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Abstract

Meshes are important representations of physical 3D entities in the virtual world.
Applications like rendering, simulations and 3D printing require meshes to be
manifold so that they can interact with the world like the real objects they represent.
Prior methods generate meshes with great geometric accuracy but poor manifold-
ness. In this work we propose Neural Mesh Flow (NMF) to generate two-manifold
meshes for genus-0 shapes. Specifically, NMF is a shape auto-encoder consisting
of several Neural Ordinary Differential Equation (NODE)[ 1] blocks that learn
accurate mesh geometry by progressively deforming a spherical mesh. Training
NMF is simpler compared to state-of-the-art methods since it does not require any
explicit mesh-based regularization. Our experiments demonstrate that NMF facil-
iates several applications such as single-view mesh reconstruction, global shape
parameterization, texture mapping, shape deformation and correspondence. Impor-
tantly, we demonstrate that manifold meshes generated using NMF are better-suited
for physically-based rendering and simulation. Code and data are released.’

1 Introduction

Polygon meshes allow an efficient virtual representation of 3D objects, enabling applications in
graphics rendering, simulations, modeling and manufacturing. Consequently, mesh generation or
reconstruction from images or point sets has received significant recent attention. While prior
approaches have primarily focused on obtaining geometrically accurate reconstructions, we posit that
physically-based applications require meshes to also satisfy manifold properties. Intuitively, a mesh
is manifold if it can be physically realized, for example, by 3D printing. Typically, reconstructed
meshes are post-processed with humans in the loop for manifoldness, in order to enable ray tracing,
slicing or Boolean operations. In contrast, we propose a novel deep network that directly generates
manifold meshes (Fig. 1), alleviating the need for manual post-processing.

A manifold is a topological space that locally resembles Euclidean space in the neighbourhood of each
point. A manifold mesh is a discretization of the manifold using a disjoint set of simple 2D polygons,
such as triangles, which allows designing simulations, rendering and other manifold calculations.
While a mesh data structure can simply be defined as a set (V, £, F) of vertices V and corresponding
edges & or face F, not every mesh (V, £, F) is manifold. Mathematically, we list various constraints
on a singly connected mesh with the set (V, £, F) that enables manifoldness.

e Each edge e € £ is common to exactly 2 faces in F (Fig. 2a)
e Each vertex v € V is shared by exactly one group of connected faces (Fig. 2b)
e Adjacent faces I}, I'; have normals oriented in same direction (Fig. 2¢)

"https://kunalmgupta.github.io/projects/NeuralMeshflow.html and try our colab notebook.
?In the scope of this work, meshes do not exhibit defects like duplicate elements, isolated vertices, degenerate
faces and inner surfaces that can also cause a mesh to be non-manifold.
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Physically based rendering

Approach  Vertex Edge Face Non-Int.

MeshRCNNJ[2]  explicit X X X X
AtlasNet[3] explicit v X X X
AtlasNet-O[3] explicit v v X X
Pixel2Mesh[4]  explicit v v X X
GEOMetrics[5]  explicit v v X X
3D-R2N2[6] implicit X X v v :
PSGI7] implicit X X v v NeuralMeshFlow ‘ AtlasNet
OccNet[8] implicit X X v v .
NMF (Ours) explicit v v v v )
l
(a) Inputs (b) Manifoldness of prior work

3D Printing Simulation
(c) Applications enabled by NMF Manifold Meshes
Figure 1: Given an input as either a 2D image or a 3D point cloud (a) Existing methods generate corresponding
3D mesh that fail one or more manifoldness conditions (b) yielding unsatisfactory results for various applications
including physically based rendering (c). NeuralMeshFlow generates manifold meshes which can directly be
used for high resolution rendering, physics simulations (see supplementary video) and be 3D printed without the
need for any prepossessing or repair effort.

N/
&% Figure 2: Non-manifold geometries for a part of singly connected mesh: (a) An
edge that is shared by either exactly one (red) or more than two (red dashed)

(o) Ko Vo Edges {5) Nom-Vianifold Vertices faces. (b) A vertex (red) shared by more than one group of connected faces. (c)
Adjacent faces that have normals (red-arrow) oriented in opposite directions.
\%’ (d) Faces intersecting other triangles of the same mesh.

