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Abstract

Inference problems with conjectured statistical-computational gaps are ubiquitous throughout mod-
ern statistics, computer science, statistical physics and discrete probability. While there has been
success evidencing these gaps from the failure of restricted classes of algorithms, progress towards
a more traditional reduction-based approach to computational complexity in statistical inference
has been limited. These average-case problems are each tied to a different natural distribution,
high-dimensional structure and conjecturally hard parameter regime, leaving reductions among
them technically challenging. Despite a flurry of recent success in developing such techniques, ex-
isting reductions have largely been limited to inference problems with similar structure — primarily
mapping among problems representable as a sparse submatrix signal plus a noise matrix, which is
similar to the common starting hardness assumption of planted clique (PC).

The insight in this work is that a slight generalization of the planted clique conjecture — secret
leakage planted clique (PC,), wherein a small amount of information about the hidden clique is
revealed — gives rise to a variety of new average-case reduction techniques, yielding a web of
reductions relating statistical problems with very different structure. Based on generalizations of
the planted clique conjecture to specific forms of PC,, we deduce tight statistical-computational
tradeoffs for a diverse range of problems including robust sparse mean estimation, mixtures of
sparse linear regressions, robust sparse linear regression, tensor PCA, variants of dense k-block
stochastic block models, negatively correlated sparse PCA, semirandom planted dense subgraph,
detection in hidden partition models and a universality principle for learning sparse mixtures. This
gives the first reduction-based evidence for a number of conjectured statistical-computational gaps.

We introduce a number of new average-case reduction techniques that also reveal novel con-
nections to combinatorial designs based on the incidence geometry of F and to random matrix
theory. In particular, we show a convergence result between Wishart and inverse Wishart matri-
ces that may be of independent interest. The specific hardness conjectures for PC,, implying our
statistical-computational gaps all are in correspondence with natural graph problems such as k-
partite, bipartite and hypergraph variants of PC. Hardness in a k-partite hypergraph variant of PC is
the strongest of these conjectures and sufficient to establish all of our computational lower bounds.
We also give evidence for our PC, hardness conjectures from the failure of low-degree polynomials
and statistical query algorithms. Our work raises a number of open problems and suggests that
previous technical obstacles to average-case reductions may have arisen because planted clique is
not the right starting point. An expanded set of hardness assumptions, such as PC,, may be a key
first step towards a more complete theory of reductions among statistical problems.

Keywords: Statistical-computational tradeoffs, average-case complexity, average-case reductions,
planted clique, secret leakage
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1. Introduction

Computational complexity has become a central consideration in statistical inference as focus has
shifted to high-dimensional structured problems. In many of these problems, the number of samples
or level of signal information theoretically required to solve the problem often is far lower than that
required by efficient algorithms. This phenomenon, referred to as a statistical-computational gap,
was first observed to exist more than two decades ago (Valiant, 1984; Servedio, 1999; Decatur
et al., 2000) but only recently has emerged as a trend ubiquitous in problems throughout modern
statistics, computer science, statistical physics and discrete probability (Bottou and Bousquet, 2008;
Chandrasekaran and Jordan, 2013; Jordan and Mitchell, 2015).

Because statistical inference problems are formulated with probabilistic models on the observed
data, there are natural barriers to basing their computational complexity as average-case problems
on worst-case complexity assumptions such as P £ NP (Feigenbaum and Fortnow, 1993; Bogdanov
and Trevisan, 2006b; Applebaum et al., 2008). To cope with this complication, a number of different
approaches have emerged to provide evidence for conjectured statistical-computational gaps. These
can be roughly classified into two categories:

1. Failure of Classes of Algorithms: Showing that powerful classes of polynomial-time algo-
rithms fail up to the conjectured computational limit of a problem.

2. Average-Case Reductions: The traditional complexity-theoretic approach of exhibiting poly-
nomial time reductions relating statistical-computational gaps in problems to one another.

The line of research providing evidence for statistical-computational gaps through the failure of
powerful classes of algorithms has seen a lot of progress in the past few years. There are now estab-
lished techniques to show lower bounds for average-case problems against a number of classes of
algorithms including the sum of squares (SOS) hierarchy (Barak et al., 2016), low-degree polyno-
mials (Hopkins, 2018; Kunisky et al., 2019), statistical query (SQ) algorithms (Feldman et al., 2013;
Diakonikolas et al., 2017), classes of circuits (Rossman, 2008), local algorithms (Gamarnik and Su-
dan, 2017) and message-passing algorithms (Zdeborova and Krzakala, 2016). Further background
on this line of work can be found in Section A.1.

While there has been success analyzing barriers to these classes of algorithms, progress towards
the reduction-based approach has been more limited. Reductions between average-case problems
are more constrained and overall very different from reductions between worst-case problems. As
discussed in Barak (2017) and Goldreich (2011), average-case reductions are notoriously delicate
and there is a lack of available techniques. Since statistical inference problems are parameterized
and only hard in certain parameter regimes, reductions among them are even more constrained.
In Section A.2, we discuss general criteria that these reductions need to satisfy to show strong
lower bounds. Although technically difficult to obtain, average-case reductions have a number
of advantages — by directly transferring hardness between problems, they are future-proof against
new classes of algorithms and reveal insights into how the parameters, hidden structures and noise
models in these problems correspond to one another.

Despite these challenges, there has been a flurry of recent success in developing techniques for
average-case reductions among statistical problems. Since the seminal paper of Berthet and Rigol-
let (2013a) showing that a statistical-computational gap for a distributionally-robust formulation of
sparse PCA follows from the planted clique (PC) conjecture, there have been a number of further
reductions. Reductions from PC have been used to show lower bounds for RIP certification (Wang
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et al., 2016a; Koiran and Zouzias, 2014), biclustering detection and recovery (Ma and Wu, 2015;
Cai et al., 2015a; Cai and Wu, 2018; Brennan et al., 2019a), planted dense subgraph (Hajek et al.,
2015; Brennan et al., 2019a), testing k-wise independence (Alon et al., 2007), matrix completion
(Chen, 2015) and sparse PCA (Berthet and Rigollet, 2013b,a; Wang et al., 2016b; Gao et al., 2017;
Brennan and Bresler, 2019). Several reduction techniques were introduced in (Brennan et al., 2018),
providing the first web of average-case reductions among a number of problems involving sparsity.
There also have been a number of average-case reductions in the literature starting with different as-
sumptions than the PC conjecture. Hardness conjectures for random CSPs have been used to show
hardness in improper learning complexity (Daniely et al., 2014) and hardness of approximation
(Feige, 2002). Recent reductions also map from a 3-uniform hypergraph variant of the PC conjec-
ture to SVD for random 3-tensors (Zhang and Xia, 2017) and between learning two-layer neural
networks and tensor decomposition (Mondelli and Montanari, 2018a).

A common criticism to the reduction-based approach to computational complexity in statisti-
cal inference is that, while existing reductions have introduced nontrivial techniques for mapping
precisely between different natural distributions, they are not yet capable of transforming between
problems with dissimilar high-dimensional structures. In particular, the vast majority of the reduc-
tions referenced above map among problems representable as a sparse submatrix signal plus a noise
matrix, which is similar to the common starting hardness assumption PC. Such a barrier would be
fatal to a satisfying reduction-based theory of statistical-computational gaps, as the zoo of statistical
problems with gaps contains a broad range of very different high-dimensional structures. This leads
directly to the following central question that we aim to address in this work.

Question 1.1 Can statistical-computational gaps in problems with different high-dimensional struc-
tures be related to one another through average-case reductions?

1.1. Overview

The main objective of this paper is to provide the first evidence that relating differently structured
statistical problems through reductions is possible. We show that mild generalizations of the PC con-
jecture to k-partite and bipartite variants of PC are naturally suited to a number of new average-case
reduction techniques. These techniques break out of the sparse submatrix plus noise structure that
seemed to constrain prior reductions. They thus show that revealing a tiny amount of information
about the hidden clique vertices substantially increases the reach of the reductions approach, pro-
viding the first web of reductions among statistical problems with significantly different structure.
Our techniques also yield reductions beginning from hypergraph variants of PC which, along with
the k-partite and bipartite variants mentioned above, can be unified under a single assumption that
we introduce — the secret leakage planted clique (PC,) conjecture. This conjecture makes a precise
prediction of what information about the hidden clique can be revealed while PC remains hard.

A summary of our web of average-case reductions is shown in Figure 1. Our reductions yield
tight statistical-computational gaps for a range of differently structured problems, including robust
sparse mean estimation, variants of dense stochastic block models, detection in hidden partition
models, semirandom planted dense subgraph, negatively correlated sparse PCA, mixtures of sparse
linear regressions, robust sparse linear regression, tensor PCA and a universality principle for learn-
ing sparse mixtures. This gives the first reduction-based evidence supporting a number of gaps
observed in the literature (Li, 2017; Balakrishnan et al., 2017a; Diakonikolas et al., 2017; Chen and
Xu, 2016; Hajek et al., 2015; Brennan et al., 2018; Fan et al., 2018; Liu et al., 2018; Richard and
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Figure 1: The web of reductions carried out in this paper. An edge indicates existence of a reduction
transferring computational hardness from the tail to the head. Edges are labeled with associated techniques
and unlabelled edges correspond to simple reductions or specializing a problem to a particular case.

Montanari, 2014; Hopkins et al., 2015; Wein et al., 2019; Azizyan et al., 2013; Verzelen and Arias-
Castro, 2017). The specific instantiations of the PC, conjecture needed to obtain these lower bounds
correspond to natural k-partite, bipartite and hypergraph variants of PC. Among these hardness as-
sumptions, we show that hardness in a k-partite hypergraph variant of PC (k-HPC®) is the strongest
and sufficient to establish all of our computational lower bounds. We also give evidence for our
hardness conjectures from the failure of low-degree polynomials and statistical query algorithms.

Our results suggest that PC may not be the right starting point for average-case reductions among
statistical problems. However, surprisingly mild generalizations of PC are all that are needed to
break beyond the structural constraints of previous reductions. Generalizing to either PC,, or k-HPC®
unifies all of our reductions under a single hardness assumption, now capturing reductions to a
range of dissimilarly structured problems including supervised learning tasks and problems over
tensors. This suggests PC, and k-HPC?® are both much more powerful candidate starting points
than PC. Although we often will focus on providing evidence for statistical-computational gaps, we
emphasize that our main contribution is more general — our reductions give a new set of techniques
for relating differently structured statistical problems that seem likely to have further applications.

The rest of the paper is structured as follows. In Section 2, we introduce the PC, conjecture
and the specific instantiations of this conjecture that imply our computational lower bounds, such as
k-HPC?®. In Section 3 we formally introduce the problems in Figure 1 and state our main theorems.
In Section 4, we give a very brief overview of our techniques. In Part I, we give further background,
more detailed discussions of our main results and technical contributions and state several future
directions. In Part II, we formally introduce our main reduction techniques. Part III is devoted to
our hardness assumptions and the PC, conjecture, our reductions to the problems in Figure 1 and
deducing our main theorems. Reading Part I, Section K and the pseudocode for our reductions gives
an accurate summary of the theorems and ideas in this work.
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2. Planted Clique and Secret Leakage

In this section, we introduce planted clique and our generalization of the planted clique conjecture.
In the planted clique problem (PC), the task is to find the vertex set of a k-clique planted uniformly
at random in an n-vertex Erdés-Rényi graph G. Planted clique can equivalently be formulated as a
testing problem PC(n, k, 1/2) (Alon et al., 2007) between the two hypotheses

Hy:G~G(n,1/2) and H;:G~G(n,k,1/2)

where G(n, 1/2) denotes the n-vertex Erd6s-Rényi graph with edge density 1/2 and G(n, k,1/2)
the distribution resulting from planting a k-clique uniformly at random in G(n, 1/2). This problem
can be solved in quasipolynomial time by searching through all vertex subsets of size (2 + €) logy n.
if k > (24 €) logy n. The Planted Clique Conjecture is that there is no polynomial time algorithm
solving PC(n, k,1/2) if k = o(y/n).

There is a plethora of evidence in the literature for the PC conjecture. Spectral algorithms,
approximate message passing, semidefinite programming, nuclear norm minimization and several
other polynomial-time combinatorial approaches all appear to fail to solve PC exactly when k =
o(y/n) (Alon et al., 1998; Feige and Krauthgamer, 2000; McSherry, 2001; Feige and Ron, 2010;
Ames and Vavasis, 2011; Dekel et al., 2014; Deshpande and Montanari, 2015a; Chen and Xu, 2016).
Lower bounds against low-degree sum of squares relaxations (Barak et al., 2016) and statistical
query algorithms (Feldman et al., 2013) have also been shown up to k = o(y/n).

Secret Leakage PC. We consider a slight generalization of the planted clique problem, where
the input graph G comes with some information about the vertex set of the planted clique. This
corresponds to the vertices in the k-clique being chosen from some distribution p other than the
uniform distribution of k-subsets of [n], as formalized in the following definition.

Definition 1 (Secret Leakage PC,) Given a distribution p on k-subsets of [n|, let G,(n, k,1/2) be
the distribution on n-vertex graphs sampled by first sampling G ~ G(n,1/2) and S ~ p indepen-
dently and then planting a k-clique on the vertex set S in G. Let PCp(n, k, 1/2) denote the resulting
hypothesis testing problem between Hy : G ~ G(n,1/2) and Hy : G ~ G,(n, k,1/2).

All of the p that we will consider will be uniform over the k-subsets that satisfy some constraint.
In the cryptography literature, modifying a problem with a promise of this form is referred to as
information leakage about the secret (Kalai and Reyzin, 2019). The hardness of the Learning with
Errors (LWE) problem is unconditionally robust to leakage (Dodis et al., 2010; Goldwasser et al.,
2010), and it is left as an interesting open problem to show the same is true for PC.

Both PC and PC,, fall under the class of general parameter recovery problems where the task is
to find Ps generating the observed graph from a family of distributions { Ps}. In the case of PC,
Pg denotes the distribution G(n, k, 1/2) conditioned on the k-clique being planted on S. Observe
that the conditional distributions { Ps} are the same in PC and PC,. Secret leakage can be viewed
as placing a prior on the parameter S of interest, rather than changing the main average-case part of
the problem — the family { Ps}. When p is uniform over a family of k-subsets, secret leakage cor-
responds to imposing a worst-case constraint on .S. In particular, consider the maximum likelihood
estimator (MLE) for a general parameter recovery problem given by

N

S =arg max Ps(G)
Sesupp(p)
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As p varies, only the search space of the MLE changes while the objective remains the same. We
make the following precise conjecture of the hardness of PC,(n, k,1/2) for the distributions p we
consider. Given a distribution p, let p,(s) = Pg g1 e2[|S N S| = 5] be the probability mass
function of the size of the intersection of two independent random sets S and .S” drawn from p.

Conjecture 2 (Secret Leakage Planted Clique (PC,) Conjecture) Let p be one of the distribu-
tions on k-subsets of [n] given below in Conjecture 3. Suppose that there is some py = op(1),
parameter d = Oy,((logn)'*°) and constant § > 0 such that p,(s) satisfies the tail bounds

() <p. {20 1< <d
Dp = Po 372d74 if 82 > d

Then there is no poly(n) time algorithm solving PC,(n, k,1/2).

While this conjecture is only stated for the specific p corresponding to the hardness assumptions
used in our reductions, we believe it should hold for a wide class of p with sufficient symmetry. The
motivation for the decay condition on p, in the PC, conjecture is from the low-degree conjecture
— that low-degree polynomials predict the computational barriers for a broad class of inference
problems — which has been shown to match conjectured statistical-computational gaps in a number
of problems (Hopkins and Steurer, 2017; Hopkins, 2018; Kunisky et al., 2019; Bandeira et al.,
2019). In Section K, we discuss the low-degree conjecture and how it relates to the PC,, conjecture,
candidate general conditions under which the PC,, conjecture holds, and we evidence supporting the
PC, conjecture from the failure of low-degree polynomials and SQ lower bounds.

Hardness Conjectures for Specific p. In our reductions, we will only need the PC,, conjecture for
specific p, all of which correspond to their own hardness conjectures in natural variants of PC. We
now introduce these specific hardness assumptions and briefly outline how each can be produced
from an instance of PC,. This is more formally discussed in Section K.1. Let Gg(m,n,1/2) denote
the distribution on bipartite graphs G with parts of size m and n wherein each edge between the two
parts is included independently with probability 1/2.

e k-partite PC: Suppose that k divides n and let E be a partition of [n] into k parts of size
n/k. Let k-PCg(n, k, 1/2) be PC,(n, k,1/2) where p is uniformly distributed over all k-sets
intersecting each part of E in exactly one element.

e bipartite PC: Let BPC(m, n, ky,, kn, 1/2) be the problem of testing between Hy : G ~
Gp(m,n,1/2) and H; under which G is formed by planting a complete bipartite graph with
k., and k,, vertices in the two parts, respectively, in a graph sampled from Gg(m,n,1/2).
This problem can be realized as a bipartite subgraph of an instance of PC,,.

e k-part bipartite PC: Suppose that k,, divides n and let E be a partition of [n] into k,, parts
of size n/k,. Let k-BPCg(m,n, ky, kn, 1/2) be BPC where the k,, vertices in the part of size
n are uniform over all k,-sets intersecting each part of F in exactly one element, as in the
definition of k-PCp. As with BPC, this problem can be realized as a bipartite subgraph of an
instance of PC,, now with additional constraints on p to enforce the k-part restriction.

e k-partite hypergraph PC: Let k,n and E be as in k-PC. Let k-HPC%(n, k,1/2) where
s > 3 be the problem of testing between Hj, under which G is an s-uniform Erd6s-Rényi
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hypergraph where each hyperedge is included independently with probability 1/2, and Hj,
under which G is first sampled from H( and then a k-clique with one vertex chosen uniformly
at random from each part of E is planted in G. This problem has a simple correspondence
with PC, — there is a specific p, stated explicitly in Section K. 1, that corresponds to unfolding
the adjacency tensor of this hypergraph problem into a matrix.

Since F is always revealed in these problems, it can without loss of generality be taken to be any
partition of [n] into k equally-sized parts. We will often simplify notation by dropping the subscript
F from the above notation. We conjecture the following computational barriers for these graph
problems, each of which matches the decay rate condition on of p,(s) in PC, conjecture, as we will
show in Section K.1. Further remarks on Conjectures 2 and 3 can be found in Section B.2.

Conjecture 3 (Specific Hardness Assumptions) Suppose that m and n are polynomial in one
another. Then there is no poly(n) time algorithm solving the following problems:

1. k-pC(n,k,1/2) when k = o(y/n);

2. BPC(m,n, kpy, kn, 1/2) when k,, = o(y/n) and k,, = o(y/m);

3. k-BpC(m,n, ky,, kn,1/2) when k,, = o(\/n) and ky, = o(/m); and
4. k-HpC®(n, k,1/2) for s > 3 when k = o(y/n).

