
Performance-Optimal Read-Only Transactions

Haonan Lu⋆, Siddhartha Sen†, Wyatt Lloyd⋆

⋆Princeton University, †Microsoft Research

Abstract

Read-only transactions are critical for consistently reading

data spread across a distributed storage system but have

worse performance than simple, non-transactional reads. We

identify three properties of simple reads that are necessary

for read-only transactions to be performance-optimal, i.e.,

come as close as possible to simple reads. We demonstrate

a fundamental tradeoff in the design of read-only transac-

tions by proving that performance optimality is impossible to

achieve with strict serializability, the strongest consistency.

Guided by this result, we present PORT, a performance-

optimal design with the strongest consistency to date. Cen-

tral to PORT are version clocks, a specialized logical clock

that concisely captures the necessary ordering constraints.

We show the generality of PORT with two applications.

Scylla-PORT provides process-ordered serializability with

simple writes and shows performance comparable to its non-

transactional base system. Eiger-PORT provides causal con-

sistency with write transactions and significantly improves

the performance of its transactional base system.

1 Introduction

Large-scale web services are built on distributed storage sys-

tems. Sharding data across machines enables distributed

storage systems to scale capacity and throughput. Sharding,

however, complicates building correct applications because

read requests sent to different shards may arrive at different

times and thus return an inconsistent view of the data.

Consistently interacting with data in a distributed storage

system thus requires transactional isolation, which unifies

the view of data across shards. While general transactions

provide isolation for reading and writing across shards, this

paper focuses on read-only transactions that only read data.

Read-only transactions are prevalent: they are used in sys-

tems without general transactions [4, 14, 31, 32, 34] and,

even for systems with general transactions, they are often

implemented with a specialized algorithm [10, 11, 34, 37,

38, 39, 51]. Read-only transactions are practically important

because reads dominate real-world workloads: Facebook re-

ported 99.8% reads for TAO [8] and Google reported three

orders of magnitude more reads than general transactions

for the ads workload (F1) that runs on Spanner [10]. They

are also theoretically important because they provide a lower

bound for other classes of transactions: anything impossible

for read-only transactions is also impossible for any class of

transactions that includes reads.

The dominance of reads in real-world workloads makes

their performance the primary determinant of end-user

latency and overall system throughput. Unfortunately,

read-only transactions perform worse than simple, non-

transactional reads due to the coordination required to

present a consistent view across shards. Whether a view is

consistent is determined by a system’s consistency model:

stronger consistency provides an abstraction closer to a

single-threaded environment, greatly simplifying application

code [33]. Thus, ideal read-only transactions would provide

the strongest consistency and have optimal performance.

What is the “optimal” performance? Although recent

work has studied optimality through the lens of latency [34],

it did not consider throughput, which adds a fundamentally

new dimension to this question. In this paper, we formalize

the notion of optimality for read-only transactions and use

it to explore the tradeoff between their consistency and per-

formance. We posit that optimality should be defined by the

algorithmic properties of simple reads that comprise a read-

only transaction. Simple reads do not provide transactional

isolation and thus capture the minimum work required to

read data in a distributed storage system: One round of Non-

blocking communication with a Constant amount of meta-

data. As we elaborate in §3, these algorithmic properties (N,

O, and C) precisely capture the additional coordination in-

curred by read-only transactions to present a consistent view.

Thus, we define performance-optimal read-only transactions

to be those with the same NOC properties as simple reads.

Our main theoretical result is that performance optimality

is impossible in a system that provides Strict serializability—

the strongest type of consistency. Specifically, our NOCS

Theorem states that no read-only transaction algorithm can

be performance optimal and provide strict serializability.

This result holds even in systems that only support non-

transactional writes, and thus applies to systems with and

without more general types of transactions. It shows there

is a fundamental choice in the design of distributed storage

systems: they can either provide the strongest consistency or

the best performance for read-only transactions, not both.

Guided by our impossibility result, we present the PORT

design, which enables performance-optimal read-only trans-

actions with the strongest consistency to date: process-

ordered serializability. Previous performance-optimal trans-

actions only provided relatively weak consistency (§5.1).

PORT provides performance-optimal read-only transactions

without harming either the latency or throughput of writes.

The main mechanism enabling our design is a new special-

ized logical clock, called version clocks, that concisely cap-

ture the ordering constraints imposed by process-ordered se-

rializability on read and write operations. PORT uses version

clocks to tightly co-design its components. Version clock

values index its multi-versioning framework, control what

read-only transactions see, and control where writes are ap-

plied. They also enable optimizations that avoid the work of

applying some concurrent writes (write omission) and limit

the staleness of reads (data freshness).

We use the PORT design with the write omission

and data freshness optimizations to build a new stor-

age system, Scylla-PORT, that adds performance-optimal

read-only transactions to ScyllaDB [47] while providing

process-ordered serializability. As a single-versioned, non-

transactional system, ScyllaDB provides a clean slate for im-

plementing PORT and allows us to quantify the overhead

of our performance-optimal read-only transactions relative

to simple reads. ScyllaDB’s simple reads are a challeng-

ing baseline as the system is aggressively engineered for

high performance, including core-level sharding and custom

lock-free data structures. Our evaluation shows that PORT’s

read-only transactions introduce low overhead, achieving

throughput and latency within 3% of ScyllaDB on most of

the workloads we test, and within 8% in the worst case. Our

evaluation also compares PORT to a variant of OCC that

is optimized for read-only transactions. PORT significantly

outperforms OCC with at least double the throughput and at

most half the latency because Scylla-PORT always finishes

in one round while OCC’s best case is two rounds.

We also applied PORT with data freshness optimizations

to Eiger [32] to make its read-only transactions performance

optimal while preserving the system’s causal consistency and

write transactions. Eiger is a challenging baseline because it

can complete read-only transactions in a single round. Our

evaluation shows that Eiger-PORT significantly improves

performance with throughput up to 3× higher and latency

up to 60% lower than Eiger. These improvements do come

with some staleness relative to strongly consistent systems,

but our data freshness optimizations keep the staleness low.

In summary, this work makes the following contributions:

• A fundamental understanding of the tradeoff between per-

formance and consistency for read-only transactions. This

includes a precise definition of performance optimality

(§3) and the NOCS Theorem that proves optimality is im-

possible with strict serializability (§4).

• The PORT design that achieves performance-optimal read-

only transactions with the strongest consistency to date by

leveraging version clocks, a new type of logical clock that

concisely captures the necessary ordering constraints (§6).

• The implementation and evaluation of two new systems

based on the PORT design. Scylla-PORT is a clean-slate

application of PORT to a non-transactional system, Scyl-

laDB (§7). Eiger-PORT makes the read-only transaction

algorithm of Eiger performance optimal (§8, §9).

2 Background

Web service architecture. Web services are typically built

using two tiers of machines: a stateless frontend tier and a

stateful storage tier. The frontends handle end user requests

by executing application logic that generates sub-requests to

read or write data in the storage tier. We refer to the frontends

as clients and the storage machines as servers, as is common.

Web services are often replicated across multiple datacen-

ters. For simplicity, we focus on a single datacenter setting,

but our results also apply to multi-datacenter settings.

Read-only transactions. Read-only transactions provide a

consistent, unified view of data spread across servers in a

storage tier. They consist of one or more logical rounds of

simple read requests issued in parallel to the servers, which

collectively return a view satisfying the consistency model

of the system. One-shot transactions [23] know the data

locations of all reads prior to the transaction start. In con-

trast, multi-shot transactions may include key dependencies,

where the data read in one shot determines what data to read

in later shots. We study one-shot transactions for simplicity,

because they are common, and because what is impossible

for them is also necessarily impossible for multi-shot trans-

actions. The NOCS Theorem thus also applies to multi-shot

transactions. The PORT design for read-only transactions

can be easily extended to support multi-shot transactions.

3 Performance-Optimal Read Transactions

This section explains the challenges of reasoning about per-

formance, the rationale of our approach, and the set of algo-

rithmic properties that define optimal performance.

3.1 Reasoning About Performance

The key challenges to reasoning about performance are iden-

tifying the fundamental overhead of read-only transactions

and modeling it in a way that connects with practical designs.

Capturing the fundamental overhead. As a layer built

upon simple reads, the performance of a read-only transac-

tion is impacted by both the engineering factors in executing

simple reads and the algorithmic properties of coordinating

simple reads to find a consistent view. Engineering factors,

such as load balancing, batching, and networking, equally

affect simple reads and the read-only transactions built on

them. In contrast, the algorithmic properties, such as rounds

of communication, only affect read-only transactions. For

instance, a read-only transaction protocol that requires mul-

tiple round trips incurs overhead due to those extra rounds

of messages, while the read requests in each round are engi-

neered the same as simple reads.

Thus, this work focuses on the algorithmic properties that

capture the fundamental overhead of read-only transactions.

These properties capture the additional overhead to coordi-

nate a consistent view and are orthogonal to underlying en-

gineering factors. More specifically, we answer the question,

“given a system, how low can we make the performance

overhead of read-only transactions relative to the system’s

simple reads?”

Being useful in practice. Our goal is to model optimal per-

formance in a way that is both theoretically insightful and

practically useful. Theoretical insights help clarify funda-

mental tradeoffs between performance and guarantees. Prac-

tically useful guidance helps us design better systems. Our

NOCS Theorem (§4.1) and properties yield theoretical in-

sights that lead to a better design, PORT (§6), that achieves

better performance in practice. This shows that our modeling

is practically useful (§5).

3.2 Approach Overview

To reason about optimal performance in a practically use-

ful way, we examine the mechanisms used in existing sys-

tems to coordinate a consistent view across shards. These

coordination mechanisms include blocking, extra messages,

and metadata. Some systems block read operations until a

consistent view is ready—e.g., systems that use two-phase

locking. Almost all systems use extra messages to deter-

mine a consistent view, such as multiple round trips on the

critical path of reads—e.g., OCC [24]—or approaches that

asynchronously coordinate a consistent view—e.g., COPS-

SNOW [34], GentleRain [15], Cure [3]. Finally, all systems

we are aware of use metadata to help compute a consistent

view for read-only transactions to return—e.g., timestamps,

transaction ids. Figure 9 in Section 10 shows representative

systems that use these mechanisms.

