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Abstract

Consider the following distributed graph sketching model: There
is a referee and n vertices in an undirected graph G sharing public
randomness. Each vertex v only knows its neighborhood in G and
the referee receives no input initially. The vertices simultaneously
each sends a message, called a sketch, to the referee who then based
on the received sketches outputs a solution to some combinatorial
problem on G, say, the minimum spanning tree problem.

Previous work on graph sketching have shown that numerous
problems, including connectivity, minimum spanning tree, edge or
vertex connectivity, cut or spectral sparsifiers, and (A+1)-vertex col-
oring, all admit efficient algorithms in this model that only require
sketches of size polylog(n) per vertex. In contrast, we prove that
the two fundamental problems of maximal matching and maximal
independent set do not admit such efficient solutions: Any algo-
rithm for either problem that errs with a small constant probability
requires sketches of size Q(nl/ 2=¢) for any constant £ > 0.

We prove our results by analyzing communication complexity
of these problems in a communication model that allows sharing of
inputs between limited number of players, and hence lies between
the standard number-in-hand and number-on-forehead multi-party
communication models. Our proofs are based on a family of hard
instances using Ruzsa-Szemerédi graphs and information-theoretic
arguments to establish the communication lower bounds.
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1 Introduction

We consider the following distributed sketching model: There are n
vertices indexed by [n] in an undirected graph G(V, E) and we want
to solve some combinatorial problem P on G, say, find a spanning
forest of G. Any given vertex v only knows its own index and the
set of indices of its neighbors denoted by N(v). The vertices also
have access to a shared random string referred to as public coins.
Then, each vertex v sends a message—called a sketch sk(v)—to a
referee, who based on the received sketches and the public coins
must output a solution to P(G) with constant probability. The task
is to minimize the size of the sketches measured in number of bits
(the problem is trivial with sketches of size ©(n) by sending the
entire neighborhood of each vertex to the referee).

At first glance, it may not be clear that this model allows for
interesting solutions to non-trivial graph problems. For instance,
consider the spanning forest problem and suppose the input graph
consists of two disjoint random graphs connected by an edge (u, v).
Clearly edge (u,v) is part of any spanning forest but from the
perspective of vertices u and v, edge (u, v) is indistinguishable from
their other edges. This seems to suggest that unless sk(u) or sk(v)
is of size Q(n), the referee should not be able to find (u, v). This
intuition is however not correct: since each edge in this model is
seen by both its endpoints, vertices other than u and v can also
“inform” the referee about other edges incident on u and v. Hence,
by combining this information with sketches of u and v, we should
be able to use much smaller sketches and still allow the referee
to recover the edge (u,v)!. Indeed, an elegant algorithm by [1],
referred to as AGM sketches, shows that for finding spanning forest
of any given graph with high probability, we only need messages
size O(log® n) bits.

Starting from the AGM sketches of [1], there has been tremen-
dous progress in obtaining efficient graph sketching algorithms
for various problems, including minimum spanning trees and edge
connectivity [1], subgraph counting [2], vertex connectivity [37],
cut sparsifiers and approximate min/max cuts [2], spectral spar-
sifiers [3, 43], densest subgraph [22, 48], graph degeneracy [31],
and (A + 1) vertex coloring [11]. Despite this however, obtaining
similarly efficient sketches for the two fundamental and closely
related problems of maximal matching and maximal independent
set has remained elusive. Our goal in this work is to address this
gap in our understanding of these two key problems.

!For the interested reader, here is a concrete solution to this particular example. Firstly,
sending O(log n) incident edges uniformly at random per vertex ensures that the
referee can identify the partition of vertices w.h.p. Each vertex w also computes the
number Sy 1= Y zeN(w)zs>wl(Z 1+ W) = ZoeN(w)yz<w(W - 1+ 2) and sends it to
the referee. The referee then sums up all the numbers sent by vertices inside one of
the partitions: it is easy to see that the value of this sum uniquely identifies the edge
(u, v) as the contribution of all edges inside the partition cancels out.
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1.1 Our Contributions

We prove that in contrast to all the aforementioned problems, nei-
ther maximal matching nor maximal independent set admit efficient
polylog(n) size sketches in the distributed sketching model.

ResULT 1. Any public-coin distributed sketching protocol
for computing a maximal matching or a maximal independent
set with constant probability of success requires Q(n'/27¢) size
sketches for any constant ¢ > 0.

Result 1 should be contrasted in particular with the complexity
of another closely related symmetry breaking problem, the (A + 1)
coloring problem, that admits sketches of size O(log® n) bits [11].
Result 1 can also be interpreted directly as a lower bound in the
broadcast congested clique model for one-round algorithms (see,
e.g. [30, 39] for the definition of this model and in particular its
equivalence to the distributed sketching model).

