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Abstract—Consider the following gap cycle counting
problem in the streaming model: The edges of a 2-
regular n-vertex graph G are arriving one-by-one in a
stream and we are promised that GG is a disjoint union
of either k-cycles or 2k-cycles for some small k; the
goal is to distinguish between these two cases using a
limited memory. Verbin and Yu [SODA 2011] introduced
this problem and showed that any single-pass streaming
algorithm solving it requires n'~**(/*) space. This result
and the proof technique behind it—the Boolean Hidden
Hypermatching communication problem—has since been
used extensively for proving streaming lower bounds for
various problems, including approximating MAX-CUT,
matching size, property testing, matrix rank and Schatten
norms, streaming unique games and CSPs, and many
others.

Despite its significance and broad range of applications,
the lower bound technique of Verbin and Yu comes with
a key weakness that is also inherited by all subsequent re-
sults: the Boolean Hidden Hypermatching problem is hard
only if there is exactly one round of communication and,
in fact, can be solved with logarithmic communication in
two rounds. Therefore, all streaming lower bounds derived
from this problem only hold for single-pass algorithms.
Our goal in this paper is to remedy this state-of-affairs.

We prove the first multi-pass lower bound for the gap
cycle counting problem: Any p-pass streaming algorithm
that can distinguish between disjoint union of k-cycles vs
2k-cycles—or even k-cycles vs one Hamiltonian cycle—

. 1-1/,2(1/p) .
requires n space. This makes progress on mul-
tiple open questions in this line of research dating back
to the work of Verbin and Yu.

As a corollary of this result and by simple (or even
no) modification of prior reductions, we can extend many
of previous lower bounds to multi-pass algorithms. For
instance, we can now prove that any streaming algorithm
that (1 + ¢)-approximates the value of MAX-CUT, maxi-
mum matching size, or rank of an n-by-n matrix, requires
either n*") space or Q(log(!/:)) passes. For all these
problems, prior work left open the possibility of even an
O(logn) space algorithm in only two passes.
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I. INTRODUCTION

Graph streaming algorithms process graphs presented
as a sequence of edges under the usual constraints of the
streaming model, i.e., by making one or a few passes
over the input and using a limited memory. There are
two main area of research on graph streams: (i) the
semi-streaming algorithms that use O(n - polylog(n))
space for n-vertex graphs and target problems on
(dense) graphs such as finding MST [1], [2], large
matchings [3]-[9], spanners and shortest paths [10]—
[16], sparsifiers and minimum cuts [17]-[21], maxi-
mal independent sets [22]-[24], graph coloring [22],
[25], and the like; and (ii) the o(n)-space stream-
ing algorithms that use polylog(n) space and aim to
estimate properties of (sparse) graphs such as max-
cut value [26]-[30], maximum matching size [31]-
[37], number of connected components [38], subgraph
counting [39]-[45], property testing [38], [46]-[48], and
others (this is by no means a comprehensive list). We
will solely focus on latter algorithms in this paper'.

We study the following problem (or rather family of
problems) in the graph streaming model: Given a 2-
regular graph G = (V, E), decide whether G consists of
“many short” cycles or all cycles of G are “rather long”.
This problem can be seen as a robust version of cycle
counting problems (similar-in-spirit to property testing,
see, e.g. [49], [50]). More importantly, this problem
turns out to be an excellent intermediate problem for
studying the limitations of streaming algorithms.

A. Background and Motivation Behind Our Work

The cycle counting problem we study in this paper
was first identified by Verbin and Yu [51] for proving
streaming lower bounds for string problems. In the
gap cycle counting problem of [51], we are given a
graph G = (V,E) and a parameter k and are asked

IWe shall remark that the challenges for these two classes of
algorithms are somewhat different as the former ones aim to compress
the “edge-space” of the graph, while the latter ones focus on the
“vertex-space” (see, e.g. [14]).
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to determine if G is a disjoint union of k-cycles or
2k-cycles. Verbin and Yu proved that any single-pass
streaming algorithm for this problem requires n' =7 (/%)
space and used this to establish lower bounds for several
other problems.