These coordination mechanisms cause read-only transac-

tions to have worse performance than simple reads, as they

consume additional system resources. Therefore, we define

performance-optimal read-only transactions to be those that

require the least amount of each coordination mechanism,

making their performance closest to that of simple reads.

3.3 NOC: Optimal Performance

We now explain the NOC properties, which we use to define

optimal performance for read-only transactions.

N: Non-blocking. A read-only transaction algorithm is non-

blocking if servers process each read request without waiting

for any external event, such as a lock to become available, a

message to arrive, or a timer to expire.

Blocking for a read request increases the latency of the

read-only transaction: the more time spent blocking, the

longer the transaction takes to complete. It also decreases

throughput due to the overhead of context switches. In prac-

tice, blocking can incur more serious performance issues,

e.g., CPU underutilization and deadlocks, which are increas-

ingly pronounced in modern services [44, 52].

O: One-round communication. A read-only transaction al-

gorithm has one-round communication if it uses exactly one

parallel round of on-path messages and does not have any

off-path messages. This matches the messages of simple

reads: the client sends a single request to each server holding

relevant data, and each server sends a single response back.

It excludes algorithms that use extra messages, such as those

that require multiple rounds of on-path communication, e.g.,

to abort/retry. It also disallows coordinating through off-path

messages, i.e., messages that are necessary for the read-only

transactions but lie off the critical path of reads.

A message is an off-path message for read-only transac-

tions if its removal affects only the correctness of read-only

transactions. For example, COPS-SNOW [34] adds extra

messages to writes. These messages are used for read-only

transactions to find a consistent snapshot and are not neces-

sary for processing writes. Because only the correctness of

read-only transactions is affected if these messages are re-

moved, they are off-path messages.

Additional rounds of on-path messages increase the la-

tency of read-only transactions. Both extra on-path and off-

path messages decrease system throughput because trans-

mitting and processing them consume network and CPU re-

sources that could otherwise be used to service requests.

C: Constant metadata. Metadata is the information re-

quired by a read-only transaction algorithm to coordinate

consistent values. It is information a server needs to find

the specific version of the data that will produce a consistent

cross-shard view across reads in the same transaction. Ex-

amples of metadata include timestamps [2, 10], transaction

ids [34, 41], and identifiers of participating servers [5].

A read-only transaction algorithm has constant metadata

if the amount of metadata required to process each of its read

requests is constant, i.e., it does not increase with the size

of the system, the size of the transaction, or the number of

concurrent operations. An example of constant metadata is

one timestamp per read request for snapshot reads in Span-

ner [10]. An example of non-constant metadata is COPS-

SNOW [34], which requires information about many con-

current read-only transactions to process each read request.

Transmitting and/or processing extra metadata consumes

more resources, increasing latency and decreasing through-

put. Its negative impact on performance has been reported in

recent work [13, 14, 15]. We use Big-O notation, i.e., “con-

stant,” to capture the algorithmic complexity of metadata re-

quired for coordination. In practice, system designers should

aim for as low a constant as possible. We realize this in our

PORT design, which uses a single integer per read request.

Performance optimality. We deem an algorithm perfor-

mance optimal if it satisfies the N+O+C properties because

they capture the least coordination overhead and thus enable

performance as close as possible to simple reads.

4 The NOCS Theorem

An ideal system would have performance-optimal read-only

transactions that provide the strongest consistency. Our

NOCS Theorem proves this ideal is impossible.

S: Strict serializability. Strict serializability is the strongest

form of consistency, equivalent to linearizability [22] with

the addition of transactional isolation. It requires that there

exists a legal total order of transactions that respects the real-

time order between transactions [42]. A legal total order en-

sures that the results of transactions are equivalent to a single

entity processing them one by one. The real-time order en-

sures that if transaction T2 starts after transaction T1 ends,

then T1 must appear before T2 in the total order. If T1 and T2

have overlapping lifetimes, then they are concurrent and can

be placed in either order. Strict serializability gives applica-

tion programmers the powerful abstraction of programming

in a single-threaded, transactionally isolated environment.

4.1 NOCS is Impossible

Our main result is that performance-optimal read-only trans-

actions (N+O+C) cannot provide strict serializability (S).

This section present a condensed version of the proof. The

full proof appears in our accompanying technical report [35].

The NOCS Theorem. No read-only transaction algorithm

satisfies all NOCS properties.

System model. We model a distributed system as a set of

processes that communicate by sending and receiving mes-

sages. This model is similar to that used in FLP [17]. A set

of client processes (clients) issue requests to server processes

(servers) that store the data. Processes are modeled as deter-

ministic automata: in each atomic step, they may receive a

message, perform deterministic local computation, and send

one or more messages to other processes.

A transaction (operation) starts when a client sends the re-

quest messages to servers and ends when the client receives

the last necessary server response. Two transactions (oper-

ations) are concurrent if their lifetimes overlap, i.e., neither

begins after the other ends. If concurrent transactions (oper-

ations) access the same data item, then they conflict.

Assumptions. We make the following assumptions:

(A-0) There are ≥ 2 servers and ≥ 2 clients. Otherwise,

optimal performance and strict serializability are trivial. All

reads and writes eventually complete.

(A-1) The network and processors are reliable. Every

message is eventually delivered and processed by the des-

tination process. Processes are correct and never crash. By

proving our impossibility result under these favorable condi-

tions, it will necessarily hold when the system can fail.

(A-2) The network is either asynchronous [20], i.e.,

messages can be arbitrarily delayed, or partially syn-

chronous [16], i.e., physical clocks ensure bounded delays.

Proof intuition. Due to network asynchrony, it is always

possible for a read-only transaction to conflict with write op-

erations and other concurrent read-only transactions. These

requests occupy an unstable region in the system’s history,

where conflicts are possible and a total order has not yet

been established. In contrast, the stable region is the part

of history that precedes the unstable region, where all writes

have committed and system states are finalized. Reading in

the stable region is easy as there are no conflicting writes.

However, we show that the real-time order requirement of S

requires read-only transactions that are N+O to interact with

the most recent writes in the unstable region (Lemma 1). Do-

ing this while ensuring a legal total order requires transfer-

ring metadata between the servers (Lemma 2), either proac-

tively through read requests or through the write protocol.

By extending this construction, we show that processing a set

of read-only transactions requires metadata that is asymptot-

ically larger than the total size of the transactions, regardless

of how the metadata is transferred (Lemma 3). This violates

C, proving the theorem.

Proof. Suppose the system has two servers, S1 and S2, and

multiple clients. Let ALG be any read-only transaction algo-

rithm that satisfies N+O+S. Let R = {r1,r2} be a read-only

transaction that executes ALG, issued by client CR. Let w1 and

w2 be simple write requests issued by client Cw 6=CR, where

w1 → w2 in real-time, i.e., w2 is sent after the response for

w1 is received. We place no restrictions on the write protocol

(beyond assumption A-0). Consider the execution e1:

S1 : r1,w1

S2 : w2,r2

Suppose there is no metadata in the system, i.e., no infor-

mation for coordinating consistent values between requests.

Lemma 1. Without metadata, a read-only transaction that is

N+O+S must observe any write that precedes it at a server.

Proof Summary. Without metadata, S2 cannot distinguish be-

tween an execution where w2 and R are concurrent and one

with w2 →R in real-time. The latter requires r2∈R to observe

w2 to satisfy S’s real-time order. �

Lemma 2. Processing e1 while satisfying N+O+S requires

dependency R → w1 to be transferred from S1 to S2.

Proof Summary. Lemma 1 states that, without metadata, r2

must observe w2, implying w2 → R. But r1 must be pro-

cessed before w1 to satisfy N+O, implying R → w1. Since

w1 → w2 by construction, this creates a cycle, violating the

legal total order of S. Using basic two-party communication

complexity, we show that legalizing the total order requires

transferring R → w1 from S1 to S2. �

We now extend e1 with more read-only transactions,

servers, and write requests, and apply the structure above to

force more dependency metadata to transfer between servers.

We then quantify this metadata and show that it violates C.

Proof of the NOCS Theorem. Suppose the system has

M2 + 1 servers S1,S2, . . . ,SM2+1. Let R1,R2, . . . ,RN be N

read-only transactions that execute ALG, where each Ri sends

a read request to S1 and M−1 other servers, such that every

server other than S1 receives N/M read requests. (In practice

M2 ≪ N, but our construction works for any N,M ≥ 1.) The

specific mapping of read requests to servers is unimportant;

we lay them out sequentially by transaction index below. Let

ri, j be a read request of Ri assigned to S j. We assign one

read request from each of R1 to RN/M to S2, one read request

from each of RN/M+1 to R2N/M to S3, and so on, restarting at

R1 after reaching RN . Let w1,w2, . . . ,wM2+1 be M2 +1 sim-

ple writes issued to each server by a distinct client Cw that

does not issue any read-only transactions. Suppose w1 pre-

cedes all other writes, i.e., w1 → w j for j = 2, . . . ,M2 + 1,

and all read-only transactions are concurrent with all writes.

Consider the execution e∗:

S1 : r1,1, . . . ,rN,1,w1

S2 : w2,r1,2, . . . ,rN/M,2

S3 : w3,rN/M+1,3, . . . ,r2N/M,3

...

SM+1 : wM+1,rN−N/M+1,M+1, . . . ,rN,M+1

SM+2 : wM+2,r1,M+2, . . . ,rN/M,M+1

...

SM2+1 : wM2+1,rN−N/M+1,M2+1, . . . ,rN,M2+1

By decomposing this execution into layers, we can induc-

tively quantify the metadata required to process it. Let e1 be

the execution fragment containing all write requests and only

the read requests of R1. Let ei contain the requests of ei−1

plus all read requests of Ri, for i = 2, . . . ,N. Thus eN = e∗.

