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Abstract. As streamflow quantity and drought problem become increasingly
severe, it’s imperative than ever to seek next generation machine learning
models and learning algorithms which can provide accurate prediction. Reliable
prediction of drought variables such as precipitation, soil moisture, and
streamflow has been a significant challenge for water resources professionals
and water management districts due to their random and nonlinear nature. This
paper proposes a long short-term memory networks (LSTM) based deep
learning method to predict the historical monthly soil moisture time series data
based on the MERRA-Land from 1980 to 2012. The proposed LSTM model
learns to predict the value of the next time step at each time step of the time
sequence. We also compare the predication accuracy when the network state is
updated with the observed values and when the network state is updated with
the predicted values. We find that the predictions are more accurate when
updating the network state with the observed values instead of the predicted
values. In addition, it demonstrated that the proposed method has much lower
MSE than the autoregressive integrated moving average model (ARIMA)
model and autoregressive model (AR) model.

Keywords: Convolutional Neural Networks, Long Short-Term Memory
Networks (LSTM), Deep Learning, Time Series Prediction, Drought Prediction.

1 Introduction

The streamflows of a river basin may be near or below normal, influenced by lower
than normal precipitation and much below normal soil moisture contents. If below
average rainfall continues then further degradation is expected to occur. Monthly
monitoring of a river basin will prepare for the possibility that serious drought
conditions may develop in the future [1]. As drought and streamflow quantity
problem become increasingly severe, it’s imperative to provide an effective drought
early warning system which uses the historical data to make prediction of the
probability of flows dropping below drought trigger levels [2]. Reliable estimation of
streamflow has been a significant challenge for water resources professionals and
water management districts. This is very much essential to manage water supply,
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floods, and droughts efficiently. Streamflow characteristics are primarily governed by
climatic and watershed characteristics. Over the last decade it has been recognized
that climate is changing and there can be significant impacts on the streamflow. The
hydraulic consequences of a climate change can cause natural disaster, such as
drought that occurs when there is a significant deficit in precipitation. It will also have
serious impact to flooding, water quality, and ecosystems that are closely related to
the society of human beings. Accurate estimation of streamflow quantity from a
watershed will provide important information to determine urban watershed
modeling, water quantity management, development of legislation, and strategies on
water supply. In addition, drought prediction is one of most complicated and difficult
hydrological problems because the nature of the drought variables is random and
unpredictable and the physical processes underneath the phenomenon are too
complex. It is also because of the insufficient knowledge on the driving factors and
their impact on streamflow, as well as the lack of reliable prediction and design
methodologies. Therefore, accurate drought prediction including streamflow quantity
prediction, precipitation and soil moisture prediction are all critical to enhance the
water resource management plan and operational performance assessment.

Recently some deep learning algorithms have been successfully applied to the
water quantity prediction and drought prediction problems. A deep Belief Network
layered by coupled Restricted Boltzmann Machines was proposed for long-term
drought prediction across the Gunnison River Basin [3]. By using time lagged
standardized streamflow index (SSI) sequence, it demonstrated lower error rate than
multilayer perceptron neural network and support vector regression. A long short-
term memory (LSTM) network was presented for streamflow prediction using
previous streamflow data for a particular period [4]. It showed that the LSTM model
can not only predict the relativey steady streamflow in the dry season, but can also
capture data characteristics in the rapidly changing streamflow in the rainy season.
However, the performance of LSTM hasn’t been proved on the effect of drought
variables, such as precipitation, soil moisture, streamflow for long-term drought
prediction.

The novelty of this paper is the inclusion of a wider ranged hydrological variables
to predict soil moisture content (%) for a higher elevation of interest using existing
regression models, which differentiates this work from previously done research
works as described in the literature. In addition, this paper presents how to design the
architecture of the model and layer specifications to the time series prediction
problem. Further it customizes the LSTM based time series model to solve the
drought prediction problem. It describes the proposed long short-term memory
networks (LSTM) based deep learning method to predict the historical monthly soil
moisture time series data.