As most other streaming lower bounds, the proof
of [51] is through communication complexity. The
authors first introduced the following Boolean Hid-
den Hypermatching (BHH) problem: In BHH,, ;, Al-
ice gets a vector x € {0,1}" and Bob gets a
perfect t-hypermatching M on the n coordinates
of z. We are promised that the (n/t)-dimensional
vector of parity of x on hyperedges of M, i.e.,
Mz = (@gzlxkfl,m @?i:lZMZ,i’ ceey @gzlan/t,i) is
either 0™/¢ or 1"/!; the goal is to distinguish between
these two cases using limited communication. Building
on the Fourier analytic approach of [52], Verbin and
Yu gave an Q(n'~'/*) lower bound on the communi-
cation complexity of this problem when only Alice can
communicate. The lower bound for cycle counting then
follows from a rather straightforward reduction from
BHH, which in turn implies the other lower bounds
in [51].

The BHH problem has since been extensively used
for proving space lower bounds for streaming algo-
rithms either through direct reductions [26], [32], [38],
[53]-[56], as a building block for other variants [27],
[31], [57], or as a source of inspirations and ideas [28],
[30], [58]. For instance,

1) An n'=9) space lower bound for (1 + ¢)-
approximation algorithms of MAX-CUT by Kogan
and Krauthgamer [26] and Kapralov, Khanna, and
Sudan [27], which culminated in the optimal lower
bound of (n) for better-than-2 approximation
by Kapralov and Krachun [30] (see also [28]
who proved the first 2(n) space lower bound for
(14 Q(1))-approximation);

2) An n'=©E) space lower bound for (1 +
¢€)-approximation of maximum matching size
by Esfandiari et al [32] and Bury and
Schwiegelshohn [53] which was extended to
Schatten norms of n-by-n matrices by Li and
Woodruff [54] and Braverman et al. [56], [59];

3) An n'~9©) gpace lower bounds for several
property testing problems such as connectivity,
cycle-freeness, and bipartiteness by Huang and
Peng [38].

We discuss further background on the BHH problem
and list several of its other implications in the full
version. Indeed, owing to all these implications, BHH
has found its way among the few canonical communi-
cation problems—alongside Index [60], [61], Set Dis-

jointness [62]-[64], and Gap Hamming Distance [65],
[66]—for proving streaming lower bounds.

Yet, despite its significance and wide range of appli-
cations, BHH comes with a major weakness: BHH is
a highly asymmetric problem and thus its lower bound
is inherently one-way; Bob can simply send any of his
hyperedges in an O(¢ - log n)-bit message which allows
Alice to solve the problem. Consequently, all afore-
mentioned lower bounds obtained from BHH in this
line of work (and its many variants and generalizations)
only hold for single-pass algorithms. As a result, we
effectively have no knowledge of limitations of multi-
pass streaming algorithms for these problems, despite
the significant attention given to multi-pass algorithms
lately (see, e.g. [29], [32], [41]-[43], [56], [59]). This
raises the following fundamental question:

Can we prove a multi-round analogue of the
Boolean Hidden Hypermatching lower bound
that allows for obtaining multi-pass graph
streaming lower bounds?

Indeed, this question and its closely related variants have
already been raised several time in the literature [26],
[51], [57], [67], [68] starting from the work of Verbin
and Yu.

B. Our Contributions

Our main contribution is a multi-round lower bound
for the gap cycle counting problem, in fact, in an
“algorithmically simpler” form, which we call the
One-or-Many Cycles (OMC) problem. We then show
that by using this problem and simple (or even no)
modification of prior reductions, we can extend many
of previous lower bounds to multi-pass algorithms.

