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Abstract. As streamflow quantity and drought problem become increasingly 

severe, it’s imperative than ever to seek next generation machine learning 

models and learning algorithms which can provide accurate prediction. Reliable 

prediction of drought variables such as precipitation, soil moisture, and 

streamflow has been a significant challenge for water resources professionals 

and water management districts due to their random and nonlinear nature. This 

paper proposes a long short-term memory networks (LSTM) based deep 

learning method to predict the historical monthly soil moisture time series data 

based on the MERRA-Land from 1980 to 2012. The proposed LSTM model 
learns to predict the value of the next time step at each time step of the time 
sequence. We also compare the predication accuracy when the network state is 
updated with the observed values and when the network state is updated with 
the predicted values. We find that the predictions are more accurate when 
updating the network state with the observed values instead of the predicted 
values. In addition, it demonstrated that the proposed method has much lower 

MSE than the autoregressive integrated moving average model (ARIMA) 

model and autoregressive model (AR) model.   

Keywords: Convolutional Neural Networks, Long Short-Term Memory 

Networks (LSTM), Deep Learning, Time Series Prediction, Drought Prediction. 

1   Introduction 

The streamflows of a river basin may be near or below normal, influenced by lower 

than normal precipitation and much below normal soil moisture contents. If below 

average rainfall continues then further degradation is expected to occur. Monthly 

monitoring of a river basin will prepare for the possibility that serious drought 

conditions may develop in the future [1]. As drought and streamflow quantity 

problem become increasingly severe, it’s imperative to provide an effective drought 

early warning system which uses the historical data to make prediction of the 

probability of flows dropping below drought trigger levels [2]. Reliable estimation of 

streamflow has been a significant challenge for water resources professionals and 

water management districts. This is very much essential to manage water supply, 
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floods, and droughts efficiently. Streamflow characteristics are primarily governed by 

climatic and watershed characteristics. Over the last decade it has been recognized 

that climate is changing and there can be significant impacts on the streamflow. The 

hydraulic consequences of a climate change can cause natural disaster, such as 

drought that occurs when there is a significant deficit in precipitation. It will also have 

serious impact to flooding, water quality, and ecosystems that are closely related to 

the society of human beings. Accurate estimation of streamflow quantity from a 

watershed will provide important information to determine urban watershed 

modeling, water quantity management, development of legislation, and strategies on 

water supply. In addition, drought prediction is one of most complicated and difficult 

hydrological problems because the nature of the drought variables is random and 

unpredictable and the physical processes underneath the phenomenon are too 

complex. It is also because of the insufficient knowledge on the driving factors and 

their impact on streamflow, as well as the lack of reliable prediction and design 

methodologies. Therefore, accurate drought prediction including streamflow quantity 

prediction, precipitation and soil moisture prediction are all critical to enhance the 

water resource management plan and operational performance assessment.  

Recently some deep learning algorithms have been successfully applied to the 

water quantity prediction and drought prediction problems. A deep Belief Network 

layered by coupled Restricted Boltzmann Machines was proposed for long-term 

drought prediction across the Gunnison River Basin [3]. By using time lagged 

standardized streamflow index (SSI) sequence, it demonstrated lower error rate than 

multilayer perceptron neural network and support vector regression. A long short-

term memory (LSTM) network was presented for streamflow prediction using 

previous streamflow data for a particular period [4]. It showed that the LSTM model 

can not only predict the relativey steady streamflow in the dry season, but can also 

capture data characteristics in the rapidly changing streamflow in the rainy season. 

However, the performance of LSTM hasn’t been proved on the effect of drought 

variables, such as precipitation, soil moisture, streamflow for long-term drought 

prediction. 

The novelty of this paper is the inclusion of a wider ranged hydrological variables 

to predict soil moisture content (%) for a higher elevation of interest using existing 

regression models, which differentiates this work from previously done research 

works as described in the literature. In addition, this paper presents how to design the 

architecture of the model and layer specifications to the time series prediction 

problem. Further it customizes the LSTM based time series model to solve the 

drought prediction problem. It describes the proposed long short-term memory 

networks (LSTM) based deep learning method to predict the historical monthly soil 

moisture time series data. 