3. Problems and Statistical-Computational Gaps

In this section, we introduce the problems we consider and give informal statements of our main
theorems, each of which is a tight computational lower bound implied by one of the assumptions in
Conjecture 3. We remark that these lower bounds also follow from planted dense subgraph (PDS)
variants of our assumptions or only from the hardness of k-HPC?®, which is the strongest assumption.
A much more detailed discussion of our results and further background on the problems we consider
can be found in Section B. We also defer stating and discussing our main theorem for one problem
— semirandom planted dense subgraph — entirely to Section B.

Statistical Problems and Computational Lower Bounds. Every problem P(n,a1,as,...,a;)
we consider has a natural parameter n and several other parameters a;(n), az(n), ..., at(n), which
will typically be implicit functions of n. If P is a hypothesis testing problem with observation
X and hypotheses Hy and Hj, an algorithm A is deemed to solve P subject to the constraints
C if it has asymptotic Type I+II error bounded away from 1 when (n,a1,as,...,a;) € C ie.
if Py, [A(X) = Hi| + Pu, [A(X) = Hyp) = 1 — Q,(1). If P is an estimation problem with a
parameter 6 of interest and loss ¢, then A solves P subject to the constraints C if /(A(X),0) < eis
true with probability 1 — o0,(1) when (n, ay, ag,...,as€) € C, where € = €(n) is a function of n.
We say there is a computational lower bound for P in a parameter regime C if for any se-
quence of parameters {(n,a1(n),az(n),...,a:(n))}>2,; C C there is another sequence given by
{(n;, a}(ni), ah(ni), ..., a;(n;)) 2, € C such that P(n;, a’(n;), ah(n;), ..., ax(n;)) cannot be
solved in poly(n;) time and lim;_,, log a}.(n;)/logak(n;) = 1. In other words, there is a lower
bound at C if, for any sequence s in C, there is another sequence of parameters that cannot be solved
in polynomial time and whose growth rate matches the growth rate of a subsequence of s. Thus
all of our computational lower bounds are strong lower bounds in the sense that rather than show
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that a single sequence of parameters is hard, we show that parameter sequences filling out all pos-
sible growth rates in C are hard. Throughout the paper, we adopt the standard asymptotic notation
O(-),Q(-),0(-),w(-) and O(-). We let O(-) and analogous variants denote these relations up to
polylog(n) factors, where n is the natural parameter of the problem and will be clear from context.

Robust Sparse Mean Estimation. In sparse mean estimation, the observations X1, Xo,..., X,
are n independent samples from N (u, I;) where 1 is an unknown k-sparse vector in R? of bounded
£5 norm and the task is to estimate p within an ¢ error of 7. This is a gapless problem, as taking
the largest k coordinates of the empirical mean runs in poly(d) time and achieves the information-
theoretically optimal sample complexity of n = ©(klogd/72).

If an e-fraction of these samples are corrupted arbitrarily by a computationally unbounded ad-
versary, this yields the robust sparse mean estimation problem RSME(n, k,d, 7,€). As discussed
in (Li, 2017; Balakrishnan et al., 2017a), the problem is only information-theoretically possible if
7 = Q(e) and estimating at the optimal rate of 7 = ©(e) is only possible with n = O(klog d/¢?)
samples. However, the best known polynomial-time algorithms require n = (:)(k2 log d/€?) samples
to estimate p within 7 = ©(ey/loge~1) in £2. We give a reduction showing that these polynomial
time algorithms are optimal, yielding the first average-case evidence for the k-to-k? statistical-
computational gap conjectured in Li (2017) and Balakrishnan et al. (2017a). Our reduction also
yields the first prediction for the dependence of the computational barrier of RSME on the rate 7.

Theorem 4 (Lower Bounds for RSME) Ifk, d and n are polynomial in each other, k = o(+/d) and
€ < 1/2is such that (n, e~ ') satisfies condition (T), then the k-BPC conjecture implies that there is
a computational lower bound for RSME(n, k, d, T, €) at all sample complexities n = 6(k?e? /74).

In Theorem 4, (T) denotes a technical condition arising from number-theoretic constraints in
our reduction that require that ¢! = n°() or ¢! = (:)(n_l/ 2t) for some positive integer . As
e ! = n°0) is the primary regime of interest in the RSME literature, this condition is typically
trivial. This condition arises in several of our main theorems and we discuss it in more detail
in Section L. We also give an alternate reduction removing it from Theorem 4 in the case where
¢ = ©(n~°) for some constant ¢ € [0,1/2].

Dense Stochastic Block Models. The stochastic block model (SBM) is the canonical model for
community detection and has a long history in the statistics, computer science and statistical physics
communities (Abbe, 2017; Moore, 2017). In the k-block SBM, a vertex set of size n is uniformly at
random partitioned into & latent communities Cy, Co, . . ., C each of size n/k and edges are then
included in the graph G independently such that intra-community edges appear with probability
p while inter-community edges appear with probability ¢ < p. The task is to approximately or
exactly recover the communities C, Ca, . .., Ck. In the sparse regime when p = a/n and ¢ = b/n
for constants a and b, the best known algorithms begin to work at the Kesten-Stigum threshold of
SNR = (a — b)?/k(a + (k — 1)b) > 1 while the information-theoretic limit is much lower at
SNR = O(log k/k) (Decelle et al., 2011; Abbe and Sandon, 2018; Banks et al., 2016). The k-block
SBM for general edge densities p and ¢ has also been studied extensively under the names graph
clustering and graph partitioning (Boppana, 1987; Dyer and Frieze, 1989; Condon and Karp, 2001;
McSherry, 2001; Bollobas and Scott, 2004; Chen et al., 2014a; Chen and Xu, 2016). For growing k
satisfying k = O(y/n) and p and ¢ with p = ©(¢) and 1 — p = ©(1 — q), the best known poly(n)
time algorithms require SNR = (p — ¢)2/q(1 — q) = Q(k?/n), which is an asymptotic extension of
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the Kesten-Stigum threshold to general p and q. In contrast, the statistically optimal rate of recovery
is again roughly a factor of k lower at Q(k/n).

In this work, we show computational lower bounds matching the Kesten-Stigum threshold up to
a constant factor in a mean-field analogue of recovering a first community C} in the £-SBM, when p
and q are bounded away from 0 and 1. Consider a sample G from the k-SBM restricted to the union

of the other communities Co, . .., C. This subgraph has average edge density approximately given
by ¢ =p/(k—1)+(k—2)q/(k—1). We consider the imbalanced SBM problem ISBM(n, k, p, ¢, §),
where the task is to recover the community C in the graph G’ in which the subgraph on Cs, ..., Cy

is replaced by the corresponding mean-field Erdds-Rényi graph G(n — n/k, §). Our main result for
ISBM is the following lower bound up to the asymptotic Kesten-Stigum threshold.

Theorem 5 (Lower Bounds for 1ISBM) Suppose that (n, k) satisfy condition (T), that k is prime
or k = wy(1) and k = o(n'/?), and suppose that q € (0,1) satisfies min{q,1 — ¢} = Q,(1). If
Gg=p/(k—1)+ (k—2)q/(k — 1), then the k-PC conjecture implies that there is a computational
lower bound for 1SBM(n, k, p, q, G) below the Kesten-Stigum threshold of ((;?1_33; = 6(k%/n).

Testing Hidden Partition Models. We also introduce two testing problems we refer to as the
Gaussian and bipartite hidden partition models, which demonstrate the versatility of our reduc-
tion technique dense Bernoulli rotations in transforming hidden structure. The task in the bipartite
hidden partition model problem is to test for the presence of a planted r K-vertex subgraph, sam-
pled from an r-block stochastic block model, within an n-vertex Erd6s-Rényi bipartite graph. Let
BHPM(n, r, K, Py, ~y) denote this problem with ambient edge density P, edge density Py+y within
the communities in the subgraph and Fy — T%l on the rest of the subgraph. The Gaussian hidden
partition model problem GHPM(n, r, K, ) is a corresponding Gaussian analogue. These problems
are formally introduced in Section B.5. As we will show in Section M.2, an empirical variance
test succeeds above the threshold %%,mp = O(n/rK?) and an exhaustive search succeeds above
Vg = O(1/K) in GHPM and BHPM when P is bounded away from 0 and 1. The following theorem
states our main lower bounds for these problems, showing that both have a statistical-computational
gap and that the empirical variance test is approximately optimal among efficient algorithms.

Theorem 6 (Lower Bounds for GHPM and BHPM) Suppose that r?* K2 = &(n) and ([v2K?/n],r)
satisfies condition (T), suppose r is prime or v = wy(1) and suppose that Py € (0,1) satisfies
min{ Py, 1 — Py} = Q,(1). Then the k-PC conjecture implies that there is a computational lower
bound for each of GHPM(n, T, K, ~y) for all levels of signal v* = 6(n/rK?). This same lower bound
also holds for BHPM(n, 7, K, Py, ~y) given the additional condition n = o(rK*/3).

Negatively Correlated Sparse PCA. In the spiked covariance model (Johnstone and Lu, 2004)
of sparse PCA, the observations X = (X1, X», ..., X,,) are n independent samples from either

Hy: X ~N(0,I)%" and Hp: X ~N(0,Ig+ 6Ovo")®"

The information-theoretically optimal rate of detection is at the level of signal = ©(y/klogd/n)
(Berthet and Rigollet, 2013b). When k& = o(\/g), the best known polynomial time algorithms for
sparse PCA require that 6 = Q(y/k?/n) and, furthermore, this is implied by the PC conjecture
(Berthet and Rigollet, 2013a; Brennan and Bresler, 2019).

In the negatively correlated sparse PCA problem NEG-SPCA(n, k, d, ), the alternative hypoth-
esis is instead given by H; : X ~ N(0, I; — vvT)®". Although the ordinary and negative variants
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appear to have the same statistical and computational limits, they are stochastically very differently
structured problems. A sample from the ordinary spiked covariance model can be expressed as
X; = V0 - gv+ N(0,1;) where g ~ N(0,1) is independent of the NV'(0, I;) term. While this
representation is crucial in existing reductions to sparse PCA, negative sparse PCA does not admit
a representation of this form, making reductions to the latter problem technically challenging.

Theorem 7 (Lower Bounds for NEG-SPCA) If d = poly(n), k = o(\/d) and k = o(n'/9), the
BPC conjecture implies a computational lower bound for NEG-SPCA(n, k,d, 0) for 0 = o6(\/k?/n).

Our proof of this theorem involves characterizing when a Wishart matrix and its inverse con-
verge in KL divergence, which may be of independent interest. This analysis produces the parameter
constraint k = o(n'/9) in the theorem above and in our next two theorems, which we believe is an
artefact of our techniques and possibly removable. As we will discuss further in Section B.7, condi-
tions of this form do not affect the tightness of our lower bounds, but rather only impose a constraint
on the level of sparsity k. Our motivation for considering NEG-SPCA is that it has a fundamen-
tal connection to the structure of supervised problems whereas ordinary sparse PCA does not. In
particular, our reduction to NEG-SPCA is a crucial subroutine in reducing to our next two problems.

Unsigned and Mixtures of Sparse Linear Regressions. In learning mixtures of sparse linear
regressions (SLR), the observations (X1,y1), (X2,92),...,(Xn,yn) are n independent sample-
label pairs given by y; = (8, X;) + n; where X; ~ N(0,13), n; ~ N(0,1) and 3 is chosen
from a mixture distribution v over a finite set k-sparse vectors {f1, 32,..., 0} of bounded /o
norm (Stidler et al., 2010; Wang et al., 2014; Yi and Caramanis, 2015). The task is to estimate the
components [3; that are sufficiently likely under v in {2 norm i.e. to within an /5 distance of 7.

We show that a statistical-computational gap emerges for mixtures of SLRs even in the simplest
case where there are . = 2 components, the mixture distribution v is known to sample each com-
ponent with probability 1/2 and the task is to estimate even just one of the components {31, 52} to
within ¢ norm 7. We refer to this simplest setup for learning mixtures of SLRs as MSLR(n, k, d, 7).

Theorem 8 (Lower Bounds for MSLR) If k,d and n are polynomial in each other, k = o(~\/d)
and k = o(nl/ﬁ), then the k-BPC conjecture implies that there is a computational lower bound for
MSLR(n, k, d, T) at all sample complexities n = 6(k* /7).

We will prove this theorem by reducing to the problem of testing between the mixtures of
SLRs model when 81 = —f5 and a null hypothesis under which y and X are independent. The
information-theoretic limit of this testing problem occurs at the sample complexity n = (:)(k: logd/T%)
(Fan et al., 2018), and thus our reduction establishes a k-to-k? statistical-computational gap. Our
reduction to MSLR also implies a k-to-k? gap in a generalized variant of sparse phase retrieval. This
provides partial evidence supporting a conjecture in Li and Voroninski (2013), Cai et al. (2016),
Wang et al. (2017), Barbier et al. (2019) and Celentano et al. (2020).

Robust Sparse Linear Regression. In SLR, the observations (X1, 1), (X2,y2), .., (Xn,¥Yn)
are independent sample-label pairs given by y; = (8, X;) + n; where X; ~ N(0,X), n; ~
N(0,1) and 8 is an unknown k-sparse vector with bounded ¢, norm. The task is to estimate 3 to
within /3 norm 7. The robust SLR problem RSLR(n, k, d, T, €) is obtained when a computationally-
unbounded adversary corrupts an arbitrary e-fraction of the observed sample-label pairs. In this
work, we consider the simplest case of 3 = I; where ordinary SLR is gapless but robustness seems

10
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to induce a statistical-computational gap. In particular, n = Q(k log d/e?) samples are sufficient to
solve RSLR when 7 = é(e) (Liu et al., 2018; Li, 2017), while the best known polynomial-time algo-
rithms require n = ©(k? log d/e?) samples (Balakrishnan et al., 2017a; Liu et al., 2018). Similar to
RSME, robust SLR is only information-theoretically possible if 7 = Q(¢) (Gao, 2020). We deduce
the following tight computational lower bound for RSLR providing evidence for this conjecture.

Theorem 9 (Lower Bounds for RSLR) If k. d and n are polynomial in each other, k = o(nl/ 6),
k = o(\/d) and € < 1/2 is such that ¢ = Q(n~'/?), then the k-BPC conjecture implies that there is
a computational lower bound for RSLR(n, k, d, T, €) at all sample complexities n = 6(k%e2/7%).

Tensor PCA. In Tensor PCA, the observation is an order s tensor 7" with dimensions of length n
given by T ~ 0v®* + N(0,1)®"“", where v has a Rademacher prior and is distributed uniformly
over {—1,1}" (Richard and Montanari, 2014). The task is to recover v within nontrivial {5 error
o(y/n) and is only information-theoretically possible if 6 = & (n(1=%)/2), while the best known
polynomial-time algorithms all require the higher signal strength § = Q(nfs/ 4) (Richard and Mon-
tanari, 2014; Lesieur et al., 2017; Jagannath et al., 2018; Hopkins et al., 2015, 2016; Wein et al.,
2019). We show lower bounds against efficient algorithms with a low false positive probability of
error in the hypothesis testing formulation of tensor PCA where T' ~ N (0, 1)®”®s under Hp and T
is sampled from the tensor PCA distribution described above under H;. As will be shown in Section
N, this implies the same lower bounds hold in the estimation variant of tensor PCA.

Theorem 10 (Lower Bounds for TPCA) Let n be a parameter and s > 3 be a constant, then
the k-HPC® conjecture implies a computational lower bound for TPCA®(n, ) when 6 = 6(n~°/%)
against poly(n) time algorithms A solving TPCA®*(n,0) with a low false positive probability of
Py, [A(T) = Hi] = O(n™?).

Universality for Learning Sparse Mixtures. So far, the problems we have considered all have
either Gaussian or Bernoulli noise distributions. Our final reduction shows that our techniques have
implications beyond simple noise distributions, yielding computational lower bounds for the gener-
alized learning sparse mixtures problem GLSM. In GLSM(n, k, d,U) where Y = (D, Q,{ P, },er),
D is a mixture distribution on R and the elements of the family {P, },cr and Q are distributions on
a measurable space satisfying mild conditions outlined in Section F.3. The observations in GLSM
are n independent samples X1, X5, ..., X,, formed as follows:

e for each sample X;, draw some latent variable v; ~ D and
e sample (X;); ~ P, if j € S and (X;); ~ Q otherwise, independently

where .S is some unknown subset containing k of the d coordinates. The task in GLSM is to recover

S. Given a collection of distributions ¢/ from a wide universality class UC(NN), we define its level

of signal 74 to be the best asymptotic upper bound on ‘gg (z) — dgé” (x)‘ forall v € [-1,1],

subject to several additional technical conditions introduced formally in Section B.11. We prove the
following computational lower bound for GLSM in terms of 77;, which generalizes optimal lower
bounds for learning sparse mixtures of Gaussians (Azizyan et al., 2013) and sparse PCA.

Theorem 11 (Computational Lower Bounds for GLSM) Let n, k and d be polynomial in each
other and such that k = o(\/d). Suppose that the collections of distributions U = (D, Q, {P,},cr)
is in UC(n). Then the k-BPC conjecture implies a computational lower bound for GLSM (n, k, d,U)
at all sample complexities n = 0 (7'1;4).

11
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4. Overview of Techniques

We now give a brief overview of our main techniques and their roles in Figure 1. A much more
detailed technical overview of the ideas in this work can be found in Section C.

Dense Bernoulli Rotations. This is a simple reduction primitive that begins with a random vector
of independent entries in {0,1}" and one unknown bit 7 with an elevated mean and produces a
vector from N (A;, I,,), approximately in total variation without knowing i. The prescribed mean
vectors Ay, Aa, ..., A, € R™ can be any set satisfying that the largest singular value of the matrix
A with columns A; is at most O(1/+/Iogn). This yields a general structure-transforming primitive
that will be used throughout our reductions. Each such use will consist of many local applications
of dense Bernoulli rotations to sub-blocks of the adjacency matrix of the input PC,, instance.

Design Matrices and Tensors. In each of our applications of dense Bernoulli rotations, the key
technical obstacle is designing a set of vectors Ay, Ao, ..., A, that simultaneously matches the
combinatorial structure of the target distribution and does not degrade the level of signal in the
input. We introduce several families of matrices based on the incidence geometry of finite fields
achieving these two objectives in the problems we reduce to. We also give an involved design
tensor construction based on this geometry and linear functions in IF,. for GHPM and BHPM, as well
as an alternative random matrix construction for our reductions to RSME and RSLR.

Decomposing Linear Regression and Label Generation. Our reductions to MSLR and RSLR
are motivated by the observation that X conditioned on y in a single sample from either of these
problems can be expressed as the independent sum of: (1) the output of our reduction to RSME, and
(2) a sample from NEG-SPCA. Furthermore, when MSLR and RSLR are near their computational
barriers, so are both of the instances in this sum. Our reductions use this decomposition along with
a technique for generating a sample (X, y) given X |y = ¢’ where ¢/ is from a fixed binary set.

