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ABSTRACT
The state-of-the-art of fully-supervised methods for temporal ac-
tion localization from untrimmed videos has achieved impressive
results. Yet, it remains unsatisfactory for the weakly-supervised
temporal action localization, where only video-level action labels
are given without the timestamp annotation on when the actions
occur. The main reason comes from that, the weakly-supervised
networks only focus on the highly discriminative frames, but there
are some ambiguous frames in both background and action classes.
The ambiguous frames in background class are very similar to the
real actions, which may be treated as target actions and result in
false positives. On the other hand, the ambiguous frames in ac-
tion class which possibly contain action instances, are prone to
be false negatives by the weakly-supervised networks and result
in a coarse localization. To solve these problems, we introduce a
novel weakly-supervised Action CompletenessModelingwith Back-
ground Aware Networks (ACM-BANets). Our Background Aware
Network (BANet) contains a weight-sharing two-branch architec-
ture, with an action guided Background aware Temporal Attention
Module (B-TAM) and an asymmetrical training strategy, to sup-
press both highly discriminative and ambiguous background frames
to remove the false positives. Our action completeness modeling
contains multiple BANets, and the BANets are forced to discover
different but complementary action instances to completely localize
the action instances in both highly discriminative and ambiguous
action frames. In the 𝑖-th iteration, the 𝑖-th BANet discovers the
discriminative features, which are then erased from the feature map.
The partially-erased feature map is fed into the (𝑖 + 1)-th BANet
of the next iteration to force this BANet to discover discriminative
features different from the 𝑖-th BANet. Evaluated on two challeng-
ing untrimmed video datasets, THUMOS14 and ActivityNet1.3, our
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approach outperforms all the current weakly-supervised methods
for temporal action localization.
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1 INTRODUCTION
In the past two decades, impressive progress [5, 11, 29, 32, 34]
has been reported on human action recognition from manually
trimmed videos (i.e., the videos do not contain unrelated frames)
such as those from the datasets of HMDB-51 [14] and UCF-101 [31].
But, the methods for recognizing actions from manually trimmed
videos are unrealistic in real-world scenarios, because the daily
videos are usually untrimmed video streams (i.e., the videos contain
one or multiple action instances from one or multiple action classes
with many unrelated frames) such as the videos from the datasets of
THUMOS14 [10] and ActivityNet [1]. Therefore, besides recogniz-
ing actions in temporally-trimmed videos, the research community
pays a significant amount of attention to develop techniques for
temporal action localization in untrimmed videos [3, 4, 26, 28, 36, 40],
where the task is to not only recognize the action classes, but also
localize the temporal window (the start time and end time) of each
action instance in the untrimmed video.

Most of the previous temporal action localization algorithms are
fully-supervised, which require the ground truth video-level action
labels along with the detailed temporal annotations for each action
instance within the training videos. Acquiring such detailed annota-
tions for large-scale datasets is expensive and requires tremendous
time. In practice, it is much easier to collect untrimmed videos with
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Figure 1: An illustration of highly discriminative and ambiguous action/background frames: (i) Highly discriminative action
frames: highly related to the target action class (e.g., pole vaulting frames for the pole vault action), (ii) Highly discriminative
background frames: not related to the target action (e.g., audience celebrating frames), (iii) ambiguous action frames: possible
to contain action instances (e.g., running frames for the pole vault action), and (iv) ambiguous background frames: nearby
frames that do not belong to the target action (e.g., performer celebrating frames after the pole vault action). Usually, the
weakly-supervised networks can easily localize and suppress the highly discriminative action and background frames, respec-
tively, while it is hard to localize the ambiguous action frames, and suppress the ambiguous background frames. If we can
localize the action instances in both highly discriminative and ambiguous action frames, and suppress both highly discrimi-
native and ambiguous background frames, we can improve the accuracy of temporal action localization.

weak labels (i.e., video-level action class labels only). Recently, sev-
eral neural networks [21, 23, 25, 27, 33] were developed to localize
action instances in untrimmed videos using the video-level labels.

Challenges and motivation: Despite the recent advance, the
weakly-supervised temporal action localization task is still chal-
lenging from a few aspects:

(1) As in weakly-supervised settings, the fine-grained temporal
annotations are not available, the temporal boundary of action in-
stances are usually localized from the intermediate layers of action
classification networks, which may obtain a good performance by
highlighting the highly discriminative action frames and suppress-
ing the highly discriminative background frames. But, there are some
ambiguous background frames around but not belonging to the tar-
get actions, as shown in Figure 1. It is hard to distinguish these
ambiguous background frames with such weakly-supervised algo-
rithms, which results in false positives. Therefore, the motivated
research question is: how to design and train a weakly-supervised
network that can suppress both highly discriminative and ambiguous
background frames to remove the false positives, eventually leading
to improve the performance of temporal action localization?

(2) Another challenging aspect comes from that, the networks
tend to focus on the highly discriminative action frames, but some
ambiguous action frames which are possible to contain action in-
stances, are not localized by theweakly-supervised networks. Rather
than localizing the action instances in only highly discriminative
action frames, the action instances are supposed to be localized in
both highly discriminative and ambiguous action frames. This chal-
lenge arises another research question: given only video-level labels,
how to design a temporal action localization framework to discover
action instances in both highly discriminative and ambiguous action
frames for localizing the complete action instances?