The One-or-Many Cycles Communication Problem

Problem 1 (One-or-Many Cycles (OMC)). Let n, k >
1 be even integers where n divides k. In OMC,, y,
we have a 2-regular bipartite graph G = (L, R, E)
on n vertices. Edges of G consist of two disjoint
perfect matchings M 4 and Mp, given to Alice and Bob,
respectively. We are promised that either (i) G consists
of a single Hamiltonian cycle (Yes case) or (ii) G is
a collection of (n/k) vertex-disjoint cycles of length k
(No case). The goal is to distinguish between these two
cases.

OMC can be seen as the most extreme variant of
cycle counting problems: in the No case, the graph
consists of many short cycles, while in the Yes case, the
entire graph is one long Hamiltonian cycle. This, at least
intuitively, makes this problem ‘“easiest” algorithmically
(most suitable for reductions) and “hardest” for proving



lower bounds (our lower bounds extend immediately to
many other cycle counting problems including the k-vs-
2k-cycle problem; see the full version for more details).

The following is our main result in this paper.

Result 1. For any even integer k > 0 and integer
r = o(log k), any communication protocol (deter-
ministic or randomized) for OMC,, . in which Al-
ice and Bob send up to r messages, i.e., an r-round
protocol, requires n'=O&""") communication.

Our lower bound in Result 1 demonstrates a tradeoff
between the communication complexity of the OMC
problem and the allowed number of rounds. In partic-
ular, an immediate corollary of Result 1 is that either
Q(log k) rounds or n*Y) communication is needed for
solving OMC,, ;..

Let us now briefly compare our Result 1 with [51]. By
setting » = 1, we already recover the result of [51] on
n'~O0/%) communication lower bound for cycle count-
ing problem (up to the hidden-constant in the O-notation
in the exponent), but this time for the algorithmically
easier problem of distinguishing k-cycles from a Hamil-
tonian cycle. Prior to our work, no lower bounds were
known for this problem even for one-round protocols
and in fact this was left as an open problem in [51,
Conjecture 5.1]. But much more importantly, Result 1
now gives a multi-round lower bound for OMC (and
other problems such as k-vs-2k-cycle), making progress
on another open problem of [51, Conjecture 5.4]. We
note that our tradeoff does not match the conjecture
in [51] and it remains a fascinating open question to
determine the “right” tradeoff for this problem.

Streaming Lower Bounds from OMC

The OMC problem is able to capture the essence of
many of previous streaming lower bounds proven via
reductions from the BHH problem. In fact, as we shall
see, these reductions often become even easier now that
we are working with the OMC problem considering it
has a more natural graph-theoretic definition compared
to BHH. But more importantly, we can now use the
lower bound for OMC in Result 1 to give multi-pass
streaming lower bounds.

Before listing our results, let us give a concrete
example of a lower bound that we can now prove using
the OMC problem to emphasize the simplicity of the
reductions.

Example: Property testing of connectivity.: Huang
and Peng [38] gave a reduction from BHH to prove that
any single-pass streaming algorithm for property testing
of connectivity, namely, deciding whether a graph is
connected or it requires at least € - n more edges to

become connected, needs npi=0() space. We use a

reduction from OMC to extend this lower bound to
multiple passes.

Let k := 2% and G be a graph in the OMC,, ;
problem. In the Yes case, GG is a Hamiltonian cycle and
is thus already connected. On the other hand, in the No
case, G consists of n/k disjoint cycles and thus to be
connected requires n/k — 1 > en edges. We can run
any streaming algorithm on input graphs of OMC,, ;,
by Alice and Bob creating the stream M4 appended
by Mp and passing along the memory content of the
algorithm to each other. As such, using an algorithm
for connectivity, the players can also solve OMC,, .
By Result 1, this implies that any p-pass streaming
algorithm for connectivity requires pi—e0" space.
Interestingly, not only this reduction gives us a multi-
pass lower bound, but also it is arguably simpler that

the reduction from BHH.

We prove the following lower bounds by reductions
from OMC and our lower bound in Result 1.