It is also worth comparing Result 1 to the lower bounds for these
two problems in the related streaming model. Assadi et al. [14]
have shown a lower bound for approximate matching in dynamic
graph streams and Assadi et al. [11] and Cormode et al. [26] have
proven a lower bound for maximal independent set in insertion-
only streams. By straightforward reductions (see, e.g. [1]), these
results imply that any distributed sketching algorithm that uses
linear sketches require Q(n) size sketches for either problem (a
linear sketch is a linear transformation of the input of players as
opposed to an arbitrary sketch). However, unlike our Result 1, these
results do not imply any lower bounds for general sketches (see,
e.g. [8], for a separation between general vs linear sketches).

Finally, Result 1 leaves a gap of roughly nl/2 between the lower
bound and the trivial upper bound of O(n). Closing this gap remains
an interesting open question. We note that even though we are not
aware of any better upper bound for either problem in our model, if
one allows only one extra round of sketching, then both problems
admit (adaptive) sketches of size O(nl/ 2) by results of [46] and [35]
for maximal matching and maximal independent set, respectively.

1.2 Our Techniques

The starting point of our work is the lower bound approach of [14]
for linear sketches of approximate matching. In [14], the authors
gave a communication complexity lower bound for approximating
matching in the following communication model: The input graph
is edge-partitioned between a small number of no) players and the
players need to simultaneously send a message to the referee to
solve the problem. By picking the input graph of each player to
locally be a dense Ruzsa-Szemerédi graph (a graph with a “large”
number of “large” induced matchings; see Section 2.2) that are
“incompressible” in the context of matching problem, [14] manages
to ensure that the players need to communicate almost their entire
graph to the referee in order to compute a large matching.

To lift this approach to our model, we need to address several
key aspects of the distributed sketching model that are missing
from the communication model of [14]. Firstly, the input graph in
our model is vertex-partitioned between the players in that each
player gets to see all edges incident on a vertex. This property
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right away breaks the “incompressibility”-type arguments in [14]
based on Ruzsa-Szemerédi graphs as seeing all edges incident on
vertices allows some of the players to figure out on their own which
induced matching in the Ruzsa-Szemerédi graph is the important
one and solely focus on communicating edges of that matching.
Secondly, since each edge is seen by both its endpoint in our model,
i.e., the inputs are shared in a limited way, a player can inform
the referee about the edges of another player as well (a simple
example is outlined in Footnote 1). Combining this with the first
challenge above means that we will have some players that not
only know which parts of the graph are more important to focus
on and communicate to the referee, but can also inform the referee
about the input of other players in those parts of the graph!

We manage to address the challenges above through a combina-
tion of ideas. We first change the input distribution of [14] in order
to limit the number of players that have extra knowledge about
the important parts of the graph (which we call public players).
The main step is then to “decompose” the information revealed by
messages of players to the referee between the public players and
non-public players and bound each part separately. This requires
entirely foregoing the combinatorial arguments in lower bound
of [14] and instead use information-theoretic tools for the analysis
of the lower bound. Imposing the limit on the number of public
players then allow us to argue that even though they have a good
knowledge of which parts of the graph to communicate, their total
bandwidth is not enough for solving the problem on their own.
Finally, we show that the non-public players will not be able to
communicate much about their important edges with low com-
munication as they are unaware of the identity of their important
edges and combine these to finalize the proof.

1.3 Related Work

To our knowledge, the distributed sketching model we study in this
paper was first considered by Becker et al.in [17, 18]. In particu-
lar, [17] proved lower bounds for deterministic algorithms for com-
puting some local properties of the graph such as triangle-freeness
and [18] extended some of these lower bounds to randomized al-
gorithms. Moreover, [18] proved separations between power of
deterministic, private-coin, and public-coin algorithms. Designing
algorithms in this and related graph sketching models has been
a subject of extensive study after the breakthrough result of Ahn,
Guha, and McGregor [1] on obtaining an O(log® n) size sketches
for the spanning tree problem which paved the path for various
algorithmic results mentioned earlier. Finally, on the lower bound
front, Nelson and Yu [50], building on [44], proved that any public-
coin problem for the spanning tree problem requires Q(log® n) size
sketches. Proving super-logarithmic lower bounds for the spanning
tree problem for private-coin or deterministic protocols remains a
fascinating open problem in this area [21].

The distributed sketching model in our paper is equivalent to
the broadcast congested clique model when restricted to one-round
protocols. This model has been studied in several recent papers from
both upper and lower bounds perspectives; see, e.g. [16, 30, 39-41]
and references therein. For instance, Jurdzinski and Nowicki study
deterministic algorithms for graph connectivity in this model [40,
41], Becker et al. [19] consider algorithms and lower bounds for
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finding small cycles, Montealegre et al. [49] study reconstruction
of hereditary graph classes, and Drucker et al. [30] prove lower
bounds for multi-round algorithms for several problems including
testing triangle-freeness or K4-freeness.

Another model similar to our setting is when the input graph is
bipartite and there is a player for each vertex in only one side of the
bipartition [6, 9, 24, 29] (this model has application to algorithmic
game theory where players correspond to bidders in an auction
and the other side of the graph are items they are interested in).
Unlike our model, this setting no longer has shared inputs between
the players and strong lower bounds are known in this problem
for problems such as approximating matching [6, 24, 29] and even
computing a spanning forest which is an “easy” problem in our
model. Roughly speaking, the source of hardness in all these lower
bounds are vertices of degree one on the non-player-side of the
bipartition that are hard to find for the player-side. When allowing
all vertices to send a message in our model, these degree one vertices
can easily identify themselves and break the lower bound.