{c) Non-Manifold Faces (d) Self-Intersection

The above mentioned constraints on a mesh (V, £, F) guarantee it to be a manifold in the limit of
infinitesimally small discretization. That is not the case when dealing with practical meshes with large
and non-uniformly distributed triangles. To ensure physical realizability, we tighten the definition
with a fourth practical constraint that no two triangles may intersect (Fig. 2d).

In this work, we pose the task of 3D shape generation as learning a diffeomorphic flow from a template
genus-0 manifold mesh to a target mesh. Our key insight is that manifoldness is conserved under a
diffeomorphic flow due to their uniqueness [9, 10] and orientation preserving property [ 1, 12]. In
contrast to methods that learn “deformations” of a template manifold using an MLP or graph-based
network [3-5], our approach ensures manifoldness of the generated mesh. We use Neural ODEs
[1] to model the diffeomorphic flow, however, must overcome their limited capability to represent a
wide variety of shapes [9, 10, 13], which has restricted prior works to single-category representations
[14, 15]. We propose novel architectural features such as an instance normalization layer that enables
generating 3D shapes across multiple categories and a series of diffeomorphic flows to gradually
refine the generated mesh. We show quantitative comparisons to prior works and more importantly,
compare resulting meshes on physically meaningful tasks such as rendering, simulation and 3D
printing to highlight the importance of manifoldness.

Toy example: regularizer’s dilemma Consider the task of deforming a template unit spherical
mesh S (Fig. 3a) into a target star mesh 7" (Fig. 3b). We approximate the deformation with a
multi-layer perceptron (MLP) fg with a unit hidden layer of 256 neurons with relu and output
layer with tanh activation. We train fy by minimizing various losses over the points sampled from
S,T'. A conventional approach involves minimizing the Chamfer Distance L. between S, T', leading
to accurate point predictions but several edge-intersections (Fig. 3c). By introducing edge length
regularization [4] L., we get fewer edge-intersections (Fig. 3d) but the solution is also geometrically
sub-optimal. We can further reduce edge-intersections with Laplacian regularization [4] (Fig. 3e),
but this takes a bigger toll on geometric accuracy. Thus, attempting to reduce self-intersections by
explicit regularization not only makes the optimization hard, but can also lead to predictions with
lower geometric accuracy. In contrast, our proposed use of NODE (with dynamics fy) is designed by
construction [9, 10] to prevent self-intersections without explicit regularization (Fig. 3f).

In summary, we make the following contributions:

e A novel approach to 3D mesh generation, Neural Mesh Flow (NMF), with a series of NODEs
that learn to deform a template mesh (ellipsoid) into a target mesh with greater manifoldness.
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Figure 3: 2D Toy Example: For the task of deforming a manifold template mesh (a) to a target mesh (b) using
explicit mesh regularization (c-e) trades edge-intersections for geometric accuracy . In contrast, a NODE [1] (f)
is implicitly regularized preventing edge-intersections without loosing geometric accuracy.

e Extensive comparisons to state-of-the-art mesh generation methods for physically based rendering
and simulation (see supplementary video), highlighting the advantage of NMF’s manifoldness.

e New metrics to evaluate manifoldness of 3D meshes and demonstration of applications to single-
view reconstruction, 3D deformation, global parameterization and correspondence.

2 Related Work

Existing learning based mesh generation methods, while yielding impressive geometric accuracy, do
not satisfy one or more manifoldness conditions (Fig. 1b). While indirect approaches [6—8, 16—18]
suffer from the non-manifoldness of the marching cube algorithm [19], direct methods [2-5] are faced
with the regularizer’s dilemma on the trade-off between geometric accuracy and higher manifoldness,
illustrated in Fig. 3 and discussed in Sec. 1.

Indirect Mesh Prediction Indirect approaches predict the 3D geometry as either a distribution of
voxels [20-27], point clouds [7, 28] or an implicit function representing signed distance from the
surface [8, 16, 18]. Both voxel and point set prediction methods struggle to generate high resolution
outputs which later makes the iso-surface extraction tools ineffective or noisy [3]. Implicit methods
feed a neural network with a latent code and a query point, encoding the spatial coordinates [&, 16, 18]
or local features [29], to predict the TSDF value [16] or the binary occupancy of the point [8, 18].
However, these approaches are computationally expensive since in order to get a surface from the
implicit function representation, several thousands of points must be sampled. Moreover, for shapes
such as chairs that have thin structures, implicit methods often fail to produce a single connected
component.