Result 2. Let g(e,p) := ()°/? for some large enough
absolute constant ¢ > 0. Then, any p-pass streaming
algorithm for any of the following problems on n-
vertex graphs requires n'~9P) space (the references
below list the previous single-pass lower bounds for the
corresponding problem):

1) (1 + &)-approximation of MAX-CUT in sparse
graphs (cf. [26]-[28], [30]);

2) (1 + €)-approximation of maximum matching size
in planar graphs (cf. [32], [53]);

3) (1 + e)-approximation of the maximum acyclic
subgraph in directed graphs (cf. [55]);

4) (1+ ¢e)-approximation of the weight of a minimum
spanning tree (cf. [1], [38]);

5) property testing of connectivity, bipartiteness, and
cycle-freeness for parameter ¢ (cf. [38]).

Our lower bounds can be extended beyond graph
streams. For instance, we can also prove lower bounds
of n'=9¢P) space for (1 + €)-approximation of rank
and other Schatten norms of n-by-n matrices (cf. [53],
[54], [56]), or sorting-by-block-interchange on n-length
strings (cf. [51]).

A simple corollary of these lower bounds is that for
any of these problems, any streaming algorithm requires
either Q(log (1/c)) passes or n¥1) space. Prior to our
work, even an O(logn) space algorithm in two passes
was not ruled out for any of these problems. These
results settle or make progress on multiple open ques-
tions in the literature regarding the multi-pass streaming
complexity of gap cycle counting [51], MAX-CUT [26],



[67], and streaming CSPs [57]. We postpone the exact
details of our results and further backgrounds in this
part to the full version.

To conclude, we believe that Result 1 and Result 2
identify OMC as a natural multi-round analogue of the
BHH problem (as was asked in prior work [26], [51]),
answering our motivating question. This is indeed the
main conceptual contribution of our work.

C. Our Techniques

We briefly mention the techniques used in our pa-
per here and postpone further details to the technical
overview of our proof in Section III.

The lower bound for BHH in [51] and other variants
in this line of research [27], [28], [30], [57], [58] all
relied heavily on techniques from Fourier analysis on
the Boolean hypercube. In contrast, our proofs in this
paper solely relies on tools from information theory.

The first main technical ingredient of our work is
a novel round-elimination argument for OMC. Typical
round-elimination arguments for similar problems such
as pointer chasing on graphs [69]-[74] “track” the
information revealed about a particular path inside the
graph, ensuring that the player who is speaking next is
unaware of which pointer to chase. On the other hand,
we crucially need to track the information revealed
about multiple vertices at the same time (to account
for the strong promise in the input instance). As such,
our proof takes a different approach. We first show that
after the first message of the protocol, there is a “large”
minor of the graph—obtained by contracting ‘“‘short”
paths—that still “looks random” to players. Eliminating
a communication round at this point then boils down
to embedding a hard instance for r-round protocols
inside this minor of the hard instance of (r + 1)-round
protocols; this in particular involves embedding a “lower
dimensional” instance on smaller number of vertices
inside a “higher dimensional” one (as a graph minor
and not a subgraph).

Our second main technical ingredient is the proof of
existence of this “random looking” graph minor after
the first message of the protocol. At the heart of this
part is an argument showing that after a single message,
the joint distribution of all the vertices reachable from
a fixed set of ~ (n/k) vertices by taking a constant
number of edges remains almost identical to its original
distribution. This is done by first proving a one-round
“low-advantage” version of standard pointer chasing
lower bounds: For each starting vertex v in the graph,
after one message, the distribution of the unique vertex
which is at distance ¢ of v is ~ n~*)close to its
original (uniform) distribution. The proof is based on

bounding the ¢, norm of the distribution of this unique
vertex, and applying a direct product type argument
for ©(c) different sub-problems, each corresponding to
going “one more edge away” from the starting vertex.
The final proof for the joint distribution of the targets of
~ (n/k) vertices is done through a series of reductions
from this single-vertex variant.

II. PRELIMINARIES

Notation.: Let M be a matching between two sets
of vertices A and B. We sometimes interpret M as
a function A — B, where M (v) maps v € A to its
matched neighbor in B. Moreover, for two matchings
M between A and B, and M, between B and C, we
define Myo M as the matching (function) from A — C
that maps v € A to My (M;(v)) in C.