Producing Negative Correlations and Inverse Wishart Matrices. As RSME can be mapped to
with dense Bernoulli rotations, to produce MSLR and RSLR, a cloning trick shows that it suffices to
reduce to NEG-SPCA. Our main idea is to produce samples X1, Xo, ..., X,, € R™ from ordinary
sparse PCA by applying a reduction of Brennan and Bresler (2019) and then to output the columns
of 371/2R where 3 is a rescaling of the empirical covariance matrix of the X;’s and R is an
independent m X m matrix sampled from Haar measure on the Stiefel manifold. To prove the
correctness of this reduction, we characterize when a Wishart matrix and its inverse converge in KL
divergence, which may be of independent interest.

Completing Tensors from Hypergraphs and Tensor PCA. In order to apply dense Bernoulli
rotations in our reduction to TPCA, it is crucial to complete missing diagonal entries in the adjacency
tensor of the input k-HPC® instance to produce an instance of a planted subtensor problem. This
involves an iterative cloning procedure, causing our reduction to require multiple queries to a tensor
PCA blackbox, as opposed to a typical reduction in total variation which requires a single query.

Symmetric 3-ary Rejection Kernels and Universality. Our final reduction technique is a variant
of the rejection kernels introduced in Brennan et al. (2018) and Brennan et al. (2019a) designed to
show tight lower bounds for learning sparse mixtures where ordinary rejection kernels fail to. This
technique is the key step in our reduction to GLSM.

12
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Part I
Detailed Background and Overview

In this part, we expand upon the previous sections to give more detailed background on average-
case reductions, an in-depth discussion of the problems we consider and our main theorems and
a detailed overview of our technical contributions and reduction primitives. We remark that we
include some redundancy for clarity of exposition.

Appendix A. Statistical-Computational Gaps and Average-case Reductions

In this section, we give a more detailed description of the prior work on statistical-computational
gaps and average-case reductions. We also outline four general criteria for a reduction between
statistical problems to show strong computational lower bounds, and discuss the technical obstacles
arising in devising these reductions.

A.1. Deferred Background from Section 1

Failure of Classes of Algorithms. In the last few years, there have been many exciting develop-
ments in the line of research analyzing when powerful classes of algorithms fail to solve average-
case problems. A breakthrough work of Barak et al. (2016) developed the general technique of
pseudocalibration for showing SOS lower bounds, and used this method to prove tight lower bounds
for planted clique (PC). In Hopkins (2018), pseudocalibration motivated a general conjecture on the
optimality of low-degree polynomials for hypothesis testing that has been used to provide evidence
for a number of additional gaps (Hopkins and Steurer, 2017; Kunisky et al., 2019; Bandeira et al.,
2019). There have also been many other recent SOS lower bounds (Grigoriev, 2001; Deshpande
and Montanari, 2015b; Ma and Wigderson, 2015; Meka et al., 2015; Kothari et al., 2017; Hopkins
et al., 2018; Raghavendra et al., 2018; Hopkins et al., 2017; Mohanty et al., 2019). Other classes
of algorithms for which there has been progress in a similar vein include statistical query algo-
rithms (Feldman et al., 2013, 2015; Diakonikolas et al., 2017, 2019b), classes of circuits (Razborov
and Rudich, 1997; Rossman, 2008, 2014), local algorithms (Gamarnik and Sudan, 2017; Linial,
1992) and message-passing algorithms (Zdeborova and Krzakala, 2016; Lesieur et al., 2015, 2016;
Krzakata et al., 2007; Ricci-Tersenghi et al., 2019; Bandeira et al., 2018). Another line of work
has aimed to provide evidence for computational limits by establishing properties of the energy
landscape of solutions that are barriers to natural optimization-based approaches (Achlioptas and
Coja-Oghlan, 2008; Gamarnik and Zadik, 2017; Ben Arous et al., 2017, 2018; Ros et al., 2019;
Chen et al., 2019; Gamarnik and Zadik, 2019).

Background on Average-Case Reductions. While there has been success analyzing when these
classes of algorithms fail to solve average-case problems, progress towards a traditional reduction-
based approach to their computational complexity has been more limited. This is because reductions
between average-case problems are more constrained and overall very different from reductions be-
tween worst-case problems. Average-case combinatorial problems have been studied in computer
science since the 1970’s (Karp, 1977; Kucera, 1977). In the 1980’s, Levin introduced his the-
ory of average-case complexity (Levin, 1986), formalizing the notion of an average-case reduction
and obtaining abstract completeness results. Since then, average-case complexity has been studied
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extensively in cryptography and complexity theory. A survey of this literature can be found in Bog-
danov and Trevisan (2006a) and Goldreich (2011). As discussed in (Barak, 2017) and (Goldreich,
2011), average-case reductions are notoriously delicate and there is a lack of available techniques.
Although technically difficult to obtain, average-case reductions have a number of advantages over
other approaches. Aside from the advantage of being future-proof against new classes of algorithms,
showing that a problem of interest is hard by reducing from PC effectively subsumes hardness for
classes of algorithms known to fail on PC and thus gives stronger evidence for hardness. Reduc-
tions preserving gaps also directly relate phenomena across problems and reveal insights into how
parameters, hidden structures and noise models correspond to one another.

Worst-case reductions are only concerned with transforming the hidden structure in one prob-
lem to another. For example, a worst-case reduction from 3-SAT to k-INDEPENDENT-SET needs
to ensure that the hidden structure of a satisfiable 3-SAT formula is mapped to a graph with an in-
dependent set of size k, and that an unsatisfiable formula is not. Average-case reductions need to
not only transform the structure in one problem to that of another, but also precisely map between
the natural distributions associated with problems. In the case of the example above, all classical
worst-case reductions use gadgets that map random 3-SAT formulas to a very unnatural distribution
on graphs. Average-case problems in statistical inference are also fundamentally parameterized,
with parameter regimes in which the problem is information-theoretically impossible, possible but
conjecturally computationally hard and computationally easy. To establish the strongest possible
lower bounds, reductions need to exactly fill out one of these three parameter regimes — the one in
which the problem is conjectured to be computationally hard. These subtleties that arise in devising
average-case reductions will be discussed further in the next section.

A.2. Desiderata for Average-Case Reductions

As discussed in the previous section, average-case reductions are delicate and more constrained than
their worst-case counterparts. In designing average-case reductions between problems in statistical
inference, the essential challenge is to reduce to instances that are hard up to the conjectured com-
putational barrier, without destroying the naturalness of the distribution over instances. Dissecting
this objective further yields four general criteria for a reduction between the problems P and P’
to be deemed to show strong computational lower bounds for P’. These objectives are to varying
degrees at odds with one another, which is what makes devising reductions a challenging task. To
illustrate these concepts, our running example will be our reduction from PC,, to robust sparse linear
regression (SLR). Some parts of this discussion are slightly simplified for clarity. The following are
our four criteria.

1. Aesthetics: If P and P’ each have a specific canonical distribution then a reduction must
faithfully map these distributions to one another. In our example, this corresponds to mapping
the independent 0-1 edge indicators in a random graph to noisy Gaussian samples of the form
y={(8,X)+N(0,1) with X ~ N (0, I;) and where an e-fraction are corrupted.

2. Mapping Between Different Structures: A reduction must simultaneously map all possible
latent signals of P to that of P’. In our example, this corresponds to mapping each possible
clique position in PC, to a specific mixture over the hidden vector 5. A reduction in this
case would also need to map between possibly very differently structured data, e.g., in robust
SLR the dependence of (X, y) on £ is intricate and the e-fraction of corrupted samples also
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produces latent structure across samples. These are both very different than the planted signal
plus noise form of the clique in PC,,.

3. Tightness to Algorithms: A reduction showing computational lower bounds that are tight
against what efficient algorithms can achieve needs to map the conjectured computational
limits of P to those of P’. In our example, PC, in general has a conjectured limit depending
on p, which may for instance be at K = o(v/N) when the clique is of size K in a graph with
N vertices. In contrast, robust SLR has the conjectured limit at n = 6(k2¢2/74), where 7
is the ¢ error to which we wish to estimate 3, k is the sparsity of 8 and n is the number of
samples.

4. Strong Lower Bounds for Parameterized Problems: In order to show that a certain con-
straint C defines the computational limit of P’ through this reduction, we need the reduction to
fill out the possible parameter sequences within C. For example, to show that n = 6(k?e? /74)
truly captures the correct dependence in our computational lower bound for robust SLR, it
does not suffice to produce a single sequence of points (n, k, d, 7, €) for which this is true,
or even a one parameter curve. There are four parameters in the conjectured limit and a re-
duction showing that this is the correct dependence needs to fill out any possible combination
of growth rates in these parameters permitted by n = 6(k2¢2/74). The fact that the initial
problem P has a conjectured limit depending on only two parameters can make achieving
this criterion challenging.

We remark that the third criterion requires that reductions are information preserving in the sense
that they do not degrade the underlying level signal used by optimal efficient algorithms. This
necessitates that the amount of additional randomness introduced in reductions to achieve aesthetic
requirements is negligible. The fourth criterion arises from the fact that statistical problems are
generally described by a tuple of parameters and are therefore actually an entire family of problems.
A full characterization of the computational feasibility of a problem therefore requires addressing
all possible scalings of the parameters.

All of the reductions carried out in this paper satisfy all four desiderata. Several of the initial re-
ductions from PC in the literature met most but not all of these criteria. For example, the reductions
in Berthet and Rigollet (2013a) and Wang et al. (2016b) to sparse PCA map to a distribution in a
distributionally robust formulation of the problem as opposed to the canonical Gaussian formula-
tion in the spiked covariance model. Similarly Cai et al. (2015a) reduces to a distributionally robust
formulation of submatrix localization. The reduction in Gao et al. (2017) only shows tight computa-
tional lower bounds for sparse PCA at a particular point in the parameter space when 6 = é(l) and
n = é(kQ). However, a number of reductions in the literature have successfully met all of these
four criteria (Ma and Wu, 2015; Hajek et al., 2015; Zhang and Xia, 2017; Brennan et al., 2018;
Brennan and Bresler, 2019; Brennan et al., 2019a).

We remark that it can be much easier to only satisfy some of these desiderata — in particular,
many natural reduction ideas meet a subset of these four criteria but fail to show nontrivial compu-
tational lower bounds. For instance, it is often straightforward to construct a reduction that degrades
the level of signal. The simple reduction that begins with PC and randomly subsamples edges with
probability n~¢ yields an instance of planted dense subgraph with the correct distributional aes-
thetics. However, this reduction fails to be tight to algorithms and furthermore fails to show any
meaningful tradeoff between the size of the planted dense subgraph and the sparsity of the graph.
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Another natural reduction to robust sparse mean estimation first maps from PC to Gaussian
biclustering using one of the reductions in Ma and Wu (2015), Brennan et al. (2018) or Brennan
et al. (2019a), computes the sum v of all of the rows of this matrix, then uses Gaussian cloning as
in Brennan et al. (2018) to produce n weak copies of v and finally outputs these copies with an
an e-fraction corrupted. This reduction can be verified to produce a valid instance of robust sparse
mean estimation in its canonical Gaussian formulation, but fails to show any nontrivial hardness
above its information-theoretic limit. Conceptually, this is because the reduction is generating the e-
fraction of the corruptions itself. On applying a robust sparse mean estimation blackbox to solve PC,
the reduction could just as easily have revealed which samples it corrupted. This would allow the
blackbox to only have to solve sparse mean estimation, which has no statistical-computational gap.
In general, a reduction showing tight computational lower bounds cannot generate a non-negligible
amount randomness that produces the hardness of the target problem. Instead, this e-fraction must
come from the hidden clique in the input PC instance. In Section C.8, we discuss how our reductions
obliviously encode cliques into the hidden structures in the problems we consider.

We also remark that many problems that appear to be similar from the perspective of design-
ing efficient algorithms can be quite different to reduce to. This arises from differences in their
underlying stochastic models that efficient algorithms do not have to make use of. For example,
although ordinary sparse PCA and sparse PCA with a negative spike can be solved by the same
efficient algorithms, the former has a signal plus noise decomposition while the latter does not and
has negatively correlated as opposed to positively correlated planted entries. We will see that these
subtle differences are significant in designing reductions.

Appendix B. Detailed Overview of Problems and Main Results

In this section, we give detailed background on each of the problems introduced in Section 3 and
discuss the conditions in our main theorems in more depth. For convenience and clarity, we repeat
all of our main theorems and some of the discussion from Section 3.

B.1. Remarks on Our Computational Lower Bounds

In this section, we make some further remarks on general features of the computational lower
bounds in our main theorems. Each of our computational lower bounds for estimation problems
will be established through a reduction to a hypothesis testing problem which then implies the de-
sired lower bound. The exact formulations for these intermediate hypothesis testing problems can
be found in Section E.3 and how they also imply lower bounds for estimation and recovery variants
of our problems is discussed in Section P. Throughout this work, we will use the terms detection
and hypothesis testing interchangeably. All of our reductions are to the canonical simplest average-
case formulations of the problems we consider. For example, all k-sparse unit vectors in our lower
bounds are binary and in {0, 1/+/k}¢, and the rank-1 component in our lower bound for tensor PCA
is sampled from a Rademacher prior. Our reductions are all also to the canonical simple vs. simple
hypothesis testing formulation for each of our problems and, as discussed in Brennan et al. (2018),
this yields strong computational lower bounds, is often technically more difficulty and crucially
allows reductions to naturally be composed with one another.
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B.2. Remarks on the PC, Conjecture

In this section, we make several further remarks on the PC,, conjecture deferred from Section 2.

The motivation for the decay condition on p,, in the PC, conjecture is from low-degree poly-
nomials, which we show in Section K.2 fail to solve PC, subject to this condition. The low-degree
conjecture — that low-degree polynomials predict the computational barriers for a broad class of
inference problems — has been shown to match conjectured statistical-computational gaps in a num-
ber of problems (Hopkins and Steurer, 2017; Hopkins, 2018; Kunisky et al., 2019; Bandeira et al.,
2019). We discuss this conjecture, the technical conditions arising in its formalizations and how
these relate to PC, in Section K.2. Specifically, we discuss the importance of symmetry and the
requirement on d in generalizing Conjecture 2 to further p. In contrast to low-degree polynomials,
because the SQ model only concerns problems with samples, it seems ill-suited to accurately predict
the computational barriers in PC, for every p. However, in Section K.3, we show SQ lower bounds
supporting the PC, conjecture for specific p related to our hardness assumptions. We also remark
that the distribution p, is an overlap distribution, which has been linked to statistical-computational
gaps using techniques from statistical physics (Zdeborova and Krzakala, 2016).

While we only need the specific hardness assumptions in Conjecture 3 to deduce our compu-
tational lower bounds, secret leakage can be viewed as a way to conceptually unify these different
assumptions. The p corresponding to the problems in Conjecture 3 all seem to avoid revealing
enough information about S to give rise to new polynomial time algorithms to solve PC,,. In partic-
ular, spectral algorithms consistently seem to match our conjectured computational limits for PC,,
for the different p we consider. From an entropy viewpoint, the k-partite assumption common to
these variants of PC, only reveals a very small amount of information about the location of the
clique. In particular, both the uniform distribution over k-subsets and over k-subsets respecting a
given partition E have (1 + o(1))k log, n bits of entropy.

We also remark that the PC,, conjecture, as stated, implies the thresholds in Conjecture 3 up to
arbitrarily small polynomial factors i.e. where the thresholds are k = O(n'/2=¢), k, = O(n!/?~)
and k,, = O(m'/?7¢) for arbitrarily small ¢ > 0. As we will discuss in K.2, the low-degree
conjecture also supports the stronger thresholds in Conjecture 3. We also note that our reductions
continue to show tight hardness up to arbitrarily small polynomial factors even under these weaker
assumptions. As mentioned in Section 1.1, our hardness assumption for k-HPC?® is the strongest of
those in Conjecture 3. Specifically, in Section K.1 we give simple reductions showing that (4) in
Conjecture 3 implies (1), (2) and (3).

We remark that the discussion in Section 2 also applies when planted clique is replaced with
the planted dense subgraph (PDS) problem. In the PDS variant of a PC problem, instead of plant-
ing a k-clique in G(n,1/2), a dense subgraph G(k,p) is planted in G(n,q) where p > ¢q. We
conjecture that all of the hardness assumptions remain true for PDS with constant edge densities
0 < ¢ < p < 1. Note that PC is an instance of PDS with p = 1 and ¢ = 1/2. All of the reductions
beginning with PC, in this work will also yield reductions beginning from secret leakage planted
dense subgraph problems PDS,,. In particular, they will continue to apply with a small loss in the
amount of signal when ¢ = 1/2 and p = 1/2 + n™° for a small constant ¢ > 0. As discussed
in Brennan and Bresler (2019), PDS conjecturally has no quasipolynomial time algorithms in this
regime and thus our reductions would transfer lower bounds above polynomial time. In this param-
eter regime, the barriers of PDS also appear to be similar to those of detection in the sparsely spiked
Wigner model, which also conjecturally has no quasipolynomial time algorithms (Hopkins et al.,
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2017). Throughout this work, we will denote the PDS variants of the problems introduced above by
k-pDS(n, k, p, q), BPDS(m, n, kp,, kn, p, q), k-BPDS(m, n, kp,, kn, p, q) and k-HPDS®(n, k, p, q).

B.3. Robust Sparse Mean Estimation

The study of robust estimation began with Huber’s contamination model (Huber, 1992, 1965) and
observations of Tukey (Tukey, 1975). Classical robust estimators have typically either been com-
putationally intractable or heuristic (Huber, 2011; Tukey, 1975; Yatracos, 1985). Recent break-
through works (Diakonikolas et al., 2016; Lai et al., 2016) gave the first efficient algorithms for
high-dimensional robust estimation, which sparked an active line of research into robust algorithms
for other high-dimensional problems (Awasthi et al., 2014; Li, 2017; Balakrishnan et al., 2017a;
Charikar et al., 2017; Diakonikolas et al., 2018; Klivans et al., 2018; Diakonikolas et al., 2019b;
Hopkins and Li, 2019; Dong et al., 2019). The most canonical high-dimensional robust estimation
problem is robust sparse mean estimation, which has an intriguing statistical-computational gap
induced by robustness.

In sparse mean estimation, the observations X1, Xo, ..., X, are n independent samples from
N (11, I;) where p is an unknown k-sparse vector in RY of bounded £5 norm and the task is to
estimate p within an ¢5 error of 7. This is a gapless problem, as taking the largest k& coordinates of
the empirical mean runs in poly(d) time and achieves the information-theoretically optimal sample
complexity of n = O(klog d/7?).