The rest of this paper is organized as follows. Section 2 describes the methodology
including deep learning approach, deep neural network, and convolutional neural
network. In section 3, time series prediction using LSTM network is discussed.
Performance evaluation metrices are presented in Section 4. In Section 5, the Modern-
Era Retrospective analysis for Research and Applications (MERRA)-Land data set is
described. The simulations and experimental results are demonstrated. In Section 6,
the conclusions are given.



2 Methodology

Many state-of-the-art machine learning techniques, such as neural network, support
vector machine, radial basis function, naive Bayes, decision tree, k-nearest neighbors,
and deep learning have been applied to the time series prediction. However, few of
them has been applied to the forecast of the probability of streamflows. These
machine learning methods have been proven effective in predicting time series. Since
streamflow prediction is a special case of time series prediction, therefore, they
should be very promising in the streamflow prediction problems.

2.1 Deep Learning Approach

Deep learning algorithms are now applied to solve problems of a diverse nature,
including prediction [5]. Therefore, we are considering deep learning algorithms for
this research. Firstly, we would like to review a few basics of deep learning. The
building blocks of deep learning or artificial neural networks are called perceptron,
which mimics an equivalent functionality (in computation) as neuron (a biological
cell of the nervous system that uniquely communicates with each other) [6].

Now, perceptron or artificial neurons receive input signals (x,x,,...,X,,) ,

multiply input by weight (w;,w,,...,w,,), add them together with a pre-determined
bias, and pass through the activation function, f(x). The signal goes to output as 0

or 1 based on the activation function threshold value. A perceptron with inputs,
weights, summation and bias, activation function, and output all together forms a
single layer perceptron. However, in common neural network diagrams, only input
and output layers are shown. In a practical neural network, hidden layers are added
between the input and output layers. The number of hidden layers is a hyperparameter
and usually determined by evaluating the model performance. If the neural network
has a single hidden layer, the model is called a shallow neural network, while a deep
neural network consists of several hidden layers. In this research, we have considered
DNN, convolutional neural network, and recurrent neural network in the form of long
short-term memory, all of which will be discussed in the following sections.

2.2 Deep Neural Network (DNN)

DNN is composed of three neural network layers, namely an input layer, hidden
layers, and an output layer. The number of hidden layers is tuned through trial and
error [6]. Figure 1 illustrates such a model structure with two hidden layers consisting
of three neurons each, five input neurons, and one output neuron. The number of
neurons depends on the number of inputs and outputs. In Figure 1,

Inputs: [x;, X2, X3, X4, X5]

Hidden layer weights: /

Output: p
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Figure 1 Simplified architecture of a deep neural network

f(x;W,c,w,b)=meax(O,WT+c)+b (1
h=gW'x+c) (2)
f (x) = max(0, x) 3)

A simplified DNN kernel is formulated in (1) that considers linear modeling. x, 77,
and ¢ symbolize input, weights, and bias, respectively, while w and b are linear model
parameters. The hidden layer parameter / is shown in (2), where g is the activation
function. For DNN modeling, ReLu (3) is used as the hidden layer activation function.

3 Proposed Method

This section describes the proposed long short-term memory networks (LSTM) based
deep learning method to predict the historical monthly soil moisture time series data.
It presents how to design the architecture of the model and layer specifications to the
time series prediction problem. Further it customizes the LSTM based time series
model to solve the drought prediction problem.

3.1 Time Series Prediction Using LSTM Network

An LSTM network inherits the characteristic of memory from the recurrent neural
network (RNN) [7]. This memory unit enables long-term feature retention between
time steps of sequence data [8]. Figure 2 illustrates the flowchart of a time series X
with C features of length S through an LSTM layer. The output layer will generate the
predicted values, which contains D features of length S. In the diagram, for the rth
LSTM block, #h, and c, denote the output, i.e. the hidden state and the cell state at time

step ¢, respectively.
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Figure 2 Unfolded single layer of LSTM network

Initially, the states of all the LSTM blocks will be initialized to all zeros. The first
LSTM block to the left most uses the initial state of the network and the first time step
of the sequence to compute the first output, 4, and the updated cell state, ¢, . At time

step t, the 7th LSTM block uses the current state of the network ( 4,_; ,c,_;) and the tth

time step of the sequence to compute the output state, 4, , and the cell state, ¢, .

