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ABSTRACT
Conventional nonnegative matrix factorization and its variants cannot separate the noise data space into a clean space and learn
an effective low-dimensional subspace from Salt and Pepper noise or Contiguous Occlusion. This paper proposes a weighted
nonnegative matrix factorization (WNMF) to improve the robustness of existing nonnegative matrix factorization. In WNMF,
a weighted graph is constructed to label the uncorrupted data as 1 and the corrupted data as 0, and an effective matrix factoriza-
tion model is proposed to recover the noise data and achieve clustering from the recovered data. Extensive experiments on the
image datasets corrupted by Salt and Pepper noise or Contiguous Occlusion are presented to demonstrate the effectiveness and
robustness of the proposed method in image inpainting and clustering.
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1. INTRODUCTION

Non-negative matrix factorization (NMF) [1] is a popular dimen-
sionality reduction method, which decomposes an original data
matrix into two low-dimensional nonnegative matrices. Among
the decomposed matrices, one is coefficient matrix to store a low-
dimensional representation, and the other is a basis matrix which
can be regarded as parts-based representations of the original
data. Owing to the excellent presentation approach, NMF has been
widely applied to clustering [2,3], recommender system [4], com-
munity detection [5], semi-supervised learning [6], and so on.

Recently, most of studies were seeking an effective NMF to han-
dle outliers and noise in the dataset [7–18]. Hamza and Brady [7]
was the first to replace the Frobenius norm with the hypersur-
face cost function (HCNMF). Themain contribution of HCNMF is
that it can achieve a more robust representation than NMF. Kong
et al. [8] presented the L2,1-norm (L2,1NMF) as the cost func-
tion to remove outliers and noise. L2,1NMF is less sensitive to
outliers and noise than NMF and HCNMF, however, the related
algorithm takes much time achieving factorization because of the
nonsmooth loss function. Gao et al. [10] proposed a capped norm
NMF to handle outliers by the outlier threshold, however, there is
no approach to determine an exact outlier threshold value. Guan
et al. [13] proposed the three-sigma-rule to detect outliers and a
Truncated Cauchy loss (CauchyNMF) to handle outliers.

*Corresponding author. Email: daixiangguang@163.com

The above robust NMF variants have been utilized in signal pro-
cessing [19], image processing [20], clustering [21] and image clas-
sification [22]. However, they have the following defects: (1) Most
of methods can neither handle Salt and Pepper noise nor Contigu-
ous Occlusion. In this case, the learned subspace is not suitable for
clustering or classification. (2) Robust NMF methods using differ-
ent loss functions supposed that the smaller factorization error and
the better representation are achieved by a suitable loss function.
To our knowledge, the proposed algorithms optimizing these loss
functions are more complicated and take much time to complete
matrix factorization.

Motivated by recent work, we propose an effective matrix decom-
position framework, calledweighted non-negativematrix factoriza-
tion (WNMF) to overcome the abovementioned problems, which
constructs the weighted graph to build the relation between the
original data and outliers. Thus, WNMF can recover the corrupted
data and achieve robust clustering. Because the objective function
of WNMF is nonconvex, we propose an iterative algorithm to solve
it and prove the convergence of the proposed optimization scheme.
Themain contributions of this paper can be summarized as follows:

• We propose a WNMF framework to handle outliers and noise,
and we explain why the proposed model is effective and robust.

• Our proposed model can achieve data recovery and clustering
from the original data corrupted by Salt and Pepper noise or
Contiguous Occlusion.
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2. RELATED WORKS

Suppose that the input data matrixM = [mij] ∈ Rm×n, the decom-
posed matrices W = [wil] ∈ Rm×r, H = hlj ∈ Rr×n and the noise
error matrix E = [eij] ∈ Rm×n are given. Thus, existing robust
NMF frameworks can be formulated into the following optimiza-
tion problem:

min
W,H,E

loss(M,WH,E) + 𝜆Ω(E)

s.t. W ≥ 0,H ≥ 0,
(1)

where the first term is the criterion of the loss function to measure
the approximation error, the second term is the constraint term on
W,H or E, or both, and E and 𝜆 are the noise matrix and a tradeoff
parameter. Standard NMF is to decompose a nonnegative matrix
M ∈ Rm×n into two low-dimensional matrices Wm×r and Hr×n.
Generally, NMF utilizes the Frobenius norm as the cost function to
measure the factorization error. Thus, standard NMF can be for-
mulated by

min
W,H

∥ M −WH ∥2F
s.t. W ≥ 0,H ≥ 0.