When there is room for confusion, we use sans-serif
letters for random variables (e.g. A) and normal letters
for their realizations (e.g. A). For a random variable A,
we use supp(A) to denote the support of A and dist,, (A)
to denote the distribution p of A. When it is clear
from the context, we may abuse the notation and use A
and dist(A) interchangeably. By norm ||A|| of a random
variable with distribution p and support aq, ..., G, We
mean the norm of the vector (u(ai), ..., u(an)).

Information theory.: For random variables A, B,
we use H(A) to denote the Shannon entropy of A,
H(A | B) to denote the conditional entropy, and I(A ; B)
to denote the mutual information. Similarly, for two
distributions 1 and v on the same support, ||z — v||tva
denotes their total variation distance and D(p || v)
is their KL divergence. The full version contains the
definitions and standard properties of these notions as
well as some auxiliary lemmas that we prove in this
paper.

Communication complexity.: We work in the two-
party communication model of Yao [75] (see [76] for
an overview of the standard definitions). Throughout
the paper, by an r-round protocol, we mean a protocol
wherein the total number of messages communicated
by Alice and Bob is at most r. We further use ||7|| to
denote the communication cost of the protocol 7 defined
as the worst-case number of bits communicated between
Alice and Bob in 7 over any input. For simplicity of the
exposition, we assume the last message of the protocol
is the output.

III. TECHNICAL OVERVIEW

We present a streamlined overview of our technical
approach for proving Result 1 in this section (we leave
the details of our reductions in Result 2 to the full
version). We emphasize that this section oversimplifies



many details and the discussions will be informal for
the sake of intuition.

Before getting to the discussion of our lower bound,
it helps to consider what are some natural ways for
Alice and Bob to solve OMC,, ;,. At one extreme, there
is a “sampling” approach: Alice can randomly sample
O(n'~1/*) edges from her input and send them to Bob;
the (strong) promise of the problem ensures that in
the No-case, Bob will, with constant probability, see
an entire k-cycle in the graph and thus can distinguish
this from the Yes-case. At the other extreme, there is a
“pointer chasing” approach: the players can start from
any vertex of the graph and simply “chase” a single
(potential) k-cycle one edge per round and in (roughly)
k rounds solve the problem. And then there are dif-
ferent interpolations between these two, for instance
by chasing O(n'~'/V¥) random vertices in v/k-rounds.
Our lower bound has to address all these approaches
simultaneously.

A. The Pointer Chasing Aspect of OMC

Let us start with the “pointer chasing” aspect of our
lower bound. Suppose we put the following additional
structure on the input to Alice and Bob:

1) The input graph G consists of k layers Vi,..., Vi
of size m = n/k with k perfect matchings
M, ..., M between them, where M, is between
Vi and V(i1 mod k)-

2) For any v € Vi, define P(v) € Vi as the
unique vertex reachable from v in G using only
My, ..., My_1. We promise that either: (a) for all
v; € V1, P(v;) connects back to v; in the matching
My, ie., My o P = I where I is the identity
matching; or (b) for all v; € Vi, P(v;) connects to
V(i+1 mod m) 0 Mg, i.e., My o P = 5,4, where
S41 is the cyclic-shift-by-one matching.

3) The input to the players are then alternating match-
ings from this graph, namely, Alice receives even-
indexed matchings Ms, My, Mg, ..., and Bob re-
ceives odd-indexed ones M, M3, Ms, ...

It is easy to verify that for even values of k, these graphs
form valid inputs to OMC,, , problem (with case (a)
corresponding to the No-case and (b) corresponding to
the Hamiltonian cycle case).

Under this setting, we can interpret OMC,, ;. as some
pointer chasing problem: for some vertex v € V;, the
players need to “chase the pointers”

M (v), MsoM;(v), , My_10My_q0---0M;(v)

to reach P(v) € Vj; then check whether P(v) connects
back to v in M}, or not.