If an e-fraction of these samples are corrupted arbitrarily by an adversary, this yields the robust
sparse mean estimation problem RSME(n, k, d, 7, €). As discussed in Li (2017) and Balakrishnan
et al. (2017a), for || — ¢4 ||2 sufficiently small, it holds that drv (N (u, Ig), N (¢, 1)) = O(||u —
w'||2). Furthermore, an e-corrupted set of samples can simulate distributions within O(e) total
variation from N (i, I;). Therefore e-corruption can simulate N (y/, Iy) if ||/ — ull2 = O(e) and
it is impossible to estimate p with ¢5 distance less than this O(e). This implies that the minimax
rate of estimation for p is O(e€), even for very large n. As shown in Li (2017) and Balakrishnan
et al. (2017a), the information-theoretic threshold for estimating at this rate in the e-corrupted model
remains at n = O(k log d/e?) samples. However, the best known polynomial-time algorithms from
Li (2017) and Balakrishnan et al. (2017a) require n. = ©(k?log d/e*) samples to estimate £ within
7 = ey/loge~ 1 in ¢5. In Sections 1.1 and L.1, we give a reduction showing that these polynomial
time algorithms are optimal, yielding the first average-case evidence for the k-to-k? statistical-
computational gap conjectured in Li (2017) and Balakrishnan et al. (2017a). Our reduction applies
to more general rates 7 and obtains the following tradeoff.

Theorem 4 (Lower Bounds for RSME) If k, d and n are polynomial in each other, k = o(+/d) and
€ < 1/2is such that (n, e~ ') satisfies condition (T), then the k-BPC conjecture implies that there is
a computational lower bound for RSME(n, k, d, T, €) at all sample complexities n = o(k*e? /74).

For example, taking ¢ = 1/3 and 7 = O(1) shows that there is a k-to-k? gap between the
information-theoretically optimal sample complexity of n = (:)(k) and the computational lower
bound of n = 6(k?). Note that taking 7 = O(¢) in Theorem 4 recovers exactly the tradeoff in Li
(2017) and Balakrishnan et al. (2017a), with the dependence on e. Our reduction to RSME is based
on dense Bernoulli rotations and constructions of combinatorial design matrices based on incidence
geometry in ¢, as is further discussed in Sections 4 and G.
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In Theorem 4, (T) denotes a technical condition arising from number-theoretic constraints in
our reduction that require that ¢! = n°M or e = (:)(n_l/ 2ty for some positive integer . As
e ! = n°) is the primary regime of interest in the RSME literature, this condition is typically
trivial. We discuss the condition (T) in more detail in Section L and give an alternate reduction
removing it from Theorem 4 in the case where ¢ = ©(n ) for some constant ¢ € [0,1/2].

Our result also holds in the stronger Huber’s contamination model where an e-fraction of the n
samples are chosen at random and replaced with i.i.d. samples from another distribution D. The
prior work of Diakonikolas et al. (2017) showed that SQ algorithms require n = Q(k?) samples to
solve RSME, establishing the conjectured k-to-k? gap in the SQ model. However, our work is the
first to make a precise prediction of the computational barrier in RSME as a function of both e and
7. As will be discussed in Section 1.1, our reduction from k-PC maps to the instance of RSME under
the adversary introduced in Diakonikolas et al. (2017).

B.4. Dense Stochastic Block Models

The stochastic block model (SBM) is the canonical model for community detection, having in-
dependently emerged in the machine learning and statistics (Holland et al., 1983), computer sci-
ence (Bui et al., 1987; Dyer and Frieze, 1989; Boppana, 1987), statistical physics (Decelle et al.,
2011) and mathematics communities (Bollobas et al., 2007). It has been the subject of a long
line of research, which has recently been surveyed in Abbe (2017) and Moore (2017). In the k-
block SBM, a vertex set of size n is uniformly at random partitioned into k latent communities
C4,Cs,...,Ck each of size n/k and edges are then included in the graph G independently such that
intra-community edges appear with probability p while inter-community edges appear with prob-
ability ¢ < p. The exact recovery problem entails finding C, CY, ..., C} and the weak recovery
problem, also known as community detection, entails outputting nontrivial estimates él, C’g, e
with |C; N Ci| > (14 Q(1))n/k.

Community detection in the SBM is often considered in the sparse regime, where p = a/n and
g = b/n. In Decelle et al. (2011), non-rigorous arguments from statistical physics were used to
form the precise conjecture that weak recovery begins to be possible in poly(n) time exactly at the
Kesten-Stigum threshold SNR = (a — b)?/k(a + (k — 1)b) > 1. When k = 2, the algorithmic side
of this conjecture was confirmed with methods based on belief propagation (Mossel et al., 2018),
spectral methods and non-backtracking walks (Massoulié, 2014; Bordenave et al., 2015), and it
was shown to be information-theoretically impossible to solve weak recovery below the Kesten-
Stigum threshold in (Mossel et al., 2015; Deshpande et al., 2015). The algorithmic side of this
conjecture for general k£ was subsequently resolved with approximate acyclic belief propagation
in (Abbe and Sandon, 2015, 2016, 2018) and has also been shown using low-degree polynomials,
tensor decomposition and color coding (Hopkins and Steurer, 2017). A statistical-computational
gap is conjectured to already arise at k = 4 (Abbe and Sandon, 2018) and the information-theoretic
limit for community detection has been shown to occur for large £ at SNR = O(log k/k), which
is much lower than the Kesten-Stigum threshold (Banks et al., 2016). Rigorous evidence for this
statistical-computational gap has been much more elusive and has only been shown for low-degree
polynomials (Hopkins and Steurer, 2017) and variants of belief propagation. Another related line of
work has exactly characterized the thresholds for exact recovery in the regime p,q = ©(logn/n)
when k& = 2 (Abbe et al., 2015; Hajek et al., 2016a,b).
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The k-block SBM for general edge densities p and ¢ has also been studied extensively under the
names graph clustering and graph partitioning in the statistics and computer science communities.
A long line of work has developed algorithms recovering the latent communities in this regime,
including a wide range of spectral and convex programming techniques (Boppana, 1987; Dyer and
Frieze, 1989; Condon and Karp, 2001; McSherry, 2001; Bollobds and Scott, 2004; Coja-Oghlan,
2010; Rohe et al., 2011; Chaudhuri et al., 2012; Nadakuditi and Newman, 2012; Chen et al., 2012;
Ames, 2014; Anandkumar et al., 2014; Chen et al., 2014a; Chen and Xu, 2016). A comparison and
survey of these results can be found in Chen et al. (2014a). As discussed in Chen and Xu (2016),
for growing k satisfying k = O(y/n) and p and ¢ with p = ©(q) and 1 — p = ©(1 — q), the best
known poly(n) time algorithms all only work above

(p—q)?® K
q(l—¢q) ™~ n

which is an asymptotic extension of the Kesten-Stigum threshold to general p and ¢. In contrast, the
statistically optimal rate of recovery is again roughly a factor of k lower at Q(k: /n). Furthermore,
up to log n factors, the Kesten-Stigum threshold is both when efficient exact recovery algorithms
begin to work and where the best efficient weak recovery algorithms are conjectured to fail (Chen
and Xu, 2016).

In this work, we show computational lower bounds matching the Kesten-Stigum threshold up to
a constant factor in a mean-field analogue of recovering a first community C in the £-SBM, where
p and ¢ are bounded away from zero and one. Consider a sample G from the k-SBM restricted to the
union of the other communities Co, . . ., Cj. This subgraph has average edge density approximately
givenby ¢ = (p—q)-(k—1)-(n/k)?-(n—n/k)~2+q = (k—1)"L-p+(1—(k—1)~')-q. Now consider
the task of recovering the community C in the graph G’ in which the subgraph on Cs, ..., Cy is
replaced by the corresponding mean-field Erd6s-Rényi graph G(n — n/k, §). Formally, let G’ be
the graph formed by first choosing C'; at random and sampling edges as follows:

e include edges within C'; with probability P;; = p;
e include edges between C; and [n]\C; with probability P2 = ¢; and

e includes edges within [n]\C; with probability Py where Poy = (K —1)"1 - p+ (1 — (k —
1)) -q.

We refer to this model as the imbalanced SBM and let ISBM(n, k, P11, P12, Pa2) denote the problem
of testing between this model and ErdGs-Rényi graphs of the form G(n, Fy). As we will discuss in
Section E.3, lower bounds for this formulation also imply lower bounds for weakly and exactly
recovering C7. We remark that under our notation for ISBM, the hidden community C has size n/k
and k is the number of communities in the analogous k-block SBM described above.

As we will discuss in Section M.1, ISBM can also be viewed as a model of single community
detection with uniformly calibrated expected degrees. Note that the expected degree of a vertex in
C4 is nPyy — p and the expected degree of a vertex in C1\[n] is (n — 1) P2, which differ by at
most 1. Similar models with two imbalanced communities and calibrated expected degrees have
appeared previously in Neeman and Netrapalli (2014), Verzelen and Arias-Castro (2015), Perry
and Wein (2017) and Caltagirone et al. (2018). As will be discussed in Section B.6, the simpler
planted dense subgraph model of single community recovery has a detection threshold that differs
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from the Kesten-Stigum threshold, even though the Kesten-Stigum threshold is conjectured to be
the barrier for recovering the planted dense subgraph. This is because non-uniformity in expected
degrees gives rise to simple edge-counting tests that do not lead to algorithms for recovering the
planted subgraph. Our main result for 1SBM is the following lower bound up to the asymptotic
Kesten-Stigum threshold.

Theorem 5 (Lower Bounds for ISBM) Suppose that (n, k) satisfy condition (T), that k is prime
or k = wn(1) and k = o(n'/3), and suppose that q € (0,1) satisfies min{q, 1 — ¢} = Q,(1).
If Py = (k—1)" . p+ (1 — (k—1)71) - q, then the k-PC conjecture implies that there is a
computational lower bound for ISBM(n, k, p, q, Pa2) at all levels of signal below the Kesten-Stigum

threshold of ¥T4 = 6(k? /n).

This directly provides evidence for the conjecture that (p — ¢)2/q(1 — q) = ©(k?/n) defines
the computational barrier for community recovery in general k-SBMs made in Chen and Xu (2016).
While the statistical-computational gaps in PC and k-SBM are the two most prominent conjectured
gaps in average-case problems over graphs, they are very different from an algorithmic perspec-
tive and evidence for computational lower bounds up to the Kesten-Stigum threshold has remained
elusive. Our reduction yields a first step towards understanding the relationship between these gaps.

B.5. Testing Hidden Partition Models

We also introduce two testing problems we refer to as the Gaussian and bipartite hidden parti-
tion models. We give a reduction and algorithms that show these problems have a statistical-
computational gap, and we tightly characterize their computational barriers based on the k-PC
conjecture. The main motivation for introducing these problems is to demonstrate the versatility
of our reduction technique dense Bernoulli rotations in transforming hidden structure. A descrip-
tion of dense Bernoulli rotations and the construction of a key design tensor used in our reduction
can be found in Section G.

The task in the bipartite hidden partition model problem is to test for the presence of a planted
r K-vertex subgraph, sampled from an r-block stochastic block model, in an n-vertex random bi-
partite graph. The Gaussian hidden partition model problem is a corresponding Gaussian analogue.
These are both multi-community variants of the subgraph stochastic block model considered in
Brennan et al. (2018), which corresponds to the setting in which » = 2. The multi-community
nature of the planted subgraph yields a more intricate hidden structure, and the additional free
parameter r yields a more complicated computational barrier. The work of Chen and Xu (2016)
considered the related task of recovering the communities in the Gaussian and bipartite hidden par-
tition models. We remark that conjectured computational limits for this recovery task differ from
the detection limits we consider.

Formally, our hidden partition problems are defined as follows. Let C' = (C1,Ch,...,C})
and D = (D1, Ds,...,D,) are chosen independently and uniformly at random from the set of
all sequences of length r consisting of disjoint K -subsets of [n]. Consider the random matrix M
sampled by first sampling C' and D and then sampling

N(~,1) ifi € Cy and j € Dy, for some h € [r]
Mij~{ N (—ﬁ, 1) if i € Oy, and j € Dy, where hy # ho
N(0,1) otherwise
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Figure 2: Prior computational and statistical barriers in the detection and recovery of a single hidden com-

munity from the PC conjecture (Hajek et al., 2015; Brennan et al., 2018, 2019a). The axes are parameterized
by « and /5 where SNR = % = O(n~®) and k = ©(n”). The red region is conjectured to be hard but
no PC reductions showing this are known.

independently for each 1 < 4,7 < n. The problem GHPM(n,r, K,~) is to test between Hj :
M ~ N(0,1)®"*™ and an alternative hypothesis H; under which M is sampled as outlined above.
The problem BHPM(n, r, K, Py, ) is a bipartite graph analogue of this problem with ambient edge
density Py, edge density Py +  within the communities in the subgraph and Py — -5 on the rest
of the subgraph.

As we will show in Section M.2, an empirical variance test succeeds above the threshold yfomp =

©(n/rK?) and an exhaustive search succeeds above 74 = ©(1/K) in GHPM and BHPM where P
is bounded away from 0 and 1. Thus our main lower bounds for these two problems confirm that this
empirical variance test is approximately optimal among efficient algorithms and that both problems
have a statistical-computational gap assuming the k£-PC conjecture.

Theorem 6 (Lower Bounds for GHPM and BHPM) Suppose that r> K? = &(n) and ([r2K?/n],7)
satisfies condition (T), suppose r is prime or r = wy(1) and suppose that Py € (0, 1) satisfies

min{ Py, 1 — Py} = Q,(1). Then the k-PC conjecture implies that there is a computational lower

bound for each of GHPM(n, 7, K, ~y) for all levels of signal 4* = 6(n/rK?). This same lower bound

also holds for BHPM(n, r, K, Py, ~y) given the additional condition n = o(rK*/3).

We also remark that the empirical variance and exhaustive search tests along with our lower
bound do not support the existence of a statistical-computational gap in the case when the subgraph
is the entire graph with n = rK, which is our main motivation for considering this subgraph
variant. We remark that a number of the technical conditions in the theorem such as condition (T)
andn = o(rK 4/ 3) are trivial in the parameter regime where the number of communities is not very
large with r = n°(!) and when the total size of the hidden communities is large with K = ©(n°)
where ¢ > 3/4. In this regime, these problems have a nontrivial statistical-computational gap that
our result tightly characterizes.
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B.6. Semirandom Planted Dense Subgraph and the Recovery Conjecture

In the planted dense subgraph model of single community recovery, the observation is a sample from
G(n, k, P1, Py) which is formed by planting a random subgraph on k vertices from G(k, P;) inside a
copy of G(n, Py), where P; > Py are allowed to vary with n and satisfy that P; = O(Fp). Detection
and recovery of the hidden community in this model have been studied extensively (Arias-Castro
and Verzelen, 2014; Butucea and Ingster, 2013; Verzelen and Arias-Castro, 2015; Hajek et al.,
2015; Chen and Xu, 2016; Hajek et al., 2016¢; Montanari, 2015; Candogan and Chandrasekaran,
2018) and this model has emerged as a canonical example of a problem with a detection-recovery
computational gap. While it is possible to efficiently detect the presence of a hidden subgraph of size
k= Q(y/n) if (P, — Py)?/Py(1 — Py) = Q(n?/k*), the best known polynomial time algorithms to
recover the subgraph require a higher signal at the Kesten-Stigum threshold of (P; — Py)?/Py(1 —
Py) = Q(n/kQ)

In each of Hajek et al. (2015), Brennan et al. (2018) and Brennan et al. (2019a), it has been
conjectured that the recovery problem is hard below this threshold of ©(n,/k?). This PDS Recovery
Conjecture was even used in Brennan et al. (2018) as a hardness assumption to show detection-
recovery gaps in other problems including biased sparse PCA and Gaussian biclustering. A line
of work has tightly established the conjectured detection threshold through reductions from the
PC conjecture (Hajek et al., 2015; Brennan et al., 2018, 2019a), while the recovery threshold has
remained elusive. Planted clique maps naturally to the detection threshold in this model, so it seems
unlikely that the PC conjecture could also yield lower bounds at the tighter recovery threshold, given
that recovery and detection are known to be equivalent for PC Alon et al. (2007). These prior lower
bounds and the conjectured detection-recovery gap in PDS are depicted in Figure 2.

We show that the k-PC conjecture implies the PDS Recovery Conjecture for semirandom com-
munity recovery in the regime where ¢ = ©O(1). Semirandom adversaries provide an alternate
notion of robustness against constrained modifications that heuristically appear to increase the sig-
nal strength (Blum and Spencer, 1995). Algorithms and lower bounds in semirandom problems
have been studied for a number of problems, including the stochastic block model (Feige and
Kilian, 2001; Moitra et al., 2016), planted clique (Feige and Krauthgamer, 2000), unique games
(Kolla et al., 2011), correlation clustering (Mathieu and Schudy, 2010; Makarychev et al., 2015),
graph partitioning (Makarychev et al., 2012), 3-coloring (David and Feige, 2016) and clustering
mixtures of Gaussians (Vijayaraghavan and Awasthi, 2018). Formally we consider the problem
SEMI-CR(n, k, P1, Py) where a semirandom adversary is allowed to remove edges outside of the
planted subgraph from a graph sampled from G(n, k, P;, Fy). The task is to test between this model
and an ErdGs-Rényi graph G(n, Py) similarly perturbed by a semirandom adversary. As we will
discuss in Section E.3, lower bounds for this formulation extend to approximately recovering the
community under a semirandom adversary. In Section M.3, we prove the following theorem — that
the computational barrier in the detection problem shifts to the recovery threshold in SEMI-CR.

Theorem 12 (Lower Bounds for SEMI-CR) If k and n are polynomial in each other with k =

Q(y/n)and 0 < Py < Py < 1 where min{ Py, 1 — Py} = Q(1), then the k-PC conjecture implies

that there is a computational lower bound for SEMI-CR(n, k, P, Py) at SDIZI(;_PIDDS = o6(n/k?).

A related reference is the reduction in Cai et al. (2015a), which proves a detection-recovery gap
in the context of sub-Gaussian submatrix localization based on the hardness of finding a planted
k-clique in a random n/2-regular graph. The relationship between our lower bound and that of
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Cai et al. (2015a) is discussed in more detail in Section M.3. From an algorithmic perspective,
the convexified maximum likelihood algorithm from Chen and Xu (2016) complements our lower
bound — a simple monotonicity argument shows that it continues to solve the community recovery
problem above the Kesten-Stigum threshold under a semirandom adversary.