We refer the interested reader to [1, 2, 17, 30, 33, 39, 50] for
further discussion of related work and connection of this model to
related models such as CONGEST and dynamic streams.

2 Notation and Preliminaries

For any integer t € N, we use [t] := {1,...,t}. For a graph G =
(V,E), n = |V| denote the number of vertices and m = |E| denote
the number of edges. We use san-serif fonts to denote random
variables to avoid ambiguity with the value they can take.

2.1 Communication Model

The communication model we work with can be defined formally
as follows. Consider an undirected graph G = (V,E). There is
one player per every vertex of the graph and a central referee (or
coordinator). The input to player corresponding to vertex u € V
is the number of vertices n, the ID of node u which is a unique
integer in {1,...,n}, and the set of all neighbors v of u in G or
alternatively all edges (u, v) € E. It is important to emphasize that
any edge (u,v) € E is thus given as input to two players, namely, u
and v. The referee receives no input.

In this paper, we are interested in computing a maximal matching
or a maximal independent set (MIS) of the graph G. In order to do
this, each player is allowed to, simultaneously with other players,
send a single message to the referee based solely on the player’s
input, who upon receiving the input messages computes the final
output. A protocol in this model describes the algorithms of players
(for computing the messages) and the algorithm of the referee
(for recovering the solution from received messages). We define
communication cost of a protocol as the worst case length of the
message sent by any player in the protocol (measured in number
of bits). For randomized protocols, we allow the players and the
referee to have access to public-coins, i.e., a shared random string
that can be used by the algorithms of players and the referee.

Types of error: Naturally, we allow randomized protocols to make
error (with some fixed probability). This means a protocol for max-
imal matching may err by outputting a matching that contains an
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edge not in the graph, or a matching which is not maximal. Simi-
larly, a protocol for maximal independent set may err by outputting
a set which is not an independent set or is not maximal.

We shall note that many lower bounds in the literature for ap-
proximate matching, e.g. in [12, 36, 42, 45] make this implicit as-
sumption that the output of the protocol is always a valid matching
(but may not necessarily be sufficiently large) which weakens the
lower bound. Moreover, in order for our reduction for maximal
independent set to work, we truly need to prove the lower bound
for matching algorithms that are allowed outputting edges that
may not be part of the graph with some small error probability.

We point out that the communication model studied in this paper
lies between the two key multiparty communication models, the
number-in-hand (NIH) model (in which the inputs of players are
disjoint) and the number-on-forehead (NOF) model (in which the
inputs of players can be arbitrarily overlapping). Compared to the
NIH model, proving communication complexity lower bounds in the
NOF model are considerably more challenging (see, e.g. [15, 25, 47]).

2.2 Ruzsa-Szemerédi Graphs

A graph GRS(V,E) is a called an (r, t)-Ruzsa-Szemerédi graph (RS
graph for short) iff its edge-set E can be partitioned into t induced
matchings MRS, . ,M?S, each of size r. We use the original con-
struction of RS graphs due to Ruzsa and Szemerédi [51], based on
the existence of large sets of integers with no 3-term arithmetic pro-
gression, proven by Behrend [20] (we note that there are multiple
other constructions with different parameters; see, e.g. [5, 32, 34, 36]
and references therein).

ProPosITION 2.1 ([51]). For infinitely many integer N, there are
- i ithr = — N =N,
(r,t)-RS graphs on N vertices with r o™ and t /3.

RS graphs have been extensively studied as they arise naturally in
property testing, PCP constructions, additive combinatorics, stream-
ing algorithms, graph sparsification, etc. (see, e.g., [4, 5, 7, 10, 13, 14,
23, 26, 28, 32, 34, 36, 38, 42, 45, 47, 52]). In particular, a line of work
initiated by Goel, Kapralov, and Khanna [36] have used different
constructions of these graphs to prove communication complexity
lower bounds for (approximate) matching algorithms in different
settings [13, 14, 26, 36, 42, 45].

2.3 Basic Information Theory Facts

Our proof relies on basic concepts from information theory which
we summarize below. We refer the interested reader to the excellent
text by Cover and Thomas [27] for a broader introduction.

For random variables A, B, we use H(A) and I(A; B) to denote
the Shannon entropy and mutual information, respectively. We
shall use the following basic properties of entropy and mutual
information in the paper.

Fact 2.2. Let A, B, C, and D be four random variables.

(1) 0 < H(A) < log [supp(A)| (where supp(A) denote the support
of A). The right equality holds iff A is uniformly distributed.
(2) I(A; B) > 0. The equality holds iff A and B are independent.

(3) Conditioning on a random variable reduces entropy: H(A |
B, C) < H(A | B). The equality holds iff A L C | B.
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(4) Chain rule for entropy: H(A,B | C) = H(A | C)+H(B | C, A).
(5) Chain rule for mutual information: I(A,B;C | D) = I(A;C |
D)+1I(B;C | A, D).