Our proposal and contribution:Motivated by the above chal-
lenges, we propose a novel Action Completeness Modeling with
Background Aware Networks (ACM-BANets) to localize the human
actions in untrimmed videos. Our main contribution has three folds:

• We design a novel Background Aware Network (BANet) to
suppress both highly discriminative and ambiguous back-
ground frames to significantly reduce the false positive rate.

• We propose an action completeness modeling framework
that contains multiple BANets, where the BANets are forced
to localize different but complementary action instances in
both highly discriminative and ambiguous action frames.

• Ourweakly-supervised ACM-BANets outperforms all the lat-
est weakly-supervised temporal action localization methods
on the challenging THUMOS14 and ActivityNet1.3 datasets.

2 RELATEDWORKS
Deep learning for action recognition:With the recent availabil-
ity of big data and powerful GPUs, after the breakthrough in image
classification [13] with Convolutional Neural Networks (CNN),
video-based human action recognition has achieved significant pro-
gresses recently. CNN-based models for human action recognition
broadly follow three main directions: (1) Multi-stream networks
[29, 34]: CNNs are trained on multiple input modalities (e.g., optical
flow and warped flow in addition to RGB). Given a test video, the
predictions from all CNNs are fused to get the final video-level
prediction; (2) 3D CNN [2, 32]: taking short video clips as inputs,
3D convolution and 3D pooling are performed to extract spatio-
temporal feature maps; and (3) CNN + LSTM (Long Short Term
Memory) [5]: recurrent neural networks are built on top of CNN
features to capture the long term dynamics for action recognition.

Fully-supervised temporal action localization: Temporal
action localization task identifies the start time and end time as
well as the action label for each action instance in the untrimmed
video. Some of the previous works conducted temporal sliding
windows over the input video, which were followed by a classi-
fication network to classify the action within each window [38].
Recently, motivated by the success of region-based CNN [8, 24]
in object detection, several recent works [26, 28, 40] addressed
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the temporal action localization problem by adopting a two-stage
framework: the first stage generated segment proposals as either
action or background, and the second stage classified the action pro-
posals to the corresponding action classes. More recently, several
works [3, 4, 16, 17, 36] developed trainable proposal architecture and
Gaussian temporal modeling [19] to localize the temporal boundary
for the target action.

Weakly-supervised temporal action localization: Recently,
several works tried to adapt weakly-supervised learning methods
into the temporal action localization task. A weakly-supervised
action detection and recognition technique called UntrimmedNet
was introduced by [33], which did not use temporal annotations
during training. Nguyen et al. [21] introduced a sparse temporal
pooling network for weakly-supervised action localization that
employed sparsity loss. AutoLoc [27] introduced a contrastive loss
function based on the Class Activation Sequence (CAS) for weakly-
supervised temporal action localization. Paul et al. [23] utilized pair-
wise video similarity constraints to localize the target action in the
temporal domain. Narayan et al. [20] utilized counting loss and cen-
ter loss in addition to the classification loss for weakly-supervised
temporal action localization. None of these weakly-supervised al-
gorithms attempted to model background frames during training.
More recently, some works [15, 22] tried to model background
frames during training by introducing weight-sharing architec-
tures. Although, these algorithms successfully model the highly
discriminative action and background frames, they suffer frommod-
eling ambiguous action and background frames, which result in
false positives and incomplete localization, respectively.

Completeness modeling strategy: Several works [9, 35, 39]
proposed adversarial erasing strategy to model the completeness of
objects in object detection task. In addition to object detection, some
works tried to localize complete action instances in untrimmed
videos. Hide-and-Seek [30] hid random frame sequences to force
the network to look at different relevant parts for the temporal
action localization task. Recently, multi-branch networks [18] were
used to localize action instances by inserting a diversity loss, which
forced each branch to focus on different action parts.

Differently, in this paper, we propose a novel weakly-supervised
temporal action localization framework that suppresses both highly
discriminative and ambiguous background frames to remove the
false positives, and localizes the action instances in both highly
discriminative and ambiguous action frames to completely localize
the action instances.

3 METHODOLOGY
In this section, we first present the feature extraction mechanism
in Sec. 3.1, then our proposed Background Aware Network (BANet)
in Sec. 3.2. Thereafter, we present our action completeness model-
ing mechanism, illustrated in Sec. 3.3. Finally, we present how to
perform the temporal action localization during testing in Sec. 3.4.

3.1 Feature Extraction
In our weakly-supervised setting, we only have the information
about the action labels for the entire untrimmed video. But, the
untrimmed videos may contain many unrelated frames and the
action instances may occur in different time instants of a video. As

the action can be recognized from untrimmed videos by identifying
a set of discriminative frames, we divide the video into short video
segments. Formally, for a given video 𝑉 , we conduct a temporal
sliding window of 𝐼 frames to generate video segments with the
size of 𝐼 ×ℎ1 ×ℎ2 × 𝑟 , where ℎ1, ℎ2, and 𝑟 are the height, width, and
number of color channels of each frame, respectively.