(2)

In [12], Zhang et al. proposed a robust model (RNMF)to handle
outliers and noise as follows:

min
W,H,E

∥ M −WH − E ∥2F +𝜆 ∥ E ∥M
s.t. W ≥ 0,H ≥ 0.

(3)

Guan et al. [9] proposed Manhattan distance (MahNMF) to be the
criterion of loss function. MahNMF can reduce the approximation
error, which can be summarized into the following optimization
problem:

min
W,H

∥ M −WH ∥M
s.t. W ≥ 0,H ≥ 0.

(4)

Guan et al. [13] proposed the three-sigma-rule to detect outliers
and a Truncated Cauchy loss (CauchyNMF) to remove outliers.
CauchyNMF can be summarized as follows:

min
W≥0,H≥0

F(W,H) =
m

∑
i=1

n

∑
j=1

g
( (V −WH)ij

𝛾

)
, (5)

where g(x) = {ln(1 + x), 0 ≤ x ≤ 𝜎
ln(1 + 𝜎), x > 𝜎 ; 𝜎 and 𝛾 denote the scale

parameter and the truncation parameter. 𝜎 can be obtained by
three-sigma-rule, and 𝛾 is given by the Nagy algorithm [13].

3. WEIGHTED NONNEGATIVE MATRIX
FACTORIZATION

3.1. Model Formulation

Existing robust models have the following properties: (1) They can
easily handle Gaussian noise, however, they fail to remove Salt and
Pepper noise and Contiguous Occlusion. (2) The proposed algo-
rithms of some robust models (e.g., RMahNMF and CauchyNMF)

are too complicated to learn a robust low-dimensional subspace
from the high-dimensional data. (3) Only RNMF can achieve data
recovery and representation simultaneously. In the following, we
investigate the relation between the noise distribution and the cor-
rupted data, and propose a robust weighted NMF to achieve a clean
data space and a robust low-dimensional representation from the
corrupted data.

Suppose thatMi ∈ Rm and Vi ∈ Rm are the corrupted feature vec-
tor and the recovered feature vector, separately. The approximation
error betweenM = [M1,⋯ ,Mn] ∈ Rm×n and V = [V1,⋯ ,Vn] ∈
Rm×n can be formulated as the following optimization problem:

∥ (V −M)⊗ S ∥2F, (6)

where S is a weighted matrix that denotes the contaminated or
uncontaminated position that can be defined by

Sij = {0, if (i, j) ∈ Ω,
1, otherwise,

(7)

whereΩ is the corrupted area. Supposing E = V−M, we conclude
that

∥ E⊗ S ∥2F . (8)

By minimizing (8), (2) and (3), we expect that if the recovered data
matrix is obtained from the corrupted imagematrixM and the noise
matrix E, and effective low-dimensional representation H will also
be learned from the recovered data matrix. Combining (8), (2) and
(3) results in our WNMF.

Given a corrupted data matrix M ∈ Rm×n, WNMF aims to find
three nonnegative matrices E ∈ Rm×n, W ∈ Rm×r and H ∈
Rr×n. Thus, WNMF can be described as the following optimization
problem:

min
W,H,E

F(W,H,E)

= ∥ M −WH − E ∥2F +𝜆 ∥ E⊗ S ∥2F
s.t. W ≥ 0,H ≥ 0.

(9)

where the hyper-parameter 𝜆 can be utilized to balance the contri-
bution from each term. Suppose that the entries of S are all zeros.
This phenomenon denotes the proposed model (9) can be simpli-
fied to standard NMF in (2).