All the above methods depend on the marching cube algorithm [19] for iso-surface extraction. While
marching cubes can be applied directly to voxel grids, point clouds first regress the iso-surface using
surface normals. Implicit function representations must regress TSDF values per voxel and then
perform extensive query to generate iso-surface based on a threshold 7. This is used to classify grid
vertices v; € V as ‘inside’ (T'SDF(v;) < 1) and ‘outside’ (T'SDF'(v;) > 7). For each voxel, based

on the arrangement of its grid vertices, marching cubes [19, 30-32] follows a lookup-table to find a
triangle arrangement. Since this rasterization of iso-surface is a purely local operation, it often leads
to ambiguities [30-32], resulting in meshes being non-manifold.

Direct Mesh Prediction A mesh based representation stores the surface information cheaply as
list of vertices and faces that respectively define the geometric and topological information. Early
methods of mesh generation relied on predicting the parameters of category based mesh models [33—
]. While these methods output manifold meshes, they work only for object category with available
parameterized manifold meshes. Recently, meshes have been successfully generated for a wide class
of categories using topological priors [3, 4]. Deep networks are used to update the vertices of initial
mesh to match that of the final mesh. AtlasNet [3] uses Chamfer distance applied on the vertices
for training, while Pixel2Mesh [4] uses a coarse-to-fine deformation approach using vertex Chamfer
loss. However, using a point set training scheme for meshes leads to severe topological issues and
produced meshes are not manifold. Some recent works have proposed to use mesh regularizers like
Laplacian [2, 4, 5, 36], edge lengths [2, 5], normal consistency [2] or pose it as a linear programming
problem [37] to constrain the flexibilty of vertex predictions. They suffer from the regularizer’s
dilemma discussed in Fig. 3, as better geometric accuracy comes at a cost of manifoldness.

In contrast to the above approaches, the proposed NMF achieves high resolution meshes with a high
degree of manifoldness across a wide variety of shape categories. Similar to previous approaches
[3-5], an initial ellipsoid is deformed by updating its vertices. However, instead of using explicit
mesh regularizers, NMF uses NODE blocks to learn the diffeomorphic flow to implicitly discourage



Figure 4: Neural Mesh Flow consists of three deformation blocks that perform point-wise flow on spherical
mesh vertices based on the shape embedding z from target shape M. The bottom row shows an actual chair
being generated at various stages of NMF. Time instances 0 < 77 < T < 1" show the deformation of spherical
mesh into a coarse chair representation Mo by the first deformation block. Further deformation blocks perform
refinements to yield refined meshes M1, Mps.

self-intersections, maintain the topology and thereby achieve better manifoldness of generated shape.
The method is end-to-end trainable without requiring any post-processing.

3 Neural Mesh Flow

We now introduce Neural Mesh Flow (Fig 4), which learns to auto-encode 3D shapes. NMF broadly
consists of four components. First, the target shape M is encoded by uniformly sampling N points
from its surface and feeding them to a PointNet [38] encoder to get the global shape embedding 2
of size k. Second, NODE blocks diffeomorphically flow the vertices of template sphere towards
target shape conditioned on shape embedding z. Third, the instance normalization layer performs
non-uniform scaling of NODE output to ease cross-category training. Finally, refinement flows
provide gradual improvement in quality. We start with a discussion of NODE and its regularizing
property followed by details on each component.

