, 2020, Virtual Event, Italy

(a) Graph G from DMM (b) Graph H in the reduction.

Figure 2: An illustration of the graphs created by the reduction for the maximal independent set problem given a graph
G ∼ DMM as input. The reduction involves creating two identical copies of G and then connecting all public vertices together
(red edges).

As explained in the reduction, each vertex u ∈ G can create the

neighborhood of both uℓ and vℓ correctly in H , and thus simulate

π for them in H consistently with at most 2 · b communication

from u. By definition, π outputs a correct M with probability at

least 0.99. Whenever this happens, by construction of H , we know

that at least one ofM ∩ Pℓ orM ∩ Pr should be empty (since all

vertices in Pℓ and Pr are connected to each other). Conditioned

on this event, by Lemma 4.1, at least one of Mℓ
or Mr

contains

all edges between unique verticesU ℓ
or U r

, and thus the referee

recovers the entire matching between unique vertices in G.

By Remark 3.6, the lower bound of Theorem 1 implies that 2b =

Ω(n1/2/eΘ(
√
logn)) which concludes the proof.
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