B.7. Negatively Correlated Sparse Principal Component Analysis

In sparse principal component analysis (PCA), the observations X7, Xo, ..., X, are n independent
samples from A/ (0, X) where the eigenvector v corresponding to the largest eigenvalue of X is k-
sparse, and the task is to estimate v in £» norm or find its support. Sparse PCA has many applications
ranging from online visual tracking (Wang et al., 2013) and image compression (Majumdar, 2009)
to gene expression analysis (Zou et al., 2006; Chun and Keles, 2009; Parkhomenko et al., 2009;
Chan and Hall, 2010). Showing lower bounds for sparse PCA can be reduced to analyzing detection
in the spiked covariance model (Johnstone and Lu, 2004), which has hypotheses

Hy: X ~N(0,I)%" and H;: X ~N(0,Ig+ 6vo")®"

Here, H is the composite hypothesis where v € R? is unknown and allowed to vary over all
k-sparse unit vectors. The information-theoretically optimal rate of detection is at the level of
signal 8 = O(y/klogd/n) (Berthet and Rigollet, 2013b; Cai et al., 2015b; Wang et al., 2016b).
However, when & = o( \/&), the best known polynomial time algorithms for sparse PCA require
that = Q(/k?/n). Since the seminal paper of Berthet and Rigollet (2013a) initiated the study of
statistical-computational gaps through the PC conjecture, this k-to-k? gap for sparse PCA has been
shown to follow from the PC conjecture in a sequence of papers (Berthet and Rigollet, 2013b,a;
Wang et al., 2016b; Gao et al., 2017; Brennan et al., 2018; Brennan and Bresler, 2019).

In negatively correlated sparse PCA, the eigenvector v of interest instead corresponds to the
smallest eigenvalue of 3. Negative sparse PCA can similarly be formulated as a hypothesis testing
problem NEG-SPCA(n, k,d, ), where the alternative hypothesis is instead given by Hy : X ~
N (0, I;— Ovv")®". Similar algorithms as in ordinary sparse PCA continue to work in the negative
setting — the information-theoretic limit of the problem remains at § = ©(y/klogd/n) and the
best known efficient algorithms still require § = Q(1/k?/n). However, negative sparse PCA is
stochastically a very differently structured problem than ordinary sparse PCA. A sample from the
ordinary spiked covariance model can be expressed as

X;=V0-gv+N(0,1,)

where g ~ N(0,1) is independent of the N(0,1;) term. This signal plus noise representation
is a common feature in many high-dimensional statistical models and is crucially used in the re-
ductions showing hardness for sparse PCA in Berthet and Rigollet (2013b), Berthet and Rigollet
(2013a), Wang et al. (2016b), Gao et al. (2017), Brennan et al. (2018), and Brennan and Bresler
(2019). Negative sparse PCA does not admit a representation of this form, making it an atypical
planted problem and different from ordinary sparse PCA, despite the deceiving similarity between
their optimal algorithms. The lack of this representation makes reducing to Negative sparse PCA
technically challenging. Negatively spiked PCA was also recently related to the hardness of finding
approximate ground states in the Sherrington-Kirkpatrick model (Bandeira et al., 2019). However,
ordinary PCA does not seem to share this connection. In Section H, we give a reduction obtaining
the following computational lower bound for NEG-SPCA from the BPC conjecture.
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Theorem 7 (Lower Bounds for NEG-SPCA) If d = poly(n), k = o(\/d) and k = o(n'/%), then
the BPC conjecture implies a computational lower bound for NEG-SPCA(n, k, d, 0) at all levels of

signal 0 = o(\/k?/n).

We deduce this theorem and discuss its conditions in detail in Section L.2. A key step in our
reduction to NEG-SPCA involves randomly rotating the positive semidefinite square root of the in-
verse of an empirical covariance matrix. In analyzing this step, we prove a novel convergence result
in random matrix theory, which may be of independent interest. Specifically, we characterize when
a Wishart matrix and its inverse converge in KL divergence. This is where the parameter constraint
k = o(n'/%) in the theorem above arises. We believe that this is an artefact of our techniques
and extending the theorem to hold without this condition is an interesting open problem. A sim-
ilar condition arose in the strong lower bounds of Brennan and Bresler (2019). We remark that
conditions of this form do not affect the tightness of our lower bounds, but rather only impose a
constraint on the level of sparsity k. More precisely, for each fixed level of sparsity & = (:)(no‘),
there is conjectured statistical-computational gap in 6 between the information-theoretic barrier of
0 = ©(y/klogd/n) and computational barrier of § = 6(+/k?/n). Our reduction tightly establishes
this gap for all & € (0,1/6]. Our main motivation for considering NEG-SPCA is that it seems to
have a fundamental connection to the structure of supervised problems where ordinary sparse PCA
does not. In particular, our reduction to NEG-SPCA is a crucial subroutine in reducing to mixtures
of sparse linear regressions and robust sparse linear regression. This is discussed further in Sections
4, Hand I.

B.8. Unsigned and Mixtures of Sparse Linear Regressions

In learning mixtures of sparse linear regressions (SLR), the task is to learn L sparse linear functions
capturing the relationship between features and response variables in heterogeneous samples from L
different sparse regression problems. Formally, the observations (X1,y1), (X2,92), ..., (Xn, yn)
are n independent sample-label pairs given by y; = (8, X;) + n; where X; ~ N(0,1y), n; ~
N (0, 1) and 3 is chosen from a mixture distribution v over a finite set k-sparse vectors {31, 82, . .., O}
of bounded ¢ norm. The task is to estimate the components 3; that are sufficiently likely under v

in {5 norm i.e. to within an ¢5 distance of 7.

Mixtures of linear regressions, also known as the hierarchical mixtures of experts model in
the machine learning community (Jordan and Jacobs, 1994), was first introduced in Quandt and
Ramsey (1978) and has been studied extensively in the past few decades (De Veaux, 1989; Wedel
and DeSarbo, 1995; McLachlan and Peel, 2004; Zhu and Zhang, 2004; Faria and Soromenho, 2010).
Recent work on mixtures of linear regressions has focussed on efficient algorithms with finite-
sample guarantees (Chaganty and Liang, 2013; Chen et al., 2014b; Yi et al., 2014; Balakrishnan
et al., 2017b; Chen et al., 2017b; Li and Liang, 2018). The high-dimensional setting of mixtures
of SLRs was first considered in Stédler et al. (2010), which proved an oracle inequality for an ¢;-
regularization approach, and variants of the EM algorithm for mixtures of SLRs were analyzed in
Wang et al. (2014) and Yi and Caramanis (2015). Recent work has also studied a different setting
for mixtures of SLRs where the covariates X; can be designed by the learner (Yin et al., 2018;
Krishnamurthy et al., 2019).

We show that a statistical-computational gap emerges for mixtures of SLRs even in the simplest
case where there are L = 2 components, the mixture distribution v is known to sample each com-
ponent with probability 1/2 and the task is to estimate even just one of the components {31, S2} to
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within /5 norm 7. We refer to this simplest setup for learning mixtures of SLRs as MSLR(n, k, d, 7).
The following computational lower bound is deduced in Section L.3 and is a consequence of the
reduction in Section I.

Theorem 8 (Lower Bounds for MSLR) If k, d and n are polynomial in each other, k = 0(\/@
and k = o(nl/ 6), then the k-BPC conjecture implies that there is a computational lower bound for
MSLR(n, k,d, T) at all sample complexities n = 6(k* /7).

As we will discuss in Section E.3, we will prove this theorem by reducing to the problem of
testing between the mixtures of SLRs model when 8; = — /s and a null hypothesis under which y
and X are independent. A closely related work (Fan et al., 2018) studies a nearly identical testing
problem in the statistical query model. They tightly characterize the information-theoretic limit of
this problem, showing that it occurs at the sample complexity n = ©(klogd/r*). Therefore our
reduction establishes a k-to-k? statistical-computational gap in this model of learning mixtures of
SLRs. In Fan et al. (2018), it is also shown that efficient algorithms in the statistical query model
suffer from this same k-to-k? gap.

Our reduction to the hypothesis testing formulation of MSLR above is easily seen to imply
that the same computational lower bound holds for an unsigned variant USLR(n, k, d, 7) of SLR,
where the n observations (X1, 1), (X2,92), ..., (Xn, yn) now of the form y; = |(8, X;) + n;| for
a fixed unknown . Note that by the symmetry of N(0,1), y; is equidistributed to |[(3, X;)| +
7;| and thus is a noisy observation of (3, X;)|. In general, noisy observations of the phaseless
modulus |(3, X;)| from some conditional link distribution P(- | |(/3, X;)|) yields a general instance
of phase retrieval (Mondelli and Montanari, 2018b; Celentano et al., 2020). As observed in Fan
et al. (2018), the problem USLR is close to the canonical formulation of sparse phase retrieval
(SPR) where P(- | [(3, X;)|) is N(|(8, X;)|?,02), which has been studied extensively and has a
conjectured k-to-k? statistical-computational gap (Li and Voroninski, 2013; Schniter and Rangan,
2014; Candes et al., 2015; Cai et al., 2016; Wang et al., 2017; Hand et al., 2018; Barbier et al., 2019;
Celentano et al., 2020). Our lower bounds provide partial evidence for this conjecture and it is an
interesting open problem to give a reduction to the canonical formulation of SPR and other sparse
GLMs through average-case reductions.

The reduction to MSLR showing Theorem 8 in Section I is our capstone reduction. It showcases
a wide range of our techniques including dense Bernoulli rotations, constructions of combinatorial
design matrices from FZ, our reduction to NEG-SPCA and its connection to random matrix theory,
and an additional technique of combining instances of different unsupervised problems into a su-
pervised problem. We give an overview of these techniques in Section 4. Furthermore, MSLR is
a very differently structured problem from any of our variants of PC and it is surprising that the
tight statistical-computational gap for MSLR can be derived from their hardness. We remark that
our lower bounds for MSLR inherit the technical condition that & = o(n!/%) from our reduction
to NEG-SPCA. As before, this does not affect the fact that we show tight hardness and it is an
interesting open problem to remove this condition.

B.9. Robust Sparse Linear Regression

In ordinary SLR, the observations (X1, 1), (X2,92),...,(Xn,yn) are independent sample-label
pairs given by y; = (8, X;) + n; where X; ~ N(0,%), n; ~ N(0,1) and S is an unknown k-
sparse vector with bounded ¢ norm. The task is to estimate 8 to within 5 norm 7. When X
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is well-conditioned, SLR is a gapless problem with the computationally efficient LASSO attain-
ing the information-theoretically optimal sample complexity of n = ©(klogd/72) (Tibshirani,
1996; Bickel et al., 2009; Raskutti et al., 2010). When X is not well-conditioned, SLR has a
statistical-computational gap based on its restricted eigenvalue constant (Zhang et al., 2014). As
with robust sparse mean estimation, the robust SLR problem RSLR(n, k, d, T, €) is obtained when a
computationally-unbounded adversary corrupts an arbitrary e-fraction of the observed sample-label
pairs. In this work, we consider the simplest case of 3 = I; where SLR is gapless but, as we discuss
next, robustness seems to induce a statistical-computational gap.

Robust regression is a well-studied classical problem in statistics (Rousseeuw and Leroy, 2005).
Efficient algorithms remained elusive for decades, but recent breakthroughs in sum of squares al-
gorithms (Klivans et al., 2018; Karmalkar et al., 2019; Raghavendra and Yau, 2020), filtering ap-
proaches (Diakonikolas et al., 2019b) and robust gradient descent (Chen et al., 2017a; Prasad et al.,
2018; Diakonikolas et al., 2019a) have led to the first efficient algorithms with provable guarantees.
A recent line of work has also studied efficient algorithms and barriers in the high-dimensional set-
ting of robust SLR (Chen et al., 2013; Balakrishnan et al., 2017a; Liu et al., 2018, 2019). Even in
the simplest case of > = I; where the covariates X; have independent entries, the best known poly-
nomial time algorithms suggest robust SLR has a k-to-k? statistical-computational gap. As shown
in Gao (2020), similar to RSME, robust SLR is only information-theoretically possible if 7 = Q(e).
In Balakrishnan et al. (2017a) and Liu et al. (2018), it is shown that polynomial-time ellipsoid-based
algorithms solve robust SLR with n = ©(k? log d/e?) samples when 7 = ©(¢). Furthermore, Liu
et al. (2018) shows that an RSME oracle can be used to solve robust SLR with only a ©(1) factor loss
in 7 and the required number of samples n. As noted in Li (2017), n = Q(klog d/e?) samples suf-
fice to solve RSME inefficiently when 7 = ©(€). Combining these observations yields an inefficient
algorithm for robust SLR with sample complexity n = © (k log d/e?) samples when 7 = O(e), con-
firming that the best known efficient algorithms suggest a k-to-k? statistical-computational gap. In
Chen et al. (2013) and Liu et al. (2019), efficient algorithms are shown to succeed in an alternative
regime where n = O(klogd), e = O(1/vVk) and 7 = O(eVk).

All of these algorithms suggest that the correct computational sample complexity for robust
SLR is n. = Q(k%e?/7%). In Section L.3, we deduce the following tight computational lower bound
for RSLR providing evidence for this conjecture.

Theorem 9 (Lower Bounds for RSLR) {fk:, d and n are polynomial in each other, k = o(nl/ﬁ),
k = o(\/d) and € < 1/2 is such that € = Q(n~1/2), then the k-BPC conjecture implies that there is
a computational lower bound for RSLR(n, k, d, T, €) at all sample complexities n = 6(k*e*/7%).

We present the reductions to MSLR and RSLR together as a single unified reduction k-PDS-TO-MSLR

in Section I. As is discussed in Section L.3, MSLR and RSLR are obtained by setting r = ¢! = 2
and € < 1/2, respectively. The theorem above follows from a slightly modified version of this
reduction, k-PDS-TO-MSLR R, that removes the technical condition (T) that otherwise arises in ap-
plying k-PDS-TO-MSLR with » = n*(1). This turns out to be more important here than in the
context of RSME because, as in the reduction to MSLR, this reduction to RSLR inherits the technical
condition that k = o(nl/ 6) from our reduction to NEG-SPCA. This condition implicitly imposes a
restriction on € to satisfy that e = O(n~1/3), since 7 = €(e) must be true for the problem to not be
information-theoretically impossible. Thus our regime of interest for RSLR is a regime where the
technical condition (T) is nontrivial.
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As in the case of MSLR and NEG-SPCA, we emphasize that the condition k = o(n'/%) does not
affect the tightness of our lower bounds, merely restricting their regime of application. In particular,
the theorem above yields a tight nontrivial statistical-computational gap in the entire parameter
regime when & = o(n'/%), 7 = Q(¢) and ¢ = ©(n~°) where ¢ is any constant in the interval
[1/3,1/2]. We remark that the condition k& = o(n'/%) seems to be an artefact of our techniques
rather than necessary.

In the context of RSLR, we view our main contribution as a set of reduction techniques relating
PC, to the very differently structured problem RSLR, rather than the resulting computation lower
bound itself. A byproduct of our reduction is the explicit construction of an adversary modifying an
e-fraction of the samples in robust SLR that produces the k-to-k? statistical-computational gap in
the theorem above. This adversary turns out to be surprisingly nontrivial on its own, but is a direct
consequence of the structure of the reduction. This is discussed in detail in Sections 1.2 and L.3.

B.10. Tensor Principal Component Analysis

In Tensor PCA, the observation is a single order s tensor 7" with dimensions n®* =nxn x---xn
given by T' ~ 6v®s + N(0, 1)®"®S, where v has a Rademacher prior and is distributed uniformly
over {—1,1}" (Richard and Montanari, 2014). The task is to recover v within nontrivial {5 error
o(y/n) and is only information-theoretically possible if § = @ (n(l_s)/ 2) (Richard and Montanari,
2014; Lesieur et al., 2017; Chen et al., 2018; Jagannath et al., 2018; Chen, 2019; Perry et al., 2020),
in which case v can be recovered through exhaustive search. The best known polynomial-time
algorithms all require the higher signal strength 6 = Q(n_s/ 4), at which point v can be recovered
through spectral algorithms (Richard and Montanari, 2014), the sum of squares hierarchy (Hopkins
et al., 2015, 2016) and spectral algorithms based on the Kikuchi hierarchy (Wein et al., 2019).
Lower bounds up to this conjectured computational barrier have been shown in the sum of squares
hierarchy (Hopkins et al., 2015, 2017) and for low-degree polynomials (Kunisky et al., 2019). A
number of natural “local” algorithms have also been shown to fail given much stronger levels of
signal up to 6 = é(n_l/ 2), including approximate message passing, the tensor power method,
Langevin dynamics and gradient descent (Richard and Montanari, 2014; Anandkumar et al., 2014;
Ben Arous et al., 2018).

We give a reduction showing that the PC, conjecture implies an optimal computational lower
bound at § = Q(n~%/*) for tensor PCA. We show this lower bound against efficient algorithms with
a low false positive probability of error in the hypothesis testing formulation of tensor PCA where
T ~ N(0,1)%"®" under Hy and T is sampled from the tensor PCA distribution described above
under H;. More precisely, we prove the following theorem in Sections J and N.

Theorem 10 (Lower Bounds for TPCA) Let n be a parameter and s > 3 be a constant, then
the k-HPC® conjecture implies a computational lower bound for TPCA®(n, ) when 6 = 6(n=°/%)
against poly(n) time algorithms A solving TPCA®*(n,8) with a low false positive probability of
P, [A(T) = Hi] = O(n™%).

Lemma 102 in Section N shows that any poly(n) time algorithm solving the recovery formula-
tion of tensor PCA yields such an algorithm .4, and thus this theorem implies our desired computa-
tional lower bound. This low false positive probability of error condition on A arises from the fact
that our reduction to TPCA is a multi-query average-case reduction, requiring multiple calls to a ten-
sor PCA blackbox to solve k-HPC®. This feature is a departure from the rest of our reductions and
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the other average-case reductions to statistical problems in the literature, all of which are reductions
in total variation, as will be described in Section E.2, and thus only require a single query. This
feature is a requirement of our technique for completing hypergraphs that will be described further
in Sections C.6 and J.

We note that most formulations of tensor PCA in the literature also assume that the noise tensor
of standard Gaussians is symmetric (Richard and Montanari, 2014; Wein et al., 2019). However,
given that the planted rank-1 component v®* is symmetric as it is in our formulation, the symmetric
and asymmetric noise models have a simple equivalence up to a constant factor loss in 6. Averaging
the entries of the asymmetric model over all permutations of its s coordinates shows one direction of
this equivalence, and the other is achieved by reversing this averaging procedure through Gaussian
cloning as in Section 10 of Brennan et al. (2018). A closely related work is that of Zhang and Xia
(2017), which gives a reduction from HPC? to the problem of detecting a planted rank-1 component
in a 3-tensor of Gaussian noise. Aside being obtained through different techniques, their result
differs from ours in two ways: (1) the rank-1 components they considered were sparse, rather than
sampled from a Rademacher prior; and (2) their reduction necessarily produces asymmetric rank-1
components. Although the limits of tensor PCA when s > 3 with sparse and Rademacher priors are
similar, they can be very different in other problems. For example, in the matrix case when s = 2,
a sparse prior yields a problem with a statistical-computational gap while a Rademacher prior does
not. We also remark that ensuring the symmetry of the planted rank-1 component is a technically
difficult step and part of the motivation for our completing hypergraphs technique in Section J.