The rest of this paper is organized as follows. Section 2 describes the methodology 

including deep learning approach, deep neural network, and convolutional neural 

network. In section 3, time series prediction using LSTM network is discussed. 

Performance evaluation metrices are presented in Section 4. In Section 5, the Modern-

Era Retrospective analysis for Research and Applications (MERRA)-Land data set is 

described. The simulations and experimental results are demonstrated. In Section 6, 

the conclusions are given. 

 



2   Methodology 

Many state-of-the-art machine learning techniques, such as neural network, support 

vector machine, radial basis function, naive Bayes, decision tree, k-nearest neighbors, 

and deep learning have been applied to the time series prediction. However, few of 

them has been applied to the forecast of the probability of streamflows. These 

machine learning methods have been proven effective in predicting time series. Since 

streamflow prediction is a special case of time series prediction, therefore, they 

should be very promising in the streamflow prediction problems.  

2.1 Deep Learning Approach 

Deep learning algorithms are now applied to solve problems of a diverse nature, 

including prediction [5]. Therefore, we are considering deep learning algorithms for 

this research. Firstly, we would like to review a few basics of deep learning. The 

building blocks of deep learning or artificial neural networks are called perceptron, 

which mimics an equivalent functionality (in computation) as neuron (a biological 

cell of the nervous system that uniquely communicates with each other) [6].  

Now, perceptron or artificial neurons receive input signals ),,,( 21 mxxx  , 

multiply input by weight ),,,( 21 mwww  , add them together with a pre-determined 

bias, and pass through the activation function, )(xf . The signal goes to output as 0 

or 1 based on the activation function threshold value. A perceptron with inputs, 

weights, summation and bias, activation function, and output all together forms a 

single layer perceptron. However, in common neural network diagrams, only input 

and output layers are shown. In a practical neural network, hidden layers are added 

between the input and output layers. The number of hidden layers is a hyperparameter 

and usually determined by evaluating the model performance. If the neural network 

has a single hidden layer, the model is called a shallow neural network, while a deep 

neural network consists of several hidden layers. In this research, we have considered 

DNN, convolutional neural network, and recurrent neural network in the form of long 

short-term memory, all of which will be discussed in the following sections.  

2.2 Deep Neural Network (DNN) 

DNN is composed of three neural network layers, namely an input layer, hidden 

layers, and an output layer. The number of hidden layers is tuned through trial and 

error [6]. Figure 1 illustrates such a model structure with two hidden layers consisting 

of three neurons each, five input neurons, and one output neuron. The number of 

neurons depends on the number of inputs and outputs. In Figure 1,  

Inputs: [x1, x2, x3, x4, x5]  

Hidden layer weights: h  

Output: ŷ  

 

 



 
 
 
 
 
 
 
 
 
 

Figure 1 Simplified architecture of a deep neural network 
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A simplified DNN kernel is formulated in (1) that considers linear modeling. x, W, 
and c symbolize input, weights, and bias, respectively, while w and b are linear model 
parameters. The hidden layer parameter h is shown in (2), where g is the activation 
function. For DNN modeling, ReLu (3) is used as the hidden layer activation function. 

 
3 Proposed Method  

This section describes the proposed long short-term memory networks (LSTM) based 
deep learning method to predict the historical monthly soil moisture time series data. 
It presents how to design the architecture of the model and layer specifications to the 
time series prediction problem. Further it customizes the LSTM based time series 
model to solve the drought prediction problem. 

3.1 Time Series Prediction Using LSTM Network 

An LSTM network inherits the characteristic of memory from the recurrent neural 
network (RNN) [7]. This memory unit enables long-term feature retention between 
time steps of sequence data [8]. Figure 2 illustrates the flowchart of a time series X 
with C features of length S through an LSTM layer. The output layer will generate the 
predicted values, which contains D features of length S. In the diagram, for the tth 
LSTM block, th and tc denote the output, i.e. the hidden state and the cell state at time 
step t, respectively. 
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tŷ  Sŷ
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Figure 2 Unfolded single layer of LSTM network 

 

Initially, the states of all the LSTM blocks will be initialized to all zeros. The first 

LSTM block to the left most uses the initial state of the network and the first time step 

of the sequence to compute the first output, 1h and the updated cell state, 1c . At time 

step t, the tth LSTM block uses the current state of the network ( 1th , 1tc ) and the tth 

time step of the sequence to compute the output state, th , and the cell state, tc . 