Lemma 3. Processing ek while satisfying N+O+S requires

Ω(kM2) metadata, for k = 1, . . . ,N.

Proof Summary. The proof is by induction. For the base

case of e1, Lemma 2 requires us to transfer R1 → w1 from

S1 to all M − 1 servers targeted by R1. We show that the

write protocol cannot efficiently transfer this metadata, since

it does not know which servers R1 targets, and hence must

send R1 → w1 to all M2 servers, or Ω(M2) metadata. Al-

ternatively, r1,1 can convey the list of target servers, but

due to asynchrony, a different execution could cause a dif-

ferent target server S j to play the role of S1, making it

impossible to know which r1, j will appear before a write.

Thus, every r1, j must include the list of M servers, requir-

ing Ω(M ∗M) = Ω(M2) metadata. In the inductive step, we

show that ek cannot rely on previous metadata transferred in

ek−1, and thus requires an additional Ω(M2) metadata. �

Completion of the proof. By Lemma 3, e∗ = eN requires

Ω(NM2) metadata. Since R1, . . . ,RN issue NM read requests

total, the amortized metadata required per read request is

Ω(NM2

NM
) = Ω(M), which is not constant, violating C. �

4.2 The Broad Scope of NOCS

We prove NOCS is impossible in the specific setting of one-

shot read-only transactions in failure-free systems. When

it comes to an impossibility result, the more restricted the

setting it is proved in, the stronger the result, because any

setting that is more general is also subject to the impossibility

result (the general setting includes the restricted setting as a

special case). Thus, the NOCS Theorem also applies to more

general settings, such as those with read-write transactions,

multi-shot transactions, and/or failures.

4.3 NOCS Is Tight

While all properties are impossible to achieve together, we

find that NOCS is “tight” in the sense that any combina-

tion of three properties is possible. Spanner’s [10] read-only

transactions are one-round, use constant metadata, but block

reads in order to return strictly serializable results (O+C+S).

Many systems use multiple non-blocking round trips to coor-

dinate strongly consistent results (N+C+S), e.g., DrTM [49],

RIFL [29]. To the best of our knowledge, no existing system

provides strict serializability in one round of non-blocking

communication (N+O+S). We present the design of such a

system, PORT-SEQ, and a proof of its correctness in our

technical report [35]. The design uses a centralized write se-

quencer to totally order writes, and requires a linear amount

of metadata for read-only transactions. We are aware of two

systems that have performance-optimal read-only transac-

tions (N+O+C): MySQL Cluster [39] and the snapshot read

API of Spanner. These systems provide weak consistency,

however, as we discuss below.

5 NOCS Connects Theory with Practice

This section discusses the value of the NOCS Theorem in un-

derstanding the design space and in guiding system designs.

5.1 Theoretical Insights

Proving the impossible. NOCS is philosophically similar

to other impossibility results like CAP and SNOW, in that it

helps system designers avoid attempting the impossible and

instead identifies a fundamental choice they must make: their

system can either have performance-optimal read-only trans-

actions or provide strict serializability, but not both.

Identifying the possible. The crux of NOCS’s impossibil-

ity is that the real-time requirement of strict serializability

forces read-only transactions to confront conflicting requests

(Lemma 1). This suggests optimal performance could be

possible with even slightly relaxed consistency models that

do not require real-time ordering, and thus can avoid the

unstable region. In particular, the second strongest consis-

tency model we are aware of—process-ordered serializabil-

ity [34]—does not require real-time ordering.

Yet, there is a large gap in the current design space. The

only two existing systems whose read-only transactions are

performance optimal provide weak consistency. MySQL

Cluster’s read-committed consistency does not isolate trans-

actions. Spanner’s snapshot read API can be used to get

performance optimality, but it does not ensure clients see

their own recent writes when used in this way (§10). Be-

tween these weak guarantees and strict serializability are

many stronger consistency models, such as read-atomic [5],

causal consistency [31], and process-ordered serializabil-

ity [34]. We bridge this gap by presenting the PORT de-

sign that provides performance-optimal read-only transac-

tions and the strongest consistency to date: PORT provides

process-ordered serializability in systems with only simple

writes (§6), and it provides causal consistency in systems

with write transactions (§8). (We conjecture causal consis-

tency is the upper bound for performance-optimal read-only

transactions when transactional writes are present.)

5.2 Guiding System Designs

NOCS is also useful in guiding system designs. First,

to make a design performance-optimal, it must satisfy the

NOC properties: each transaction must succeed using a sin-

gle round of non-blocking messages with constant meta-

data. Therefore, the NOC properties indicate we must avoid

validation-based and stabilization-based techniques to sat-

isfy O, avoid techniques based on distributed lock manage-

ment to satisfy N, and ensure the complexity of processing

a read does not depend on the level of contention—i.e., the

number of conflicting reads and/or writes—to satisfy C. Sec-

ond, the NOCS Theorem suggests a path towards designing

NOC protocols by avoiding how it derives its impossibil-

ity: read-only transactions should always execute on system

states outside the unstable region. These implications of the

NOC properties and the NOCS proof significantly reduced

the design space of algorithm we needed to explore and led

us to two high-level techniques for PORT: explicit ordering

control and multi-versioning.

Explicit ordering control. There are two methods for en-

suring reads avoid the unstable region by explicitly control-

ling the ordering of concurrent operations. First, reads can

request versions of the data that lie before the unstable region

begins, which orders a read-only transaction before ongoing

writes. Second, servers can reorder operations when a read

requests data in the unstable region.

Explicitly controlling ordering is not compatible with

strict serializability because the real-time requirement forces

a specific ordering of operations (Lemma 1) that cannot be

communicated in a performance-optimal system (Lemma 3).

Consistency models without the real-time requirement, how-

ever, might be compatible with an explicitly controlled or-

dering while satisfying NOC. PORT confirms this, by using

versions clocks to capture this explicit ordering. PORT uses

both types of explicit control on top of multi-versioning to

provide its consistency guarantees and optimal performance.

Multi-versioning. Enabling reads to control what version

of data they request requires multi-versioning on servers.

Multi-versioning introduces storage overhead to temporarily

keep additional version around, but this overhead is minor as

storage is inexpensive and extra versions are not kept long.

It also introduces some processing overhead to look up the

correct version of data to return, reflected by our C property.

The need for multi-versioning to support efficient reads is

not new. The existing performance-optimal systems, Span-

ner and MySQL Cluster, are multi-versioned. In fact, all ex-

isting systems whose read-only transactions are guaranteed

to terminate—i.e., have a bounded number of retries and/or

bounded blocking—are multi-versioned (Table 9). On the

other hand, multi-versioning alone does not ensure optimal

performance: most MVCC protocols require either extra on-

path messages to query a timestamp oracle [6, 43], off-path

messages to compute stable snapshots [3, 15], or blocking

reads if the client-provided timestamp in MVTSO-based pro-

tocols points to the future [30, 45]. PORT’s novelty is in how

it uses version clocks to explicitly control ordering by manip-

ulating the multi-versioning framework in order to achieve

optimal performance.

6 PORT Design

PORT is a new system design that enables performance-

optimal read-only transactions with process-ordered serial-

izability, the strongest consistency to date.

Process-ordered serializability. Process-ordered serializ-

ability guarantees there exists a legal total order of transac-

tions that respects the ordering of transactions within each

process [34]. It is equivalent to sequential consistency [27]

with the addition of transactional isolation. It preserves all

the properties of strict serializability (§4) except for the real-

time order across processes (clients). That is, it preserves the

real-time order within each process, i.e., process order, and

a total order across processes, but a client may not see the

most recent updates of other clients. Process order ensures

that each client interacts with the system monotonically, e.g.,

sees her own recent writes. Total order ensures that concur-

rent transactions are observed by all clients in the same order.

6.1 Version Clocks

This section describes version clocks (§6.1), a new special-

ized logical clock that tightly couples all the components of

PORT (§6.2). Version clocks also allow us to avoid the work

of applying some writes (write omission, §6.3) and limit the

staleness of reads (data freshness, §6.4).

Version clocks are designed in the context of distributed

storage systems and have two features: they ensure pro-

cess order by concisely capturing the ordering constraints be-

tween requests and enable optimal performance by reading

at the most recent snapshot in the stable region.

Enforcing process order. Version clocks take advantage of

two observations. First, process order is a per-client order,

and thus can be explicitly controlled by clients. Second, read

and write requests have different semantics, i.e., writes mod-

ify system state while reads do not. Therefore, they should

be treated differently: it is unnecessary to enforce an order

among the read requests that observe the same system state.

Capturing the stable frontier. Version clocks follow the

practical guidance of the NOCS Theorem (§5.2) to avoid the

1 Client Side

2 versionstamp = 0 # clock value

3 view[] # max known versionstamp per server

4

5 # Sending requests

6 function get_vs_read():

7 versionstamp = tick(min{view[]}) # stable frontier

8 return versionstamp

9

10 function get_vs_write():

11 versionstamp++

12 return versionstamp

13

14 # Receiving a response msg from server svr

15 function recv_response(maxVS):

16 view[svr] = max{view[svr], maxVS}
17 if msg.for_write is true

18 versionstamp = tick(maxVS)

19 return

20

21 function tick(vs):

22 return max{vs, versionstamp}
23

24 Server Side

25 maxVS = 0 # max seeen versionstamp

26 # ... return maxVS when sending response msg

Figure 1: Pseudocode for version clocks.

unstable region by capturing the stable frontier. The stable

frontier is the most recent snapshot in which all writes are

in the stable region. Each server tracks the final version-

stamp of its most recent write. A version clock tracks the

minimum of such versionstamps across all servers the client

has contacted, which is exactly the stable frontier the client

knows. Version clocks direct read messages to the stable

frontier when possible. PORT takes care of the cases when

reads have to confront conflicting requests beyond the stable

frontier. “Promotion” is used in systems with simple writes

to advance the stable frontier beyond the versionstamp of an

incoming read to ensure a total order. “Per-client ordering”

is used in systems with write transactions to logically move a

client’s own writes before the stable frontier so the client can

always safely read at the stable frontier (§8.2). Both tech-

niques enforce the necessary order between concurrent reads

and writes without blocking either reads or writes.