There are however several differences between a
typical pointer chasing problem (see, e.g. [14], [69],
[72], [73]1, [77], [78] for many different variants) and
our problem. Most important among these is that the
strong promise in the input effectively means there is
no single particular pointer that the players need to
chase-all they need to do is to figure out P(v) for some
v € V after communicating the messages (this is on top
of apparent issues such as players being able to chase
pointers from “both ends” and the like). We elaborate
more on this below.

For intuition, let us consider the following specialized
protocol m: the players first completely ignore the
matching M}, and instead aim to “learn” the mapping
P = My_10Mj_o0---0Mj; only then, they will look at
Mj, and check whether PoMj, is I or S, corresponding
to cases (a) or (b) above. Under this view, we can think
of the following two-phase problem:

1) Given My, ..., M}_1 sampled independently and
uniformly at random, the players run 7 with tran-
script IT which induces a distribution dist(P | IT)
for P= Mj_q0---0Mjy;

2) Only then, given a  matching Mj,
sampled uniformly from just two choices
{IOP*I,SH OPfl} implied by cases (a) or
(b), they need to determine which case M
belongs to.

For such a protocol to fail to solve the problem better
than random guessing, we should have that:

E ||dist(Z o P71 TD) —dist(Sy1 0 P71 | T1)||gva = o(1)

(here and throughout, II is the transcript of the protocol)

as the players are getting one sample, namely, My, from
one of the two distributions and thus should not be
able to distinguish them with one sample”. As such, the
task of proving a lower bound essentially boils down to
showing that for a “small” round and communication
protocol T,

E [dist(P | 1) = dist(P)wwa = o(1), (1)

namely, that the protocol cannot change the distribution
of the entire mapping P by much; this should be
contrasted with typical lower bounds for pointer chasing
that require that distribution of a single pointer P(v)
for v € V; does not differ considerably after the
communication.

This outline oversimplifies many details. Most im-
portantly, it is not at all the case that the only proto-
cols that solve the problem adhere to the special two-
phase approach mentioned above. Indeed, the input of

Note that technically we should also condition on the input of the
player outputting the final answer but for simplicity, we will ignore
that in this discussion for now.

)



players are highly correlated in the problem and this
can reveal information to the players. Consequently,
in the actual lower bound, we need to handle these
correlation throughout the entire proof. In particular,
we need stronger variant of (1) that shows the value
of distribution P | IT on two particular points (rather
than two marginally random points) in the support are
close. We postpone these details to later and for now
focus on the lower bound for (1) which captures the
crux of the argument.

B. The One Round Lower Bound

We first prove a stronger variant of (1) for one
round protocols. Suppose My, ..., Mj_1 are sampled
uniformly at random and Mp denotes the input of Bob
among these matchings. Then, we show that if Alice
sends a single message II of size C' = o(m) (recall that
m = n/k), we will have:

c\ e®
I(P s Mg, ) < m®0) () @
m
Let us interpret this bound: the mutual information
between P and (Mp,II) is a measure of how much the
distribution of P is affected by the extra conditioning
on Mp,II; in particular, if we set C' = m!=©0/k) in
the above bound, we get that the RHS is o(1) for large
enough %k which in turn implies that distribution of P
conditioned on both Mp,II, is very close to its original
distribution, implying (1) (in a stronger form). The proof
of (2) consists of two parts.

Part One:: The main part of the proof is to
consider a “low advantage” variant of pointer chasing:

label=— Low-advantage pointer chasing: Given a
fixed vertex v € V; and assuming we are
only allowed one round of communication,
what is the probability of guessing P(v) € Vj,
correctly?

Standard pointer chasing lower bounds such as [69],
[72] imply that the answer for a (< k)-round protocol
with communication cost C' is roughly 1/m 4 C/km. We
on the other hand prove a much stronger bound but
only for one-round protocols which is roughly 1/m +
(Cfm)*™.