An LSTM layer contains an array of LSTM blocks. For each LSTM block, it is 

represented by two states, including an output state, i.e. the hidden state and a cell 

state. The hidden state at time step t not only contains the output of the current LSTM 

block for the time step, but also serves as the input for the LSTM block at the next 

time step. The cell state contains time dependent information extracted from the 

previous time steps.  

Different from the classic RNN, the LSTM is a recurrent neural network equipped 

with gates [9]. At each time step, the LSTM layer can choose either add information 

to or removes information from the cell state. The layer controls these updates using 

gates. The gated circuit of the LSTM is proposed to implement the flow of data at 

time step t, as illustrated in Figure 3. LSTM introduces self-loops to produce paths 

where the gradient can flow for a long duration; thus, it is capable of learning long-

term dependencies [6].  
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Figure 3 Block diagram of LSTM operations on a time series sequence 
 
The equations describing the operations are listed below. 

)()( 1 ftftfg bhUxWtf         (4) 

)( 1 ititigt bhUxWi         (5) 

)( 1 ototogt bhUxWo         (6) 

)( 11 ctctcctttt bhUxWicfc         (7) 
)( thtt coh         (8) 

where, 
d

tx  : Input vector to the LSTM unit 
h

tf  : Forget states activation vector 
h

ti  : Input/update gate’s activation vector 
h

to  : Output gate’s activation vector 
h

th  : Hidden state vector 
h

tc  : Cell state vector 
hhhdh bUW   ,, : Weight matrices and bias vector parameters which 

will be adjusted during the training  
g : Sigmoid function 

gc  , : hyperbolic tangent function 
 

In the performance evaluation, some commonly used accuracy parameters, such as  
root mean square error are employed to evaluate how well a model is performing to 
predict the intended parameter. Root mean square error (RMSE) is considered to 
investigate the model performances on the test set by comparing the differences 
between the predicted values by a model and the actual values. RMSE is the square 
root of the mean of the square of error terms (the difference between actual response 
( iy ) and predicted response ( iŷ ). n is the number of total input sets. The lower this 
value is, the better the model performance, while the desired is 0 or close value for 
this term. The formula for this measure is in (9). 
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4   Experimental Results 

The Modern-Era Retrospective analysis for Research and Applications (MERRA) 
data set is used to use the historical soil moisture (total profile soil moisture content) 
from 1980 to 2012 to predict the future soil moisture [9]. The data set is plotted in 
Figure 4. We train on the first 90% of the time series sequence and test on the last 
10%. In order to obtain the identical data scale for different features, it is necessary to 
pre-process the raw data by standardizing the data to a normalized distribution. 
Within the scope of zero mean and unit variance, we prevent the training data, test 
data, and predicted responses from diverging. 

 
Figure 4 Monthly soil moisture (total profile soil moisture content) from MERRA-

Land from 1980 to 2012 
 
To forecast the values of a sequence at future time steps, we use the responses with 

values lagged by one time step to be the training sequences. The nonlinear 
autoregressive (NAR) model can be represented mathematically by predicting the 
values of a sequence at future time steps, ŷ from the historical values of that time 
series, as shown in Figure 5. Time series without the final time step are used as the 
training sequences. The form of the prediction can be expressed as follows: 

))(,),1(()(ˆ dtytyfty      (10) 
 
 
 
 
 

Figure 5 Nonlinear autoregressive LSTM prediction model 

)(ˆ ty  
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Model 



We set up a LSTM network in the sequence-to-one regression mode. The output of 
the LSTM layer is the last element of the sequence and will be fed into the fully 
connected layer. For example, if the input sequence is { },,, 4321 xxxx , the output of 
the LSTM layer will be the hidden state, 4h . In this LSTM network, it consists of a 
sequence input layer, an LSTM layer, a fully connected layer, and a regression output 
layer. In the LSTM layer array, a sequence input layer inputs one sequence data to a 
network at a time. This LSTM layer contains 200 hidden units. We use the adam 
optimization algorithm featured with adjustable learning rate to train the dynamic 
neural networks for 600 epochs. To ensure a steady gradient change, we limit the 
threshold of the gradient to 1.  