We will use the following two standard inequalities regarding the
effect of conditioning on mutual information.

ProrosiTIiON 2.3. IfA L D | C:I(A;B | C) <I(A;B | C,D).
Proor. By Fact 2.2-(3), since A L D | C, we have H(A | C) =

H(A | C, D) and since conditioning can only decrease the entropy,
H(A | C,B) > H(A | C, B, D). As such,

I(A;B|C)=H(A|C)-H(A|C,B)
<H(A|C,D)-H(A|C,B,D)=I(A;B | C,D),
concluding the proof. ||
ProrosITION 2.4. IfA L D|B,C:I(A;B | C) 2 I(A;B | C,D).

Proor. By Fact 2.2-(3), since A L D | B,C, we have H(A |
B, C) = H(A | B, C, D) and since conditioning can only reduce the
entropy, H(A | C) > H(A | D, C). As such,

I(A;B | C) = H(A | C) - H(A | B,C)
> H(A | D,C) - H(A | B,C,D) = I(A;B | C, D),
concluding the proof. I

3 A Lower Bound for Maximal Matching

We prove the following theorem in this section, which implies Re-
sult 1 for matching.

THEOREM 1. Any public-coin distributed sketching protocol for
computing a maximal matching with probability at least 0.99 must

nl/2

e@(\/log n)

communicate Q ( ) bits from at least one player.

We shall remark that the extension of Theorem 1 to the case
when instead of at least one player, the average communication per
‘/ﬁ
£O(logn)
the “hard” input of the vertex communicating a large message to
every vertex of the graph with constant probability and use the fact
that simultaneous protocol cannot distinguish these two cases. We

omit the details and instead refer the reader to [50, Section 3].

player is Q ( ) is standard. Basically, one needs to provide

In the following, we first present our hard distribution for dis-
tributed sketching algorithms of maximal matching and then use it
to prove a lower bound on sketch sizes and prove Theorem 1.

3.1 A Hard Distribution for Maximal Matching

Let N € N be sufficiently large and consider the the distribution
Dmm on graphs with n := n(N) vertices given below.

Distribution Dy pm:

Parameters: r = :%,k:t,n:N—2r+k-2r.

_N

e@(\/log N)’

(1) Fix an (r, t)-RS graph GRS with vertex set [N] using Propo-
sition 2.1. Let Mfs, o, Mfs be its induced matchings.
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(2) Pick j* € [t] uniformly at random and define V* as the set
of 2r vertices incident on M]R*S.

(3) For i = 1 to k independently:
(a) Let G; be obtained from GRS by dropping each edge w.p.
1/2 independently and keeping the remaining edges.

(4) Pick a random permutation o of [n] and use it to relabel the
vertices of the G; graphs:

(a) Enumerate the N — 2r vertices of GRS not in V* (from
the one with the smallest label to the largest). Let v be
the ¢ vertex in the enumeration. Relabel the k vertices
corresponding to v in Gy, . . ., Gi by the same label o(¢).

(b) Fori=1tok:
Enumerate the 2r vertices of G; corresponding to ver-
tices in V* in GRS (from the one with the smallest label
to the largest). Relabel the £ vertex in the enumeration
by o(N —-2r+(i—1)-2r+2).

(5) Let G = (V, E) be the union of the graphs Gy, ..., G. That
is, V = [n] and for u,v € V, (u,v) € E if and only if there
exists i € [k] such that (u,v) is in the edge set of G;.

Figure 1 gives an illustration of this distribution. From the de-
scription of the distribution, it can be seen that we are dealing with
two different types of vertices that need to be treated differently.
We define these vertices as follows:

e Public vertices: The vertices with labels (1), . .., c(N—2r)
are called public vertices. These are vertices that appear in
every graph G, . . ., Gg.

e Unique vertices: For any i € [k], the vertices with labels
o(N-2r+(i—-1)-2r+1),...,.0(N=2r+(i—1)-2r+2r)
are called unique vertices (of G;). These vertices only appear
in the graph G;.

The very first step in the proof of Theorem 1 is the following
claim regarding maximal matchings in graphs sampled from the
distribution Dpm.

Cramv 3.1. With probability at least 1 — 27kr/10 oyer the choice
of graph G ~ Dmm, every maximal matching M of G has at least
k - r/4 edges whose both endpoints are unique vertices.

Proor. For i € [k], let M; be the matching in G; correspond-
ing to induced matching MJR*S in GRS, Recall that the matchings

Mj, ..., My are on disjoint vertex sets and that |M;| < |M]R*S| =r.
Also recall that each of the potential kr edges in Ui?:lM i is removed
with probability 1/2, independently. Thus, E ‘UleMi =k-r/2
and by Chernoff bound, the size of Uf:lM,- is at least k - r/3 with

probability at least 1 — 27kr/10 In the following, we condition on
this event.

Suppose M is a maximal matching of G. Since there are N — 2r
public vertices, at most N — 2r edges of M can have a public vertex
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PaN

e S

(a) Graph G; and its special matching M; (b) Graph G, and its special matching M,

(blue thick edges). (blue thick edges).