Clock structure. Figure 1 shows the pseudocode of version

clocks. versionstamp stores the current clock value (line 2),

which is embedded in every read/write message to explicitly

control their ordering. When versionstamps are the same for

two operations of the same type, the server orders them ar-

bitrarily. When versionstamps for a read and a write are the

same, the server orders the read after the write. A server re-

sponds with the highest versionstamp it has seen (line 26).

A client uses view to track the highest versionstamps of the

servers it has contacted (line 3) and uses them to find the sta-

ble frontier (line 7) before sending a read message (lines 6–

8). view is updated upon receiving a response (line 16). If the

response is for a write message, then the clock is advanced

so that future read messages will have greater versionstamps

than the write (lines 17–18), ensuring read-your-writes. Be-

cause versionstamps increase monotonically and reads have

1 Client Side

2 function read_only_txn(<keys>):

3 vs = VersionClock.get_vs_read()

4 for k in keys # in parallel

5 vals[k], maxVS = read(k, vs)

6 VersionClock.recv_response(maxVS)

7 return vals # replies to end user

8

9 function write(key, val):

10 vs = VersionClock.get_vs_write()

11 maxVS = write(key, val, vs)

12 VersionClock.recv_response(maxVS)

13 return # replies to end user

14

15 Server Side

16 vers[keys][] # multi-versioned storage

17 function read(key, vs):

18 if vers[key][vs] exists

19 return vers[key][vs], VersionClock.maxVS

20 else # return nearest version to not block

21 near_vs = find_nearest_earlier(ver)

22 # ensure future writes have higher vs

23 vers[key].max_r_vs = max(vers[key].max_r_vs, vs)

24 return vers[key][near_vs], VersionClock.maxVS

25

26 function write(key, val, vs):

27 if vs <= vers[key].max_w_vs

28 return VersionClock.maxVS # omit write

29 if vers[key].max_r_vs >= vs

30 vs = max_r_vs + 1 # commit after promoted versions

31 vers[key][vs] = val

32 vers[key].max_w_vs = vs

33 if vs > VersionClock.maxVS

34 VersionClock.maxVS = vs

35 return VersionClock.maxVS

Figure 2: Pseudocode for PORT.

non-smaller versionstamps than earlier writes, version clocks

preserve process ordering.

6.2 Basic PORT Design

The basic PORT design includes a multi-versioning frame-

work, a read-only transaction algorithm, and a write algo-

rithm. We co-design these components tightly by leveraging

version clocks. Figure 2 shows PORT’s pseudocode.

Client library. The read-only transaction and write algo-

rithms are executed by a client library. For each read-only

transaction or write, the client obtains a versionstamp from

its version clock and embeds it in the request message(s).

This per-client versionstamp decides which system version

on the servers the operation must read (or write) to ensure the

client’s process order (lines 3, 10). The server-side logic en-

sures a total order on top of the process order on each client

to guarantee process-ordered serializability.

Multi-versioning framework. Servers store written values

in a multi-versioning framework (line 16). Since PORT

uses version clocks to track the ordering between operations,

it is natural and efficient to index the historical values of

each data item with versionstamps. In this way, the multi-

versioning framework and transaction layer are nicely cou-

pled via versionstamps. We omit a detailed discussion of

garbage collection, which uses standard mechanisms similar

to those used to provide at-most-once semantics.

P
1 !

P
2!S

x !

0
!

1
!

2
!

w
1=1	

(a) orders www111 before www222 by arrival.

P
1 !

P
2!S

x!

0
!

2
!

1
!

w2=
2	

(b) orders www222 before www111 by arrival.

P
1 !

P
2 !S

x!

0
!

1
!

w
1=1	

(c) orders www222 before www111 by omission.

Figure 3: Space-time diagrams showing three executions of writes www111 and www222 that are concurrent and conflicting. The

value underneath Sx indicates the value stored by the server. Process-ordered serializability allows www111, www222 to be ordered

either way. This enables us to omit www222 in (c) because it is equivalent to the ordering in (b), i.e., (www222,www111).

Read-only transactions. To process a read request, a server

executes it against the system version specified by its ver-

sionstamp. Executing a read is thus equivalent to returning

the value indexed at versionstamp. If the server has the re-

quested version, then the read is inside the stable region and

it returns the version directly (lines 18, 19). Otherwise, it

uses promotion to ensure a total order between the read and

any concurrent writes at the specified versionstamp, without

blocking either the read or write (lines 20–24).

Promotion logically copies the value of the nearest earlier

version to all empty positions between that version and the

one requested by versionstamp. Logical versions are used

as placeholders to ensure a total order: once a version has

been read by any client, no earlier versions can be modified

to ensure different clients observe them in the same order.

For example, if a read request has vs = 4 and the data item

has committed values at vs = 1,2, the version at vs = 2 is

the nearest earlier version and is promoted to positions 3,4.

A conflicting write at vs = 3,4 will be “bumped up” to vs =
5 when it arrives. We implement promotion with a single

variable (line 23) that marks earlier positions as immutable.

Writes. When receiving a write request, a server finds the

position specified by the write’s versionstamp in the multi-

versioning framework. If the position is empty, then the write

is applied at the versionstamp (line 31). If the position has

been marked immutable by read promotion, the server finds

the next available position to write the version at (lines 29–

31). The write protocol also includes a mechanism for safely

skipping concurrent writes (lines 27–28), discussed next.

6.3 Write Omission

Write omission is a special conflict resolution mechanism

that skips an incoming write if it is concurrent with an al-

ready applied write. Omitting a write is desirable because it

saves the computation needed to apply it, reduces the number

of stored versions, and saves the work of replicating it.

Write omission is safe. Consistency models in general, and

process-ordered serializability specifically, allow conflict-

ing writes to be ordered either way. For instance, if two

processes concurrently issue w1 : write(x = 1) and w2 :

write(x = 2), then they can be ordered as either (w1,w2)
or (w2,w1). Typically, systems apply writes in the order that

they arrive, e.g., w1 then w2. But if instead we use the oppo-

site order, then this is equivalent to omitting w2, as shown in

Figure 3: skipping the later write is equivalent to ordering it

before the earlier write and immediately overwriting it with

the latter. Write omission does not affect the total order re-

quirement: all clients observe concurrent writes in the same

order, because omitted writes are never seen by any client.

Knowing a write is concurrent. Version clocks enable

PORT to identify when writes are concurrent, allowing a

later concurrent write to be omitted. PORT omits an incom-

ing write if its versionstamp, vsomit , is less than or equal to

the highest committed versionstamp of the data item, vshighest

(lines 27–29). The write with the highest committed version-

stamp cannot have happened-before [26] the omitted write

because vshighest ≥ vsomit . More specifically, version clocks

guarantee the invariant: if write x happens-before write y,

then vsx < vsy. The omitted write cannot have happened-

before the write with the highest committed versionstamp

because it has not happened yet. Therefore, the two writes

are concurrent, and it is safe to omit the incoming write.

Omitting a write is equivalent to applying it immediately

before the write with the highest versionstamp. A client’s

future reads must observe the “higher” write if its own write

was overwritten in this way. Therefore, the server returns the

versionstamp of its highest applied write to the client (line

29), which uses it to update its versionstamp as normal.

6.4 Keeping Reads Fresh

To avoid the unstable region, we must sometimes return val-

ues staler than what strict serializability would return (§5.2).

PORT limits data staleness in two ways, neither of which

incurs extra messages, blocking, or non-constant metadata.

That is, they do not forfeit optimal performance (NOC).

Reducing staleness with version clocks. Instead of naively

returning versions far behind the stable frontier, version

clocks try to track the stable frontier precisely. They use view

to track the most recent versionstamp on each server a client

has contacted, so a client’s version clock never ticks slower

than the servers it is aware of. This significantly improves

the freshness of data requested by read-only transactions.

Reducing staleness via co-location. Many storage systems

co-locate “end users” on the same client machine [12, 18,

40], i.e., each client (machine) has many sessions (threads),

one per end user. We leverage co-location to help user ses-

sions keep each other fresh by sharing one version clock

among them on the same client, which ensures no user ses-

sion is staler than the freshest session it is co-located with.

6.5 Correctness and Generality

The only technique PORT relies on is version clocks, which

can easily be added to systems with existing physical/logical

clocks, or implemented from scratch. We demonstrate both

by applying PORT to a system without transactions (shown

by Scylla-PORT) and a system with existing sub-optimal

read-only transactions (shown by Eiger-PORT). We present

a proof of correctness for PORT in our technical report [35].

Failures. PORT can tolerate server failures using typical

techniques such as state machine replication [46]. To tol-

erate client—i.e., frontend—failures, clients can send ver-

sionstamps back to end-user machines that then include the

versionstamp in subsequent requests to the application (e.g.,

via cookies). This ensures process ordering is maintained

even if an end user’s later requests go to a different frontend

due to load-balancing or frontend failure.

7 PORT Implementation and Evaluation

This section discusses Scylla-PORT, the implementation of

PORT on a clean slate base system.

7.1 Implementation

We build PORT on ScyllaDB [47], a clean slate, non-

transactional base system that supports only simple reads

and simple writes. ScyllaDB is a production system that

serves as a drop-in replacement for Cassandra [25] and pro-

vides an order-of-magnitude better performance. It is well-

engineered and aggressively-optimized for performance, in-

cluding a new implementation in C++14, core-level sharding

that avoids cross-core locking and context switches, and cus-

tomized lock-free data structures.

Rationale and takeaways. We chose to implement PORT

on ScyllaDB for three reasons. First, it stresses the effi-

ciency of PORT: as a highly efficient baseline system, it is

sensitive to any additional overheads, and thus amplifies any

performance cost introduced by PORT. Second, ScyllaDB

is single-versioned. The negligible performance overhead

shown in our evaluation includes the cost of making it multi-

versioned (§5.2), which shows the efficiency of co-designing

the multi-versioning framework and the transaction layer en-

abled by version clocks. Third, PORT is compatible with

all the customized engineering decisions of ScyllaDB, which

demonstrates the generality of the design of PORT.