After generating the video segments, we use the I3D network
[2] pretrained on the Kinetics dataset to extract features from every
video segment. Formally, for a given video 𝑉 with a set of video
segments 𝑆 = {𝑠𝑡 }𝑇𝑡=1, where 𝑇 is the number of segments obtained
from a video, we extract the feature as 𝐹𝑠 ∈ R𝐷 for each segment 𝑠 ,
where 𝐷 is the dimension of the feature representation. At the end
of the feature extraction procedure, for each input video consisting
of𝑇 segments, we obtain a feature map 𝑋 ∈ R𝑇×𝐷 , which provides
a high-level representation of the appearance and motion of the
input video and is fed into the following layers in the network.

3.2 Background Aware Network (BANet)
Most of the weakly-supervised temporal action localization algo-
rithms are capable of suppressing the highly discriminative back-
ground frames, but not ambiguous background frames. To suppress
both highly discriminative and ambiguous background frames, we
introduce a Background Aware Network (BANet) that contains two
branches: base branch, and attention branch, as shown in Figure 2.
Both branches take the same feature map as input and also share the
weights of the convolutional layers to produce the Class Activation
Sequences (CAS) with three main differences:

(1) The attention branch contains an action-guided Background
aware Temporal Attention Module (B-TAM) in its front to sup-
press highly discriminative and ambiguous background frames.

(2) The attention branch contains a self-attention weighted top-
𝐾 mean at the end to select the highly discriminative video
segments to predict the video-level scores, while the base branch
directly performs the top-𝐾 mean for the video-level prediction.

(3) The training objectives of these two branches are different. Since
every untrimmed video naturally contains some background
frames that do not belong to any action classes, we consider
an additional background class in addition to the action classes.
The convolutional layers of the base branch directly take the
featuremap as input, which contains the feature representations
for both action and background frames. Therefore, the training
objective for the video-level prediction of this branch is set to be
positive for the target action classes as well as for the additional
background class. On the other hand, since the convolutional
layers of the attention branch take the feature map as input in
which the background frames are suppressed by B-TAM, the
training objective for this branch is set to be positive for the
target action classes and zero for the background class. The
weight-sharing strategy with these contrasting objectives for
the background class ensures that the shared parameters learn
to distinguish actions from the background.

3.2.1 Base branch: The base branch loads the feature map 𝑋 into
temporal 1D convoluational layers and predicts segment-level clas-
sification scores by generating Class Activation Sequences (CAS),
where the segments have their class scores:
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Figure 2: The architecture of our proposed Background Aware Network (BANet). Using a pre-trained network, we extract the
feature representation for short video segments, which are then fed into BANet. BANet contains weight-sharing asymmetrical
two-branch architecture: (i) base branch, and (ii) attention branch. The training objective of the base branch is set to be positive
for the target action classes as well as for the background class. Differently, the attention branch contains an action-guided
Background aware Temporal Attention Module (shown in Figure 3) in its front and a self-attention weighted top-𝐾 mean at
the end, where the training objective is set to be positive for the target action classes and zero for the background class.

P𝑏𝑎𝑠𝑒 = 𝑓𝑐𝑜𝑛𝑣 (𝑋 ;𝜃 ) (1)
where P𝑏𝑎𝑠𝑒 ∈ R𝑇×(𝐶+1) is the CAS of base branch and 𝜃 de-
notes trainable parameters in the convolutional layers. The first 𝐶
columns in P𝑏𝑎𝑠𝑒 represent the scores for the 𝐶 action classes and
the last column is the score for the background class.

Since we have the ground truth for the video as a whole, we
aggregate the segment-level classification scores, using class-wise
top-𝐾 mean technique [23], to generate the classification score
for the entire video regarding to each action class, p𝑏𝑎𝑠𝑒 ∈ R𝐶+1.
In other words, denoting the video-level class score for class 𝑐 as
𝑝𝑏𝑎𝑠𝑒𝑐 , we have the video-level scores for all classes as p𝑏𝑎𝑠𝑒 =
([𝑝𝑏𝑎𝑠𝑒1 , ..., 𝑝𝑏𝑎𝑠𝑒𝑐 , ..., 𝑝𝑏𝑎𝑠𝑒

𝐶+1 ]). After applying the softmax on p𝑏𝑎𝑠𝑒 ,
we get the normalized classification score vector: p̃𝑏𝑎𝑠𝑒 ∈ [0, 1]𝐶+1.

The classification loss of the base branch is defined by the cross-
entropy loss:

𝐿𝑏𝑎𝑠𝑒 = 1
𝑁

𝑁∑
𝑛=1

𝐶+1∑
𝑐=1

−𝑦𝑏𝑎𝑠𝑒𝑐,𝑛 log𝑝𝑏𝑎𝑠𝑒𝑐,𝑛 (2)

where 𝑝𝑏𝑎𝑠𝑒𝑐,𝑛 is the classification score of the base branch on the 𝑛-th
training video regarding to class c (please excuse us to abuse the
math notation by adding a subscript 𝑛 to denote the 𝑛-th training
video), and y𝑏𝑎𝑠𝑒𝑛 = [𝑦𝑏𝑎𝑠𝑒1,𝑛 , ...𝑦𝑏𝑎𝑠𝑒

𝐶,𝑛
, 1] is the video-level label for

this video, in which 𝑦𝑏𝑎𝑠𝑒𝑐,𝑛 is set to 1 if this video contains the action
class 𝑐 (note that one video may contains multiple action classes).