NODE Overview. A NODE learns a transformation ¢ : X — X as solutions for initial value

problem (IVP) of a parameterized ODE xp = ¢r(x9) = xo+ fOT fo(x;)dt. Here xg, xr € X C R
respectively represent the input and output from the network with parameters © (n = 3 for our case),
while T € R is a hyper parameter that represents the duration of the flow from x to 7. For a well
behaved dynamics fg : R™ — R™ that is Lipschitz continuous, any two distinct trajectories in R™ of
NODE with duration 7" may not intersect due to the existence and uniqueness of [IVP solutions [9, 10].
Moreover, NODE manifests the orientation preserving property of diffeomorphic flows [11, 12].
These lead to strong implicit regularizations against self-intersection and non-manifold faces. There
are several other advantages to NODE compared to traditional MLPs such as improved robustness
[39], parameter efficiency [ 1], ability to learn normalizing flows [14, 15, 40] and homeomorphism
[10]. We refer the readers to [9, 10, 13] for more details.

Diffeomorphic Conditional Flow. The standard NODE [!] formulation cannot be used directly
for the task of 3D mesh generation since they lack any means to feed in shape embedding and
are therefore restricted to learning a few shape. A naive way would be to concatenate features to
point coordinates like is done with traditional MLPs [4, 5] but this destroys the shape regularization
properties due to several augmented dimensions [9, 10]. Our key insight is that instead of a fixed
NODE dynamics fe we can use a family of dynamics fg), parameterized by z while still retaining
the uniqueness property as long as z is held constant for the purpose of solving IVP with initial
conditions {xg, z7}.

The objective of conditional flow (NODE Block) therefore is to learn a mapping Fg|. (1) given

the shape embedding z and initial values {(p%, pl,)|pt € My, pl, € Mo} where My, Mo are
respectively the input and output point clouds.

T
ph = Fopu(ph2) = pi + / Jor. (b 2)dt 0
0



(a)NODE Flow without IN (b) NODE Flow with IN (c) IN learns to §cales back (d) Abalation: Without IN (e) Abalation: With IN
to correct covariances

Figure 5: The impact of instance normalization (IN) and refinement flows in NMF. (a) Learning deformation of
a template (black) to target shapes of different variances (red and green) require longer non-uniform NODE
trajectories making learning difficult. (b) IN allows NODE to learn deformations to an arbitrary variance. (c)
This leads to simpler dynamics and can later be scaled back to correct shape variance. (d) A model trained
without IN leads to self-intersections and non-manifold faces due to very complex dynamics being learned. (e)
A model with IN is smoother and regularized.

\ | Chamfer-L2 (]) | Normal Consistency () | NM-Faces () | Self-Intersection (}) | Time ({) |

| No Instance Norm | 6.48 | 0.820 | 2.94 | 3.28 | 183 \
0 refinement 5.00 0.818 0.39 0.03 68
1 refinement 493 0.819 0.38 0.03 124
2 refinement 4.65 0.818 0.73 0.09 189

Table 1: Ablation for Instance Normalization and refinement

Instance Normalization. Normalizing input and hidden features to zero mean and unit variance is
important to reduce co-variate shift in deep networks [41-46]. While trying to deform a template
sphere to targets with different variances (like a firearm and chair) different parts of the template
need to be flown by very different amounts to different locations (Fig. 5a). This is observed to
causes significant strain on the NODE which ends up learning more complex dynamics resulting in
meshes with poor geometric accuracy and manifoldness (Fig 5d and Table 1). Instance normalization
separates the task of learning target variances from that of learning target attributes. It gives NODE
flexibility to deform the template to a target with arbitrary variance which yields better geometric
accuracy(Fig. 5b). This is later scaled back to the correct variance by instance normalization
layer (Fig. 5c¢) Given an input point cloud M € R™¥*" and its shape embedding z, the instance
normalization calculates the point average . < ﬁ > p?, p* € M and then applies non-uniform

scaling M < (M — 1) ® A(z) to arrive at correct target variances. Here A : RF — R"™ is an MLP
that regress variance coefficients for the n dimensions based on shape embedding z. ® refers to the
element wise multiplication.

Overall Architecture. A single NODE block is often not sufficient to get desired quality of results.
We therefore stack up two NODE blocks in a sequence followed by an instance normalization layer
and call the collection a deformation block. While a single deformation block is capable of achieving
reasonable results (as shown by M, in Fig. 4) we get further refinement in quality by having two
additional deformation blocks. Notice how the M,,; has a better geometric accuracy than M, and
Mz is sharper compared to M,,; with additional refinement. We report the geometric accuracy,
manifoldness and inference time for different amounts of refinement in Table 1. The reported
quantities are averaged over the 11 Shapnet categories (this excludes watercraft and lamp where NMF
struggles with thin structures). For details on per category ablation, please see the supplementary
material. To summarize, the entire NMF pipeline can be seen as three successive diffeomorphic flows
{F3 Fé‘z, Félz} of the initial spherical mesh to gradually approach the final shape.