An LSTM layer contains an array of LSTM blocks. For each LSTM block, it is
represented by two states, including an output state, i.e. the hidden state and a cell
state. The hidden state at time step ¢ not only contains the output of the current LSTM
block for the time step, but also serves as the input for the LSTM block at the next
time step. The cell state contains time dependent information extracted from the
previous time steps.

Different from the classic RNN, the LSTM is a recurrent neural network equipped
with gates [9]. At each time step, the LSTM layer can choose either add information
to or removes information from the cell state. The layer controls these updates using
gates. The gated circuit of the LSTM is proposed to implement the flow of data at
time step ¢, as illustrated in Figure 3. LSTM introduces self-loops to produce paths
where the gradient can flow for a long duration; thus, it is capable of learning long-
term dependencies [6].
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Figure 3 Block diagram of LSTM operations on a time series sequence

The equations describing the operations are listed below.

f(O)=0c,Wex, +Ush,_ +by) 4)
I, =04 Wix, +Uihy_y +b;) ®)
o,=0,(W,x,+U,h_,+b,) (6)
¢ =fec+ieo.Wx, +Uh_ +b.) (7
b =0, °05(c,) (8)
where,

x, € R : Input vector to the LSTM unit

f, € R" : Forget states activation vector

i € R Input/update gate’s activation vector
0, € R Output gate’s activation vector

h, € R" : Hidden state vector

¢, e R": Cell state vector

WeRP UeR™ peRr: Weight matrices and bias vector parameters which
will be adjusted during the training
o, : Sigmoid function

0.0, : hyperbolic tangent function

In the performance evaluation, some commonly used accuracy parameters, such as
root mean square error are employed to evaluate how well a model is performing to
predict the intended parameter. Root mean square error (RMSE) is considered to
investigate the model performances on the test set by comparing the differences
between the predicted values by a model and the actual values. RMSE is the square
root of the mean of the square of error terms (the difference between actual response
(y;) and predicted response ( ¥; ). n is the number of total input sets. The lower this
value is, the better the model performance, while the desired is 0 or close value for
this term. The formula for this measure is in (9).



RMSE = ©9)

4  Experimental Results

The Modern-Era Retrospective analysis for Research and Applications (MERRA)
data set is used to use the historical soil moisture (total profile soil moisture content)
from 1980 to 2012 to predict the future soil moisture [9]. The data set is plotted in
Figure 4. We train on the first 90% of the time series sequence and test on the last
10%. In order to obtain the identical data scale for different features, it is necessary to
pre-process the raw data by standardizing the data to a normalized distribution.
Within the scope of zero mean and unit variance, we prevent the training data, test

data, and predicted responses from diverging.
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Figure 4 Monthly soil moisture (total profile soil moisture content) from MERRA-
Land from 1980 to 2012

To forecast the values of a sequence at future time steps, we use the responses with
values lagged by one time step to be the training sequences. The nonlinear
autoregressive (NAR) model can be represented mathematically by predicting the
values of a sequence at future time steps, y from the historical values of that time

series, as shown in Figure 5. Time series without the final time step are used as the
training sequences. The form of the prediction can be expressed as follows:

0= f(yE=D),....y(t-d) (10)

LSTM R
’—r Model —» »(?)

Figure 5 Nonlinear autoregressive LSTM prediction model



We set up a LSTM network in the sequence-to-one regression mode. The output of
the LSTM layer is the last element of the sequence and will be fed into the fully
connected layer. For example, if the input sequence is { x;,x,,x3,x,} , the output of

the LSTM layer will be the hidden state, A, . In this LSTM network, it consists of a

sequence input layer, an LSTM layer, a fully connected layer, and a regression output
layer. In the LSTM layer array, a sequence input layer inputs one sequence data to a
network at a time. This LSTM layer contains 200 hidden units. We use the adam
optimization algorithm featured with adjustable learning rate to train the dynamic
neural networks for 600 epochs. To ensure a steady gradient change, we limit the
threshold of the gradient to 1.