One additional positive label for the background class is set at the
end of the label, considering that all untrimmed videos in training
dataset contain background frames. 𝑁 is the number of training
videos.

3.2.2 Attention branch: Different from the base branch, the atten-
tion branch in BANet contains an action-guided Background aware
Temporal AttentionModule (B-TAM) in its front and a self-attention
weighted top-𝐾 mean at the end, where the training objective for
the video-level prediction is set to be positive for the target action
classes and zero for the background class.

We design B-TAM to suppress both highly discriminative and
ambiguous background frames. Figure 3 shows the block diagram
of our proposed B-TAM. B-TAM loads the feature map 𝑋 ∈ R𝑇×𝐷
into a temporal attention module to compute the attention score
vector w𝑎𝑡𝑡 ∈ [0, 1]𝑇 . The temporal attention module consists of
two convolutional layers and a LeakyReLU layer located between
the two convolutional layers. The output of the second convolu-
tional layer is passed through a sigmoid function that enforces the
attention scores to be between 0 and 1. Usually, the output of the
temporal attention modulew𝑎𝑡𝑡 provides low scores (close to 0) for
the highly discriminative background frames and high scores (close
to 1) for the highly discriminative action frames. But, it may also
show a significant amount of high attention scores for the ambigu-
ous background frames, yielding false positives. To overcome these
false positives, at the training time, we calculate the high attention
score vector w𝐻

𝑎𝑡𝑡 ∈ R𝑇 by zeroing out all the elements of w𝑎𝑡𝑡
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Figure 3: The block diagram of our proposed Background-
aware Temporal Attention Module (B-TAM).

whose score values are less than a threshold 𝛼 . Therefore,w𝐻
𝑎𝑡𝑡 only

contains the attention scores for the highly discriminative video
segments, which encourages the model to look at highly discrimi-
native action frames. However, if we persistently use w𝐻

𝑎𝑡𝑡 at every
training step, some ambiguous action frames may be overlooked,
which affects the complete action localization. Therefore, the out-
put of B-TAM,w𝑅 , randomly selects eitherw𝑎𝑡𝑡 orw𝐻

𝑎𝑡𝑡 with equal
chances at every training step. Then, the element-wise multipli-
cation is performed between the selected attention score vector
and the input feature map 𝑋 ∈ R𝑇×𝐷 to get the attention-weighted
feature map 𝑋𝑎𝑡𝑡 ∈ R𝑇×𝐷 for the remaining layers. During the
testing phase, we directly use w𝑎𝑡𝑡 as the output of B-TAM.

The attention-weighted feature map𝑋𝑎𝑡𝑡 is fed into 1D temporal
convolutional layers, which share the weights with the base branch.
The CAS of attention branch is computes as:

P𝑎𝑡𝑡 = 𝑓𝑐𝑜𝑛𝑣 (𝑋𝑎𝑡𝑡 ;𝜃 ), where P𝑎𝑡𝑡 ∈ R𝑇×(𝐶+1) (3)
Now, we aim to compute the classification score of the entire

video for the attention branch. Different from the base branch,
we use self-attention weighted top-𝐾 mean, which aims to select
top-𝐾 scores of the action classes based on their differences with
the background class. To compute this, first, we compute the self-
attention scores from the difference between the action classes and
the background class for each video segment:

𝑊
𝑠𝑒𝑙 𝑓 −𝑎𝑡𝑡
𝑡,𝑐 = 𝜎(𝑃𝑎𝑡𝑡𝑡,𝑐 − 𝑃𝑎𝑡𝑡𝑡,𝐶+1), 𝑡 = 1, ...,𝑇 and 𝑐 = 1, ...,𝐶 (4)

where𝑊 𝑠𝑒𝑙 𝑓 −𝑎𝑡𝑡
𝑡,𝑐 is the self-attention score for segment 𝑡 regarding

to action class 𝑐 , 𝑃𝑎𝑡𝑡𝑡,𝑐 and 𝑃𝑎𝑡𝑡
𝑡,𝐶+1 represents the class activation score

for segment 𝑡 regarding to action class 𝑐 and the background class,
respectively, and 𝜎(.) is the sigmoid operation. Then, we compute
the self-attention weighted scores for the action classes as:

𝐴𝑡,𝑐 = 𝑃𝑎𝑡𝑡𝑡,𝑐 𝑊
𝑠𝑒𝑙 𝑓 −𝑎𝑡𝑡
𝑡,𝑐 , 𝑡 = 1, ...,𝑇 and 𝑐 = 1, ...,𝐶 (5)

whereA = [𝐴𝑡,𝑐 ] ∈ R𝑇×𝐶 is the self-attention weighted CAS for the
action classes, in which 𝐴𝑡,𝑐 represents the self-attention weighted
score for segment 𝑡 regarding to action class 𝑐 . We concatenate
A ∈ R𝑇×𝐶 with the CAS of the background class P𝑎𝑡𝑡

𝐶+1 ∈ R𝑇 (note
that we consider the last column in P𝑎𝑡𝑡 ∈ R𝑇×(𝐶+1) as the CAS of
the background class) to obtain the concatenated CAS as [AP𝑎𝑡𝑡

𝐶+1],
then we apply top-𝐾 mean on it to get the video-level classification
scores, p𝑎𝑡𝑡 ∈ R𝐶+1. After applying the softmax on p𝑎𝑡𝑡 , we get the
normalized classification score vector: p̃𝑎𝑡𝑡 ∈ [0, 1]𝐶+1.