B.11. Universality for Learning Sparse Mixtures

When € = 1/2, our reduction to robust sparse mean estimation also implicitly shows tight compu-
tational lower bounds at n = 6(k?/74) for learning sparse Gaussian mixtures. In this problem the
task is to estimate two vectors i1, (o up to £2 error 7, where the p; have bounded ¢ norms and a
k-sparse difference 111 — o, given samples from an even mixture of N (u1, 1) and N (uz, I3). In
general, learning in Gaussian mixture models with sparsity has been studied extensively over the
past two decades (Raftery and Dean, 2006; Pan and Shen, 2007; Maugis et al., 2009; Maugis and
Michel, 2011; Azizyan et al., 2013, 2015; Malsiner-Walli et al., 2016; Verzelen and Arias-Castro,
2017; Fan et al., 2018). Recent work has established finite-sample guarantees for efficient and
inefficient algorithms and proven information-theoretic lower bounds for the two-component case
(Azizyan et al., 2013; Verzelen and Arias-Castro, 2017; Fan et al., 2018). These works conjectured
that this problem has the k-to-k? statistical-computational gap shown by our reduction. In Fan et al.
(2018), a tight computational lower bound matching ours was established in the SQ model.

So far, despite having a variety of different hidden structures, the problems we have considered
have all had either Gaussian or Bernoulli noise distributions. As we will describe in Section 4, our
techniques also crucially use a number of properties of the Gaussian distribution. This naturally
raises the question: do our techniques have implications beyond simple noise distributions? Our fi-
nal reduction answers this affirmatively, showing that our lower bound for learning sparse Gaussian
mixtures implies computational lower bounds for a wide universality class of noise distributions.
This lower bound includes the optimal gap in learning sparse Gaussian mixtures and the optimal
gaps in Berthet and Rigollet (2013b), Berthet and Rigollet (2013a), Wang et al. (2016b), Gao et al.
(2017) and Brennan et al. (2018) for sparse PCA as special cases. This reduction requires intro-
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ducing a new type of rejection kernel, that we refer to as symmetric 3-ary rejection kernels, and is
described in Sections C.7 and F.3.

In Section O, we show computational lower bounds for the generalized learning sparse mixtures
problem GLSM. In GLSM(n,k,d,U) where U = (D, Q,{P,}.cr), the elements of the family
{P,}er and Q are distributions on a measurable space, such that the pairs (P,, Q) all satisfy mild
conditions permitting efficient computation outlined in Section F.3, and D is a mixture distribution
on R. The observations in GLSM are n independent samples X1, Xo, ..., X, formed as follows:

e for each sample X;, draw some latent variable v; ~ D and
e sample (X;); ~ P, if j € S and (X;); ~ Q otherwise, independently

where S is some unknown subset containing &k of the d coordinates. The task is to recover S
or distinguish from an Hj in which all of the data is drawn i.i.d. from Q. Given a collection
of distribution ¢/, we define U to be in our universality class UC(/N) with level of signal 7, if it
satisfies the following conditions.

Definition 13 (Universality Class and Level of Signal) Given a parameter N, define the collec-
tion of distributions U = (D, Q,{P, },cr) implicitly parameterized by N to be in the universality
class UC(N) if

e the pairs (P, Q) are all computable pairs, as in Definition 24, for all v € R;
e D is a symmetric distribution about zero and P,.p[v € [-1,1]] =1 — o(N~1); and

e there is a level of signal Ty € R such that for all v € [—1, 1] such that for any fixed constant
K >0, it holds that

P, . AP, | dP_,
70 70 (x)| = On (1) and dQ(x)—i— 70

with probability at least 1 — O (N_K) over each of P, P_, and Q.

Py (2) — 2| = Oy ()

(z) =

Our main result establishes a computational lower bound for GLSM instances with/ € UC(n) in
terms of the level of signal 7. As mentioned above, this theorem implies optimal lower bounds for
learning sparse mixtures of Gaussians, sparse PCA and many more natural problem formulations
described in Section O.2.

Theorem 11 (Computational Lower Bounds for GLSM) Let n, k and d be polynomial in each
other and such that k = o(\/d). Suppose that the collections of distributions U = (D, Q,{P,},er)
is in UC(n). Then the k-BPC conjecture implies a computational lower bound for GLSM (n, k, d,U)
at all sample complexities n = 6 (TZ; 4).

Appendix C. Detailed Technical Overview

We now outline our main technical contributions and the central ideas behind our reductions, ex-
panding significantly on the outline in Section 4. These techniques will be formally introduced in
Part II and applied in our problem-specific reductions to deduce our main theorems stated in the
previous section in Part III.
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C.1. Rejection Kernels

Rejection kernels are a reduction primitive introduced in Brennan et al. (2018, 2019a) for algorith-
mic changes of measure. Related reduction primitives for changes of measure to Gaussians and
binomial random variables appeared earlier in Ma and Wu (2015) and Hajek et al. (2015). Given
two input Bernoulli probabilities 0 < ¢ < p < 1, a rejection kernel simultaneously maps Bern(p)
and Bern(q) approximately in total variation to samples from two arbitrary distributions P and Q.
Note that in this setup, the rejection kernel primitive is oblivious to whether the true distribution
of its input is Bern(p) or Bern(g). The main idea behind rejection kernels is that, under suitable
conditions on P and Q, this can be achieved through a rejection sampling scheme that samples
x ~ Q and rejects with a probability that depends on x and on whether the input was 0 or 1. Rejec-
tion kernels are discussed in more depth in Section F. In this work, we will need the following two
instantiations of the framework developed in Brennan et al. (2018, 2019a):

e Gaussian Rejection Kernels: Rejection kernels mapping Bern(p) and Bern(gq) to within O ( Rgx)

total variation of A/ (p, 1) and NV (0, 1) where p = © <1/ log er) and p, ¢ are fixed con-
stants.

e Bernoulli Cloning: A rejection kernel mapping Bern(p) and Bern(q) exactly to Bern(P)®*

and Bern(Q)®! where
1- 1- P\ P\
1—gq 1-Q Q q

By performing computational changes of measure, these primitives are crucial in mapping to de-
sired distributional aesthetics. However, they also play an important role in transforming hidden
structure. Gaussian rejection kernels grant access to an arsenal of measure-preserving transforma-
tions of high-dimensional Gaussian vectors for mapping between different hidden structures while
preserving independence in the noise distribution. Bernoulli cloning is crucial in removing the
symmetry in adjacency matrices of PC instances and adjacency tensors of HPC instances, as in
the TO-SUBMATRIX procedure in Brennan et al. (2019a). We introduce a k-partite variant of this
procedure that maps the adjacency matrix of k-PDS to a matrix of independent Bernoulli random
variables while respecting the constraint that there is one planted entry per block of the k-partition.
This procedure is discussed in more detail in Section C.6 and will serve as a crucial preprocessing
step for dense Bernoulli rotations, which involves taking linear combinations of functions of entries
of this matrix that crucially must be independent.

C.2. Dense Bernoulli Rotations

This technique is introduced in Section G and is one of our main primitives for transforming hidden
structure that will be applied repeatedly throughout our reductions. Let PB(n,1,p, q) denote the
planted bit distribution over V' € {0,1}" with independent entries satisfying that V; ~ Bern(q)
unless j = i, in which case V; ~ Bern(p). Given an input vector V' € {0, 1}", the goal of dense
Bernoulli rotations is to output a vector V' € R™ such that, for each i € [n], V' is close in total
variation to N (¢ - A;, I,) if V ~ PB(n, 1, p, q). Here, Ay, As, ..., A, € R™ are a given sequence
of target mean vectors, p and ¢ are fixed constants and c is a scaling factor with ¢ = ©(1). The
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reduction must satisfy these approximate Markov transition conditions oblivious to the planted bit
i and also preserve independent noise, by mapping Bern(q)®" to N/ (0, I,;,) approximately in total
variation.

Let A € R™*™ denote the matrix with columns Ay, Ao, ..., A,. If the rows of A are orthogonal
unit vectors, then the goal outlined above can be achieved using the isotropy of the distribution
N (0, I,,). More precisely, consider the reduction that form V; € R™ by applying Gaussian rejection
kernels entrywise to V" and then outputs AV;. If V' ~ PB(n, 4, p, q), then the rejection kernels ensure
that V7 is close in total variation to N'(u - 1;,I,,) and thus V' = AV; is close to N (- A;, Iy).
However, if the rows of A are not orthogonal, then the entries of the output are potentially very
dependent and have covariance matrix AA" instead of I,,,. This can be remedied by adding a
noise-correction term to the output: generate U ~ N (0, I,,,) and instead output

1/2
V’:)\_I-AV1+<Im—/\_2-AAT)/ U

where ) is an upper bound on the largest singular value of A and (Im — )\_QAAT) 1/2 is the positive
semidefinite square root of I, —A72- AAT. If V ~ PB(n,1,p, q), it now follows that V' is close in
total variation to N'(uA~! - A;, I,,,) where 1 can be taken to be 1 = ©(1/+/Iogn). This reduction
also preserves independent noise, mapping Bern(q)®" approximately to A (0, I,,,).

Dense Bernoulli rotations thus begin with a random vector of independent entries and one un-
known elevated bit and produce a vector with independent entries and an unknown elevated pattern
from among an arbitrary prescribed set A;, As, ..., A,. Furthermore, the dependence of the signal
strength uA~! in the output instance V' on these Ay, Ao, ..., A, is entirely through the singular
values of A. This yields a general structure-transforming primitive that will be used throughout our
reductions. Each such use will consist of many local applications of dense Bernoulli rotations that
will be stitched together to produce a target distribution. These local applications will take three
forms:

e To Rows Restricted to Column Parts: The adjacency matrix of k-BPC consists of k&, k,, blocks
each consisting of the edge indicators in E; x F} for each pair of the parts E;, F; from the
given partitions of [n] and [m]. In our reductions to robust sparse mean estimation, mixtures
of SLRs, robust SLR and universality for learning sparse mixtures, we apply dense Bernoulli
rotations separately to each row in each of these blocks.

o To Vectorized Adjacency Matrix Blocks: In our reductions to dense stochastic block mod-
els, testing hidden partition models and semirandom single community detection, we first
pre-process the adjacency matrix of k-PC with TO-k-PARTITE-SUBMATRIX. We then apply
dense Bernoulli rotations to R vectorizations of each h x h block in this matrix correspond-
ing a pair of parts in the given partition i.e. of the form E; x Ej.

e To Vectorized Adjacency Tensor Blocks: In our reduction to tensor PCA with order s, after
completing the adjacency tensor of the input k-HPC instance, we apply dense Bernoulli ro-
tations to R" vectorizations of each & x h x --- x h block corresponding to an s-tuple of
parts.

We remark that while dense Bernoulli rotations heavily rely on distributional properties of isotropic
Gaussian vectors, their implications extend far beyond statistical problems with Gaussian noise.
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Entrywise thresholding produces planted graph problems and we will show that multiple thresh-
olds followed by applying 3-ary symmetric rejection kernels maps to a large universality class of
noise distributions. These applications of dense Bernoulli rotations generally reduce the problem
of transforming hidden structure to a constrained combinatorial construction problem — the task of
designing a set of mean output vectors Ay, Ao, ..., A, that have nearly orthogonal rows and match
the combinatorial structure in the target statistical problem.

C.3. Design Matrices and Tensors

Design Matrices. To construct these vectors Ay, As, ..., A, for our applications of dense Bernoulli
rotations, we introduce several families of matrices based on the incidence geometry of finite fields.
In our reduction to robust sparse mean estimation, we will show that the adversary that corrupts
an e-fraction of the samples by resampling them from N (—c - p, I;) produces the desired k-to-k>
statistical-computational gap. This same adversarial construction was used in Diakonikolas et al.
(2017). Here, € R? denotes the k-sparse mean of interest. As will be further discussed at the
beginning of Section G, on applying dense Bernoulli rotations to rows restricted to parts of the
partition of column partition, our desiderata for the mean vectors Ay, Ao, ..., A, reduce to the
following:

e A contains two distinct values {z, y}, and an €’-fraction of each column is y where ¢ > ¢’ =

O(e);
e the rows of A are unit vectors and nearly orthogonal with A = O(1); and
e A isnearly an isometry as a linear transformation from R™ — R™,

The first criterion above is enough to ensure the correct distributional aesthetics and hidden struc-
ture in the output of our reduction. The second and third criteria turn out to be necessary and
sufficient for the reduction to show tight computational lower bounds up to the conjectured barrier
of n = 6(k%€2/7*). We remark that the third criterion also is equivalent to m = ©(n) given the
second. Thus our task is to design nearly square, nearly orthogonal matrices containing two dis-
tinct entries with an ¢’-fraction of one present in each column. Note that if ¢ = 1/2, this is exactly
achieved by Hadamard matrices. For € < 1/2, our desiderata are nearly met by the following natural
generalization of Hadamard matrices that we introduce. Note that the rows of a Hadamard matrix
can be generated as a reweighted incidence matrix between the hyperplanes and points of F5. Let 7
be a prime number with ¢! < 7 = O(e~!) and consider the ¢ x r’ matrix A where ¢ = "1 with

r—1
entries given by
L[ iRy
N rtr—1) 1—-r ifPeV
where V1, Vs, ..., Vy is an enumeration of the (t—1)-dimensional subspaces of FL and Py, P, . . ., Pyt

is an enumeration of the points in F%. This construction nearly meets our three criteria, with one
minor issue that the column corresponding to 0 € % only contains one entry. A more serious
issue is that £ = ©(r*~1) and A is far from an isometry if » > 1, which leads to a suboptimal
computational lower bound for RSME.

These issues are both remedied by adding in additional rows for all affine shifts of the hyper-
planes V1, Va, ..., V. The resulting matrix has dimensions r¢ x r! and, although its rows are no
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longer orthogonal, its largest singular value is y/1 + (7 — 1)~!. The resulting matrix K, ; is used in
our applications of dense Bernoulli rotations to reduce to robust sparse mean estimation, mixtures of
SLRs, robust SLR and to show universality for learning sparse mixtures. Note that for any two rows
r; and r; of K4, the outer product rﬂ'jT is a zero-centered mean adjacency matrix of an imbalanced
2-block stochastic block model. This observation suggests that the Kronecker product K. ; @ K, ;
can be used in dense Bernoulli rotations to map to these SBMs. Surprisingly, this overall reduction
yields tight computational lower bounds up to the Kesten-Stigum threshold for dense SBMs, and
using the matrix (K3; ® I;) ® (K3 ® I,) yields tight computational lower bounds for semirandom
single community detection. We remark that, in this case, it is again crucial that K.; is approxi-
mately square — if the matrix A defined above were used in place of K. ;, our reduction would show
a lower bound suboptimal to the Kesten-Stigum threshold by a factor of r. Our reduction to order
s tensor PCA applies dense Bernoulli rotations to vectorizations of each tensor block with the sth
order Kronecker product Ko ; ® Ko; ® - -+ @ Ko . We remark that these instances of Ko ; in this
Kronecker product could be replaced by Hadamard matrices in dimension 2.

In Section G.4, we introduce a natural alternative to K. ; — a random matrix 2,  that approxi-
mately satisfies the three desiderata above. In our reductions to RSME and RSLR, this random matrix
has the advantage of eliminating the number-theoretic condition (T) arising from applying dense
Bernoulli rotations with K, ;, which has nontrivial restrictions in the very small e regime when
e = n~ 1. However, the approximate properties of R, ¢ are insufficient to map exactly to our
formulations of ISBM, SEMI-CR, GHPM and BHPM, where the sizes of the hidden communities are
known. A more detailed comparison of K.; and I,  can be found in Section G.4. The random
matrix R, . is closely related to the adjacency matrices of sparse random graphs, and establishing
A = O(1) requires results on their spectral concentration from the literature. For a consistent and
self-contained exposition, we present our reductions with K,.;, which has a comparatively simple
analysis, and only outline extensions of our reductions using R, .

Design Tensors. Our final reduction using dense Bernoulli rotations is to testing hidden partition
models. This reduction requires a more involved construction for A that we only sketch here and
defer a detailed discussion to Section G.3. Again applying dense Bernoulli rotations to vectoriza-
tions of each block of the input £-PC instance, our goal is to construct a tensor 7;.; such that each
slice has the same block structure as an r-block SBM and the slices are approximately orthogonal
under the matrix inner product. A natural construction is as follows: index each slice by a pair of
hyperplanes (V;, V;), label the rows and columns of each slice by F%. and plant r communities on the
entries with indices in (V; + aw;) x (V; 4+ au;) for each a € F,.. Here u; and u; are arbitrary vectors
not in V; and V}, respectively, and thus V; + au; ranges over all affine shifts of V; for a € F,.. An
appropriate choice of weights = and i on and off of these communities yields slices that are exactly
orthogonal.

However, this construction suffers from the same issue as the construction of A above — there
are O(r?'=2) slices each of which has 72! entries, making the matrix formed by vectorizing the
slices of this tensor far from square. This can be remedied by creating additional slices further
indexed by a nonconstant linear function L : F, — T, such that communities are now planted
on (V; + au;) x (Vj + L(a) - u;) for each a € F,. There are r(r — 1) such linear functions L,
making the vectorization of this tensor nearly square. Furthermore, it is shown in Section G.3 that
this matrix has largest singular value /1 + (r — 1)~1. We remark that this property is quite brittle,
as substituting other families of bijections for L can cause this largest singular value to increase
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dramatically. Taking the Kronecker product of each slice of this tensor 7). ; with Iy now yields the
family of matrices used in our reduction to testing hidden partition models.

We remark that in all of these reductions with both design matrices and design tensors, dense
Bernoulli rotations are applied locally within the blocks induced by the partition accompanying the
PC, instance. In all cases, our constructions ensure that the fact that the planted bits within these
blocks take the form of a submatrix is sufficient to stitch together the outputs of these local appli-
cations of dense Bernoulli rotations into a single instance with the desired hidden structure. While
we did not discuss this constraint in choosing the design matrices A for each of our reductions, it
will be a key consideration in the proofs throughout this work. Surprisingly, the linear functions L
in the construction of 7. ; directly lead to a community alignment property proven in Section G.3
that allow slices of this tensor to be consistently stitched together. Furthermore, we note that unlike
K, 1, the tensor 7). ; does not seem to have a random matrix analogue that is tractable to bound in
spectral norm.