(c) Graph G = G; U G.

Figure 1: An illustration of the graphs in the hard distribution Dy for maximal matching. Each graph G; is an RS graph with
a “large” number of “large” induced matchings (for the purpose of this illustration, we have not removed half the edges of
the RS graph randomly). Here, in the final graph G, the top blocks of vertices (yellow) of each G; form the public vertices and
the bottom block (green and brown) form the unique vertices (unlike this figure, the number of public vertices in graph G in
general is much smaller than the total number of unique vertices).

as one endpoint. This leaves out at least

k-r/l3-(N-2r)>k-r/3-3k>k-r/4

: — N
(for sufficiently large N so r = S > 36)
edges among Mj, . . ., My where both of their end points are unique

and free to get matched by M. These edges must be in M, as M is
maximal and since there are no additional edges in G supported on
the end points of these edges (by the induced property of matchings
in the RS graphs). This implies the claim as both endpoints of these
edges are unique vertices. [ |

A Slight Change of The model: Public and
Unique Players

Recall that in our model defined in Section 2, there is one player per
every vertex of the graph. It turns out that for proving the lower
bound, it is more convenient to consider the more general setting
defined as follows. Instead of n players, we have N — 2r + k- N >
n (= N — 2r + k - 2r) players partitioned into two groups, called
public and unique players. There are in total N — 2r public players
denoted by P := {p1,...,pn—-2+}; each public player p; gets all
edges incident on the /1 public vertex in G (when the public vertices

are enumerated from the one with the smallest label to the largest).

We also have a set U of k - N unique players, consisting of a N
players per each G;, denoted by U;. Each unique player u; ; € U;
for i € [k] and j € [N] only sees the edges in G that correspond to
edges incident on vertex j in G;. Note that this implies that a unique
player corresponding to a unique vertex u in G sees all the edges
incident on vertex u in G (this is not the case for unique players
that correspond to public vertices in G).

The only difference between this model and the original one
is that there are now additionally k new “unique” copies of each

public vertex, where the ith copy can only see the edges of this
vertex inside the graphs G;. In our proof, we reveal to the referee
for free the permutation ¢ and index j* (we stress that o and j* are
not revealed to the players), and hence also reveal the partitioning
of vertices into public and unique vertices. As such, this new model
can only be stronger than the old one for algorithms, as the referee
can simply ignore the messages of unique players holding extra
copies of the public vertices and run the protocol in the old model.

3.2 The Lower Bound for Distribution Dym

We now prove the lower bound under this new model. Fix a de-
terministic protocol r for finding a maximal matching on graphs
sampled from Dym with error probability at most 0.01. At the
end, we will extend the lower bound to randomized algorithms on
this distribution using an averaging argument (namely, the easy
direction of Yao’s minimax principle [53]).

We use II(P) := z(p1),...,m(pN-2r) to denote the collective
messages of public players. For any i € [k], we further use II(U;) :=
m(ui,1), ..., m(u;, N) to denote the collective messages of unique
players in G;. Finally II(U) := II(Uy), . . ., II(U ) is the messages of
all unique players and II := II(P), II(U) denotes all messages.

Let %, ) be random variables representing the values of o, j* in
the distribution Dpmm. Let IT be a random variable representing the
transcript of 7 (namely II defined above). For i € [k] and j € [t], let
M, ; € {o, 1}MJRS be a vector-valued random variable that indicates
for each edge e in the matchings in MRS whether or not e was
removed when constructing G;. Namely, M; j(e) = 1 if the edge e
was not removed when constructing G;, or exists in M, e

Recall that we assumed the referee is additionally provided with
o and j* for free. Hence, the matching output by the referee, de-
noted by My, is a function of II, ¢ and j*. We further write M,(Z]
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to denote the set of edges in M,; where both their endpoints are
unique vertices. We use Claim 3.1 to lower bound the size of MY

Cram 3.2. E[MY| > k- r/5.

Proor. With probability 0.01 the protocol errs, and with proba-
bility 1 — 277k/10 5 0.01 the event in Claim 3.1 does not hold. By
union bound, this means that with probability 0.98, the size of MY
should be at least k - r/4, which implies the desired bound on the
expectation. |

By Claim 3.2, MY is rather large in expectation. We use this
to argue that the messages of the players need to reveal a lot of
information about the edges that exist in the graph, and in particular
the edges corresponding to matchings between unique vertices, to
enable the referee to output a large matching MY . This is intuitive
as the referee is outputting a large matching between the unique
vertices and thus should know which edges exist to output them.

LEMMA 3.3. I(My ), ..., Mg )3 IT| Z,)) 2 k- r/6.

Proor. Firstly, note that edges of MY all belong to M RS in
J

the graphs Gy, ..., G, as both their endpoints are unique ver-
tices. We use Moy (,0,j*) C My j*s ... Mg j* to denote the
random variables corresponding to edges in MY (output by the ref-
eree) and My, to denote the remaining random variables among
My jx, ..., Mg j» (throughout this proof, we only focus on edges
between unique vertices captured in My jx, ..., Mg j*).