After several trials, we decide to set the initial learning rate to 0.005 to gain better 
performance. We slow down the learning rate to 20% of its original value when it has 
elapsed 150 epochs. Then we train the LSTM network with these parameter selections. 
The training progress is plotted in Figure 6. The top subplot reveals the root-mean-
square error (RMSE) calculated from the standardized data. The bottom subplot 
displays the the error between the actual values and the predicted values. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Training progress on the monthly soil moisture using LSTM network 
 
Once the LSTM network has been trained, we will predict time steps one at a time 

and update the network state at each prediction. Therefore, we can forecast the values 
of multiple time steps in the future. Like what we did for the training data, we 
standardize the test data using the same mean of the population, µ and the standard 
deviation of the population, σ. In order to initialize the network state, h, we first 
predict on the training data. Then we use the value at the last time step of the training 
response to make the very first prediction. We then use Eq. (10) to use the previous 
prediction to predict value at the next time step one at a time for the remaining 
predictions. We un-standardize the predictions in order to observe the real world 
values of the soil moisture. The combination of training time series (in blue) with the 
forecasted values (in red) is shown in Figure 7.  



Figure 7 Training time series with the forecasted values 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

In order to visually compare the forecasted values with the actual data, we plot the 

first 40 predicted values at the time steps over the actual values, as shown in Figure 8. 

We also display the difference between them at each time step and the RMSE, i.e. 

0.019717 from the unstandardized predictions in the lower subplot in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Comparison of predicted monthly soil moisture with the test data when 

updating the network state with previous predictions 

 



We further explore the prediction performance by updating network state with 

observed values. Unlike the previous study where we used the previous prediction to 

predict value, we update the network state with the actual (observed) values instead of 

the predicted values. We first initialize the network state by resetting the network 

state to an initial state of zeros. Therefore, previous predictions will not affect the 

predictions on the new time sequence. We then initialize the network state by start 

predicting on the training data. At each time step, we predict the value on the next 
time step using the observed value of the previous time step. In order to retrieve the 
soil moisture information, we un-standardize the predictions using the same mean and 
the standard deviation of the population as before.  

Similarly, we compare the forecasted values with the actual test data for the first 40 

time steps, as shown in Figure 9. We also demonstrate the difference between them at 

each time step, as well as the RMSE, i.e. 0.0087584 from the unstandardized 

predictions in the bottom subplot. After comparing Figure 8 and Figure 9, we find that 

the prediction accuracy is much higher when we update the network state with the 

observed values instead of using the predicted values. 

 

 
 
 
 
 

 
 

 
 

 
 

 
 
 

 
 
 

 
 

Figure 9 Comparison of predicted monthly soil moisture with the test data when 

updating the network state with the observed values 
 

We also compare the performance of the proposed LSTM deep learning model 

with other popular predictive models, such as autoregressive integrated moving 

average model (ARIMA) and autoregressive model (AR). Table 1 depicts the root 

mean squared error (RMSE) for each algorithm on the test data. We found that our 

proposed algorithm has the lowest error rate.     



 

Table 1 Comparative Model Performances 

 

5 Conclusions 

This paper proposes a long short-term memory networks (LSTM) based deep learning 

method to predict the historical monthly soil moisture time series data based on the 

MERRA-Land from 1980 to 2012. The proposed LSTM model learns to predict the 

value of the next time step at each time step of the time sequence. We customize the 

dynamic LSTM model to solve the soil moisture prediction problem. We also 

compare the predication accuracy when the network state is updated with the 

observed values and when the network state is updated with the predicted values. We 

find that the predictions are more accurate when updating the network state with the 

observed values instead of the predicted values. Furthermore, we also compare the 

proposed method with other time series prediction methods. We find that it has much 

lower MSE than the autoregressive integrated moving average model (ARIMA) 

model and autoregressive model (AR) model. The future study will to obtain the soil 

moisture index, and use it to predict the Drought index. The drought prediction 

system will have profound impact to the water resources management, agriculture, 

and urban construction. 
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