3.2. Robustness Analysis

In this subsection, we compare the robustness of RMahNMF with
existing robust NMF models (e.g., NMF [1], MahNMF [9], RNMF
[12] and CauchyNMF [13]) by utilizing a simple-weighted proce-
dure. A robust NMF algorithm should produce a small weight to
an entry of the training sample with large noise. We present some
assumptions as follows:

• F(WH) is a objective function and f(t) = F(tWH).

• f ′(t) is the derivative of f(t).
• c(Mij,WH) = (M −WH)ij(−WH)ij is the contribution of the

j-th entry of the i-th sample to the optimization procedure.
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• e(Mij,WH) = |M −WH|ij represents the noise error to the
(i, j)-th entry ofM.

Thus, we should find the f′(1) such that f′(1) = 0. We compare the
robustness between WNMF and other four competing models in
Table 1. According to the comparison results, we make the follow-
ing statements: (1) Because NMF has constant weights, it is more
sensitive to noise than other models. (2) RNMF is less sensitive to
outliers and noise than MahNMF because RNMF utilizes the error
noise matrix to adjust the weights. (3) The weight of CauchyNMF
can drop to zero when the noise value is larger than a threshold.
Thus, CauchyNMF is more robust than RNMF and MahNMF. (4)
Combining NMF and RNMF, our proposed WNMF can not only
drop to zero but also has different weighted strategies. Therefore,
WNMF is more effective and robust than any other NMF models.

4. OPTIMIZATION ALGORITHM

Since problem (9) is nonconvex in optimizingW,H and E simulta-
neously, it cannot search the global optimal solution. Suppose that
the solutions ofW k,H k and E k are obtained.We solve the following
convex problems:

E k+1 = argminE ∥ M −W kH k − E ∥2F
+𝜆 ∥ E⊗ S ∥2F

(10)

and

W k+1 = argminW ∥ M −WH k − E k+1 ∥2F
s.t. W ≥ 0 (11)

and

H k+1 = argminH ∥ M −W k+1H − E k+1 ∥2F
s.t. H ≥ 0, (12)

until convergence. Thus, the local solution of (9) can be obtained.
Most of NMF algorithms obey this optimization scheme. Based on

this structure, we introduce the gradient method and KKT condi-
tions to solve (9).

We first discuss transform the objective function of (9) as follows:

F(M,W,H)
= tr((M −WH − E)(M −WH − E)T)

+𝜆tr((E⊗ S)(E⊗ S)T)

= tr(MTM) − 2tr(HTWTM) − 2tr(ETM)

+2tr(HTWTE) + tr(ETE) + tr(HTWTWH)

+𝜆tr((E⊗ S)(E⊗ S)T),

(13)

where tr is the trace of a matrix. Suppose that Ψ = [𝜓il] and
Φ = [𝜙lj] are the lagrange multiplier for the constraint ofW andH,
respectively. Thus, the Lagrange function is

L(E,W,H)
= tr(MTM) − 2tr(HTWTM) − 2tr(ETM)

+2tr(HTWTE) + tr(ETE) + tr(HTWTWH)

+𝜆tr((E⊗ S)(E⊗ S)T) + tr(ΨWT) + tr(ΦHT)

(14)

The partial derivatives of L(V,W,H) with respect to V, W and H
are

𝜕L
𝜕E = 2M − 2WH − 2𝜆E⊗ S (15)

𝜕L
𝜕W = −2MHT + 2EHT + 2WHHT + Ψ (16)

𝜕L
𝜕H = −2WTM + 2WTE + 2WTWH + Φ. (17)

The gradient method and KKT conditions are utilized to solve (15),
(16) and (17). Based on the gradient method, the solution of (15)
can be obtained

eij ←
mij − (WH)ij
1 + 𝜆sij

. (18)

Table 1 Robustness comparison results between WNMF and other NMF models.