7.2 Evaluation Overview

We evaluate Scylla-PORT against ScyllaDB (the clean slate,

non-transactional base system) and Scylla-OCC (an im-

plementation of OCC atop ScyllaDB). We compare their

throughput, latency, scalability, and quantify data staleness.

Scylla-OCC. We implemented a variant of OCC optimized

for read-only transactions, similar to Rococo’s read-only

transaction algorithm [37]. It includes an initial round of

optimistic reads and then a validation round. If the values

read in the optimistic round match the values in the valida-

tion round the transaction succeeds. If not, the read-only

transaction is aborted and retried. This variant has strictly

better performance than traditional distributed OCC because

it avoids the need for distributed commit: its best case is two

rounds compared to traditional distributed OCC’s best case

of three rounds (read, validate/prepare, commit).

Code. We implemented our server-side logic in ScyllaDB’s

codebase (release 2.1-RC3) in C++14 and our client-side

logic in the Java Thrift client of the YCSB benchmark (re-

lease 0.10.0) [9]. Version clocks are implemented on both

servers and clients. Scylla-PORT adds ~1,300 LOC.

Experimental setting. We run experiments on Emulab [50].

Each machine has two 2.4GHz 8-Core Xeon CPUs, 64GB

RAM, and a 10Gbps network interface. We use a single

datacenter setting. All experiments, except for scalability

tests, use 8 servers loaded by 8 client machines. The scal-

ability tests use up to 64 machines. Each client issues 10

million requests in each experiment, which takes 5–10 min-

utes to complete, sufficiently long to minimize warm-up and

cool-down effects and provide stable results. Experiments

are CPU-bound on servers.

Configuration and workloads. We use YCSB’s standard

workloads B (read-heavy, 95% reads) and C (read-only) with

customized read-to-write ratios of up to 25% writes. We use

YCSB’s default parameters: 1 million records, 10 fields per

record, 100 B values per field, and Zipf constant of 0.99.

Each request (a read-only transaction or a group of simple

writes) accesses 5 records and all fields in each record.

Results summary. Transactional overhead is generally evi-

dent with read-write conflicts and under skewed workloads,

so we focus our evaluation in such scenarios to amplify

Scylla-PORT’s cost. Our results show that Scylla-PORT can

almost match its performance to that of non-transactional

ScyllaDB: 1–3% overhead in throughput and latency in most

settings and less than 8% even in the worst case. Scylla-

PORT outperforms OCC by an order-of-magnitude in such

contended scenarios due to OCC’s retries, and outperforms

OCC under low contention (OCC’s best case) by at least two

times. Scylla-PORT scales as well as ScyllaDB and scales

better under contention. More than 40% of its reads return

fresh values.

7.3 Throughput and Latency

Figure 4a shows the overall performance of the systems as

we gradually increase the system load by using more closed-

loop client threads. Scylla-PORT has similar performance to

the baseline ScyllaDB. Their largest difference before Scyl-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 50 100 150 200

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Throughput (K Txn/s)

Scylla-OCC
Scylla-PORT

ScyllaDB

(a) Overall performance

 0

 50

 100

 150

 200

 250

0% 5% 10% 15% 20% 25%

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Write Percentage

ScyllaDB
Scylla-PORT

Scylla-OCC

(b) System throughput

 0

 1

 2

0% 5% 10% 15% 20% 25%

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Write Percentage

 8

 12

 16 ScyllaDB
Scylla-PORT
Scylla-OCC

(c) Read latency

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Number of servers (log)

ScyllaDB
Scylla-PORT
Scylla-OCC

(d) Scalability (uniform)

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Number of servers (log)

ScyllaDB
Scylla-PORT
Scylla-OCC

(e) Scalability (Zipf=0.99)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500

R
e
a
d

 S
ta

le
n

e
s
s
 C

D
F

Staleness (ms)

25% writes
20% writes
15% writes
10% writes

5% writes

(f) Scylla-PORT data staleness

Figure 4: The performance of Scylla-PORT closely matches non-transactional ScyllaDB and is significantly better than

OCC, Scylla-PORT scales even better than ScyllaDB with skewed workloads, and half of its reads return fresh data.

laDB becomes overloaded is evident with 32 client threads:

5.6% in throughput and 5% in latency. All later experi-

ments report throughput and latency at this operating point,

i.e., with 32 client threads. OCC initially has latency that

is twice that of ScyllaDB and Scylla-PORT because it takes

at least two rounds to complete instead of one. As load in-

creases, OCC’s latency increases quickly and its throughput

decreases slightly because contention forces it to retry.

Varying write percentage. Figure 4b and 4c show the

throughput and latency as we vary the read-to-write ratio.

Scylla-PORT’s throughput is within 4% of ScyllaDB’s for

five of the experiments and within 7% for the remaining one.

Similarly, its latency is within 2% (20µs) of ScyllaDB’s

for two of the experiments and within 7% (107µs) for the

other four. As the write percentage increases, the overhead

disappears because of write omission: doing slightly more

work during reads is offset by doing less work during writes.

When there are only reads, Scylla-PORT has double the

throughput and half the latency of OCC because OCC’s read-

only transactions require at least two rounds. With writes,

OCC’s performance drops quickly due to retries.

7.4 Scalability

Figure 4d compares the scalability of the three systems

under a uniform workload as we increase the number of

servers while increasing the number of clients to keep the

servers CPU-bound. Scylla-PORT scales as well as Scyl-

laDB; the differences in throughput are negligible. Interest-

ingly, Scylla-PORT outperforms ScyllaDB under a skewed

workload, as shown in Figure 4e. ScyllaDB stops scaling

at 16 servers because the server holding the hottest keys be-

comes the bottleneck, and adding more servers does not help.

(We have confirmed this finding with ScyllaDB’s develop-

ers.) Scylla-PORT scales better than ScyllaDB under skewed

workloads because it can avoid the work of some writes to

the hottest keys due to write omission. Since write omis-

sion only applies to conflicting writes, this rarely occurs un-

der a uniform workload. OCC initially shows a similar scal-

ing pattern starting from its lower throughput. OCC’s scal-

ing stops, however, as more concurrent clients accessing the

same keys lead to higher contention and thus more retries.

7.5 Data Staleness

Figure 4f shows the staleness of Scylla-PORT under a

skewed workload with varying write percentages. Staleness

is measured relative to strict serializability, which always has

a staleness of 0: it is the amount of time since a newer version

has been committed. For example, if v0, v1 are consecutive

versions, v0 is returned at 0:05, and v1 committed at 0:00,

then the staleness of v0 is 5 seconds.

Scylla-PORT returns the most recent data ~40% of the

time, and 90% of reads return values no staler than 500 ms.

Scylla-PORT returns fresher data as the write percentage in-

creases because version clocks advance versionstamps more

frequently when there are more writes. Scylla-PORT lever-

ages version clocks to precisely capture the stable frontier,

but does not utilize client co-location. Sharing one clock

among co-located user sessions would further decrease stal-

eness, but also decreases the rate at which write omission can

be used. We leave investigating this tradeoff to future work.

7.6 Low Contention Evaluation

We focused here on high contention workloads because those

are where any differences between Scylla-PORT and Scyl-

laDB would appear. Scylla-OCC did poorly in this setting as

is expected because OCC is better suited to low contention

settings. We present the results of evaluating the three sys-

tems under low contention in our accompanying technical

report [35]. Even in that setting, Scylla-PORT significantly

outperforms Scylla-OCC with at least double the throughput

and at most half the latency because Scylla-PORT always

finishes in one round while OCC’s best case is two rounds.

8 Improving an Existing System

This section adapts PORT to improve Eiger, an existing sys-

tem that has both read-only and write transactions.

8.1 Eiger Overview and Rationale

Eiger is a geo-replicated, causally consistent system that

has read-only transactions and write transactions. Each ma-

chine implements a Lamport clock and attaches a Lamport

timestamp to each committed write that is guaranteed to be

larger than any earlier write it causally depends on. Eiger’s

write transaction protocol is a variant of two-phase com-

mit [21, 28] that always commits. Eiger’s read-only trans-

action protocol takes between one and three non-blocking

rounds of communication. If there are no concurrent write

transactions, it completes in a single round. Otherwise, it re-

quires a second round of messages to a subset of the servers,

followed by a third round if the concurrent write transactions

are still pending when the second-round requests arrive. In

the third round, each read request needs to query the states

of all write transactions it conflicts with, and thus the re-

quired metadata increases linearly with respect to the num-

ber of conflicting write transactions.

Rationale. We choose Eiger as a base system because of its

guarantees and the efficiency of its read-only transactions.

First, it provides causal consistency, not strict serializabil-

ity, so it may be possible to add performance-optimal read-

only transactions to it. Second, it includes write transactions,

which present a new challenge for the PORT design. Third,

it is the only system with write transactions and causal (or

stronger) consistency that completes read-only transactions

in a bounded number of non-blocking rounds of communica-

tion (Figure 9). Finally, its read-only transactions often com-

plete in a single non-blocking round, making them a more

difficult baseline than other algorithms such as OCC.

8.2 Eiger-PORT

Eiger’s read-only transactions are non-blocking, require

up to three rounds of on-path communication, and use

linear-sized metadata in the third round. We make them

performance-optimal by making them always finish in one

round using only constant metadata. The major challenge

is to ensure write isolation, i.e., return a system state that is

either before all updates in a write transaction or after.

More specifically, when a read-only transaction must read

beyond the stable frontier, e.g., to ensure read-your-writes,

PORT reorders the read-only transaction and the conflicting

writes without blocking by using “promotion” (§6.2). How-

1 Client Side

2 lst_map[][] # maps server to its local safe time

3 gst # global safe time

4

5 function read_only_txn(<keys>):

6 gst = get_read_ts(min{lst_map.valueSet()})
7 for k in keys # messages in parallel

8 vals[k], lst = read(k, gst, cl_id)

9 lst_map[k.server] = lst # lst is monotonic

10 return vals

11

12 function write_txn(<keys, vals>):

13 for k, v in <keys, vals> # in parallel

14 if k.server is coord # the coordinator

15 lst = write_coord(k, v, cl_id, gst)

16 else # a cohort

17 lst = write_cohort(k, v, cl_id, gst)

18 lst_map[k.server] = lst # lst is monotonic

19 return

20

21 function get_read_ts(ts):

22 return max{ts, gst}

Figure 5: Client-side pseudocode for Eiger-PORT.

