978-1-7281-5558-6/20/$31.00 ©2020 IEEE

10th International Conference on Information Science and Technology
Bath, United Kingdom, September 9-15, 2020

Weighted Non-negative Matrix
Factorization for Image Recovery and
Representation

Xiangguang Dai', Keke Zhang', Jiang Xiong', Xianxiu Zhang'!, Zhengwen Tu!, and Nian Zhang?*

1Chongqing Engineering Research Center of Internet of Things and Intelligent Control Technology ,
Chongging Three Gorges University, Wanzhou, Chongqging, 404100, China
2Department of Electrical and Computer Engineering University of the District of Columbia
Washington, D.C., Washington 20008 USA
Emails: daixiangguang@163.com, xk_zhang(0924 @126.com,
jiangxiong1969cq@163.com, 253549484 @qq.com,
zxx1234567 @sina.com, tuzhengwen @ 163.com, nzhang @udc.edu

Abstract—Non-negative matrix factorization and its
variants cannot learn an effective subspace from the
dataset corrupted by outliers. In this article, we
propose a robust non-negative matrix factorization
approach, called weighted non-negative matrix fac-
torization, which can both recover the corrupted data
space and learn a more effective subspace from the
corrupted data space. In the proposed method, intro-
ducing a weighted graph, which uses Boolean values
to mark noise points, while a clean data space and
subspace can be achieved by the unlabel data points.
The proposed problem can be formulated as a non-
convex optimization problem, which can be optimized
by the multiplicative update methods. Taking the
face data polluted by Salt and Pepper noise as an
example, the effectiveness of the proposed method in
image recovery and low-dimensional representations
learning is verified.

Keywords—robustness; image recovery; representa-
tion; non-negative matrix factorization

I. INTRODUCTION

NMF (Non-negative Matrix Factorization) [1] is a
well-known dimensionality-based strategy in which
the original data matrix is converted into two low-
dimensional non-negative matrices including the
coefficient matrix (low-dimensional representation)
and the basic matrix (partial representation of the
original data). In view of its good method, NMF

has been widely used in recommendation system
[2], cluster analysis [3], semi-supervised learning
[4], and other fields.

In recent years, many works have explored excel-
lent nonnegative matrix factorization to deal with
outliers in data sets [5]-[13]. Hamza and Brady
[5] proposed that the Frobenius norm can substi-
tute for the hypersurface cost function (HCNMF).
Compared with NMF, HCNMF has better robust
representation. Gao et al. [7] put forward the capped
norm as the objective function and utilized a thresh-
old to remove outliers. However, it’s difficult to find
a method to ascertain an accurate outlier threshold
value. Guan et al. [10] came up with a three-sigma-
rule to determine outliers and a Truncated Cauchy
objective function to process outliers.

The aforementioned non-negative matrix factor-
ization approaches have been used in signal han-
dling [14], clustering [15] and image classification
[16]. Nevertheless, they have several shortcomings:
1) Many approaches cannot remove non-Gaussian
noise (i.e. Salt and Pepper noise). Therefore, the
learned subspace cannot be applied to classification
or clustering. 2) These approaches using distinct
cost functions presumed that the decomposition
error becomes smaller and smaller, it means that
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representation will be better and better. As far as
we know, the optimization algorithms are more
efficient complex and consume a lot of energy to
realize matrix factorization.

Based on the recent studies, we put up with a
significant matrix factorization framework, namely
WNMF (weighted non-negative matrix factoriza-
tion) to resolve the above-mentioned issues, which
establishes the relationship between original data
and outliers by constructing a weight map. There-
fore, WNMF can recover data and learn a robust
representation from the damaged data. Since the
objective function of WNMF is non-convex, it is
transformed into three convex optimization prob-
lems and solved in turn until convergence. The main
contributions of this paper are as below:

« Recent NMF models are more applicable to
deal with Gaussian noise. In this paper, in
order to eliminate Salt and Pepper noise, we
come up with a weighted non-negative matrix
factorization framework.

« In comparison with recent NMF models, our
proposed model can achieve data recovery,
as well as learn a robust representation. In
addition, our proposed algorithm can be im-
plemented easily.