By definition of mutual information,
My, s Mg 5T EL))
=HMyjs .o s M 1 2,)) —HMy ), ... Mgy [TLE,))
=k-r-HMyj,....Mg; | ILZ,)), (1)

as conditioned on , J (but not IT), My j, . . ., Mg is uniform over its
support, which has size 2" and thus we get the equality by Fact 2.2-
(1). Our goal is now to upper bound the RHS of Eq (1).

Define O € {0,1} which is 1 if and only if the output of the
protocol is correct. By applying chain rule of entropy (Fact 2.2-(4))

and since My j, ..., Mg ) = Moyt, Moy:, we have,
HMy,j,.... Mgy | TLZ,))
< H(Mout, Moyt | 0,11, %, )) + H(O)
< H(Mout | 071-[’25.1) + H(Mout | Moutv O’I_L Z,J) +1,
@)
as H(O) < 1 (by Fact 2.2-(1)). We now bound each of the remaining
terms separately.
For the first term of Eq (2),
H(Mout | 0,11, %,])) = Pr(0 = 0) - H(Moy: | O =0,1L 3, ))
+Pr(0 =1)-HMour | O = 1,11, 3%,))
<Pr(0=0)-k-r <k-r/100,
where we used the fact that My, ; has support 2" k (and Fact 2.2-(1)),
and that conditioned on O = 1 and I1, 3, J, entropy of Moy, is zero

because in this case, the correctness of the protocol (by conditioning
O = 1) ensures that all edges in MY belong to the graph.
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For the second term of Eq (2),
H(Mout | Mauts O, H, Z,J)
< H(Mout | I, Z,J)

(conditioning can only decrease entropy, Fact 2.2-(3))

= B [HMou =113 =0,) = )|
11 *

,0,]
= E [log (supp(mout | T=1L3 =0,) :j*))]
ILo,j*
(by Fact 2.2-(1))
= E [kr- |M,‘{(H,a,j*)H
ILo,j*

(|Mout =k-r—[Mousl)

4
:k-r—E‘M,[,}|S§-k-r.

Plugging in these bounds in Eq (2) and in Eq (1), we obtain that,

(by Claim 3.2)

4
]I(MLJ,...,Mk’J;H|Z,J)2k-r—(k-r/100+§~k~r+1)

>k-r/e,

concluding the proof.  |]

Our goal is now to upper bound I(My j, ..., My ;11| %, )), the
information about My j, ..., Mk, revealed to the referee. The next
lemma bounds this information by decomposing it to the infor-
mation revealed by the public players P, and the sum of the infor-
mations revealed by each group U; of unique players about their
matching M; ;. Intuitively, this can be done as the inputs of unique
players from different G;’s are independent of each other (these in-
puts are only functions of which edges exists from GR® in each G;).
As a result, the messages communicated by unique players inside
one graph do not give extra information about another graph.

LEMMA 3.4. We have, i

My s My TL| S, )) < HAP) + ) HM 5 TI(US) | 5,)).

i=1
Proor. Firstly, by chain rule of mutual information (Fact 2.2-(5))
and since IT = II(P), II(V),
I(Myjs- .. Mg sTT] 5,))
=IMy... .. My s TIU) | 2,))
+I(My,), ..., Mg 3 TI(P) | TI(U), 2, ))
<IMyy, ..., Mg 3 THU) | 2,)) + HAI(P)). (3)
We thus only need to upper bound the first term above.

Recall TI(U) = II(Uy), . .., TI(Uy.). For i € [k], denote TI(U <) =
II(U1), . . ., XI(Uj-1). By chain rule (Fact 2.2-(5)),

My, .... Mg s TICU) | 2,))

k
= > UMy, Mi s TIU) | TIU ), 3, ),
i=1

We first show that for each i € [k],
1My, My sTIUR) | THU ), 2, )
<IMyy, .., M s THUY) | 2,)), 4)
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i.e., “dropping” the conditioning on II(U <) only increases the in-
formation. This is because, after conditioning on ¥ and J and any
subset of {My },..., Mg j}, the input of u; j only depends on the
(remaining) random coins used for deciding which edges of GRS to
remove to obtain G;. Since G; is constructed independently from
all other Gy, we get that the inputs of the unique players u; j and
uy j» are independent of each other, for every i’ # i (we emphasize
that this is after conditioning on ¢ and by input we mean which
edges exist from GRS). This also implies that II(U;) L TI(U<Y) |
My, ... Mg ), 2, ), as TI(U;) and (U <%) are deterministic func-
tions of unique players’ inputs. Hence, we can apply Proposition 2.4.

Denote M_;j = My, ..
rule of mutual information,

IMyj. ..,y Mg, LU | 2,))
= (M j3TI(UD) | 2,0) + IM— s TH(UD) | My, 3, )
= 1My, T | 2,)),

since IM_; j;TI(U;) | My 1, 2,)) = 0,as II(U;) L M_;j | My ), 2, ).
The lemma now follows from this and Eq (3), Eq (4). |}

-»Mi—1,) Mis1,)s - .., Mg j. By chain

Lemma 3.4 upper bounds the contribution of public players to
revealing information about My j, ..., My j simply by the length
(entropy) of their entire message. While quite a weak upper bound,
this seems unavoidable as public players have a “good knowledge”
of which edges of the graph are important and thus can directly
inform the referee about those edges.

