


Input View 1 View 2 View 3
Figure 2. Reconstruction using 10 images of synthetic kitten model. The left image is rendered with the reconstructed shape while the right

image is rendered with the ground-truth shape.

occurs. Next, we propose a novel cost volume to further

leverage correspondence between the input image and envi-

ronment map, but with special considerations since the two

sets of normal maps span a four-dimensional space, which

makes conventional cost volumes from multiview stereo

intractable. Using our differentiable rendering layer, we

perform a novel optimization in latent space to regularize

our reconstructed normals to be consistent with the manifold

of natural shapes. To reconstruct the full 3D shape, we use

PointNet++ [32] with novel mechanisms to map normal fea-

tures to a consistent 3D space, new loss functions for training

and architectural changes that exploit surface normals for

better recovery of 3D shape.

Since acquisition of transparent shapes is a laborious

process, it is extremely difficult to obtain large-scale training

data with ground truth [40]. Thus, we render a synthetic

dataset, using a custom GPU-accelerated ray tracer. To avoid

category-specific priors, we render images of random shapes

under a wide variety of natural environment maps. On both

synthetic and real data, the benefits of our physically-based

network design are clearly observed. Indeed, we posit that

such physical modeling eases the learning for a challenging

problem and improves generalization to real images. Figures

1 and 2 show example outputs on real and synthetic data. All

code and data will be publicly released.

To summarize, we propose the following contributions

that solve the problem of transparent shape reconstruction

with a limited number of unconstrained views:

• A physically-based network for surface normal recon-

struction with a novel differentiable rendering layer and

cost volume that imbibe insights from image formation.

• A physically-based 3D point cloud reconstruction that

leverages the above surface normals and rendering layer.

• Strong experimental demonstration using a photorealisti-

cally rendered large-scale dataset for training and a small

number of mobile phone photographs for evaluation.

2. Related Work
Multiview stereo Traditional approaches [37] and deep

networks [49] for multiview stereo have achieved impressive

results. A full review is out of our scope, but we note that

they assume photoconsistency for opaque objects and cannot

handle complex light paths of transparent shapes.

Theoretical studies In seminal work, Kutulakos and Ste-

ger [23] characterize the extent to which shape may be recov-

ered given the number of bounces in refractive (and specular)

light paths. Chari and Sturm [5] further constrain the sys-

tem of equations using radiometric cues. Other works study

motion cues [3, 29] or parametric priors [43]. We derive in-

spiration from such works to incorporate physical properties

of image formation, by accounting for refractions, reflections

and total internal reflections in our network design.

Controlled acquisition Special setups have been used in

prior work, such as light field probes [44], polarimetry

[9, 15, 28], transmission imaging [20], scatter-trace pho-

tography [30], time-of-flight imaging [41] or tomography

[42]. An external liquid medium [14] or moving spotlights

in video [50] have been used too. Wu et al. [46] also start

from a visual hull like us, to estimate normals and depths

from multiple views acquired using a turntable-based setup

with two cameras that image projected stripe patterns in a

controlled environment. A projector-camera setup is also

used by [35]. In contrast to all of the above works, we only

require unconstrained natural images, even obtainable with

a mobile phone camera, to reconstruct transparent shapes.

Environment matting Environment matting uses a

projector-camera setup to capture a composable map [56, 8].

Subsequent works have extended to mutliple cameras [27],

natural images [45], frequency [55] or wavelet domains [31],

with user-assistance [52] or compressive sensing to reduce

the number of images [10, 33]. In contrast, we use a small

number of unconstrained images acquired with a mobile

phone camera in arbitrary scenes, to produce full 3D shape.

Reconstruction from natural images Stets et al. [39]

propose a black-box network to reconstruct depth and nor-

mals from a single image. Shan et al. [38] recover height

fields in controlled settings, while Yeung et al. [51] have

user inputs to recover normals. In contrast, we recover high-

quality full 3D shapes and normals using only a few images

of transparent objects, by modeling the physical basis of

image formation in a deep network.