NMFMethods Objective Function F(WH) Derivative f ′(1)

NMF ∥ M−WH ∥2F ∑ij 2c(Mi,j,WH)

MahNMF ∥ M−WH ∥M ∑ij
1

|M−WH|ij
c(Mi,j,WH)

RNMF ∥ M− E−WH ∥2F + ∥ E ∥M ∑ij 2
(
1 −

Eij
(M−WH)ij

)
c(Mi,j,WH)

CauchyNMF ∑ij g
((

M−WH
𝛾

)2
ij

)
g(x) = {

ln(1 + x), 0 ≤ x ≤ 𝜍

ln(1 + 𝜍), x > 𝜍
∑ij

⎧
⎨
⎩

2
𝛾2+(M−WH)2ij

c(Mi,j,WH), |M−WH|ij ≤ 𝛾√𝜍

0.c(Mi,j,WH), otherwise

WNMF ∥ M−WH− E ∥2F +𝜆 ∥ E⊗ S ∥2F ∑ij {
0.c(Mij,WH), Sij = 0,Eij = (M−WH)ij,
0.c(Mij,WH), Sij = 1,Eij = (M−WH)ij,
2c(Mij,WH), Sij = 1,Eij = 0.

Note: WNMF, weighted nonnegative matrix factorization; NMF, nonnegative matrix factorization.



X. Dai et al. / International Journal of Computational Intelligence Systems 13(1) 734–743 737

Based on the KKT conditions 𝜓ilwil = 0 and 𝜙hljhlj = 0, we can
obtain the following equations:

(−(MHT)il + (EHT)il + (WHHT)il)wil = 0 (19)

(−(WTM)lj + (WTE)lj + (WTWH)lj)hlj = 0. (20)

Equations (19) and (20) can lead to the solution of (16) and (17) as
follows:

wil ← wil
(MHT)il − (EHT)il

(WHHT)il
, (21)

hlj ← hlj
(WTM)lj − (WTE)lj

(WTWH)lj
. (22)

According to above analysis, we summarize the update rules (18),
(21) and (22) in Algorithm 1.

The convergence condition of Algorithm 1 can be summarized as
follows:

||F(W k+1,H k+1,E k+1) − F(W k,H k,E k)||
F(W k+1,H k+1,E k+1)

≤ 𝜖, (23)

where the precision 𝜖 can be set as 1e−3, 1e−4, 1e−5 or 1e−6.

5. CONVERGENCE PROOFS

Definition 1. [23] Suppose that G(x, x′) is defined to be an aux-
iliary function for the objective function F(x). Thus, the auxiliary
function should satisfy the following conditions:

G(x, x′) ≥ F(x),G(x, x) = F(x) (24)

Lemma 1. [23] Let G(x, x′) be an auxiliary function of F(x). F(x) is
nonincreasing under the update

xt+1 = argminG(x, x t), (25)

where x t is the t-th solution of F(x).

Algorithm 1: Weighted Nonnegative Matrix Factorization
Require:M ∈ Rm×n
Ensure: E ∈ Rm×n,W ∈ Rm×r, H ∈ Rr×n
1: Initializing k = 0, 𝜆 ≥ 0,W0

ij ∈ (0, 1], H0ij ∈ (0, 1], E0ij ∈ [−1, 1] and
S by (7)

2: while true do

3: Ek+1ij =
Mk

ij−(W
kH k)ij

1+𝜆Sij

4:Wk+1
il = Wk

il
((M k−E k)H k T)il
(W kH kH k T)il

5: Hk+1
lj = Hk

lj
(W k T(M k−E k))lj
(W k TW kH k)lj

6: Check convergence
7: k = k+ 1
8: end while
9: M̂ = WH

Lemma 2. [23] The following function

G(h, htab) = Fab(htab) + F′ab(htab)(h − htab)

+ (WTWH)ab
htab

(h − htab)
2 (26)

is an auxiliary function of (12).