On the other hand, we now prove that, unlike public players,
unique players in each U; cannot reveal much information about
their matchings without communicating much larger messages (by
a factor of t, i.e., the total number of induced matchings in GRS).
This is established via a direct sum style argument which argues
that since the players in U; are collectively unaware of the identity
of matching M; ), they need to reveal enough information about
every induced matching in G; in order to reveal enough information
about the (unknown) matching M; ;.

LEmMa 3.5. Foranyi € [k], I(M):II(U;) | 2,)) < 1 - HIWU;)).

Proor. Denote by ¥; be the random variable representing the
(partial) labeling function that was used by the algorithm for sam-
pling from Dpm to relabel the vertices of the graph G;. Formally,
3, is the restriction of the permutation X : [n] — [n] to the domain
Si=[N-2r]U{N—=2r+(i—-1)-2r+1,...,N—2r+i-2r}. Denote
by ¥_; the random variable representing the restriction of ¥ to the
domain [n] \ S;. We identify ¥ with (Z;,2_;).

The input to players U; (and consequently the message II(U;)) is
uniquely determined by the matchings M; 1, ..., M; ; and the la-
beling function X;, as these fully determine the graph G;. Therefore,
I(U;) L X-; | My ), %4, ). By Proposition 2.4, it holds that

I(M; s TI(U;) | 2,)) < T(My 5 TS | 24,)).
We bound the the RHS of the above equation as follows,

Moy s T |25 )) = B (1M 50 | 250 = )]
1 t
- DM 5 TIU) | Z4),

Jj=1
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where the second equality is as the distribution of (M; ;, II(U;), X;)

is independent of the event ] = j (in an informal sense, the unique

players in U; are unaware of which matching in the graph G; is

special even if they can all see the input of each other as well).
Since (M j+1,...,M;i ) L M; j | £; and by Proposition 2.3,
t

- IMi T | )

j=

1
t
14
< - 'ZI(MI‘,J‘ TILU) | 26, Mijts - Mig).
t 4
Jj=1
By the chain rule of mutual information (Fact 2.2-(5)), the right
hand side term simplifies to

1
n IMy 1, My TI) | Ey) < = - HIUR)),

~ | =

finalizing the proof. |}

ProoF oF THEOREM 1. Let 7 be any protocol (deterministic or
randomized) for the maximal matching problem over the distribu-
tion Dpm. By an averaging argument, we can fix the randomness
of the protocol and obtain a deterministic protocol with the same
worst-case length messages and probability of success. Fix such a
protocol in the following and assume every player communicates b
bits to the referee in the worst-case.

By combining Lemma 3.3, Lemma 3.4, and Lemma 3.5, and since
k = t, we obtain that,
1 k
kor/6 <My, Mg sIT| 2.)) < HOIP) + - - > H@(U)
i=1

S|P|-b+kN'b

k
SNb+?-Nb=2Nb.

Hence, we should have 2Nb > kr/6 and so (since k =t = N/3),

1 1 N r N
b> — kr=—— —r=—= ——.
12N 12N 3 36 ,0(viogN)

The total number of vertices, n, in the graph G, satisfies n > N
and n < kN = N?/3, and hence N = ©(+/n). This implies that the
per-player communication cost has to be at least

poal Y|
e@)(\/logn)

finalizing the proof of Theorem 1. |]

We conclude this section by making the following remark that
summarizes some key aspects of this lower bound.

REMARK 3.6. The lower bound in distribution Dpm proven in this
section holds even under all the following conditions:

(i) The base graph GRS is known by all players and the referee
(before dropping the edges);
(ii) The choice of j* and o is known to the referee (not the players);
(iii) Public vertices know that they are public and additionally
know the identity of all other public vertices;
(iv) The referee only needs to output a matching of size k - r/4
between the unique vertices (even if it is not maximal).
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Remark 3.6 follows directly from the proof of Theorem 1 in this
section. We will use these properties to establish our lower bound
for maximal independent set problem in the next section.

4 A Lower Bound for Maximal Independent Set

We now use a reduction from Theorem 1 to prove the following
theorem.

THEOREM 2. Any public-coin distributed sketching protocol for
computing a maximal independent set with probability at least 0.99

. nl/? .
must communicate Q (m) bits from at least one player.

We prove Theorem 2 using a reduction from our lower bound
in Theorem 1. We shall note that we are not giving a complete re-
duction from maximal matching to maximal independent set in the
distributed sketching model. Our reduction crucially uses various
properties of the hard distribution for Theorem 1, stated in Re-
mark 3.6, and thus act as a reduction only for such instances. We
are not aware of any general reduction between the two problems
in the distributed sketching model (known reductions through line
graphs in the LOCAL model are infeasible in this model as they
would blow up communication complexity of protocols drastically).