Parameter Correspondence with Dense Bernoulli Rotations. In several of our reductions using
dense Bernoulli rotations, a simple heuristic predicts our computational lower bound in the target
problem. Let X be a data tensor, normalized and centered so that each entry has mean zero and
variance 1, and then consider the /2 norm of the expected tensor E[X]. Our applications of rejection
kernels typically preserve this £2 norm up to polylog(n) factors. Since our design matrices are
approximate isometries, most of our applications of dense Bernoulli rotations also approximately
preserve this £ norm. Thus comparing the /> norms of the input PC, instance and output instance
in our reductions yields a heuristic for predicting the resulting computational lower bound. For
example, our adversary in RSME produces a matrix E[X] € R%*™ consisting of columns of the form
7-k~1/2.1gand e 1(1—€)7-k~1/2-14, up to constant factors where S is the hidden support of ;1. The
{5 norm of this matrix is ©(7+/n/e). The 5 norm of the matrix E[X] corresponding to the starting
k-BPC instance can be verified to be just below o(k'/?n!/4), when the k-BPC instance is nearly at
its computational barrier. Equating these two 3 norms yields the relation n = ©(k%€2/7), which
is exactly our computational barrier for RSME. Similar heuristic derivations of our computational
barriers are produced for ISBM, GHPM, BHPM, SEMI-CR and TPCA at the beginnings of Sections
M and N. We remark that for some of our problems with central steps other than dense Bernoulli
rotations, such as MSLR, RSLR and GLSM, this heuristic does not apply.

C.4. Decomposing Linear Regression and Label Generation

Our reductions to mixtures of SLRs and robust SLR in Section I are motivated by the following
simple initial observation. Suppose (X, y) is a single sample from unsigned SLR with y = YR -
(v, X) +N(0,1) where R € {—1,1} is a Rademacher random variable, v € R? is a k-sparse unit
vector, X ~ N(0,1) andy € (0,1). A standard conditioning property of Gaussian vectors yields
that the conditional distribution of X given R and y is another jointly Gaussian vector, as shown
below. Our observation is that this conditional distribution can be decomposed into a sum of our
adversarial construction for robust sparse mean estimation and an independent instance of negative
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sparse PCA. More formally, we have that

Ry-y YT
X|Ryy ~ N (20, Iy — :
| ’y N<1+72 U, d 1+’y2 vV

1 1
~ — N(Rt-v, I + 7~N(O,I—0WT>
N 2 V2 I
Our RSME adversary with e =1/2 Negative Sparse PCA
where 7 = 7(y) = 1’2{/22 -y and 6 = % Note that the marginal distribution of y is N'(0, 1 + 7?)

and thus it typically holds that |y| = ©(1). When this unsigned SLR instance is at its computational
barrier of n = O(k?/4%) and |y| = ©(1), then n = O(k?/7*) and § = ©(,/k%/n). Therefore
surprisingly, both of the RSME and NEG-SPCA in the decomposition above are also at their compu-
tational barriers.

Now consider task of instead reducing from k-BPC to the problem of estimating v from n in-
dependent samples from the conditional distribution £(X||y| = 1). In light of the observations
above, it suffices to first use Bernoulli cloning to produce two independent copies of k-BPC, reduce
these two copies as outlined below and then take the sum of the two outputs of these reductions.

e Producing Our RSME Adversary: One of the two copies of k-BPC should be mapped to a tight
instance of our adversarial construction for RSME with ¢ = 1/2 through local applications of
dense Bernoulli rotations with design matrix K, ; or R,, ., as described previously.

e Producing NEG-SPCA: The other copy should be mapped to a tight instance of negative sparse
PCA. This requires producing negatively correlated data from positively correlated data, and
will need new techniques that we discuss next.

We remark that while these two output instances must be independent, it is important that they share
the same latent vector v. Bernoulli cloning ensures that the two independent copies of k-PC have
the same clique vertices and thus the output instances have this desired property.

This reduction can be extended to reduce to the true joint distribution of (X, y) as follows.
Consider replacing each sample X of the output RSME instance by

Xo=cy- X1+ V1-—c?y?-N(0,1y)

where c is some scaling factor and ¥ is independently sampled from A/(0,1 + +?), truncated to
lie in the interval [—T,T] where ¢I' < 1. Observe that if X1 ~ N(RT - v,I;), then Xy ~
N(cRty - v, 1) conditioned on y. In Section 1.2, we show that a suitable choice of ¢,T" and
tweaking 7 in the reduction above tightly maps to the desired distribution of mixtures of SLRs.
Analogous observations and performing the RSME sub-reduction with € < 1/2 can be used to show
tight computational lower bounds for robust SLR. We remark that this produces a more complicated
adversarial construction for robust SLR that may be of independent interest. The details of this
adversary can be found in Section 1.2.

C.5. Producing Negative Correlations and Inverse Wishart Matrices

To complete our reductions to mixtures of SLRs and robust SLR, it suffices to give a tight reduction
from k-BPC to NEG-SPCA. Although NEG-SPCA and ordinary SPCA share the same conjectured

54



STATISTICAL-COMPUTATIONAL GAPS FROM SECRET LEAKAGE

computational barrier at § = ©(1/k?/n) and can be solved by similar efficient algorithms above
this barrier, as stochastic models, the two are very different. As discussed in Section B.7, ordinary
SPCA admits a signal plus noise representation while NEG-SPCA does not. This representation was
crucially used in prior reductions showing optimal computational lower bounds for SPCA in Berthet
and Rigollet (2013b), Berthet and Rigollet (2013a), Wang et al. (2016b), Gao et al. (2017), Brennan
et al. (2018) and Brennan and Bresler (2019). Furthermore, the planted entries in a NEG-SPCA
sample are negatively correlated. In contrast, the edge indicators of PC,, are positively correlated and
all prior reductions from PC have only produced hidden structure that is also positively correlated.

We first simplify the task of reducing to NEG-SPCA with an observation used in the reduction
to SPCA in Brennan and Bresler (2019). Suppose that n > m + 1 and let m be such that m/k?
tends slowly to infinity. If X is an m x n matrix with columns X1, Xo,..., X, ~jia. N(0,X)
where ¥ € R™*™ is positive semidefinite, then the conditional distribution of X given its rescaled
empirical covariance matrix 3= Y XX ZT is ©1/2R where R is an independent m X n matrix
sampled from Haar measure on the Stiefel manifold. This implies that it suffices to reduce to ¥ in
the case where . = I; — fvv | in order to map to NEG-SPCA, as X can be generated from by by
randomly sampling this Haar measure. This measure can then be sampled efficiently by applying
Gram-Schmidt to the rows of an m X n matrix of independent standard Gaussians.

Let Wy, (n,X) be the law of 3, or in other words the Wishart distribution with covariance
matrix 3, and let W,,}(n, %) denote the distribution of its inverse. The matrices W,,(n,Y) and
Wi t(n, B-X71) where 7! = n(n —m — 1) have a number of common properties including close
low-order moments. Furthermore, if ¥ = I; — vv ' then ¥ 1 = I; + @’vv ' where ¢/ = 1%00,
which implies that W,.(n, 3 - £71) is a rescaling of the inverse of the empirical covariance matrix
of a set of samples from ordinary SPCA. This motivates our main reduction to NEG-SPCA in Section
H.1, which roughly proceeds in the following two steps.

1. Begin with a small instance of BPC with m = w(k?) vertices on the left and n on the right.
Apply either the reduction of Brennan et al. (2018) or Brennan and Bresler (2019) to reduce
to an ordinary SPCA instance (X1, Xo, ..., X,,) in dimension m with n samples and signal
strength ¢’

2. Form the rescaled empirical covariance matrix 3= Z?:l XZ-XZ.T and
Y =ynn—m—1)-%7Y2R

Output the columns of Y after padding them to be d-dimensional with i.i.d. A/(0, 1) random
variables.

The key detail in this reduction is that $1/2 in process of regenerating X from 3 described above
has been replaced by the positive semidefinite square root $1/2 of a rescaling of the empirical
precision matrix. As we will show in Section H.1, establishing total variation guarantees for this
reduction amounts to answering the following nonasymptotic question from random matrix theory
that may be of independent interest: when do W, (n,X) and W,.1(n, 3 - =) converge in total
variation for all positive semidefinite matrices 2? A simple reduction shows that the general case
is equivalent to the isotropic case when X = I,,,. In Section H.2, we answer this question, showing
that these two matrices converge in KL divergence if and only if n > m3. Our result is of the same
flavor as a number of recent results in random matrix theory showing convergence in total variation

between Wishart and GOE matrices (Jiang and Li, 2015; Bubeck et al., 2016; Bubeck and Ganguly,
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2016; Réacz and Richey, 2019). This condition amounts to constraining our reduction to the low-
sparsity regime k < n!/6. As discussed in Section B.7, this condition does not affect the tightness
of our lower bounds and seems to be an artefact of our techniques that possibly can be removed.

C.6. Completing Tensors from Hypergraphs and Tensor PCA

As alluded to in the above discussion of rejection kernels, it is important that the entries in the
vectors to which we apply dense Bernoulli rotations are independent and that none of these entries
is missing. In the context of reductions beginning with k-PC, k-HPC, PC and HPC, establishing
this entails pre-processing steps to remove the symmetry of the input adjacency matrix and add in
missing entries. As discussed in Section 1.1 of Brennan et al. (2019a), these missing entries in the
matrix case have led to technical complications in the prior reductions in Hajek et al. (2015), Bren-
nan et al. (2018, 2019a) and Brennan and Bresler (2019). In reductions to tensor PCA, completing
these pre-processing steps in the tensor case seems unavoidable in order to produce the canonical
formulation of tensor PCA with a symmetric rank-1 spike v®¢ as discussed in Section B.10.

In order to motivate our discussion of the tensor case, we first consider the matrix case. Asym-
metrizing the adjacency matrix of an input PC instance can be achieved through a simple application
of Bernoulli cloning, but adding in the missing diagonal entries is more subtle. Note that the desired
diagonal entries contain nontrivial information about the vertices in the planted clique — they are
constrained to be 1 along the vertices of the clique and independent Bern(1/2) random variables
elsewhere. This is roughly the information gained on revealing a single vertex from the planted
clique. In the matrix case, the following trick effectively produces an instance of PC with the diag-
onal entries present. Add in 1’s along the entire diagonal and randomly embed the resulting matrix
as a principal minor in a larger matrix with off-diagonal entries sampled from Bern(1/2) and on-
diagonal entries sampled so that the total number of 1’s on the diagonal has the correct binomial dis-
tribution. This trick appeared in the TO-SUBMATRIX procedure in Brennan et al. (2019a) for general
PDS instances, and is adapted in this work for k-PDS as the reduction TO-k-PARTITE-SUBMATRIX
in Section F. This reduction is an important pre-processing step in mapping to dense stochastic
block models, testing hidden partition models and semirandom planted dense subgraph.

The tensor case is not as simple as the matrix case. While asymmetrizing can be handled sim-
ilarly with Bernoulli cloning, the missing entries of the adjacency tensor of HPC are now more
numerous and correspond to any entry with two equal indices. Unlike in the matrix case, the in-
formation content in these entries alone is enough to solve HPC. For example, in 3-uniform HPC,
the missing set of entries (4, 4, j) should have the same distribution as the completed adjacency ma-
trix of an entire instance of planted clique with the same hidden clique vertices. Thus a reduction
that randomly generates these missing entries as in the matrix case is no longer possible without
knowing the solution to the input HPC instance. However, if an oracle were to have revealed a sin-
gle vertex of the hidden clique, we would be able to use the hyperedges containing this vertex to
complete the missing entries of the adjacency tensor. In general, given an HPC instance of arbitrary
order s, a more involved cloning and embedding procedure detailed in Section J completes the miss-
ing entries of the adjacency tensor given oracle access to s — 1 vertices of the hidden clique. Our
reduction to tensor PCA in Sections J and N iterates over all (s — 1)-tuples of vertices in the input
HPC instance, uses this procedure to complete the missing entries of the adjacency tensor, applies
dense Bernoulli rotations as described previously and then feeds the output instance to a blackbox
solving tensor PCA. The reduction only succeeds in mapping to the correct distribution on tensor
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PCA in iterations that successfully guess s — 1 vertices of the planted clique. However, we show
that this is sufficient to deduce tight computational lower bounds for tensor PCA. We remark that
this reduction is the first reduction in total variation from PC,, that seems to require multiple calls to
a blackbox solving the target problem.

C.7. Symmetric 3-ary Rejection Kernels and Universality

So far, all of our reductions have been to problems with Gaussian or Bernoulli data and our tech-
niques have often relied heavily on the properties of jointly Gaussian vectors. Our last reduc-
tion technique shows that the consequences of these reductions extend far beyond Gaussian and
Bernoulli problems. We introduce a new rejection kernel in Section F.3 and show in Section O that,
when applied entrywise to the output of our reduction to RSME when ¢ = 1/2, this rejection kernel
yields a universal computational lower bound for a general variant of learning sparse mixtures with
nearly arbitrary marginals.

Because sparse mixture models necessarily involve at least three distinct marginal distributions,
a deficit in degrees of freedom implies that the existing framework for rejection kernels with binary
entries cannot yield nontrivial hardness. We resolve this issue by considering rejection kernels with
a slightly larger input space, and introduce a general framework for 3-ary rejection kernels with en-
tries in {—1,0, 1} in Section F.3. We show in Section O that first mapping each entry of our RSME
instance with e = 1/2 into {—1, 0, 1} by thresholding at intervals of the form (—oo, =77, (=7, T)
and [T, 00) with " = ©(1) and then applying 3-ary rejection kernels entrywise is a nearly lossless
reduction. In particular, it yields new computational lower bounds for a wide universality class that
tightly recover optimal computational lower bounds for sparse PCA, learning mixtures of exponen-
tially distributed data, the original RSME instance with ¢ = 1/2 and many other sparse mixture
formulations. The implications of this reduction are discussed in detail in Section O.2.

C.8. Encoding Cliques as Structural Priors

As discussed in Section A.2, reductions from PC,, showing tight computational lower bounds cannot
generate a non-negligible part of the hidden structure in the target problem themselves, but instead
must encode the hidden clique of the input instance into this structure. In this section, we outline
how our reductions implicitly encode hidden cliques. Note that the hidden subset of vertices cor-
responding to a clique in PC, has ©(k log n) bits of entropy while the distribution over the hidden
structure in the target problems that we consider can have much higher entropy. For example, the
Rademacher prior on the planted vector v in Tensor PCA has n bits of entropy and the distribution
over hidden partitions in testing partition models has entropy O (r? K2 logn log r).

Although our reductions inject randomness to produce the desired noise distributions of target
problems, the induced maps encoding the clique in PC, as a new hidden structure typically do
not inject randomness. Consequently, our reductions generally show hardness for priors over the
hidden structure in our target problems with entropy ©(k logn). This then implies a lower bound
for our target problems, because the canonical uniform priors with which they are defined are the
hardest priors. For example, every instance of PC, reduces to uniform prior over cliques as in PC by
randomly relabelling nodes. Similarly, a tensor PCA instance with a fixed planted vector v reduces
to the formulation in which v is uniformly distributed on {—1, 1}" by taking the entrywise product
of the tensor PCA instance with u®® where u is chosen u.a.r. from {—1,1}". Thus our reductions
actually show slightly stronger computational lower bounds than those stated in our main theorems —
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they show lower bounds for our target problems with nonuniform priors on their hidden structures.
These nonuniform priors arise from the encodings of planted cliques into target hidden structure
implicitly in our reductions, several of which we summarize below. Our reductions often involve
aesthetic pre-processing and post-processing steps to reduce to canonical uniform priors and often
subsample the output instance. To simplify our discussion, we omit these steps in describing the
clique encodings induced by our reductions.

¢ Robust Sparse Mean Estimation and SLR: Let Sy, and Sy be the sets of left and right
clique vertices of the input k-BPC instance and let [N] = £y U E; U - - - U Ey,, be the given
partition of the right vertices. The support of the k-sparse vector in our output RSME and
RSLR instances is simply Sy. Let r be a prime and let £ U Ej U --- U Ej  be a partition
of the output n samples into parts of size r¢ where { = 7;1—11' Label each of element of E/
with a affine shift of a hyperplane in F. and each element of E; with a point of F£. For each
i, our adversary corrupts each sample in E/ corresponding to an affine shift of a hyperplane
containing the point corresponding to the unique element in Sg N E;.

¢ Dense Stochastic Block Models: Let S be the set of clique vertices of the input k-PC instance
and let E be the given partition of the its vertices [N]. Let E’ be a partition of the output
n vertices again into parts of size r£. Label elements in each part as above. Our output
ISBM instance has its smaller community supported on the union of the vertices across all E,
corresponding to affine shifts containing the points in F. corresponding to the vertices S.

e Mixtures of SLRs and Generalized Learning Sparse Mixtures: Let S;, Sg, k,kn, N, n
and F be as above. The support of the k-sparse vector in our output MSLR and GLSM instances
is again simply Sy,. Let Hy, Ho, ..., Hyt_; € {—1, 1}2t be the zero-sum rows of a Hadamard
matrix and let E’ be a partition of the output n samples into kx blocks of size 2¢. The output
instance sets the jth sample in E/ to be from the first part of the mixture if and only if the jth
entry of Hy is 1 where s is the unique element in Si N E;. In other words, the mixture pattern
along E is given by the (Sg N E;)th row of a Hadamard matrix.

e Tensor PCA: Let S be the set of clique vertices of the input k-HPC instance and let £ and N
be as above. Similarly to MSLR and GLSM, the planted vector v of our output TPCA instance
is the concatenation of the (S N E;)th rows of a Hadamard matrix.

Our reduction to testing hidden partition models induces a more intricate encoding of cliques similar
to that of dense stochastic block models described above. We remark that each of these encodings
arises directly from design matrices and tensors based on K ; used in the dense Bernoulli rotation
step of our reductions.

Appendix D. Further Directions and Open Problems

In this section, we describe several further directions and problems left open in this work. These
directions mainly concern the PC, conjecture and our reduction techniques.

Further Evidence for PC, Conjectures. In this work, we give evidence for the PC, conjecture
from the failure of low-degree polynomials and for specific instantiations of the PC, conjecture
from the failure of SQ algorithms. An interesting direction for future work is to show sum of
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squares lower bounds for PC, and k-HPC® supporting this conjecture. A priori, this seems to be
a technically difficult task as the SOS lower bounds in Barak et al. (2016) only apply to the prior
in planted clique where every vertex is included in the clique independently with probability k/n.
Thus it even remains open to extend these lower bounds to the uniform prior over k-subsets of [n].

How do Priors on Hidden Structure Affect Hardness? In this work, we showed that slightly
altering the prior over the hidden structure of PC gave rise to a problem much more amenable
to average-case reductions. This raises a broad question: for general problems P with hidden
structure, how does changing the prior over this hidden structure affect its hardness? In other words,
for natural problems other than PC, how does the conjectured computational barrier change with p?
Another related direction for future work is whether other choices of p in the PC, conjecture give
meaningful assumptions that can be mapped to more natural problems than the ones we consider
here. Furthermore, it would be interesting to study how reductions carry ensembles of problems
with a general prior p to one another. For instance, is there a reduction between PC and another
problem, such as SPCA, such that every hard prior in PC, is mapped to a corresponding hard prior
in SPCA?