1 Server Side (Read-Only Txn)

2 lst # local safe time, updated upon writes

3

4 function read(k, rts, cl_id):

5 ver = DS[k].at(rts) # vers are sorted by commit_t

6 for v in DS[k].newer_than(ver.commit_t)

7 # ensure read-your-writes, from newer ver to old

8 if v.cl_id == cl_id

9 return v.val, lst

10 if ver.cl_id != cl_id

11 return ver.val, lst

12 else # ensure write isolation

13 v = find_isolated(ver)

14 return v.val, lst

15

16 function find_isolated(ver):

17 # iterate from newer version to old

18 while v in DS[k].newer_than(ver.gst)

19 and v in DS[k].older_than(ver.commit_t)

20 if v.cl_id != ver.cl_id

21 return v

22 else

23 return find_isolated(v)

24 return ver

Figure 6: Read-only transaction logic for Eiger-PORT.

ever, promotion does not work for Eiger because it cannot

ensure that all writes in the same write transaction are pro-

moted at the same time since they can be on different servers.

Our solution, per-client ordering, enables clients to observe

conflicting writes in different orders, as allowed by causal

consistency. Specifically, it pulls back any of a client’s re-

cent writes that are beyond the stable frontier. This allows the

client to read at the stable frontier while also always seeing

their own writes. Figures 5, 6, and 7 show the pseudocode,

written in a way that favors clarity over efficiency.

Client-side logic. Figure 5 shows the client-side logic. Each

client maintains two variables (lines 2, 3). lst map tracks the

local safe time, lst, of each server. Global safe time, gst,

is the minimum lst across all servers (line 6) and advances

monotonically. gst is used as the read timestamp for each

1 Server Side (Write Txn)

2 lst # local safe time

3 pending_wtxns # uncommitted write txns

4 DS[][] # multi-versioned k-v data store

5

6 function write_coord(k, v, cl_id, gst): # coordinator

7 # PREPARE

8 ver, prepared_t = prepare_write(k, v, cl_id, gst)

9 # ... get yes-vote-msgs from all cohorts

10 # COMMIT

11 commit_t = max{yes-vote-msgs.prepared_t, prepared_t}
12 commit-msg = {"commit", commit_t}
13 # ... send commit-msg to all cohorts

14 commit_write(ver, commit_t)

15 return lst

16

17 function write_cohort(k, v, cl_id, gst): # cohort

18 # PREPARE

19 ver, prepared_t = prepare_write(k, v, cl_id, gst)

20 yes-vote-msg = {"yes", prepared_t}
21 # ... send yes-vote-msg to coordinator

22 # ... wait for commit-msg

23 # COMMIT

24 commit_t = commit-msg.commit_t

25 commit_write(ver, commit_t)

26 return lst

27

28 function prepare_write(k, v, cl_id, gst):

29 pending_t = LamportClock.current()

30 pending_wtxns.append(pending_t)

31 LamportClock.advance()

32 ver = DS[k].create_new_ver(v, cl_id, gst, pending_t)

33 ver.is_pending = true

34 return ver, LamportClock.current()

35

36 function commit_write(ver, commit_t):

37 ver.commit_t = commit_t

38 ver.is_pending = false

39 pending_wtxns.remove(ver.pending_t)

40 if pending_wtxns is empty

41 lst = LamportClock.current()

42 else

43 lst = pending_wtxns.head() # min of pending_wtxns

44 return

Figure 7: Write transaction logic for Eiger-PORT.

read-only transaction. Both lst and gst are Lamport times-

tamps as used in Eiger. A client sends all read requests in a

read-only transaction in parallel. Each read request includes

the key, the read timestamp gst, and the unique identifier of

this client (line 8). The server responds with the requested

value and lst on that server. A client issues a write transac-

tion by sending the write requests in parallel (lines 12–19).

One server is randomly chosen as the coordinator (line 14)

for 2PC with the others as cohorts. Each write request con-

tains the key, the value, the client ID, and the client’s current

gst (lines 15, 17). gst specifies the stable frontier this write

transaction causally depends on. The client updates lst map

after each read/write request (lines 9, 18).

Write transactions. Figure 7 shows the server-side logic of

write transactions. When a server receives a write request,

it records the current Lamport time (line 29) and creates a

new pending version (lines 8, 19, 32, 33). pending wtxns

tracks ongoing write transactions by keeping an ordered list

of pending times. The running minimum of pending wtxns

is the lst on this server, i.e., no pending writes exist before

lst. Because Lamport clocks advance monotonically, inser-

tion, removal, and fetching the minimum of pending wtxns

have a cost of O(1). At the end of the “prepare” phase of

2PC, each cohort sends a yes-vote message to the coordina-

tor, which includes the prepared time of this pending write

transaction. prepared time is guaranteed to be greater than

pending time by clock ticking (line 31).

To commit a write transaction, the coordinator calcu-

lates the commit time by taking the maximum across all

prepared times (line 11) and then sends a commit message to

the cohorts and commits its local pending version (lines 13,

14). When a cohort receives the commit message, it com-

mits its local pending version (lines 25, 38) with the commit

time (lines 24, 37). It then removes this write transaction’s

pending time from pending wtxns and updates lst (lines 39–

43). The server returns its lst to the client upon commit.

Eiger-PORT made minimum changes to Eiger’s write trans-

actions, i.e., the management of pending wtxns.

Read-only transactions. Figure 6 shows the server-side

logic of read-only transactions. When a server receives a

read request, it finds the version at the read timestamp, rts

(line 5), and checks if the same client has made a recent write

later than rts. It returns the most recent write by the same

client to ensure read-your-writes (lines 6–9). If the version

at rts was written by the same client, then we need to ensure

write isolation by checking whether there exist any versions

between the version’s gst, which is the snapshot time the ver-

sion depends on, and the version’s commit t (lines 18, 19). If

there exists such a version written by a different client, then

that version is returned to satisfy write isolation (lines 20,

21). We need to do this recursively, but our implementation

uses a loop instead for better performance. To ensure write

isolation (lines 16–24), we go through the multi-versioned

data store once, which has the same cost as finding a partic-

ular version by timestamp in other algorithms, e.g., MVCC.

Correctness. We show the correctness of Eiger-PORT by

proving that any execution in Eiger-PORT satisfies the causal

(“happened before”) relation [26] and write isolation for

write transactions. We present the full proof in the techni-

cal report [35].

9 Eiger-PORT Evaluation

We evaluate Eiger-PORT against Eiger, showing its through-

put and latency improvement as well as its data staleness.

Implementation. We implemented Eiger-PORT as a modi-

fication to Eiger’s code base, which is built on top of Cassan-

dra [25] and written in Java. Eiger-PORT adds ~1000 LOC.

Experimental setting. We try to match Eiger’s original ex-

perimental setup. We run all experiments on Emulab [50],

similar to the now-decommissioned PRObE testbed [19]

Eiger used. Each machine has one 2.4GHz Quad-Core Xeon

CPU, 12GB RAM, and a 1Gbps network interface. We run

5 trials for each data point, each lasting 65 seconds, and re-

port the median. We exclude the first and last 15 seconds to

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40 45

O.P.

R
e
a
d

 L
a
te

n
c
y
 (

m
s
)

Throughput (K Txn/s)

Eiger Eiger-PORT

(a) Median latency and throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0 0.7 0.8 0.9 0.99 1.1 1.2

N
o
rm

a
li
z
e
d

 T
h

ro
u

g
h

p
u

t

Zipf Constant

Eiger Eiger-PORT

(b) Throughput varying skew

 0

 20

 40

 60

 80

 100

 1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

 T
x
n

/s
)

Number of Servers/DC (log)

Eiger-PORT
Eiger

(c) Scalability (Zipf=0.8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 0.7 0.8 0.9 0.99 1.1 1.2

N
o
rm

a
li
z
e
d

 L
a
te

n
c
y

Zipf Constant

Eiger Eiger-PORT

(d) Read latency varying skew

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

0 0.7 0.8 0.9 0.99 1.1 1.2

N
o
rm

a
li
z
e
d

 L
a
te

n
c
y

Zipf Constant

Eiger Eiger-PORT

(e) Write latency varying skew

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 500 1000 1500 2000

R
e
a
d

 S
ta

le
n

e
s
s
 C

D
F

Staleness (ms)

uniform
zipf=0.7
zipf=0.8
zipf=0.9

zipf=0.99
zipf=1.1
zipf=1.2

(f) Eiger-PORT data staleness

Figure 8: Throughput, latency, scalability, and staleness of Eiger-PORT: up to 3× throughput improvement and 60%

latency reduction compared to Eiger, better scalability, and low data staleness. All latencies are median latencies.

avoid artifacts due to warm-up, cool-down, and imperfectly

synchronized clients. All experiments are CPU-bound.

Configuration and workloads. We use the same setting

as Eiger: two logical datacenters co-located in the testbed.

Each datacenter has eight server machines, and uses eight

client machines to load the servers. The second datacenter

is used as a replica, which applies updates replicated from

the first datacenter. We use the dynamic workload generator

from Eiger with the same default values: 1 million keys, 128-

byte values, 5 columns per key, 5 keys per operation, and a

write percentage of 10% unless otherwise specified. We also

use a Zipf traffic generator with a default value of 0.8.

9.1 Performance Improvement

Results summary. Eiger-PORT significantly improves the

performance of Eiger under different workloads, without de-

grading write performance: 2× and 3× throughput improve-

ment under mild and high skew, respectively, and 20%–60%

latency reduction. The performance improvement comes

from Eiger-PORT’s fewer on-path messages and less meta-

data to process. The improvement is larger in contended

workloads because Eiger is more likely to require more than

one round and more metadata in the third round when there

are more conflicting write transactions.