A Reduction From Maximal Matching on
Distribution Dym

We design a reduction that given a graph G ~ Dppm, turns it into a
graph H and uses a protocol for maximal independent set on H to
find a maximal matching in G (or rather a large matching between
unique vertices of G). To continue we need a definition.

Recall that in Dpm, each graph Gy, . . ., G was a copy of a base
RS graph GRS with edges dropped randomly with probability 1/2.
For any i € [k], we define ME?,{ to be a matching on vertices of G;

that is a copy of the j’"th induced matching of GRS before dropping
its edges in G; randomly (hence, M??,, is a superset of the induced
matching of G;). Also note that M??,, for every i € [k] is supported
on unique vertices. By construction, M??,, is only a function of o

and j* (to determine which matching to pick, and which vertices
in G are endpoints of this matching).

We are now ready to give our reduction. Figure 2 gives an illus-
tration of this reduction.

Reduction from maximal matching on Dpm:

(1) Suppose G is an n-vertex graph sampled from Dym. The
players collectively create the graph H on 2n vertices as
follows:

(a) Each vertex u € G creates two copies u’ and u" of the
same vertex, and connect u? to v and u” to " for every
neighbor v of u in G. This step creates two identical copies
of G on two disjoint sets of vertices denoted by V¢ and
vr.

(b) Each public vertex u in G adds an edge between uf and
", and also between u” and v, for every public vertex
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v in G (by Remark 3.6 we assume public vertices know
identity of other public vertices). Let H be this new graph.

(2) The players run the distributed sketching protocol for maxi-
mal independent set on H by each vertex u simulating the
protocol for both vertices uf and u” and sending their mes-
sages to the referee. The referee computes the maximal in-
dependent set M of H.

(3) The referee computes the matchings MlR;* for every i € [k]

(by Remark 3.6, referee knows (o, j*) and can construct this
matching). Then, the referee creates two matchings M¢ and
M" as follows: for any pair of vertices (u,v) € MIR?* for

i € [k],if ul, ol (resp., u",v") are not both in M, add an
edge (uf, v?) to MY (resp. (u”,v") to M").

(4) If |M?| > |M"|, the referee outputs the pre-image of edges
of M in G as the final matching (that is, for every wWf,vh) e
MY, the final matching contains the edge (u, v)). Otherwise,
the referee outputs the pre-image of the edges of M".

Similar to Section 3, we use P¢, P", and U?, U, to denote the
copies of public vertices and unique vertices of G in H, respectively.
We prove the lower bound by showing that the matching output by
the reduction is a valid matching of size at least k - r/4 in G between
unique vertices, and apply the last part of Remark 3.6 to conclude
the lower bound. The main step of the proof is the following lemma
that establishes the correctness of the reduction.

LEMMA 4.1. Suppose S is any maximal independent set in H such
thatSNP = @ (resp. SNP" = 0). Let (u, v) be any edge in any M?;
fori € [k]. Then (u,v) survived the random sampling (in Dpm) inG
if and only if not both of u®, v’ belong to S (resp. not both of u”, v"
belong to S).

ProoF. We only prove the lemma for PY; the case for P” follows
by symmetry.

Since S is an independent set in H, there can be no edge between
u’, v’ if they both belong to S, and hence their pre-image u,v
cannot have an edge in G. As such, (u,v) has not survived the

random sampling, proving the first direction of the lemma.

Now consider any pair of vertices u?, v¢ where the edge (u,v)

has not survived the random sampling in G. Since P’ has no in-
tersection with S and vertices in U? have no edges to P",U", the
maximality of S ensures that $ N U? is a maximal independent set
on the induced subgraph on U¢. However, the induced subgraph
of U? is the collection of induced matchings of G;’s and hence the
only possible edge incident on at least one of the vertices u?, v’ is
the potential edge (u®,v%). As (u, v) has not survived the random
sampling, (u[, v{) does not exists in H, and thus, by maximality
of S, both uf, v should be part of S (as no edges are incident on
neither of them). |}

ProoF oF THEOREM 2. Let 7 be any protocol (deterministic or
randomized) for maximal independent set and let b denote the
worst-case length of messages communicated by any player.
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(a) Graph G from Dym
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(b) Graph H in the reduction.

Figure 2: An illustration of the graphs created by the reduction for the maximal independent set problem given a graph
G ~ Dmm as input. The reduction involves creating two identical copies of G and then connecting all public vertices together

(red edges).

As explained in the reduction, each vertex u € G can create the
neighborhood of both ul and of correctly in H, and thus simulate
xr for them in H consistently with at most 2 - b communication
from u. By definition, 7 outputs a correct M with probability at
least 0.99. Whenever this happens, by construction of H, we know
that at least one of M N PY or M N P" should be empty (since all
vertices in P¥ and P" are connected to each other). Conditioned
on this event, by Lemma 4.1, at least one of M ¢ or M" contains
all edges between unique vertices U¢ or U”, and thus the referee
recovers the entire matching between unique vertices in G.

By Remark 3.6, the lower bound of Theorem 1 implies that 2b =
Q(n!/2 /e9Wlogn)y which concludes the proof. |}
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