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Abstract— Climate change is one of the most concerning
issues of this century. Emission from electric power generation is
a crucial factor that drives the concern to the next level.
Renewable energy sources are widespread and available globally,
however, one of the major challenges is to understand their
characteristics in a more informative way. This paper proposes
the prediction of wind speed that simplifies wind farm planning
and feasibility study. Twelve artificial intelligence algorithms
were used for wind speed prediction from collected
meteorological parameters. The model performances were
compared to determine the wind speed prediction accuracy. The
results show a deep learning approach, long short-term memory
(LSTM) outperforms other models with the highest accuracy of
97.8%.
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Wind speed prediction is a regression problem where
predictors, in this case, are the meteorological parameters, and
the response variable is the wind speed at 80m height. In
general, regression is a classical problem both in statistics and
machine learning. Usually, statistical methods are to find the
inference while machine learning makes the prediction [1].
Then again, they intersect in some cases and do serve a similar
purpose, for example- linear regression. However, statistical
learning relies on distributions, while machine learning is an
empirical process and requires data [2]. The statistical
approach, thus, considers how data is collected or generated
while machine learning may result in accurate prediction
without knowing much about the underlying aspects of data.
Another line of the boundary is the shape or volume of data.
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While the statistical approach is very robust about the number
of samples (as it considers the distribution of the data),
machine learning is more applicable when the dataset is wide
[2]. However, sometimes they are used interchangeably, and
statistics are the backbone of machine learning [3]. Besides,
some machine learning algorithms use the same bootstrapping
methods as statistical models. Besides, researchers are using
deep learning for similar prediction problems [4]. Artificial
Neural network (ANN) based models usually yield benefits in
prediction tasks than statistical models due to its robustness
towards the nature of data, especially when there are missing
values, or the dataset is not well preprocessed, raw, and large
data [5]. Thus, many machine learning regression algorithms
use statistical techniques in innovative ways, while deep
learning neural network approaches are efficient for analogous
tasks. The reason, however, behind the growing popularity of
machine learning or deep learning (artificial intelligence, in
general) is the availability of computational resources [6].
Therefore, the larger dataset is not a critical issue to work
with, which was challenging in the past. In this research, we
have considered both approaches, machine learning, and deep
learning for our wind speed prediction problem.

The placement of a wind turbine for wind power
generation is often a challenging step due to the varying nature
of wind speed from a location/height to another
location/height [7]. Measuring wind speed at the level of
turbine hub height is both expensive and requires continuous
maintenance. Meteorological parameters also play a vital role
in the wind characteristics. Therefore, wind speed profiling
with the variation of meteorological parameters has been a
research problem that leads to the prediction of wind speed of
a certain location based on those parameters [8-9]. Therefore,
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utilization of easy to access parameters in a low elevation to
predict corresponding wind speed at a higher height is a
practical approach. Literature show there have been statistical
approaches for wind speed application, while artificial
intelligence- deep learning and machine learning are being
considered recently [10-11]. In addition to machine learning
regression algorithms, neural network-based deep learning
techniques are getting attention for alike problems due to
higher accuracy.

Deep Neural Network (DNN) can map features from raw
data to provide regularization, thus minimizes the variance in
each layer [12]. This capability makes DNN suitable for
prediction problems. The prediction accuracy is greatly
dependent on efficient feature extraction of time series data.
Literature [13] shows- Convolutional Neural Network (CNN)
creates filters to automate such function that makes it widely
applicable for prediction. However, it can represent short term
dependence while wind speed comprises both short and long-
term dependence fundamentally [14]. Therefore, long short-
term memory (LSTM) seems more effective for wind speed
prediction. LSTM is a form of Recurrent Neural Network
(RNN) that is capable of learning long-term dependencies to
make a prediction [15].

The rest of this paper is organized as follows. In Section 2,
deep learning algorithms including deep neural networks
(DNN), convolutional neural network (CNN), recurrent neural
network (RNN) in the form of long short-term memory
(LSTM) are introduced. In Section 3, the performance
evaluation is presented. In Section 4, The National Renewable
Energy Laboratory (NREL) data set is described. The
simulations and experimental results are demonstrated. In
Section 5, the conclusions are given.

II.