Loss Function. In order to learn the parameters O it is important to use a loss which meaningfully
represents the difference between the predicted M p and the target M meshes. To this end we use

the bidirectional Chamfer Distance (2) on the points sampled differentiably [+7] from predicted Mp
and target M7 meshes. )
L£©)= Y min [p—qlP+ >
qeEMr

pEMp q€Mr

|22

min [|p — q||? )
peEM

P

We compute chamfer distances L1, £,2 for meshes after deformation blocks Félz and F3, _. For

|z
meshes generated from F| (glz we found that computing chamfer distance £, on the vertices gave



better results since it encourages predicted vertices to be more uniformly distributed (like points
sampled from target mesh). We thus arrive at the overall loss function to train NMF.

L= UJQEU + wlﬁpl + wzﬁpg (3)

Here we take wg = 0.1, w1 = 0.2, w3 = 0.7 so as to enhance mesh prediction after each deformation
block. The adjoint sensitivity [48] method is employed to perform the reverse-mode differentiation
through the ODE solver and therefore learn the network parameters © using the standard gradient
descent approaches.

Dynamics Equation. The Neural ODE Fy), is built around the dynamics equation fy that is
learned by a deep network. Given a point z € R", we first get 512 length point features by applying
a linear layer. To condition the NODE on shape embedding, we extract a 512 length shape feature
from the shape embedding z and multiply it element wise with the obtained point features to get the
point-shape features. Thus, point-shape features contains both the point features as well as the global
instance information. We find that dot multiplication of the shape and point features yields similar
performance as their concatenation, albeit requiring less memory. Lastly, we feed the point-shape
features into two residual MLP blocks each of width 512 and subsequent MLP of width 512 which
outputs the predicted point location y € R”. Based on the findings of [13, 49] we make use of the
tanh activation after adding the residual predictions at each step. This ensures maximum flexibility
in the dynamics learned by the deep network. More details about the architecture can be found in
supplementary material.

Implementation Details For the Neural Mesh Flow architecture, both the mesh vertices and NODE
dynamics operate in n = 3 dimensions. We uniformly sample N = 2520 from the target mesh
and using PointNet [38] encoder, get a shape embedding z of size £ = 1000. During training, the
NODE is solved with a tolerance of 1e~° and interval of integration set to ¢ = 0.2 for deforming an
icosphere with 622 vertices. The integration time was empirically determined to be large enough for
flow to work, but not too large to cause overfitting. At test time, we use an icosphere of 2520 vertices
and tolerance of 1e=5. We train NMF for 125 epochs using Adam [50] optimizer with a learning
rate of 1075, weight decay of 0.95 after every 250 iterations and a batch size of 250, on 5 NVIDIA
2080Ti GPUs for 2 days. For single view reconstruction, we train an image to point cloud predictor
network with pretrained ResNet encoder of latent code 1000 and a fully-connected decoder with size
1000,1000,3072 with relu non-linearities. The point predictor is trained for 125 epochs on the same
split as NMF auto-encoder.

4 Experiments

In this section we show qualitative and quantitative results on the task of auto-encoding and single
view reconstruction of 3D shapes with comparison against several state of the art baselines. In
addition to these tasks, we also demonstrate several additional features and applications of our
approach including latent space interpolation texture mapping, consistent correspondence and shape
deformations in the supplementary material.

Data We evaluate our approach on the ShapeNet Core dataset [5 1], which consists of 3D models
across 13 object categories which are preprocessed with [52] to obtain manifold meshes. We use the
training, validation and testing splits provided by [6] to be comparable to other baselines. We use
rendered views from [6].