Proof. It is obvious that G(h, h) = Fab(h). We should prove that
G(h, htab) ≥ Fab(h). Thus, we utilize the Taylor series expansion of
Fab(h) as follows:

Fab(h) = Fab(htab) + F′ab(htab)(h − htab)

+(WTW)aa(h − htab)
2.

(27)

According to Definition 1, G(h, htab) ≥ Fab(h) is equivalent to the
following inequation:

(WTWH)ab
htab

≥ (WTW)aa. (28)

We can obtain

(WTWH)ab =
r

∑
l=1

(WTW)alhtlb ≥ (WTW)aahtab. (29)

Therefore, (28) holds and G(h, htab) ≥ Fab(h).

Theorem1. wil and hlj under the update rules (21) and (22) are non-
negative.

Proof. Suppose that the k-th iterationW k andH k are nonnegative.
In the update rule (21), ifM−E > 0 holds, thenwil under the update
rule (21) is nonnegative. Substituting (18) into (21), we can obtain
that

mij − eij = mij −
mij − (WH)ij
1 + 𝜆sij

=
mij𝜆Sij + (WH)ij

1 + 𝜆Sij
≥ 0.

(30)

Similarly, hlj under the update rules (22) is nonnegative.

Theorem 2. The objective function in (9) is nonincreasing with
the abovementioned update rules (18), (21) and (22). F(W,H,E) is
invariant under these updates if and only if E, W and H are at a sta-
tionary point.

Proof. The update rule in (18) is obtained by the gradient method.
Obviously, F(E) is nonincreasing under the update rule. In the fol-
lowing, we need prove that F(W) and F(H) are nonincreasing under
the update rules (21) and (22). According to Lemmas 1 and 2, we
conclude that

ht+1ab = htab − htab
F′ab(h

t
ab)

2(WTWH)ab

= htab
(WTM)ab − (WTE)ab

(WTWH)ab
.

(31)
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Therefore, F(H) is nonincreasing for the update rule (22). Fortu-
nately, the objective functions of F(W) and F(H) are symmetric. By
reversing H in Lemmas 1 and 2, F(W) can accordingly proved to
be nonincreasing under the update rule (21). According to above
proofs, F(W,H,E) is nonincreasing under the prosed update rules.

6. EXPERIMENTAL RESULTS

We explore the recovery and the clustering performance ofWNMF
on the ORL and YALE face dataset and compare it with four
NMF models (i.e., NMF [1], RNMF [10], MahNMF [9] and
CauchyNMF [13]). In the experiments, Salt and Pepper noise and
Contiguous Occlusion are proposed to evaluate the effectiveness
and robustness of the abovementioned NMF models.

Salt and Pepper noise randomly generates a portion of white and
black pixels. To test the recovery effect of WNMF, we propose
four level percentages of corrupted pixels (i.e., p = 10%, 15%, 20%
and 25%). To demonstrate the clustering performance of WNMF,
we vary the corrupted percentage from 10% to 90%. Contiguous
Occlusion generates a b × b size pixel block in each image and the
block is filled with the pixel value 255. We propose four block sizes
b (i.e., b = 10, 12, 14 and 16) to test the recovery effect and vary the
block size from 1 to 20 to demonstrate the clustering performance.

The ORL dataset includes 400 face images of different 40 individu-
als. There are 10 images of each person with different facial expres-
sions, facial details (without-glasses or with-glasses) and lighting.
Each image is a 32 × 32 pixel grayscale array and it can be normal-
ized to a vector. The YALE dataset contains 165 face images of var-
ious 15 persons. There are 11 32 × 32 pixel images of each person
with different facial expression or configuration (i.e., center-light,
without-glasses or with-glasses, happy, left-light or right-light, sad,
sleepy, surprised and wink).

To demonstrate the recovery effects and the clustering perfor-
mances of all NMF models, we propose two metrics as follows:

• Peak Signal-to-Noise Ratio (PSNR) is proposed to evaluate the
recovery effect, which can be defined by

PSNR = 20log10
255

√Error
, (32)

where Error = 1
m×n

∥ M − M̂ ∥2F and M̂ = WH.