The classification loss of the attention branch is defined by cross-
entropy loss:

𝐿𝑎𝑡𝑡 =
1
𝑁

𝑁∑
𝑛=1

𝐶+1∑
𝑐=1

−𝑦𝑎𝑡𝑡𝑐,𝑛 log𝑝𝑎𝑡𝑡𝑐,𝑛 (6)

where 𝑝𝑎𝑡𝑡𝑐,𝑛 is the classification score of the attention branch for
class 𝑐 regarding to the 𝑛-th training video (please excuse us to
abuse the math notation by adding a subscript 𝑛 to denote the
𝑛-th training video), and y𝑎𝑡𝑡𝑛 = [𝑦𝑎𝑡𝑡1,𝑛 , ...𝑦

𝑎𝑡𝑡
𝐶,𝑛
, 0] is the video-level

label for this video, in which 𝑦𝑎𝑡𝑡𝑐,𝑛 is set to 1 if this video contains
action class c. Since the attention branch suppresses the background
frames, the label for the background class is set to 0.

3.2.3 Optimization. The loss function in the proposed BANet is
composed of three terms:

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝑏𝑎𝑠𝑒 + 𝐿𝑎𝑡𝑡 + 𝛾𝐿𝐴𝐴𝐿 (7)
where 𝐿𝑏𝑎𝑠𝑒 and 𝐿𝑎𝑡𝑡 have the same coefficients, and 𝛾 is the hyper-
parameter to control the corresponding weights between the losses.
Since B-TAM generates w𝑅 (w𝑎𝑡𝑡 or w𝐻

𝑎𝑡𝑡 ) without considering
the specific action class information, it more likely responds to
generic cues, which may not be specific to the target action classes.
Therefore, we introduce an Action-guided Attention Loss 𝐿𝐴𝐴𝐿 to
refine w𝑅 by the scores of the ground truth action classes.

To compute 𝐿𝐴𝐴𝐿 , first we apply softmax operation on CAS of
the attention branch P𝑎𝑡𝑡 ∈ R𝑇×(𝐶+1) along the class dimension
to achieve normalized class activation sequences P̃𝑎𝑡𝑡 ∈ R𝑇×(𝐶+1).
Then, we obtain the maximum class activation scores of the ground
truth action classes from P̃𝑎𝑡𝑡 for each video segment:

𝑝∗𝑡 = max
𝑦𝑐>0,𝑐∈[1,𝐶]

𝑃𝑎𝑡𝑡𝑡,𝑐 (8)

where p∗ = [𝑝∗1, ..., 𝑝
∗
𝑡 , ..., 𝑝

∗
𝑇
] is the maximum class activation score

vector of the ground truth action classes. We define action-guided
attention loss as:

𝐿𝐴𝐴𝐿 = 1
𝑁𝑇

𝑁∑
𝑛=1

𝑇∑
𝑡=1

|𝑤𝑅
𝑡,𝑛 − 𝑝∗𝑡,𝑛 | (9)

where𝑤𝑅
𝑡,𝑛 and 𝑝∗𝑡,𝑛 are the output of B-TAM and maximum class

activation score of the target action classes, respectively, for seg-
ment 𝑡 of 𝑛-th training video (please excuse us to abuse the math
notation by adding a subscript 𝑛 to denote the 𝑛-th training video).

3.3 Action Completeness Modeling
Usually, deep nerual networks learn the unique pattern of a specific
class for recognition and the localized action frames may highlight
a small portion of the target action instead of the entire action in-
stance. In contrast, we aim at localizing the complete action period
in the temporal dimension by action completeness modeling, which
includes multiple BANets that can iteratively discover different
but complementary action instances in an untrimmed video. The
framework of our action completeness modeling is shown in Figure
4. In our action completeness modeling, at the first iteration, BANet
takes the original feature map as input, while for the remaining
iterations, each BANet takes a partially erased feature map as in-
put, where the discriminative features that are identified from the
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Figure 4: Overview of our action completeness modeling. It
contains multiple Background Aware Networks (BANets),
which can iteratively discover different but complementary
action instances for the complete temporal action localiza-
tion. During each iteration, BANet identifies discriminative
features based on the corresponding input feature map and
CAS of the predicted class. These discriminative features are
then erased and fed into the BANet of the next iteration.

previous iteration are erased to force the current BANet to identify
different discriminative features related to the action instances.