II. WEIGHTED NON-NEGATIVE MATRIX
FACTORIZATION

Supposed that the corrupted matrix M € R™*™,
the decomposed matrices W € R™*" and H €
R™*™ and the error matrix E € R™*"™ are given.
Traditional NMF and its variant problems can be
reduced to the following problems

loss(M,E,WH) + AQ(E,W, H),
@

where the loss function is to measure the similarity
among M, WH and E, ) is a non-negative param-
eter and the constraint term 2 is to constrain W,
H and E. Thus, non-negative matrix factorization
can summarized by

i M—-WH |2
w:_'i'.fﬁgo" WH |,

min
W>0,H>0,E

2)

Most of NMF variants can remove Gaussian
noise, however, they have some defects: 1) They

cannot handle Salt and Pepper noise completely. 2)
The related algorithms have a huge complexity such
that they cannot learn effective representations from
the data space. 3) few NMF variants can recover
the corrupted data and achieve a clean subspace.
To address above-mentioned problems, we mainly
discuss the relation between Salt and Pepper noise
and the dataset, and propose a more robust and
effective non-negative matrix factorization for data
recovery and representation.

A. Problem Formulation

Let M € R™*" be the damaged matrix and V' €
R™*™ the recovered matrix. The similarity between
M and V is measured by

| (V-M)®8 |%, 3)

where the weight matrix S labels the noisy points.
Here, we propose S by

1,

By optimizing (1), (2) and (3), we hope that V'
can be achieved from the noisy matrix F and the
corrupted matrix M. Thus, the clean representation
H can be leammed from V. Combining (1), (2)
and (3) results in weighted non-negative matrix
factorization (WNMF).

Supposed that the damaged matrix and the error
matrix denote by M € R™*™ and E € R™*"™,
WNMF is to decompose M into three non-negative
matrices W € R™*", H € R"™*™ and E € R™*™,
In summary, WNMF can be formulated as

min  F(W,H,E)
W,H>0,E>0 5)
=|V-WH |z +X[| E®S |},

if S;; is corrupted, @

otherwise.

where V' = M — E and A is the hyper-parameter.

B. Optimization Algorithm

It is obvious that problem (5) is non-convex in
simultaneously optimizing W, H and E. Hence,
no algorithm can achieve a global solution. We
propose a simple optimization scheme to search a
local solution of problem (5).
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Problem (5) can be transformed into three convex
optimization problems. Supposed that the k-th so-
lution of problem (5) is obtained. Thus, the k+1-th
solution is generated by

EFf1 = min | M —wWkHF — E %

, ©®
+AE®S|%
and
S _ k _ pk+l 2
Wi =min [ M-WH" - E™ [F (7
and
B+l _ - _wurktlyr _ pk+l g2
H™ =min || M- W H - E™ |- (8)

Alternately solving (6), (7) and (8), the local opti-
mal solution of problem (5) can be achieved. We
can get the solution of problems (6), (7) and (8) by

M — (WEHF);;

k+1 _
Eij - 1+ AS,:j ’ ©)
k_ pkyppkTy ..
W§§+1 — W:; ((M E )‘P:;-‘ )".‘.' , (10)
(WEHRH®"),;
kL enrk _ mkyy ..

ij ] (WkTWka)tj

According to (9), (10) and (11), we can summa-
rize the specific details in Algorithm 1.

Algorithm 1 Weighted Non-negative Matrix Fac-
torization (WINMF)
Require: W € R™*", H € R™*™ and E € R™*™,
M € R™*"_ iter
Ensure: V, H
1: X and S by (4)
2: for k = 0 to iter do

S

6 W = whGre R
s HE = HE MRy
V=W

III. EXPERIMENT RESULTS

The recovery and the clustering performances are
explored on two face datasets (i.e. ORL and YALE)
and compared it with CauchyNMF [10], RNMF [7],
MahNMF [6] and NMF [1]. We propose two face
datasets (i.e. ORL and YALE) and Salt and Pepper
noise to validate the effectiveness of the above-
mentioned NMF methods.