Evaluation criteria We evaluate the predicted shape M p for geometric accuracy to the ground
truth M as well as for manifoldness. For geometric accuracy, we follow [2] and compute the
bidirectional Chamfer distance according to (2) and normal consistency using (4) on 10000 points
sampled from each mesh. Since Chamfer distance is sensitive to the size of meshes, we scale the
meshes to lie within a unit radius sphere. Chamfer distances are report by multiplying with 103. With
Mp, My the point sets sampled from M,,, My and Ap o = {(p, argmin,||p — q||) : p € P}, we

define ~ _
Lo=|Mp|™" > fupugl + (M7t YT Jug | — 1 (4)
(P DEN i1 sty (P D) E€M i1, g1

We detect non-manifold vertices (Fig. 2(b)) and edges (Fig. 2(a)) using [53] and report the metrics
‘NM-vertices’, ‘NM-edges’ respectively as the ratio(x 10°) of number of non-manifold vertices and
edges to total number of vertices and edges in a mesh. To calculate non-manifold faces, we count
number of times adjacent face normals have a negative inner product, then the metric ‘NM-Faces’ is
reported as its ratio(%) to the number of edges in the mesh. To calculate the number of instances
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AtlasNet AtlasNet-O  NMF (Ours)  Ground Truth AtlasNet AtlasNet-O  NMF (Ours)  Ground Truth
Figure 6: Auto-encoder: The first row shows mesh geometry along with self-intersections (red) and flipped
normals (black). The bottom row shows results from physically based rendering with dielectric and conducting
materials. The appearances of the red box, green ball and blue ball are more realistic for NMF than AtlasNet,
since the latter suffers from severe self-intersections and flipped normals.

Chamfer-L2 (|) Normal Consistency (1) NM-Faces ({) Self-Intersection (J.)
AtNet AtNet-O NMF | AtNet AtNet-O NMF | AtNet AtNet-O NMF | AtNet AtNet-O NMF
mean 4.15 3.50 5.54 ] 0815 0.816 0.826 | 1.72 1.43 0.71 | 2480 6.03 0.10
mean (with Laplace) | 4.59 3.81 525 | 0.807 0.811 0.826 | 0.47 0.56 0.38 | 1326 2.02 0.00

Table 2: Auto-encoding performance.

of self-intersection, we use [54] and report the ratio(%) of number of intersecting triangles to total
number of triangles in a mesh. Only the mean over all ShapeNet categories are reported in this paper
with category specific details can be found in the supplementary.

For qualitative evaluation, we render predicted meshes via a physically based renderer [55] with
dielectric and metallic materials to highlight artifacts due to non-manifoldness. While we render
NMF meshes directly, other methods render poorly due to non-manifoldness and are smoothed prior
to rendering to obtain better visualizations. Please see supplementary for further visualizations.

Baselines We compare with official implementations for Pixel2Mesh [2, 4], MeshRCNN [2] and
AtlasNet [3]. We use pretrained models for all these baselines motioned in this paper since they share
the same dataset split by [6]. We use the implementation of Pixel2Mesh provided by MeshRCNN, as
it uses a deeper network that outperforms the original implementation. We also consider AtlasNet-O
which is a baseline proposed in [3] that uses patches sampled from a spherical mesh, making it closer
to our own choice of initial template mesh. We also create a baseline of our own called NMF-M,
which is similar in architecture to NMF but trained with a larger icosphere of 2520 vertices, leading
to slight differences in test time performance. To account for possible variation in manifoldness
due to simple post processing techniques, we also report outputs of all mesh generation methods
with 3 iterations of Laplacian smoothing. Further iterations of smoothing lead to loss of geometric
accuracy without any substantial gain in manifoldness. We also compare with occupancy networks
[8], a state-of-the-art indirect mesh generation method based on implicit surface representation. We
compare with several variants of OccNet based on the resolution of Multi Iso-Surface Extraction
algorithm [8]. To this end, we create OccNet baselines OccNet-1, OccNet-2 and OccNet-3 with
MISE upsampling of 1, 2 and 3 times respectively. For fair comparison to other baselines, we use
OccNet’s refinement module to output its meshes with 5200 faces.