More specifically, let (M1, ...,M 𝑗 , ...,M𝐽 ) be the BANets and 𝐽 is
the number of iterations, where each BANet contains a base branch
and an attention branch. At iteration 𝑗 ( 𝑗 > 1), to compute the input
feature map 𝑋 𝑗 for the BANetM 𝑗 , first, we obtain the maximum
class activation score of the predicted action classes from P𝑎𝑡𝑡

𝑗−1 of
M 𝑗−1 for each video segment:

(𝑝∗𝑡 )𝑗−1 = max
𝑦𝑐>𝛿,𝑐∈[1,𝐶]

(𝑃𝑎𝑡𝑡𝑡,𝑐 )𝑗−1, 𝑗 > 1 (10)

where p̄∗
𝑗−1 = [(𝑝∗1)𝑗−1, ..., (𝑝

∗
𝑡 )𝑗−1, ..., (𝑝∗𝑇 )𝑗−1] is the maximum class

activation score vector of the predicted action classes obtained from
M 𝑗−1, and𝑦𝑐 is the predicted action class which has the video-level
classification score in p̃𝑎𝑡𝑡

𝑗−1 above a certain threshold 𝛿 . Then, we
identify the discriminative features from 𝑋 𝑗−1 by zeroing out all
the elements of 𝑋 𝑗−1 whose corresponding class activation score in
p̄∗
𝑗−1 ∈ R𝑇 are less than a threshold 𝛽 . Finally, we erase these iden-

tified discriminative feature vectors from 𝑋 𝑗−1 and generate a new
feature map 𝑋 𝑗 as input forM 𝑗 . With such an action completeness
modeling, the sequential BANets are forced to discover different
but complementary action instances at different iterations, and can
jointly generate the complete temporal action localization.

3.4 Temporal Action Localization in Testing
During the test time, we only use the class activation sequences of
attention branches in BANets, since attention branches suppress the
background frames. We localize the action instances in the temporal
domain from a fused Class Activation Sequences P𝑎𝑡𝑡

𝑓 𝑢𝑠𝑒
∈ R𝑇×(𝐶+1),

which is calculated by element-wise maximization:

P𝑎𝑡𝑡
𝑓 𝑢𝑠𝑒

= max(P𝑎𝑡𝑡1 , ..., P𝑎𝑡𝑡𝑗 , ..., P𝑎𝑡𝑡𝐽 ) (11)

For the localization, first, we compute the predicted classes from
the video-level prediction p̃𝑎𝑡𝑡1 of BANet M1, since M1 looks at
the most highly discriminative features and provides more accurate
video-level prediction. Then, we select the CAS of the predicted
classes from P𝑎𝑡𝑡

𝑓 𝑢𝑠𝑒
. Thereafter, we threshold the CAS of the pre-

dicted classes with a set of thresholds 𝜆𝑙𝑜𝑐 (ranging from 0 to 0.25
with the step 0.025) to get the candidate segments from the 𝑇 seg-
ments, where each sequence of consecutive candidate segments
becomes a proposal. We compute the confidence score for each
proposal by averaging the class activation scores of the segments
within that proposal. Finally, we perform Non-Maximum Suppres-
sion (NMS) with threshold 0.7 to keep the highly overlapped propos-
als with the high confidence scores to get the final proposals, which
are one-dimensional connected components in temporal domain.

4 EXPERIMENTS
4.1 Datasets
THUMOS14 [10]: THUMOS14 has temporal boundary annota-
tions for 200 validation videos and 213 testing videos, which be-
long to 20 classes. Following rules in the literature [15, 18, 21–
23, 25, 27, 33], we use 200 validation videos without using the
temporal annotations for training and 213 videos for testing.

ActivityNet1.3 [1]: ActivityNet1.3 dataset covers 200 action
classes, which has temporal boundary annotations for 10,024 videos
for training, 4926 videos for validation, and 5044 videos for testing.
Since the labels of the testing set are withheld, following the rules
in the literature [15, 18, 21, 22], we use the training set without
using the temporal annotations to train our network and validation
set for the evaluation.

Evaluation metrics: We follow the standard evaluation pro-
tocol based on mean average precision (mAP) values at different
levels of intersection over union (IoU) thresholds. The results are
calculated using the benchmark code provided by ActivityNet.

4.2 Implementation Details
First, we generate video segments by sliding a non-overlapping
temporal window of 16 frames, then the video segments are resized
to have a tensor size of 16 × 224 × 224 × 3 for RGB and 16 × 224 ×
224 × 2 for optical flow (OF), which are fed to the appearance and
motion streams of pre-trained I3D network, respectively, to obtain
features of dimension 1024 in each stream. The extracted 1024
dimensional RGB and OF feature vectors are concatenated for each
video segment, which produces the feature map of size 𝑇 × 2048
for an input video, where each video segment has 16 frames, and 𝑇
depends on the length of the video. We optimize the loss function in
Eq.(7) using Adam [12] optimizer. The hyper-parameter 𝛾 in Eq.(7)
is set as 0.1. We set the thresholds 𝛼 = 0.7 ×max(w𝑎𝑡𝑡 ) to get w𝐻

𝑎𝑡𝑡

for the B-TAM in BANet, 𝛿 = 0.25 (Eq.(10)) to get the predicted
classes from the video-level prediction, and 𝛽 = 0.9 × max(ū) to
identify the highly discriminative feature for the ACM-BANets. We
use PyTorch to implement our network.
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Table 1: Comparing the temporal action localization performance of our algorithm with other state-of-the-art methods in
terms of mAP (%) under different IoU thresholds on the THUMOS14 test set. Algorithms are separated regarding the level of
supervision. + indicates the use of additional labels, e.g., the number of action instances in videos, used in some methods.