Deep learning algorithms are now applied to solve
problems of a diverse nature, including prediction [16].
Therefore, we are considering deep learning algorithms for
this research. Firstly, we would like to review a few basics of
deep learning. The building blocks of deep learning or
artificial neural networks are called perceptron, which mimics
an equivalent functionality (in computation) as neuron (a
biological cell of the nervous system that uniquely
communicates with each other) [17].

Now, perceptrons or artificial neurons receive input signals
(x,%5,...,x,,) , multiply each input by weight

(W, wy,...,w,,) , add them together with a pre-determined

DEEP LEARNING APPROACH

bias, and pass through the activation function, f(x) . The

signal goes to output as 0 or 1 based on the activation function
threshold value. A perceptron with inputs, weights, summation
and bias, activation function, and output all together forms a
single layer perceptron [18]. However, in common neural
network diagrams, only input and output layers are shown. In
a practical neural network, hidden layers are added between
the input and output layers. The number of hidden layers is a
hyperparameter and usually determined by evaluating the
model performance. If the neural network has a single hidden
layer, the model is called a shallow neural network, while a
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deep neural network (DNN) consists of several hidden layers
[17]. In this research, we have considered DNN, convolutional
neural network (CNN), and recurrent neural network (RNN)-
in the form of long short-term memory (LSTM), all of which
will be discussed in the following sections.

A. Deep Neural Network (DNN)

DNN is composed of three neural network layers, namely-
an input layer, hidden layer(s), and an output layer. The
(number of hidden layers) is tuned through trial and error [17].
Figure 1 illustrates such a model structure with two hidden
layers consisting of three neurons each, five input neurons,
and one output neuron. The number of neurons depends on the
number of inputs and outputs. In Figure 1,

Inputs: [x;, x2, X3, X4, X5]
Hidden layer weights: /4
Output: p

A simplified DNN kernel is formulated in (1) that
considers linear modeling. x, W, and ¢ symbolize input,
weights, and bias, respectively, while w and b are linear model
parameters. The hidden layer parameter / is shown in (2),
where g is the activation function. For DNN modeling, ReLu
(3) is used as the hidden layer activation function.

FOW,e,w,b)=w! max{0,WT +c}+b (1)
h= g(WTx +c) (2)
J(x) = max(0,x) 3)
Fa
Fig
N
e
. :é‘;_ ci";tf‘::
(xs) Hidden Hididan
Layer (1) Layer ()

Figure 1 Simplified Architecture of a Deep Neural Network

B. Convolutional Neural Network (CNN)

CNN, also known as ConvNet, is one way to solve the
issue with DNN wusing convolution rather than matrix
multiplication [19]. In other words, CNN is the regularized
version of DNN to ensure model robustness towards
overfitting. CNN is very popular for image processing;
however, in the prediction problem, it is also utilized [20]. In
this research, we are using 1D CNN for wind speed prediction.
The characteristics and approaches are the same for all CNNSs,
regardless of dimensionality [21]. The architecture of CNN
(Figure 2 shows for 1D CNN) consists of a convolution layer,
pooling layer, and a fully connected neural network layer,
thus, incorporates local receptive fields to ponder the spatial
information, shared weights, and pooling to consider the
summary statistics in the output.
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Figure 2 The Architecture of 1D Convolution Neural Network

C. Recurrent Neural Network (RNN) - LSTM

Long Short-Term Memory Networks (LSTM), a form of
gated RNN, is proposed to implement. LSTM introduces self-
loops to produce paths where the gradient can flow for a long
duration; thus, it is capable of learning long-term
dependencies [17]. LSTM:s are explicitly designed to avoid the
long-term dependency problem, as illustrated in Figure 3. The
equations describing the operations are listed below.

f@)=0,(W,x, +U thy_ +by) )
i, =O'g(Wixt +U;h,_, +b;) (5)
0, =0,(Wox, +U,h,_, +b,) (6)
¢, =foc,_+tijco.(W.x,+U.h,_;+b,) 7
b =o0,00,(c,) (®)

Where,

X, € R : Input vector to the LSTM unit

fi e R Forget states activation vector

ije R Input/update gate’s activation vector
0,€ R Output gate’s activation vector

h, € R" : Hidden state vector

¢, € R": Cell state vector

WeR™ UeRP pe R": Weight matrices and bias vector
parameters which need to be learned during the training
0, : Sigmoid function

0., O, : hyperbolic tangent function

II1.