Auto-encoding 3D shapes We now evaluate NMF’s ability to generate a shape given an input
3D point cloud and compare against AtlasNet [3] and AtlasNet-O[3] in Table 2. We note that
NMF outperforms AtlasNet in terms of manifoldness with 20 times less self-intersections. NMF
generates meshes with a higher normal consistency, leading to more realistic results in simulations
and physically-based rendering. All the three methods have manifold vertices. While both NMF
and AtlasNet-O have no non-manifold edges, AtlasNet yields a constant value of 7400 due to its
constituent 25 non-manifold open templates. Visualizations in Fig. 6 show severe self-intersections
and flipped normals for AtlasNet baselines which are absent for NMF. This leads to NMF giving
more realistic physically based rendering results. Note the reflection of red box and green ball
through NMF mesh, which are either distorted or absent for AtlasNet. The blue ball’s reflection on
conductor’s surface is closer to ground truth for NMF due to higher manifoldness.

Single-view reconstruction We evaluate NMF for single-view reconstruction and compare against
state-of-the-art methods in Table 3. We note significantly lower self-intersections for NMF compared
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Figure 7: Single View Reconstruction: We compare NMF to other mesh generating baselines for SVR. Top
row shows mesh geometry along with self-intersections (red) and flipped normals (black). Physically based
renders for dielectric and conductor material are shown in rows 2 and 3 respectively. Notice the reflection of
checkerboard floor, occluded part of red box and balls are all visible through NMF render but not with other
baselines. This is due to the presence of severe self-intersection and flipped normals. The reflection of blue ball
on metallic table is more realistic for NMF than other methods.

Chamfer-L2 () Normal Consistency (1) | NM-Vertices (]) NM-Edges (]) NM-Faces (]) Self-Intersection (J.)
w/ Laplace w/ Laplace w/ Laplace w/ Laplace w/ Laplace w/ Laplace
MeshRCNN[2] | 473 5.96 0.698 0.758 932 932 17.88 17.88 518 0.86 7.07 1.41
Pixel2Mesh[4] | 5.48 10.79 0.706  0.720 0.00 0.00 0.00  0.00 333 088 1229 652
AtlasNet-25[3] | 548 7.76 0.826 0.824 0.00 0.00 7400 7400 176 0.48 26.94 17.57
AtlasNet-sph[3] | 6.67 7.35 0.838 0.836 0.00 0.00 0.00  0.00 219 1.08 11.07 594
NMF 782 8.64 0.829 0.837 0.00 0.00 0.00 0.00 083 045 012 0.00
NMF-M 9.05 8.73 0.839 0.838 0.00 0.00 0.00  0.00 0.76 0.42 0.11  0.00

Table 3: Single-view reconstruction.
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Figure 8: Qualitative results for soft body simulation. (a) While AtlasNet breaks down into 25 meshlets, (b)
AtlasNet-O suffers from severe self-intersections leading to unrealistic simulations. (c) Pixel2Mesh leads to
artifacts such as the chair going through the floor due to higher number of non-manifold faces. (d) MeshRCNN
has a high degree of non-manifoldness resulting in unrealistic simulation. (¢) NMF due to being a manifold
mesh, is close to (f) the ground truth.

to the best baseline even after smoothing. Our method again results in fewer than 50% non-manifold
faces compared to the best baseline. NMF-M also gets the highest normal consistency performance.
Due to the cubify step as part of the MeshRCNN [2] pipeline which converts a voxel grid into
a mesh, the method has several non-manifold vertices and edges compared to deformation based
methods Pixel2Mesh [4, 2], AtlasNet-O [3] and NMF. AtlasNet suffers from the most number of
non manifold edges, almost 100 times that of MeshRCNN. We note that MeshRCNN|[2] better
performance in Chamfer Distance come at a cost of other metrics. We qualitatively show the effects
of non-manifoldness in Figure 7 and supplementary material. We observe that for dielectric material
(second row), NMF is able to transmit background colors closest to the ground truth, whereas other
baselines only reflect the white sky due to the presence of flipped normals.