The proof of this part is one of the main technical
contributions of our work. For our purpose it would be
easier to bound the ¢y-norm of the vector P(v), i.e.,
show that:

, 1 c\9®
E ||P Mg, II|I5 < — — 3
EPO M L (S) 7 o
which can be used to bound the advantage of the

protocol over random guessing.

It turns out the key to bounding the LHS above is
to understand the “power” of message II in chang-
ing the distribution of collections of edges chosen
from disjoint matchings in the input of Alice. Let
S C {2,4,...,k—2} be a set of indices of Alice’s
matchings and vg = (é;,,...,é;5) denote a collection
of “potential” edges in M;,, M;,,..., M;, (i.e., pairs
of vertices which may or may not be an edge in each
matching). In particular, we can bound the LHS of (3)
by

1 1
mtm (m —1)k/2-1

Z Z Pr (éi1 S Mi1 4)

SC{2,4,...k—2} Vs

x E
i

2
Ave Ny € My |T1) |

and then prove that for any S C {2,4,...,k — 2}:

~ ~ 2
%lVZSPr(eiIEMiI/\---/\BiSGMZ‘S|H) 5)

< (Cm)9V2

Plugging in (5) inside (4) then prove the “low advan-
tage” lower bound we want in (3).

The statement (and the proof of) (5) can be seen as
some direct product type result: When |S| = 1, we are
simply bounding the (square of the) probability that a
potential edge belongs to the graph of Alice conditioned
on an “average” message; considering each matching
M; is a random permutation of size [m] and the message
reveals only C' = o(m) bits about it, we expect only a
small number of edges to have a “high” probability of
appearing in M; conditioned on I (see the full version
for details). Our bounds in (5) then show that repeating
this task for | S| times, namely, increasing the probability
of an entire |S|-tuple vg of edges, becomes roughly | S|
times less likely.

Part Two:: Our lower bound in Eq (3) can also be
interpreted as bounding:

Ok

I(P(v); Mg, < | — 6

eommm= () ©

for a fixed vertex v € V7, namely, a single-vertex version

of the bound we want in (2). We obtain the final bound

using a series of reductions from this. In particular, by
chain rule:

I(P; My, M) = 37 1(P(ui) ; M, 1T P(n), .., P(v;1):
veV]

For the first m/2 terms in the sum above, we can
show that the bounds in (6) continue to hold even



conditioned on the new P-values; this is simply because
even conditioned on these values, at least half of each
matching is “untouched” and thus we can apply the
previous lower bound to the underlying subgraph with
(> m/2)-size layers instead. This argument however
cannot be extended to all values in the sum simply
because the size of layers are becoming smaller and
smaller through this conditioning. We handle these use
a separate reduction by considering the endpoints of
these vertices in the layer Vj_o instead and exploit
the additional randomness in the choice of Bob’s final
matching; we postpone the details of this part to the
actual proof.

C. The Round Elimination Argument

The next key ingredient of our proof is a round
elimination argument for “shaving off” the rounds in
any r-round protocol one by one, until we end up
with a 0-round protocol that can still solve a non-trivial
problem; a contradiction.

A typical round elimination argument for pointer
chasing shows that after the first message of the proto-
col, the distribution of next immediate pointer to chase
(namely, M5 o M (v) when chasing M, o --- o M;(v))
is still almost uniform as before. Thus, the players now
need to solve the same problem with one less round
and one less matching. Unfortunately, such an approach
does not suffice for our purpose in proving (1) in which
chasing any pointer solves the problem.