Some commonly used accuracy parameters are employed
to evaluate how well a model is performing to predict the
intended parameter [22]. Mean absolute error (MAE), mean
square error (MSE), median absolute error (MedAE), and R-
square (R2) scores are considered to investigate the model
performances on the test set.

PERFORMANCE EVALUATION
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Figure 3 Block Diagram of LSTM Operations

MAE is the average of the absolute values of the error (the
difference between actual response ( y; ) and predicted

response ( ;). As described by (9), n is the number of total

input sets. The lower this value is, the better the model

performance, while the desired is 0.
n ~

Z |y1‘_J’l|

i=1

)
n

MSE is the mean of the square of error terms. Similarly, to

MAE =

MAE, it is desired to have 0 or close value for this term. The

formula for this measure is in (10).

D =i
MSE=%=i=1" "~ (10)
n

MedAE is the median of all the error terms, defined in (11),
thus effective to deal with outliers” effect in the model
performance.

MedAE = median(b’l —)71|, |J’2 - )72|, |y3 _5’3|a---:|yn _)7n|) (11)
R2 score determines how well the model would perform in
predicting the response variable as shown in (12) where y;,
denotes the mean value of all predictions. This value is also
known as the coefficients of determination. The best possible
value is 1 for this case, and the closer to 1, the better model

prediction is.

Do =)

i =7)’

i=1

R2score=1-— (12)

Further feature fit is tested using the residual plot by
graphing the residual (the difference between prediction and
actual value) vs fitted instance.
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IV.

A. Dataset

We collected data from the National Renewable Energy
Laboratory (NREL) database available online [23]. The
dataset considered for this research contains samples of the
three-months-long period starting from May 1, 2018, to July
31, 2018. The raw data entails samples of each minute. It was
converted to average hourly instances. Primarily, the dataset
had 18 features, among which wind speed in 80m height is our
response variable, and other 17 are predictors- solar radiation
[listed as global PSP (Precision Spectral Pyranometer)],
temperature (2m), estimated sea-level pressure, average wind
speed (2m), average wind direction (2m), average wind shear,
turbulence intensity, friction velocity, wind chill temperature,
dew point temperature, relative humidity, specific humidity,
station pressure, average wind speed (5m), accumulated
precipitation, atmospheric electric field, and estimated surface
roughness. Instances inside “( )” represents the height where
the parameter was measured, ‘m’ stands for meters.

SIMULATIONS AND EXPERIMENTS

B. Train-Test Split

The prediction algorithms are trained using a certain
dataset. However, the performance of a model depends on
how well it can predict the response variable when encounters
unknown predictors. Therefore, the dataset is usually divided
into two sets: training and test sets. The training dataset is then
used to train the prediction algorithm while the test set is
allocated to use them as an unknown predictor to analyze the
model performance. The ratio of allocating data for training
and test is randomly selected, but literature shows 70~80% for
training, and 20~30% for the test is common practice [24-26].
In this research, we have separated 80% of the total data to
train the models and rest 20% to test the model performance.

C. Simulation Results

We will discuss the simulation and performances of the
state-of-the-art prediction algorithms for wind speed
prediction in 80m height for the NREL dataset. We listed the
algorithms as Model-1 to 12 in Table 1 and fitted them on the
training data for learning. Once the training finished, we
evaluated model performances according to the accuracy
measures described in Section III on test data.

Normality tests are applied to investigate if the dataset is
well modeled (likelihood of data to be normally distributed).
In this research, we use the graphical test. In this method, the
Chi-Square Quantile-Quantile (Q-Q) plot of multivariate
distribution is analyzed to see if the features are normally
distributed [27]. If normal, the plot should follow the 45-
degree baseline. If not, then normalization is required before
fitting the data to any model. We have graphed the Q-Q plot
(actual value vs. predicted value of wind speed at 80m) for all
models.