Soft body simulation (watch supplementary video for better understanding) To further demon-
strate the usefulness of manifoldness, we qualitatively evaluate predicted meshes with soft body
simulation in Fig. 8. Here we simulate dropping meshes on the floor using Blender [56], with settings
pull = 0.9, push = 0.9, bending = 10 to represent a rubber-like material. We note that AtlasNet
[3] breaks into its constituent 25 independent meshlets upon hitting the floor. This behaviour is
expected of methods that predict shapes as a set of n-connected components [57]. Both Pixel2Mesh



Figure 9: A few renders of the 3D printing output for a shape generated by NMF.

| Single View Recon. | Chamfer-L2 () | Normal Consistency (1) | NM-Vertices (1) | NM-Edges (]) | NM-Faces (1) | Self-Intersection (1) | Time (}) |

OccNet-1(5] 8.77 0.814 1.13 0.85 036 0.00 871
OccNet-2(8] 8.66 0.814 2.67 1.79 021 0.03 1637
OceNet-3(5] 8.33 0.814 2.79 1.90 0.15 0.09 6652
NMF 7.82 0.829 0.00 0.00 0.83 0.12 187
NME w/ Laplace | 8.64 0.837 0.00 0.00 045 0.00 292
Table 4: Comparison with implicit representation method OccNet [8] for single view reconstruction.
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Figure 10: Implicit methods: OccNet fails to give meshes that are singly connected and MeshRCNN has poor
normal consistency along with severe self-intersections. Both OccNet and NMF has non-manifold edges (shown
as zoomed out insets). NMF generates meshes that are visually appealing with higher manifoldness.

[4] and AtlasNet-O [3] yield unrealistic simulations due to the presence of severe self-intersection
artifacts. We note that MeshRCNN [2] suffers from over-bounciness due to non-manifoldness and
poor normal consistency. In contrast, NMF yields simulations with properties that are closest to the
ground truth.

3D printing We now show in Fig. 9 a few renders of a 3D printed shape predicted by NMF using
image from Figure 1. Since NMF predicts a manifold mesh, we can 3D print the predicted shapes
without any post processing or repair efforts, obtaining satisfactory printed products.

Comparison with implicit representation method We evalute NMF against state-of-the-art indi-
rect mesh generation method OccNet [8] for the task of single view reconstruction in Table 4. We
observe that NMF outperforms the best baseline OccNet-3 in terms of geometric accuracy. This is
primarily because NMF predicts a singly connected mesh object as opposed to OccNet which leads
to several disconnected meshes. Moreover, due to the limitations imposed by the marching cubes
algorithm discussed in Section 2, OccNet-1,2,3 have several non-manifold vertices and edges where
as by construction, NMF doesn’t suffer from such limitation. An example of non-manifold edge is
shown in Fig. 10. For sake of completeness, we also show the mesh generated by MeshRCNN [2]
that suffers from non-manifold vertices and edges. NMF is also competitive with OccNet in terms of
self-intersections since both methods become practically intersection-free with Laplacian smoothing .
While OccNet outperforms NMF in terms of non-manifold faces, we argue that this comes at a cost
of higher inference time. For reference, the fastest version of OccNet has comparable non-manifold
faces and self-intersections but suffers relatively in terms of other metrics.

5 Conclusions

In this paper, we have considered the problem of generating manifold 3D meshes using point clouds
or images as input. We define manifoldness properties that meshes must satisfy to be physically
realizable and usable in practical applications such as rendering and simulations. We demonstrate
that while prior works achieve high geometric accuracy, such manifoldness has previously not been
sought or achieved. Our key insight is that manifoldness is conserved under a diffeomorphic flow that
deforms a template mesh to the target shape, which can be modeled by exploiting properties of Neural
ODEs [1]. We design a novel architecture, termed Neural Mesh Flow, composed of deformation
blocks with instance normalization and refinement flows, to achieve manifold meshes without any
post-processing. Our results in the paper and supplementary material demonstrate the significant
benefits of NMF for real-world applications.



Broader Impact

The broader positive impact of our work would be to inspire methods in computer graphics and
associated industries such as gaming and animation, to generate meshes that require significantly less
human intervention for rendering and simulation. The proposed NMF method addresses an important
need that has not been adequately studied in a vast literature on 3D mesh generation. While NMF is a
first step in addressing that need, it tends to produce meshes that are over-smooth (also reflected in
other methods sometimes obtaining greater geometric accuracy), which might have potential negative
impact in applications such as manufacturing. Our code, models and data will be publicly released to
encourage further research in the community.
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