After several trials, we decide to set the initial learning rate to 0.005 to gain better
performance. We slow down the learning rate to 20% of its original value when it has
elapsed 150 epochs. Then we train the LSTM network with these parameter selections.
The training progress is plotted in Figure 6. The top subplot reveals the root-mean-
square error (RMSE) calculated from the standardized data. The bottom subplot
displays the the error between the actual values and the predicted values.
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Figure 6 Training progress on the monthly soil moisture using LSTM network

Once the LSTM network has been trained, we will predict time steps one at a time
and update the network state at each prediction. Therefore, we can forecast the values
of multiple time steps in the future. Like what we did for the training data, we
standardize the test data using the same mean of the population, x4 and the standard
deviation of the population, ¢. In order to initialize the network state, s, we first
predict on the training data. Then we use the value at the last time step of the training
response to make the very first prediction. We then use Eq. (10) to use the previous
prediction to predict value at the next time step one at a time for the remaining
predictions. We un-standardize the predictions in order to observe the real world
values of the soil moisture. The combination of training time series (in blue) with the
forecasted values (in red) is shown in Figure 7.



Forecast

B oy
ﬁ o
4 ﬂ
emﬁ n l U\ |
TSI
M bl
I HHJM PRt
Qy v | VlWHﬁ” v}whq#?
0.28 - ‘ : |

Figure 7 Training time series with the forecasted values

In order to visually compare the forecasted values with the actual data, we plot the
first 40 predicted values at the time steps over the actual values, as shown in Figure 8.
We also display the difference between them at each time step and the RMSE, i.e.
0.019717 from the unstandardized predictions in the lower subplot in Figure 8.
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Figure 8 Comparison of predicted monthly soil moisture with the test data when
updating the network state with previous predictions



We further explore the prediction performance by updating network state with
observed values. Unlike the previous study where we used the previous prediction to
predict value, we update the network state with the actual (observed) values instead of
the predicted values. We first initialize the network state by resetting the network
state to an initial state of zeros. Therefore, previous predictions will not affect the
predictions on the new time sequence. We then initialize the network state by start
predicting on the training data. At each time step, we predict the value on the next
time step using the observed value of the previous time step. In order to retrieve the
soil moisture information, we un-standardize the predictions using the same mean and
the standard deviation of the population as before.

Similarly, we compare the forecasted values with the actual test data for the first 40
time steps, as shown in Figure 9. We also demonstrate the difference between them at
each time step, as well as the RMSE, ie. 0.0087584 from the unstandardized
predictions in the bottom subplot. After comparing Figure 8 and Figure 9, we find that
the prediction accuracy is much higher when we update the network state with the
observed values instead of using the predicted values.
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Figure 9 Comparison of predicted monthly soil moisture with the test data when
updating the network state with the observed values
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We also compare the performance of the proposed LSTM deep learning model
with other popular predictive models, such as autoregressive integrated moving
average model (ARIMA) and autoregressive model (AR). Table 1 depicts the root
mean squared error (RMSE) for each algorithm on the test data. We found that our
proposed algorithm has the lowest error rate.



Table 1 Comparative Model Performances

Algorithm Root Mean Squared Error (MSE)
Autoregressive Integrated Moving Average 0.0950
model (ARIMA)
Autoregressive model (AR) 0.0246
Proposed LSTM model 0.0088

5 Conclusions

This paper proposes a long short-term memory networks (LSTM) based deep learning
method to predict the historical monthly soil moisture time series data based on the
MERRA-Land from 1980 to 2012. The proposed LSTM model learns to predict the
value of the next time step at each time step of the time sequence. We customize the
dynamic LSTM model to solve the soil moisture prediction problem. We also
compare the predication accuracy when the network state is updated with the
observed values and when the network state is updated with the predicted values. We
find that the predictions are more accurate when updating the network state with the
observed values instead of the predicted values. Furthermore, we also compare the
proposed method with other time series prediction methods. We find that it has much
lower MSE than the autoregressive integrated moving average model (ARIMA)
model and autoregressive model (AR) model. The future study will to obtain the soil
moisture index, and use it to predict the Drought index. The drought prediction
system will have profound impact to the water resources management, agriculture,
and urban construction.
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