For ridge regression, alpha was considered 15 after a few
trial and errors. Similarly, for Lasso, the alpha parameter was
set to 0.1. For SVR, the default kernel initializer was applied.
Table 1 depicts the accuracy measures for each algorithm.
Overall, the considered algorithms were able to predict the
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average wind speed properly with an R2 value greater than 0.9
in most cases, as shown. Among the machine learning
algorithms, MAE, MSE, and MedAE are minimum for
bagging and random forest regression. Both algorithms show
greater accuracy (>96%). Figure 4 illustrates Q-Q plots and
respective residual plots (below each Q-Q plot for the same
model) for Model 1-9. There is a clear linear pattern in Q-Q
plots (for all machine learning algorithms). That verifies the
accuracy measures from Table 1, while again bagging and
random forest regressions show fewer outliers. The residual
plots, in contrast, do not show a linear pattern for any of the
models, that supports their accuracy status from Table 1 and
validates the feature selection [28]. On the other hand, Models
3-5 show the lowest accuracy among the machine learning
regression algorithms with an R2 Score =0.92.

Deep learning models- DNN, CNN, and LSTM, are
denoted as Model 10-12 in Table 1. Both DNN and CNN use
the ReLu activation function. DNN uses thirteen hidden
layers, while the neural network of CNN consists of 50 neural
network layers. Max pooling size for CNN is 2. On the other
hand, LSTM uses a linear activation and consists of 50 hidden
layers. In terms of accuracy and error parameters, CNN
showed the worst performance, while both DNN and LSTM
prediction accuracy were high (>96%). However, LSTM
(Model-12) showed the best performance in terms of all
metrics; thus, it showed the lowest error terms, while the exact
accuracy was 97.8%.

Figure 5 illustrates the deep learning model performances.
Prediction visualization, model loss, and MSE are plotted for
the models and shown top to down for each model. All three
models were run for 500 epochs; however, they reached high
accuracy at around 100 epochs. Furthermore, by observing the
graphs, it is evident that CNN shows disperse prediction while
LSTM is denser. Also, the graphs showing losses and MSE
(per epoch) do not show any phenomenon of overfitting or
underfitting.

Overall, we can see from Table 1, plots, and discussion,
LSTM performed best for our investigation. Therefore, LSTM
is the efficient learning algorithm between 12 test models to
predict the wind speed at 80m height while the temperature at
2m height, estimated sea-level pressure average wind speed at
2m height, average wind direction at 2m height, average wind
shear, turbulence intensity at 2m height, and friction velocity of
a certain location are known.

V.

In this paper, we predicted wind speed at a height that is
challenging to reach by using easy to access weather
parameters. We investigated twelve artificial intelligence
algorithms and concluded that LSTM outperformed other
models with 97.8% prediction accuracy. This research will be
useful for wind farm planning and feasibility study.

CONCLUSIONS
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Figure 4 Model 1-9 Prediction Visualization
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Visualize the prediction (MLP)

‘Visualize the prediction (CNN)

Visualize the prediction (LSTM)
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Figure 5 Deep Learning Prediction Visualization
Table 1 Comparative Model Performances
Model Algorithm Mean Absolute Mean Squared Median R2
Error (MAE) Error (MSE) Absolute Error | Score
(MedAE)
Model-1 Multiple linear regression 0.421 0.357 0.277 0.923
Model-2 Ridge regression (alpha=0.01) 0.579 0.598 0.434 0.872
Model-3 Least absolute shrinkage and selection 0.823 1.156 0.704 0.752
operator (Lasso) regression (alpha=0.01)
Model-4 Bayesian ridge regression 0.428 0.361 0.285 0.922
Model-5 Hubber regression 0.422 0.38 0.259 0.919
Model-6 Bagging regression 0.274 0.171 0.185 0.963
Model-7 Random forest regression 0.275 0.179 0.192 0.962
Model-8 Adaptive boosting (AdaBoost) regression 0.385 0.272 0.297 0.942
Model-9 Support vector regression (SVR) 0.411 0.347 0.261 0.926
Model-10 | Multilayer perceptron (MLP)/ DNN (hidden 0.31 0.178 0.234 0.962
layer=13, activation=relu)
Model-11 CNN (filters=64, kernel size=2, 0.634 0.831 0.45 0.82
activation=relu, maxpooling size=2)
Model-12 RNN - LSTM (kernel=normal, 0.226 0.107 0.145 0.978
activation=linear)
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