• Accuracy (AC) and Normalized Mutual Information (NMI)
[24] are proposed to test the clustering effect. Due to the
nonconvexity of all NMF models, 30 random initialW and H
are proposed and the average ACs and NMIs are reported.

6.1. Parameter Selection

Our WNMF model has one essential parameter 𝜆. In this subsec-
tion, we investigate how to choose a suitable 𝜆 when the input data
is corrupted by Salt and Pepper noise or Contiguous Occlusion. Let
p = 0.25, b = 12, r = 50 and 𝜖 = 1e−3. The PSNRs from the
ORL and YALE datasets are presented in Figure 1. We can observe
(1) two datasets are proposed to evaluate PSNRs. Obviously, 𝜆 is
irrelevant to the datasets. (2) The PSNRs are mainly affected by 𝜆,

Figure 1 The peak signal-to-noise ratios (PSNRs) of
weighted nonnegative matrix factorization (WNMF)
vs. parameter varies from 10 to 100.

and the smaller 𝜆 leads to the worse PSNRS. Therefore, in the fol-
lowing experiments, we suppose that 𝜆 = 100.

6.2. Salt and Pepper Noise

6.2.1. Visualization of recovered faces

Recovered face images of the ORL and YALE datasets corrupted by
Salt and Pepper noise are shown in Figure 2. The PSNRs between
the face images contaminated by Salt and Pepper noise and the
recovered face images are presented in Table 2. From the compar-
isons, we observe that

• Traditional NMF achieves the smallest PSNRs and the worse
recovery performances than other NMF models. Therefore,
NMF is more sensitive to Salt and Pepper noise. For the small
corrupted percentage (i.e., p = 10%), all NMF models have
satisfactory face recovery performances. However, only
WNMF and CauthyNMF achieve face recovery as the
corrupted percentage varies. These phenomenons denote that
WNMF and CauthyNMF can remove Salt and Pepper noise.

• According to comparisons of PSNRs, WNMF remains the
highest PSNRs. CauthyNMF and RNMF perform satisfactorily
in the beginning, however, they slow down as the corrupted
percentage varies. In summary, WNMF can achieve the
smallest factorization error than other NMF models.

6.2.2. Clustering

Figure 3 shows the clustering performances on the ORL and YALE
datasets contaminated by Salt and Pepper noise. From the compar-
isons, the interesting observations are

• WNMF and CauthyNMF have the better clustering results,
which indicates they can learn a more robust subspace for
clustering.

• CauthyNMF performs satisfactorily in the beginning, however,
it achieves poor performances as the corrupted percentage
increases.
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Figure 2 Recovered images from the ORL and YALE datasets corrupted by Salt and
Pepper noise. For (a)–(h), the first row is sample images under the corrupted percentage p,
and the last five rows are recovered images by weighted nonnegative matrix factorization
(WNMF), NMF, MahNMF, RNMF and CauchyNMF.

Figure 3 Evaluation on the ORL and YALE databases contaminated by Salt and Pepper noise.
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• WNMF achieves relatively stable clustering results on the Salt
and Pepper noise, that is to say, WNMF can hardly be affected
by the outliers. When p becomes larger, WNMF still achieves a
good performance.

• All the clustering results indicate that WNMF can learn a
better subspace on the ORL dataset contaminated by Salt and
Pepper noise.

6.3. Contiguous Occlusion

6.3.1. Visualization of recovered faces

Figure 4 andTable 3 present the recovery faces and the PSNRS of the
ORL and YALE datasets contaminated by Contiguous Occlusion.
According to experimental results, we observe that

Table 2 PSNRs on the ORL and YALE datasets contaminated by Salt and
Pepper with different corrupted percentages from 10% to 25%.