Supervision IoU → 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PSDF [38] 51.4 42.6 33.6 26.1 18.8 - - - -
CDC [26] - - 40.1 29.4 23.3 13.1 7.9 - -
R-C3D [36] 54.5 51.5 44.8 35.6 28.9 - - - -
SSN [40] 60.3 56.2 50.6 40.8 29.1 - - - -

Full TURN-TAP [6] 54.0 50.9 44.1 34.9 25.6 - - - -
CBR [7] 60.1 56.7 50.1 41.3 31.0 19.1 9.9 - -
TAL-Net [3] 59.8 57.1 53.2 48.5 42.8 33.8 20.8 - -
GTAN [19] 69.1 63.7 57.8 47.2 38.8 - - - -
STAR [37] 68.8 60.0 48.7 34.7 23.0 - - - -

Weak+ 3C-Net [20] 59.1 53.5 44.2 34.1 26.6 - 8.1 - -
Nguyen et al. [22] 64.2 59.5 49.1 38.4 27.5 17.3 8.6 3.2 0.5
UntrimmedNet [33] 44.4 37.7 28.2 21.1 13.7 - - - -
AutoLoc [27] - - 35.8 29.0 21.2 13.4 5.8 - -
STPN (I3D) [21] 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1
W-TALC (I3D) [23] 55.2 49.6 40.1 31.1 22.8 - 7.6 - -

Weak CMCS (I3D) [18] 57.4 50.8 41.2 32.1 23.1 15.0 7.0 - -
3C-Net (I3D) [20] 56.8 49.8 40.9 32.3 24.6 - 7.7 - -
Nguyen et al. (I3D) [22] 60.4 56.0 46.6 37.5 26.8 17.6 9.0 3.3 0.4
BaS-Net (I3D) [15] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5
DGAM (I3D) [25] 60.0 54.2 46.8 38.2 28.8 19.8 11.4 3.6 0.4
ACM-BANet (ours) (I3D) 64.6 57.7 48.9 40.9 32.3 21.9 13.5 5.9 0.9

Table 2: Results on ActivityNet1.3 dataset. The column Avg.
indicates the average mAP at IoU thresholds 0.5:0.05:0.95.

Methods IoU → 0.5 0.75 0.95 Avg.
STPN [21] 29.3 16.9 2.6 -
CMCS [18] 34.0 20.9 5.7 21.2
Nguyen et al. [22] 36.4 19.2 2.9 -
BaS-Net [15] 34.5 22.5 4.9 22.2
ACM-BANet (ours) 37.6 24.7 6.5 24.4

4.3 Comparisons with the State-of-the-art
Table 1 summarizes the performance on the THUMOS14 dataset
for action localization methods in the past few years. Regarding the
level of supervision, we separate the methods into three categories:
(i) full supervision: use precise temporal annotations; (ii) weak+
supervision: use video-level labels AND exploit additional annota-
tions (e.g., the number of action instances in videos); and (iii) weak
supervision: use only video-level labels. As shown in Table 1, our al-
gorithm outperforms the other state-of-the-art weakly-supervised
methods by a largemargin, and establishes a new state-of-the-art on
weakly-supervised temporal action localization on the challenging
THUMOS14. It is important to note that our method performs bet-
ter than the latest weakly-supervised methods [15, 18, 20–23, 25],
which use the same pre-trained I3D features as us. At the same time,
although without the precise temporal annotation on the action
instance in untrimmed videos, our approach achieves competitive
performance compared to several recent fully-supervised methods

such as [3, 6, 7, 40], on the coarse localization of action instances.
Even without the additional annotations such as the number of
action instances in videos, our approach achieves superior per-
formance compared to the methods in weak+ supervision, on the
challenging fine localization of action instances for IoU ≥ 0.4.

Table 2 presents the performance of our algorithm on the vali-
dation set of ActivityNet1.3 dataset, showing the superior perfor-
mance of the proposed method on temporal action localization,
compared to other state-of-the-arts.

4.4 Ablation Studies
We perform ablation studies on THUMOS14 to investigate the
contribution of different branches, modules, and loss functions of
ACM-BANets, as summarized in Table 3.

(i) Base branch: The first experiment in Table 3 shows the per-
formance of the base branch.We design the base branchwithout any
attention module and set this branch with only 𝐿𝑏𝑎𝑠𝑒 loss, which
aims to classify an input video into action classes and the back-
ground class. We use the segment-level class activation sequences
of the predicted classes to localize the action instances.