Our round elimination argument thus takes a different
route. We show that after the first message of the
protocol, the joint distribution of all long paths in the
entire graph is still almost uniform. Let us formalize
this as follows for proving a lower bound for r-round
protocols. Consider the recurrence k. = c¢ - k,_; and
ko = 1 for some sufficiently large constant ¢ > 1, and
a k.-layered graph G, as before. For any i € [k,_1],
define P, = ¢ O ... 0 M(i_l),c+1, namely, the
composition of the matchings in blocks of length ¢
each. We will use our bounds in (2) to show that after
the first message II; of any r-round protocol 7 with
communication cost C,

E |dist(Py, ..., Py,_, | I, Mp)
II,Mp

C O(c)
—dist(Py,..., Py, _,)|| < m®W () .
m
(7

In words, after the first round, the joint distribution of
compositions of matchings still look almost uniform to
Bob. Notice that the main difference in (7) compared
to (2) that the bounds are now applied to each block of
length c in the graph, not the entire &k layers.

Now let us see how we can use this to eliminate
one round of the protocol. This is done through an
embedding argument in which we embed an instance
G,_1 of the problem on k,_; layers inside a graph G,
of k, layers conditioned on the first message, and run
the protocol 7 for GG, from the second round onwards
to obtain an (r — 1)-round protocol # for G,_;. The
embedding is as follows.

Embedding G,_y inside G, | TI.: Let
My, ..., My, , bethe inputs to Alice and Bob in G,._;.
In the protocol 6, the players first use public randomness
to sample a message 1I; from the distribution induced
by m on G,. We would now like to sample a graph
G, | II; such that:

1) for every i € [k,—1], we have P, = M, ie.,
the composition of the i-th block of ¢ consecutive
matchings in G, looks the same as the matching
M;;

2) Alice in # gets the input of Bob in 7 in G, and
Bob in 6 gets the input of Alice in 7.

Assuming we can do this, Alice and Bob in 6 can
continue running 7 on G, | IT; as they both know the
first message of 7 and by property (i7) above have the
proper inputs; moreover, by property (i), My, _, o...0
My = P,._,0...0P = P, ie., the distribution of
pointers they would like to chase in both G, and G,_;
is the same. Thus if 7 was able to change the distribution
of P in G, in r rounds, then 6 can also change the
distribution of P in G,_; in (r — 1) rounds.

Of course, we cannot hope to straightaway perform
the sampling above without any communication be-
tween the players as (i) II; correlates the distribution
of Pp,..., P, _, in G, | II; (even though they were
independent originally), and (i) Alice and Bob in 6
know only half of Py,..., P, each (dictated by their
input in G,_1). This is where we use (7). Intuitively,
since the distribution of Py,..., Py, | II1, Mp has
not changed dramatically (and not at all if we condition
on M4 instead of Mp since Alice is the sender of
II;), we can design a sampling process based on a
combination of public and private randomness that
“simulates” sampling

G.~G,|1I1,PL=M,...,Py._, =M, _,

by instead sampling from the product distribution

G~ X

i€[ky_1]

matchings M7, ..., M!

in i-th block of G,. | Iy, P; = M;,

while obtaining the same answer as 7 up to a negligible
factor of 1/poly(m) error.



To conclude, if the communication cost of the pro-
tocol is only C' = m!'=©(/) we can shave off all the
r-rounds of the protocol, while shrinking the number
of layers in input graphs by a factor of c each time;
by the choice of k., = (", we will eventually end
up with a O-round protocol on a non-empty graph
which cannot change the distribution of corresponding
P at all. Tracing back the argument above then implies
that the original r-round protocol should not be able
to change the distribution of its own mapping P by
more than O(r/poly(m)) as desired. Rewriting ¢ as
k7. we obtain an m'~©1/¥"'") lower bound on the
communication cost of protocols for (1).

An important subtlety.: As stated earlier in this
section, focusing on problem in (1) as opposed to
OMC,, ; is not at all without loss of generality. In
particular, in the actual proof, instead of (1), we need
to bound the “bias” of P | II from being just two fixed
value, namely, decide whether P = pYes or p = pNo
for two matchings PYe$ and PN® known to both players.
This manifests itself most prominently in our round
elimination argument. As such, the embedding argument
in our proof is more involved than what described above
and in particular requires an extra re-randomization step
through adding some extra layers of random matchings
to the graph that somewhat “suppresses” the strong
correlation imposed by PYe and PN°.
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