ORL YALE
p(%) 10 15 20 25 10 15 20 25

WNMF 25.28 25.17 25.05 24.89 20.28 20.38 20.17 19.92
NMF 20.83 19.44 18.38 17.55 17.82 16.41 15.31 14.50
MahNMF 22.82 21.68 20.79 19.98 17.73 16.34 15.31 14.38
RNMF 23.47 22.32 21.16 20.04 20.26 19.19 18.17 16.96
CauchyNMF 23.76 23.8 23.93 24.09 18.67 18.65 18.62 18.30
Note: WNMF, weighted nonnegative matrix factorization; NMF, nonnegative matrix fac-
torization; PSNR, peak signal-to-noise ratio.

• WNMF can achieve face recovery completely as the block size
varies. CauchyNMF can recover some corrupted faces in the
smaller block size (i.e., b = 10), but achieves worse
performances in the end.

• As the block size increases, WNMF remains the highest
PSNRs than other algorithms. CauchyNMF can only
achieves satisfactory PSNRs when the block size is small
enough.

• WNMF and CauchyNMF can handle Contiguous Occlusion.
WNMF can completely handle Contiguous Occlusion, but
CauchyNMF can remove Contiguous Occlusion when the
corrupted region is very small.

Table 3 PSNRs on the ORL and YALE datasets contaminated by
Contiguous Occlusion with different block sizes from 10 to 16.

ORL YALE
b 10 12 14 16 10 12 14 16

WNMF 23.83 23.54 23.15 21.79 20.09 19.68 19.18 18.48
NMF 15.5 14.19 13.03 11.97 12.79 11.44 10.26 9.195
MahNMF 15.55 14.23 13.03 11.95 12.78 11.43 10.23 9.203
RNMF 15.53 14.2 13.03 11.97 12.8 11.45 10.27 9.192
CauchyNMF 20.93 15.29 13.42 12.09 16.84 13.54 10.88 9.489
Note: WNMF, weighted nonnegative matrix factorization; NMF, nonnegative matrix fac-
torization; PSNR, peak signal-to-noise ratio.

Figure 4 Recovered images from the ORL and YALE datasets corrupted by Contiguous
Occlusion. For (a)–(h), the first row is sample images under the corrupted block size b, and the
last five rows are recovered images by weighted nonnegative matrix factorization (WNMF),
NMF, MahNMF, RNMF and CauchyNMF.
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Figure 5 Evaluation on the ORL and YALE databases contaminated by Contiguous Occlusion.

6.3.2. Clustering

According to Figure 5, we can conclude that

• WNMF is more robust to remove a large number of outliers of
Contiguous Occlusion, which denotes that WNMF can learn a
more robust representation from the ORL and YALE datasets
corrupted by Contiguous Occlusion.

• NMF, MahNMF and RNMF cannot handle Contiguous
Occlusion, which indicates that they cannot achieve a robust
subspace for clustering.

• CauthyNMF achieve excellent clustering results in the
beginning, however, they perform unstable as the ORL and
YALE datasets are contaminated by serious corruptions.

6.4. Convergence Study

The update rules (18), (21) and (22) for optimizing WNMF are
iterative. These rules are proved to be convergent. In this subsec-
tion, we investigate whether these rules can be convergent. Figure 6
presents the convergence curves of WNMF on the ORL and YALE
dataset corrupted by Salt and Peeper noise and Contiguous Occlu-
sion. For each figure, the x-axis is the iteration number, and the
y-axis denotes the objective value defined in (23). Suppose that
p = 0.5, b = 12, r = 50 and the maximum iteration number

is 500. It is obvious that the iterative rules for WNMF have a fast
convergence.

7. CONCLUSION

This paper proposed an effective weighted NMF model to handle
outliers andnoise. The advantages of the proposed framework are as
follows: (1) WNMF is more effective and robust to handle Salt and
Pepper noise and Contiguous Occlusion. (2) WNMF can achieve a
cleaner data space and a smaller factorization error when the ORL
and YALE datasets are contaminated by Salt and Pepper noise and
Contiguous Occlusion. (3) WNMF can learn a more robust low-
dimensional presentation for clustering when the ORL and YALE
datasets are contaminated with heavy corruptions.
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