Refractive materials besides glass Polarization [7], dif-

ferentiable rendering [6] and neural volumes [26] have been

used for translucent objects, while specular objects have

been considered under similar frameworks as transparent

ones [16, 57]. Gas flows [2, 18], flames [17, 47] and flu-

ids [13, 34, 54] have been recovered, often in controlled

setups. Our experiments are focused on glass, but similar

ideas might be applicable for other refractive media too.
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Input VH rendered Rec rendered VH normal1 Rec normal1 GT normal1 VH normal2 Rec normal2 GT normal2

Figure 9. An example of 10 views normal reconstruction from our synthetic dataset. The region of total reflection has been masked out in the

rendered images.

5 views VH. 5 views Rec. 10 views VH. 10 views Rec. 20 views VH. 20 views Rec. Groundtruth

Figure 10. Our transparent shape reconstruction results from 5 views, 10 views and 20 views from our synthetic dataset. The images rendered

with our reconstructed shapes are much closer to the ground-truth compared with images rendered with the visual hull shapes. The inset

normals are rendered from the reconstructed shapes.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)

vh5 31.7 13.1 10.3 66.6

Rec5 6.30 11.0 8.7 15.2

vh20 2.23 4.59 2.71 6.83

Rec20 1.20 4.04 2.73 4.18

Table 3. Quantitative comparisons of point cloud reconstruction

from 5 views and 20 views. In both cases, our pipeline significantly

improves the transparent shape reconstruction accuracy compared

with classical visual hull method.

rized in Table 2. After obtaining the point and normal predic-

tions {p} and {N}, we reconstruct 3D meshes as described

above. We compute the Chamfer distance (CD), Chamfer

normal median angle (CDN-med), Chamfer normal mean

angle (CDN-mean) and Metro distance by uniformly sam-

pling 20000 points on the ground-truth and reconstructed

meshes. We first compare the effectiveness of different loss

functions. We observe that while all the three loss functions

can greatly improve the reconstruction accuracy compared

with the initial 10-view visual hull, the Chamfer distance loss

(RE-LCD
P

) performs significantly better than view-dependent

loss (RE-Lview
P

) and nearest L2 loss (RE-Lnearest
P

). Next, we

test different feature mapping strategies, where the rendering

error based view selection method (RE-LCD
P

) performs con-

sistently better than the other two methods. This is because

our rendering error can be used as a meaningful metric to

predict normal reconstruction accuracy, which leads to better

point cloud reconstruction. Ablation studies for the modified

PointNet++ are included in supplementary material.

The last row of Table 2 shows that an optimization-based

method like PSR [19] to refine shape from predicted normals

does not lead to much improvement, possibly since visual

hull shapes are still significantly far from ground truth. In

contrast, our network allows large improvements.

Different number of views We also test the entire recon-

struction pipeline for 5 and 20 views, with results summa-

rized in Table 3. We use the setting that leads to the best

performance for 10 views, that is, wr + cv + op for nor-

mal reconstruction and RE-LCD
P

for point cloud reconstruc-

tion, achieving significantly lower errors than the visual hull

method. Figure 10 shows an example from the synthetic test

set for reconstructions with different number of views. Fur-

ther results and comparisons are in supplementary material.

Sensitivity analysis for IoR We also evaluate the model

on another test set with the same geometries, but unknown

IoRs sampled uniformly from the range [1.3, 1.7]. As shown

in Tables 1 and 2, errors increase slightly but stay reasonable,

showing that our model can tolerate inaccurate IoRs to some

extent. Detailed analysis is in the supplementary material.

4.2. Results on Real Transparent Objects

We acquire RGB images using a mobile phone. To cap-

ture the environment map, we take several images of a mirror

sphere at the same location as the transparent shape. We use

COLMAP [36] to obtain the camera poses and manually

create the segmentation masks.

Normal reconstruction We first demonstrate the normal

reconstruction results on real transparent objects in Figure 11.

Our model significantly improves visual hull normal quality.

The images rendered from our predicted normals are much

more similar to the input RGB images compared to those

rendered from visual hull normals.

3D shape reconstruction In Figure 12, we demonstrate

our 3D shape reconstruction results on real world transparent

objects under natural environment map. The dog shape in

the first row only takes 5 views and the mouse shape in

the second row takes 10 views. We first demonstrate the

reconstructed shape from the same view as the input images

by rendering them under different lighting and materials.

Even with very limited inputs, our reconstructed shapes

are still of high quality. To test the generalizability of our

predicted shapes, we render them from novel views that have

not been used as inputs and the results are still reasonable.

Figure 13 compares our reconstruction results with the visual
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