Throughput improvement. Figure 8a shows the median

read latency and system throughput as we double the number

of closed-loop client threads loading the system (from 2 to

512). It shows that Eiger-PORT performs strictly better than

Eiger: it achieves higher throughput with the same latency

and lower latency with the same throughput. We run all other

experiments in Figure 8 with 32 threads, representing an op-

erating point with reasonably low latency (< 20ms), i.e., at

line “O.P.” in Figure 8a. The improvements are more pro-

found at higher loads. Figure 8b shows normalized through-

put with different skew; the improvement stops increasing

after Zipf value 1.1, where a single server becomes the bot-

tleneck. Figure 8c shows Eiger-PORT scales better than

Eiger due to fewer messages in the system.

Latency improvement. Figure 8d shows the normalized

median read latency as we vary skew. Eiger-PORT achieves

20% lower latency under uniform workloads and up to 60%

lower latency under contended workloads. Figure 8e shows

that Eiger-PORT achieves lower write latency even though

we did not intentionally improve writes. The lower latency

comes from less queuing delay for writes because reads are

faster and there are fewer messages in the system. This

demonstrates that PORT can make read-only transactions

performance-optimal without making writes more costly.

9.2 Data Staleness

Figure 8f quantifies the read staleness in Eiger-PORT. Stale-

ness is measured relative to strict serializability as in Scylla-

PORT’s evaluation. Even with high skew, over 40% of Eiger-

PORT’s read-only transactions return up-to-date values, and

over 90% of reads experience less than 1s staleness. Eiger-

PORT tends to return staler data than Scylla-PORT because

the stable frontier moves more slowly in Eiger/Eiger-PORT:

write transactions take longer to commit than simple writes.

10 Related Work

This section examines existing read-only transactions with

the NOCS Theorem, reviews impossibility results, and dis-

cusses the move from latency to performance optimality.

Bridging the gap in the design space. We use the NOCS

Theorem as a lens to better understand existing systems and

show a set of representative systems in Figure 9. We find

System N O C S W

Performance-optimal

Scylla-PORT * X X X POS ×
Eiger-PORT * X X X Causal X

Spanner-Snap [10]* X X X SR X

MySQL Cluster [39]* X X X RC X

One fewer performance property for stronger guarantees

Spanner-RO [10]* × X X X X

DrTM [49]* X ≥ 1 X X X

RIFL [29] X ≥ 2 X X X

Sinfonia [1] X ≥ 2 X X X

Candidates for improvement in performance and/or guarantees

TAPIR [51]* × X X Ser X

Pileus-Strong [48] × 2 X X X

Rococo-SNOW [34]* × X Linear X X

COPS-SNOW [34]* X Off-path Linear Causal ×

COPS [31]* X ≤ 2 Linear Causal ×
RAMP-F|H [5]* X ≤ 2 Linear RA X

RAMP-S [5]* X 2 X RA X

Eiger [32]* X ≤ 3 Linear Causal X

Janus [38] × ≤ 2 Linear X X

Callinicos [41] × 2 Linear X X

Occult [36] X ≥ 1 X PC-PSI X

Rococo [37]* × ≥ 2 X X X

Contrarian [13]* X 2 X Causal ×
GentleRain [15]* × ≤ 2 + off-path X Causal ×
Cure [3] × Off-path X Causal X

MVTSO [30, 45] × X X Ser X

Figure 9: A review of existing systems through the lens

of NOCS. Asterisks denote specialized read-only trans-

action algorithms. W denotes write transactions.

a large gap in the design space. The only existing systems

that have performance-optimal read-only transactions pro-

vide weak consistency (§4.3). MySQL Cluster [39] provides

read-committed, which does not isolate transactions. Span-

ner’s snapshot reads API [10] cannot always guarantee non-

blocking read-your-writes. Suppose a client updates key k

in a read-write transaction with commit timestamp ts, and

then immediately performs a read-only transaction involving

a set S of keys that includes k. To ensure read-your-writes,

the client must use a timestamp greater than or equal to ts for

its read-only transaction. But doing so may block since other

keys in S may be involved in a read-write transaction that is

in the midst of two-phase-commit with a commit timestamp

less than ts. That is, Spanner must use its externally con-

sistent read-only transaction API, which may block reads in

such cases to ensure read-your-writes.

We bridge this gap in the design space with PORT, the first

design that provides performance-optimal read-only transac-

tions and the strongest consistency to date.

Other read-only transactions. Some systems choose to

trade one performance property for stronger guarantees [1,

10, 29, 49] but still reside on the “tight boundary” of the

NOCS Theorem. Many systems neither are performance-

optimal nor provide the strongest possible guarantees [3, 5,

13, 15, 31, 32, 34, 36], and thus could potentially be im-

proved by our PORT design.

Impossibility results. Our NOCS Theorem is philosophi-

cally similar to other impossibility results, e.g., FLP [17],

CAP [7, 20], and SNOW [34], in that it saves system de-

signers’ effort from trying the impossible. The most relevant

result is the SNOW Theorem, which we discuss next.

The move from latency to performance. SNOW [34]

showed tradeoffs in the design space of read-only transac-

tions with a focus only on latency. It proved optimal latency

is impossible if the system is strictly serializable and has

write transactions. This work aims for a more complete un-

derstanding of the tradeoffs in the design of read-only trans-

actions by considering latency and throughput. The move

from latency to performance has two takeaways.

First, optimal latency neither translates to nor forfeits op-

timal throughput. The former is shown by the two systems

built with SNOW, which provided lower latency at the cost of

lowering throughput. The latter is shown by our new designs

that achieve both optimal latency and optimal throughput.

What really matters is a complete understanding of the trade-

off between performance and consistency and its insights for

designs—the major contributions of this work.

Second, higher demand for performance, e.g., the move

from latency only to both latency and throughput, suggests

higher difficulty in providing stronger guarantees. Optimal

latency is possible in strictly serializable systems without

write transactions, but optimal performance is not.

11 Conclusion

Distributed storage systems are a fundamental building block

of large-scale web services. They rely on read-only trans-

actions to provide consistent views of sharded data. Our

NOCS Theorem proves that read-only transactions cannot

have optimal performance in strictly serializable systems.

We presented PORT, a performance-optimal read-only trans-

action design that provides the strongest consistency to date.

We applied PORT to design Scylla-PORT and Eiger-PORT.

Scylla-PORT has minimal performance overhead compared

to its non-transactional baseline. Eiger-PORT significantly

improves the performance of its transactional base system.

Acknowledgments

We would like to thank our shepherd, Jinyang Li, for her in-

valuable feedback that improved this work. We thank the

anonymous reviewers for their careful reading of our paper

and their many insightful comments and suggestions. We

are also grateful to Christopher Hodsdon, Theano Stavrinos,

and Jeffrey Helt for their feedback on earlier stages of this

work. Our evaluation at scale was made possible by the Em-

ulab testbed. This work was supported by NSF award CNS-

1824130 as well as a gift from Microsoft Research.

References

[1] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and

C. Karamanolis. Sinfonia: A new paradigm for build-

ing scalable distributed systems. In ACM Symposium

on Operating System Principles (SOSP), Oct 2007.

[2] M. K. Aguilera, J. B. Leners, and M. Walfish. Yesquel:

scalable SQL storage for Web applications. In ACM

Symposium on Operating System Principles (SOSP),

Oct 2015.

[3] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li,

T. Crain, A. Bieniusa, N. Preguiça, and M. Shapiro.

Cure: Strong semantics meets high availability and low

latency. In IEEE International Conference on Dis-

tributed Computing Systems (ICDCS), Jun 2016.

[4] S. Almeida, J. Leitao, and L. Rodrigues. ChainRe-

action: a causal+ consistent datastore based on chain

replication. In ACM SIGOPS European Conference on

Computer Systems (EuroSys), Apr 2013.

[5] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and

I. Stoica. Scalable atomic visibility with RAMP trans-

actions. In ACM Special Interest Group on Manage-

ment of Data (SIGMOD), Jun 2014.

[6] C. Binnig, S. Hildenbrand, F. Färber, D. Kossmann,

J. Lee, and N. May. Distributed snapshot isolation:

global transactions pay globally, local transactions pay

locally. The VLDB journal, 23(6):987–1011, 2014.

[7] E. A. Brewer. Towards robust distributed systems. In

ACM Symposium on Principles of Distributed Comput-

ing (PODC), Jul 2000.

[8] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-

mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni,

H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,

and V. Venkataramani. TAO: Facebook’s distributed

data store for the social graph. In USENIX Annual

Technical Conference (ATC), Jun 2013.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,

and R. Sears. Benchmarking cloud serving systems

with YCSB. In ACM Symposium on Cloud Computing

(SoCC), Jun 2010.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. F. andSanjay Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,

A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-

lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-

lor, R. Wang, and D. Woodford. Spanner: Google’s

globally-distributed database. In USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI), Oct 2012.

[11] J. Cowling and B. Liskov. Granola: Low-overhead dis-

tributed transaction coordination. In USENIX Annual

Technical Conference (ATC), Jun 2012.

[12] Developer Blog. Twemproxy: A fast, light-

weight proxy for memcached. https:

//blog.twitter.com/developer/en us/

a/2012/twemproxy.html, 2012.

[13] D. Didona, R. Guerraoui, J. Wang, and W. Zwaenepoel.

Causal consistency and latency optimality: friend or

foe? In International Conference on Very Large Data

Bases (VLDB), Aug 2018.

[14] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe:

Scalable causal consistency using dependency matri-

ces and physical clocks. In ACM Symposium on Cloud

Computing (SoCC), Oct 2013.

[15] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gen-

tlerain: Cheap and scalable causal consistency with

physical clocks. In ACM Symposium on Cloud Com-

puting (SoCC), Nov 2014.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in

the presence of partial synchrony. Journal of the ACM

(JACM), 35(2):288–323, 1988.