(ii) Attention branch: The second set of experiments in Ta-
ble 3 shows the performance of the attention branch, which is
trained to recognize action classes in videos. We conduct several
experiments on attention branch to see the effectiveness of our pro-
posed Background-aware Temporal Attention Module (B-TAM) and
Action-guided Attention Loss (𝐿𝐴𝐴𝐿). First, we design the attention
branch with conventional Temporal Attention Module (TAM), and
𝐿𝑎𝑡𝑡 loss. Then, we include the 𝐿𝐴𝐴𝐿 loss in the attention branch.
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Table 3: Ablation study of different architectures and loss functions on THUMOS14 dataset.

Approach TAM B-TAM 𝐿𝑏𝑎𝑠𝑒 𝐿𝑎𝑡𝑡 𝐿𝐴𝐴𝐿 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Base branch ✓ 35.5 28.3 23.1 18.5 13.4 8.9 4.8 1.9 0.1
Attention branch ✓ ✓ 40.2 33.2 27.0 22.3 15.7 10.9 5.8 2.2 0.2
Attention branch ✓ ✓ ✓ 52.4 45.4 36.6 27.1 20.1 13.5 7.1 2.7 0.3
Attention branch ✓ ✓ ✓ 54.6 47.8 38.8 29.7 22.3 15.2 9.0 3.2 0.5
BANet ✓ ✓ ✓ ✓ 63.1 56.0 47.3 39.3 30.8 20.4 12.1 4.9 0.8
ACM-BANets (iteration=2) ✓ ✓ ✓ ✓ 64.2 57.1 48.1 40.2 31.9 21.5 12.9 5.3 0.9
ACM-BANets (iteration=3) ✓ ✓ ✓ ✓ 64.6 57.7 48.9 40.9 32.3 21.9 13.5 5.9 0.9
ACM-BANets (iteration=4) ✓ ✓ ✓ ✓ 64.5 57.4 48.7 40.6 32.1 21.8 13.3 5.8 0.9

Table 4: Ablation study of different aggregating techniques
used in the attention (att) branch of BANet on THUMOS14
dataset. mAP is computed at IoU=0.5.

Methods mAP
BANet (top-𝑘 mean in att. branch) 29.7
BANet (self-att. weighted top-𝑘 mean in att. branch) 30.8

Figure 5: Qualitative results on untrimmed testing videos
from THUMOS14. (a) Multiple occurrences of “PoleValult”
action appear in a single video. (b) The appearance of all
the frames remain similar from the beginning to the end
in the video with the action of “Billiard”. Our proposed
BANet focuses on the true actions and neglects the back-
ground frames, and our ACM-BANets tries to further com-
pletely localize the temporal intervals for the target class.

Finally, we configure the attention branch with B-TAM, and 𝐿𝑎𝑡𝑡
and 𝐿𝐴𝐴𝐿 loss functions. The second set in Table 3 summarizes that
our 𝐿𝐴𝐴𝐿 loss leads to achieve better performance and our B-TAM
provides superior performance compared to TAM. Therefore, we
choose the third configuration of the second set in Table 3 as the
attention branch in our proposed ACM-BANets.

(iii) BANet: The third set in Table 3 shows the performance
of our proposed BANet, which includes both base and attention
branches, and is jointly trained with the corresponding loss func-
tions to suppress both ambiguous and highly discriminative back-
ground frames. Table 3 shows that our proposed BANet outperforms
the individual base branch and attention branch by a large margin.

(iv) ACM-BANets: The fourth set in Table 3 shows the perfor-
mance of our proposed ACM-BANets across different iterations,

which aim to discover different but complementary action instances
in both highly discriminative and ambiguous action frames for the
complete temporal action localization. ACM-BANets obtain a signif-
icant increase over BANet and the highest performance is achieved
for the third iteration. Therefore, we choose 𝐽 = 3 as the number of
iteration for our ACM-BANets.

We also perform the ablation studies on THUMOS14 for different
aggregating techniques used in the attention branch of BANet for
the video-level prediction, as shown in Table 4, which summarizes
that we achieve better performance for self-attention weighted
top-𝐾 mean compared to top-𝐾 mean aggreagating technique.

4.5 Qualitative Analysis
We present some qualitative results on the test set of THUMOS14
in Figure 5. Figure 5(a) shows the example of the “PoleValut” action,
which appears in a single video multiple times with different action
context and background frames. Figure 5(b) shows the “Billiard”
action, where the appearance of all the frames remain similar from
the beginning to the end in the video with the action of “Billiard”.
In both examples, our BANet focuses on true actions and neglects
the background frames, and our ACM-BANets tries to further com-
pletely localize the temporal intervals for the target class.

5 CONCLUSION
In this paper, we introduce a novel ACM-BANets for the weakly-
supervised temporal action localization, which addresses two main
challenges: (1) how to design and train a weakly-supervised net-
work that can suppress both highly discriminative and ambiguous
background frames to remove the false positives? and (2) how to
design a temporal action localization framework to discover ac-
tion instances in both highly discriminative and ambiguous action
frames for the complete localization? Our proposed ACM-BANets
that suppresses both highly discriminative and ambiguous back-
ground frames and discovers action instances in both highly dis-
criminative and ambiguous action frames outperforms the current
weakly-supervised temporal action localization methods on THU-
MOS14 and ActivityNet1.3 datasets.
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