Salt and Pepper noise contaminates a few pixels
of each image to be 0 or 255. We propose four level
percentage of Salt and Pepper noise from p =10%
to 25% with the step size 5% to corrupt each image.
To validate the effectiveness of all NMF methods,
we utilize Peak Signal-to-Noise Ratio (PSNR) and
Accuracy (AC) and Normalized Mutual Information
(NMI) [17] to test the recovery effect and the
clustering performance.

A, Visualization of Recovered Faces

Supposing A = 100 and iter = 200, the recov-
ered faces achieved by different NMF methods are
presented in Figure 1 and 2. To validate whether all
NMF methods achieve satisfactory face recovery,
we list PSNRS achieved by differen NMF algo-
rithms in Table I and II. From these comparisons,
we can observe

» When p =10%, all NMF methods achieve face
recovery from Salt and Pepper noise. As p
varies, the PSNRs denote that NMF achieves
the worse recovery effects than other NMF
methods. WNMF and CauthyNMF can achieve
face recovery. Above all, NMF cannot handle
Salt and Pepper noise. WNMF and CauthyN-
MF can handle Salt and Pepper noise.

« WNMF obtains the highest PSNRs than other
NMF methods. Although RNMF and Cau-
thyNMF achieve satisfactory performances in
the beginning, they perform worse as p varies.
It is obvious that WINMF achieves the smallest
objective value than other NMF methods.

B. Clustering Performances

Figure 3 presents the clustering results on ORL
corrupted by Salt and Pepper noise. According to
the clustering results, we conclude that
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Fig. 1: Recovered faces from ORL with Salt and
Pepper noise. For each image, the images in the
first row is sample images with different corrupted
percentages, and the images in the last five rows
are the recovered faces by WNMF, NMF, MahNMF,
RNMF and CauchyNMEF.

TABLE I: PSNRs on ORL with Salt and Pepper.

p(%) 10 15 20 25
2528 2517 2505 24.89
NMF 20.83 19.44 1838 1755
MahNMF | 22.82 2168 2079 19.98
RNMF 2347 2232 2116 2004
CauchyNMF | 2376 238 2393 24.09

TABLE II: PSNRs on YALE with Salt and Pepper.
p(%) 10 15 20 25
WNMF

2028 2038 20.17 1992

NMF 17.82 1641 1531 1450
MahNMF 17.73 1634 1531 1438
RNMF 2026 19.19 1817 16.96
CauchyNMF | 18.67 1865 18.62 18.30

« WNMF and CauthyNMF can achieve the better
clustering ACs and NMIs than other NMF
methods, which indicates they can learn an
effective subspace when ORL is corrupted
outliers.

» When p is smaller, CauthyNMF achieves satis-
factory clustering results. However, CauthyN-
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(©) p=20%

Fig. 2: Recovered faces from YALE with Salt and
Pepper noise. For each image, the images in the
first row is sample images with different corrupted
percentages, and the images in the last five rows
are the recovered faces by WNMF, NMF, MahNMF,
RNMF and CauchyNME.

MF achieves poor performances as p varies.

« WNMF has the better clustering performances
as p varies. In the other word, WNMF can
not only remove outliers in the subspace, but
also learn better presentations than other NMF
methods.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a weighted NMF
method (WNMF) to learn a more robust subspace
from the data space contaminated by Salt and
Pepper noise. The main advantages of WNMF are
as follows: (1) WNMF can remove Salt and Pepper
noise more effectively than other NMF methods. (2)
WNMF can not only achieve a cleaner data space,
but also learn a more robust subspace when the data
space is corrupted by outliers. Two questions are
proposed to be discussed as follows:

» Some other noises (i.e. Gaussian noise, Pois-

son noise, etc) can be considered into NMF.
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(b) Clustering NMls

Fig. 3: Clustering ACs and NMIs when p varies
from 10% to 90%.

Therefore, the relation between the noise dis-
tribution and NMF should be discussed.

« WNMF is a unsupervised problem and cannot
be utilized to solve semi-supervised problems.
Hence, manifold learning or label information
should be considered into WNME.
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