[17] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-

sibility of distributed consensus with one faulty pro-

cess. Journal of the ACM (JACM), 32(2):374–382,

1985.

[18] H. Fugal, A. Likhtarov, R. Nishtala, R. McEl-

roy, A. Grynenko, and V. Venkataramani. In-

troducing mcrouter: A memcached proto-

col router for scaling memcached deploy-

ments. https://engineering.fb.com/
core-data/introducing-mcrouter-

a-memcached-protocol-router-for-

scaling-memcached-deployments/, 2014.

[19] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd.

Probe: A thousand-node experimental cluster for com-

puter systems research. USENIX ;login:, June 2013.

[20] S. Gilbert and N. Lynch. Brewer’s conjecture and

the feasibility of consistent, available, partition-tolerant

web services. ACM SIGACT News, 33(2):51–59, 2002.

[21] J. N. Gray. Notes on database systems. IBM Research

Report RJ2188 (Feb.1978), 1978.

[22] M. P. Herlihy and J. M. Wing. Linearizability: A

correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems

(TOPLAS), 12(3):463–492, 1990.

[23] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,

S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,

Y. Zhang, et al. H-store: a high-performance, dis-

tributed main memory transaction processing system.

In Proceedings of the VLDB Endowment (PVLDB),

Aug 2008.

[24] H.-T. Kung and J. T. Robinson. On optimistic meth-

ods for concurrency control. ACM Transactions on

Database Systems (TODS), 6(2):213–226, 1981.

[25] A. Lakshman and P. Malik. Cassandra: A decentralized

structured storage system. SIGOPS Operating Systems

Review, 44(2):35–40, Apr. 2010.

[26] L. Lamport. Time, clocks, and the ordering of events

in a distributed system. Communications of the ACM,

21(7), 1978.

[27] L. Lamport. How to make a multiprocessor computer

that correctly executes multiprocess programs. IEEE

transactions on computers, 1979.

[28] B. Lampson and H. Sturgis. Crash recovery in a dis-

tributed storage system. Xerox Palo Alto Research

Center, 1979.

[29] C. Lee, S. J. Park, A. Kejriwal, S. Matsushitay, and

J. Ousterhout. Implementing linearizability at large

scale and low latency. In ACM Symposium on Oper-

ating System Principles (SOSP), Oct 2015.

[30] J. Levandoski, D. Lomet, S. Sengupta, R. Stutsman,

and R. Wang. High performance transactions in

deuteronomy. In Conference on Innovative Data Sys-

tems Research (CIDR), Jan 2015.

[31] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.

Andersen. Don’t settle for eventual: Scalable causal

consistency for wide-area storage with COPS. In ACM

Symposium on Operating System Principles (SOSP),

Oct 2011.

[32] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.

Andersen. Stronger semantics for low-latency geo-

replicated storage. In USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI),

Apr 2013.

[33] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song,

W. Tobagus, S. Kumar, and W. Lloyd. Existential con-

sistency: Measuring and understanding consistency at

Facebook. In ACM Symposium on Operating System

Principles (SOSP), Oct 2015.

[34] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd. The

SNOW theorem and latency-optimal read-only trans-

actions. In USENIX Symposium on Operating Systems

Design and Implementation (OSDI), Nov 2016.

[35] H. Lu, S. Sen, and W. Lloyd. Performance-optimal

read-only transactions (extended version). Techni-

cal Report TR-005-20, Princeton University, Computer

Science Department, 2020.

[36] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bron-

son, and W. Lloyd. I can’t believe it’s not causal! scal-

able causal consistency with no slowdown cascades.

In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), Mar 2017.

[37] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extract-

ing more concurrency from distributed transactions. In

USENIX Symposium on Operating Systems Design and

Implementation (OSDI), Oct 2014.

[38] S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating

concurrency control and consensus for commits under

conflicts. In USENIX Symposium on Operating Systems

Design and Implementation (OSDI), Nov 2016.

[39] MySQL. MySQL :: MySQL Cluster CGE. https:

//www.mysql.com/products/cluster/, 2016.

[40] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,

H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,

P. Saab, D. Stafford, T. Tung, and V. Venkataramani.

Scaling memcache at facebook. In USENIX Sympo-

sium on Networked Systems Design and Implementa-

tion (NSDI), Apr 2013.

[41] R. Padilha, E. Fynn, R. Soulé, and F. Pedone. Callini-

cos: Robust transactional storage for distributed data

structures. In USENIX Annual Technical Conference

(ATC), Jun 2016.

[42] C. H. Papadimitriou. The serializability of concurrent

database updates. Journal of the ACM, 26(4), 1979.

[43] D. Peng and F. Dabek. Large-scale incremental pro-

cessing using distributed transactions and notifications.

In USENIX Symposium on Operating Systems Design

and Implementation (OSDI), Oct 2010.

[44] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout.

Arachne: core-aware thread management. In USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI), Oct 2018.

[45] D. P. Reed. Implementing atomic actions on decen-

tralized data. ACM Transactions on Computer Systems

(TOCS), 1(1):3–23, 1983.

[46] F. B. Schneider. Implementing fault-tolerant services

using the state machine approach: A tutorial. ACM

Computer Surveys, 22(4), Dec. 1990.

[47] ScyllaDB. ScyllaDB :: Scylla Is Next Generation

NoSQL. http://www.scylladb.com/, 2018.

[48] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrish-

nan, M. K. Aguilera, and H. Abu-Libdeh. Consistency-

based service level agreements for cloud storage.

In ACM Symposium on Operating System Principles

(SOSP), Nov 2013.

[49] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast

in-memory transaction processing using RDMA and

HTM. In ACM Symposium on Operating System Prin-

ciples (SOSP), Oct 2015.

[50] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-

ruprasad, M. Newbold, M. Hibler, C. Barb, and

A. Joglekar. An Integrated Experimental Environment

for Distributed Systems and Networks. In USENIX

Symposium on Operating Systems Design and Imple-

mentation (OSDI), Dec 2002.

[51] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishna-

murthy, and D. R. K. Ports. Building consistent transac-

tions with inconsistent replication. In ACM Symposium

on Operating System Principles (SOSP), Oct 2015.

[52] F. Zhou, Y. Gan, S. Ma, and Y. Wang. wPerf: generic

Off-CPU analysis to identify bottleneck waiting events.

In USENIX Symposium on Operating Systems Design

and Implementation (OSDI), Oct 2018.

A Artifact Appendix

A.1 Abstract

This appendix presents the steps for installing Eiger-PORT

and running experiments that compare the performance of

Eiger-PORT and its base system, Eiger. Eiger-PORT is im-

plemented as a modification to Eiger’s code base, which is

built on top of Cassandra and written in Java. The exper-

iments evaluate latency, throughput, and scalability. The

results are expected to show that Eiger-PORT outperforms

Eiger in all experiments and the performance advantages be-

come more significant under more skewed workloads. Eiger-

PORT’s better performance comes from its performance-

optimal read-only transactions.

A.2 Artifact check-list

• Hardware: 2.4GHz Quad-Core Xeon CPU, 12GB RAM,

1Gbps network interface

• Metrics: latency, throughput, scalability

• Expected experiment run time: 10–20 hours

• Public link: http://github.com/princeton-sns/
Eiger-PORT.git

A.3 Description

A.3.1 How to access

The code base of Eiger-PORT is publicly accessible

on Github at http://github.com/princeton-sns/

Eiger-PORT.git. It includes a README file that pro-

vides step-by-step instructions on how to set up the environ-

ment and run experiments.

A.4 Installation

Please clone the code repository under a clean directory on

a machine. The scripts in the package will work seamlessly

if the repository is cloned under /local. The required de-

pendencies can be installed by simply running the bash file

install-dependencies.bash. Apache Ant is used to build the

source code. Both the system files and the stress tool need to

be compiled. Please see the README file in the repository

for more details.

A.5 Experiment workflow

Running experiments as described in the paper requires set-

ting up two clusters with each having 8 servers and 8 clients.

One cluster is the active cluster for processing transactions

and the other cluster is used as a replica, which passively re-

ceives replicated writes from the active cluster. One extra

machine is needed for the control node. Therefore, to create

an 8-server-8-client environment, 33 machines are needed in

total (2 clusters, 16 machines in each, and 1 control node).

When the experiment topology is determined, the config-

uration files under the directory vicci dcl config need to be

modified accordingly. All the scripts used to run experi-

ments are under the directory eval-scripts. Experiments can

be launched by executing latency throughput.bash. The ex-

perimental parameters, such as Zipfian constant and read-to-

write ratio, are specified in the file dynamic defaults. For

details, please see the README file.

A.6 Evaluation and expected result

The results of each experiment are stored under the directory

experiments/dynamic. Throughput numbers are shown in the

file combined.graph. A set of latency processing scripts are

provided under the directory data proc scripts. Eiger-PORT

is expected to have ~2X higher throughput and ~50% latency

compared to Eiger. The performance advantages of Eiger-

PORT are expected to become more significant under more

skewed workloads.

A.7 AE Methodology

Submission, reviewing and badging methodology:

• https://www.usenix.org/conference/
osdi20/call-for-artifacts

	Introduction
	Background
	Performance-Optimal Read Transactions
	Reasoning About Performance
	Approach Overview
	NOC: Optimal Performance

	The NOCS Theorem
	NOCS is Impossible
	The Broad Scope of NOCS
	NOCS Is Tight

	NOCS Connects Theory with Practice
	Theoretical Insights
	Guiding System Designs

	PORT Design
	Version Clocks
	Basic PORT Design
	Write Omission
	Keeping Reads Fresh
	Correctness and Generality

	PORT Implementation and Evaluation
	Implementation
	Evaluation Overview
	Throughput and Latency
	Scalability
	Data Staleness
	Low Contention Evaluation

	Improving an Existing System
	Eiger Overview and Rationale
	Eiger-PORT

	Eiger-PORT Evaluation
	Performance Improvement
	Data Staleness

	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list
	Description
	How to access

	Installation
	Experiment workflow
	Evaluation and expected result
	AE Methodology