Generalizations of Dense Bernoulli Rotations. In this work, dense Bernoulli rotations were an
extremely important subroutine, serving as our simplest primitive for transforming hidden struc-
ture. An interesting technical direction for future work is to find similar transformations map-
ping to other distributions. More concretely, dense Bernoulli rotations approximately mapped
from PB(n,4,1,1/2) to the n distributions D; = N (c - A;, I,;,), respectively, and mapped from
Bern(1/2)®™ to D = N(0, I;,). Are there other similar reductions mapping from these planted bit
distributions to different ensembles of D, Dy, Do, ..., D, ? Furthermore, can these maps be used to
show tight computational lower bounds for natural problems? For example, two possibly interesting
ensembles of D, D1, Ds, ..., D, are:

1. D; = ®;7”‘:1Bern(Pijn*a) and some D where P € [0,1]"*™ is a fixed matrix of constants
and o > 0.

2. Dy =N(c- Ay Iy — 2A;Al ) and D = N(0, I,,).

The first example above corresponds to whether or not there is a sparse analogue of Bernoulli
rotations that can be used to show tight computational lower bounds. A natural approach to (1) is to
apply dense Bernoulli rotations and map each entry into {0, 1} by thresholding at some large real
number T' = ©(y/logn). While this maps to an ensemble of the form in (1), this reduction seems
lossy, in the sense that it discards signal in the input instance, and it does not appear to show tight
computational lower bounds for any natural problem. The second example above presents a set of
D; with the same expected covariance matrices as D. Note that in ordinary dense Bernoulli rotations
the expected covariance matrices for each i are I,,, + ¢ - AiA;r and often a degree-2 polynomial
suffices to distinguish them from D. More generally, a natural question is: are there analogues of
dense Bernoulli rotations that are tight to algorithms given by polynomials of degree higher than 2?

General Reductions to Supervised Problems. Our last open problem is more concrete than the
previous two. In our reductions to MSLR and RSLR, we crucially use a subroutine mapping to
NEG-SPCA. This subroutine requires that k = 6(n1/ 6) in order to show convergence in KL diver-
gence between the Wishart and inverse Wishart distributions. Is there a reduction that relaxes this
requirement to k = 6(n®) where 1/6 < a < 1/2? Providing a reduction for « arbitrarily close to
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1/2 would essentially fill out all parameter regimes of interest in our computational lower bounds
for MSLR and RSLR. Any reduction relaxing this constraint to some « with @ > 1/6 seems as
though it would require new techniques and be technically interesting. Another question related to
our reductions to MSLR and RSLR is: can our label generation technique be generalized to handle
more general link functions o i.e. generalized linear models where each sample-label pair (X, y)
is satisfies y = o ({8, X)) + N (0,1)? In particular, is there a reduction mapping to the canonical
formulation of sparse phase retrieval with o (¢) = ¢2? Although the statistical-computational gap for
this formulation of sparse phase retrieval seems closely related to our computational lower bound
for MSLR, any such reduction seems as though it would be interesting from a technical viewpoint.
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Part I1
Average-Case Reduction Techniques

Appendix E. Preliminaries and Problem Formulations

In this section, we establish notation and some preliminary observations for proving our main the-
orems from Section 3. We already defined our notion of computational lower bounds and solving
detection and recovery problems in Section 3. In this section, we begin by stating our conventions
for detection problems and adversaries. In Section E.2, we introduce the framework for reductions
in total variation to show computational lower bounds for detection problems. In Section E.3, we
then state detection formulations for each of our problems of interest that it will suffice to exhibit
reductions to. Finally, in Section E.4, we introduce the key notation that will be used throughout
the paper. Later in Section P, we discuss how our reductions and lower bounds for the detection
formulations in Section E.3 imply lower bounds for natural estimation and recovery variants of our
problems.

E.1. Conventions for Detection Problems and Adversaries

We begin by describing our general setup for detection problems and the notions of robustness and
types adversaries that we consider.

Detection Problems. In a detection task P, the algorithm is given a set of observations and tasked
with distinguishing between two hypotheses:

e a uniform hypothesis Hy corresponding to the natural noise distribution for the problem; and

e a planted hypothesis H;, under which observations are generated from this distribution but
with a latent planted structure.

Both Hy and H; can either be simple hypotheses consisting of a single distribution or a composite
hypothesis consisting of multiple distributions. Our problems typically are such that either: (1) both
Hy and H; are simple hypotheses; or (2) both Hy and H; are composite hypotheses consisting of
the set of distributions that can be induced by some constrained adversary.

As discussed in Brennan et al. (2018) and Hajek et al. (2015), when detection problems need
not be composite by definition, average-case reductions to natural simple vs. simple hypothesis
testing formulations are stronger and technically more difficult. In these cases, composite hypothe-
ses typically arise because a reduction gadget precludes mapping to the natural simple vs. simple
hypothesis testing formulation. We remark that simple vs. simple formulations are the hypothe-
sis testing problems that correspond to average-case decision problems (L, D) as in Levin’s theory
of average-case complexity. A survey of average-case complexity can be found in Bogdanov and
Trevisan (2006a).

Adversaries. The robust estimation literature contains a number of adversaries capturing different
notions of model misspecification. We consider the following three central classes of adversaries:

1. e-corruption: A set of samples (X1, Xo,...,X,,) is an e-corrupted sample from a distri-
bution D if they can be generated by giving a set of n samples drawn i.i.d. from D to an
adversary who then changes at most en of them arbitrarily.
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2. Huber’s contamination model: A set of samples (X7, Xo,..., X,,) is an e-contamination
of D in Huber’s model if

X1, X9, ..., Xy ~ijd MIX(D, Do)

where Do is an unknown outlier distribution chosen by an adversary. Here, MiX (D, Do)
denotes the e-mixture distribution formed by sampling D with probability (1 — €) and Do
with probability e.

3. Semirandom adversaries: Suppose that D is a distribution over collections of observations
{X}ier such that an unknown subset P C [ of indices correspond to a planted structure.
A sample {X;};es is semirandom if it can be generated by giving a sample from D to an
adversary who is allowed decrease X; for any ¢ € I'\ P. Some formulations of semirandom
adversaries in the literature also permit increases in X; for any ¢ € P. Our lower bounds
apply to both adversarial setups.

All adversaries in these models of robustness are computationally unbounded and have access to
randomness — meaning that they also have access to any hidden structure in a problem that can
be recovered information theoretically. Given a single distribution D over a set X, any one of
these three adversaries produces a set of distributions ADV (D) that can be obtained after corruption.
When formulated as detection problems, the hypotheses Hy and H; are of the form ADV(D) for
some D. We remark that e-corruption can simulate contamination in Huber’s model at a slightly
smaller ¢ within o(1) total variation. This is because a sample from Huber’s model has Bin(n, €)
samples from Dp. An adversary resampling min{Bin(n, €'), en} samples from Do therefore sim-
ulates Huber’s model within a total variation distance bounded by standard concentration for the
Binomial distribution.

E.2. Reductions in Total Variation and Computational Lower Bounds

In this section, we introduce our framework for reductions in total variation, state a general condition
for deducing computational lower bounds from reductions in total variation and state a number of
properties of total variation that we will use in analyzing our reductions.

Average-Case Reductions in Total Variation. We give approximate reductions in total variation
to show that lower bounds for one hypothesis testing problem imply lower bounds for another.
These reductions yield an exact correspondence between the asymptotic Type I+II errors of the two
problems. This is formalized in the following lemma, which is Lemma 3.1 from Brennan et al.
(2018) stated in terms of composite hypotheses Hy and H;. The main quantity in the statement
of the lemma can be interpreted as the smallest total variation distance between the reduced object
A(X) and the closest mixture of distributions from either H{ or H{. The proof of this lemma is
short and follows from the definition of total variation. Given a hypothesis H;, we let A(H;) denote
the set of all priors over the set of distributions valid under H;.

Lemma 14 (Lemma 3.1 in Brennan et al. (2018)) Let P and P’ be detection problems with hy-
potheses Hy, Hy and H{), H}, respectively. Let X be an instance of P and let Y be an instance of
P'. Suppose there is a polynomial time computable map A satisfying

sup inf dpy (ﬁp(A(X)),EP/Nﬂ- ﬁp/(Y))—l— sup inf dpy (ﬁp(A(X)),Ep/Nﬂ- Lp (Y)) <
PcHy m€A(Hy) PcH, T€A(HY)
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If there is a randomized polynomial time algorithm solving P’ with Type I+II error at most €, then
there is a randomized polynomial time algorithm solving P with Type I+II error at most € + 0.

If § = o(1), then given a blackbox solver B for P/, the algorithm that applies .4 and then B
solves Pp and requires only a single query to the blackbox. We now outline the computational
model and conventions we adopt throughout this paper. An algorithm that runs in randomized
polynomial time refers to one that has access to poly(n) independent random bits and must run in
poly(n) time where n is the size of the instance of the problem. For clarity of exposition, in our
reductions we assume that explicit real-valued expressions can be exactly computed and that we
can sample a biased random bit Bern(p) in polynomial time. We also assume that the sampling
and density oracles described in Definition 24 can be computed in poly(n) time. For simplicity of
exposition, we assume that we can sample A (0, 1) in poly(n) time.

Deducing Strong Computational Lower Bounds for Detection from Reductions. Throughout
Part I1I, we will use the guarantees for our reductions to show computational lower bounds. For clar-
ity and to avoid redundancy, we will outline a general recipe for showing these hardness results. All
lower bounds that will be shown in Part III are computational lower bounds in the sense introduced
in the beginning of Section E.1. Consider a problem P with parameters (n, a1, asg, . . ., a;) and hy-
potheses Hy and H; with a conjectured computationally hard regime captured by the constraint set
C. In order to show a computational lower bound at C based on one of our hardness assumptions, it
suffices to show that the following is true:

Condition E.1 (Computational Lower Bounds from Reductions) For all sequences of parame-

ters satisfying the lower bound constraints {(n, ai(n), az(n),...,a:(n))}>>, C C, there are:
1. another sequence of parameters {(n;, a}(n;), a5(n;), ..., a;(n;))}2; C C such that
log aj, (ni)

lim ) =1

i—00 1og af (nz)

2. asequence of instances {G; }5°, of a problem PC, with hypotheses H/, and H{ that cannot be
solved in polynomial time according to Conjecture 3; and

3. apolynomial time reduction R such that if P(n;, a)(n;), a5(n;), ..., a}(n;)) has an instance
denoted by X, then

dTV (R(GZ‘Hé),L‘(XZ’Ho)) = Oni(l) and dTV (R(GZ’H{),ﬁ(XZ’Hl)) = Oni(l)

This can be seen to suffice as follows. Suppose that A solves P for some possible growth rate in
C i.e. there is a sequence {(n;, a’(n;), a5(n;), ..., ar(n;))}2, C C with this growth rate such that
A has Type I+1II error 1 — Q,,,(1) on P(n;, a)(n;),ab(ni), ..., a,(n;)). By Lemma 14, it follows
that AoR also has Type I+II error 1 —€2,,, (1) on the sequence of inputs {G;}$°,, which contradicts
the conjecture that they are hard instances. The three conditions above will be verified in a number
of theorems in Part III.
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Remarks on Deducing Computational Lower Bounds. We make several important remarks
on the recipe outlined above. In all of our applications of Condition E.1, the second sequence
of parameters (n;, a}(n;), ay(n;),...,a;(n;)) will either be exactly a subsequence of the original
parameter sequence (n, ai(n),az(n),. .., a;(n)) or will have one parameter a, # a; different from
the original. However, the ability to pass to a subsequence will be crucial in a number of cases
where number-theoretic constraints on parameters impact the tightness of our computational lower
bounds. These constraints will arise in our reductions to robust sparse mean estimation, robust SLR
and dense stochastic block models. They are discussed more in Section L.

Properties of Total Variation. The analysis of our reductions will make use of the following
well-known facts and inequalities concerning total variation distance.

Fact 15 The distance dry satisfies the following properties:

1. (Tensorization) Let Py, P, ..., P, and Q1,Q2,...,Q, be distributions on a measurable

space (X, B). Then
dry (H P, H@-) <N d (P, Qi)
i=1 =1 i=1

2. (Conditioning on an Event) For any distribution P on a measurable space (X, B) and event
A € B, it holds that
dry (P(|4), P) = 1 - P(A)

3. (Conditioning on a Random Variable) For any two pairs of random variables (X,Y') and
(X',Y") each taking values in a measurable space (X, B), it holds that

dry (L£(X), L(X")) < dpv (L(Y), L(Y")) + Eyy [drv (L(X]Y =y), L(X'|Y' = y))]
where we define dry (L(X|Y =), L(X'|Y" =vy)) = 1 forall y & supp(Y”).

Given an algorithm A and distribution P on inputs, let A(P) denote the distribution of A(X)
induced by X ~ P. If A has k steps, let A; denote the ith step of A and A;_; denote the procedure
formed by steps 7 through j. Each time this notation is used, we clarify the intended initial and final
variables when A; and A;_; are viewed as Markov kernels. The next lemma from Brennan et al.
(2019a) encapsulates the structure of all of our analyses of average-case reductions. Its proof is
simple and included in Appendix Q.1 for completeness.

Lemma 16 (Lemma 4.2 in Brennan et al. (20192a)) Let A be an algorithm that can be written as
A=Ano0Ay,_10---0 A forasequence of steps A1, Az, ..., An. Suppose that the probability
distributions Py, P1, . . ., Pm are such that dry(A;(Pi—1),P;) < € for each 1 < i < m. Then it
follows that

dry (A(Po), Pm) < Z i

=1

The next lemma bounds the total variation between unplanted and planted samples from bino-
mial distributions. This will serve as a key computation in the proof of correctness for the reduc-
tion primitive TO-k-PARTITE-SUBMATRIX. We remark that the total variation upper bound in this
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lemma is tight in the following sense. When all of the P; are the same, the expected value of the
sum of the coordinates of the first distribution is k(FP; — Q) higher than that of the second. The
standard deviation of the second sum is \/km@(1 — Q) and thus when k(P; — Q)% > mQ(1 —Q),
the total variation below tends to one. The proof of this lemma can be found in Appendix Q.1.

Lemma 17 Ifk,m €N, P.,P,,..., P €[0,1] and Q € (0,1), then

k
| | (P, — Q)
drv (12 (Bem(P) + Bin(m — 1,Q)) Bin(m, Q)" ) < | =5 =55

i=1

Here, £1 + L5 denotes the convolution of two given probability measures £1 and L. The next
lemma bounds the total variation between two binomial distributions. Its proof can be found in
Appendix Q.1.

Lemma 18 Given P € [0,1], Q € (0,1) and n € N, it follows that

drv (Bin(n, P),Bin(n, Q) < [P — Q| - /m

E.3. Problem Formulations as Detection Tasks

In this section, we formulate each problem for which we will show computational lower bounds as
a detection problem. More precisely, for each problem P introduced in Section 3, we introduce a
detection variant P’ such that a blackbox for P also solves P’. Some of these formulations were
already implicitly introduced or will be reintroduced in future sections. We gather all of these
formulations here for convenience. Throughout this work, to simplify notation, we will refer to
problems P and their detection formulations P’ introduced in this section using the same notation.
Furthermore, we will often denote the distribution over instances under the alternative hypothesis
H, of the detection formulation for P with the notation Pp, when H; is a simple hypothesis. We
will also often parameterize Pp by 6 to denote Pp conditioned on the latent hidden structure 6.
When H; is composite, Pp denotes the set of distributions permitted under ;. These general
conventions are introduced on a per problem basis in this section. In Section P, we show that our
reductions and lower bounds for these detection formulations also imply lower bounds for analogous
estimation and recovery variants.

Robust Sparse Mean Estimation. Our hypothesis testing formulation for RSME(n, k, d, T, €) has
hypotheses given by

Hy: (X1, X2,...,Xp) ~iia N(0,1g)
H1 . (Xl,XQ, ... ,Xn) ~jiid MIXe (N(T . ;LR,Id),Do)

where Do is any adversarially chosen outlier distribution on R?, where iz € R? is a random k-
sparse unit vector chosen uniformly at random from all such vectors with entries in {0, 1/v/k}. Note
that H; is a composite hypothesis here since Dy is arbitrary. Note also that this is a formulation
of RSME in Huber’s contamination model, and therefore lower bounds for this detection problem
imply corresponding lower bounds under stronger e-corruption adversaries.
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As discussed in Section B.3, RSME is only information-theoretically feasible when 7 = (e).
Consider any algorithm that produces some estimate /i satisfying that ||z — p||2 < 7/2 with proba-
bility 1/24-€2(1) in the estimation formulation for RSME with hidden k-sparse vector (i, as described
in Section B.3. This algorithm would necessarily output some £ with ||i||2 < 7/2 under Hy and
some /i with ||fi]|2 > 7/2 under H; with probability 1/2 + (1) in the hypothesis testing formula-
tion above, thus solving it in the sense of Section 3. Thus any computational lower bounds for this
hypothesis testing formulation also implies a lower bound for the typical estimation formulation of
RSME.

Dense Stochastic Block Models. Given a subset C; C [n] of size n/k, let 1ISBMp(n, C1, P11, P12, Pa2)
denote the distribution on n-vertex graphs G’ introduced in Section B.4 conditioned on Cy. Further-
more, let ISBMp(n, k, P11, P12, Pa2) denote the mixture of these distributions induced by choosing

Cy uniformly at random from the (n/k)-subsets of [n]. The problem 1SBM(n,k, P11, P12, Ps2)
introduced in Section B.4 is already a hypothesis testing problem, with hypotheses

HO :GNg(TL,Po) and H; 2GNISBMD(n,]{?,PH,Plg,PQQ)

where Hj is a composite hypothesis and Py can vary over all edge densities in (0, 1). As we will
discuss at the end of this section, computational lower bounds for this hypothesis testing problem
imply lower bounds for the problem of recovering the hidden community C.

Testing Hidden Partition Models. Let C = (C1,Cs,...,C;) and D = (D1, Ds,...,D,) be
two fixed sequences, each consisting of disjoint K -subsets of [n]. Let GHPMp(n, r, C, D, ~y) denote
the distribution over random matrices M € R"™*™ introduced in Section B.5 conditioned on the fixed
sequences C' and D. We denote the mixture over these distributions induced by choosing C' and D
independently and uniformly at random from all admissible such sequences as GHPMp (n, 7, K, ).
Similarly, we let BHPMp(n, r, C, Py,~y) denote the distribution over bipartite graphs G with two
parts of size n, each indexed by [n] with edges included independently with probability

Py+~ ifi e Cyandj € Dy for some h € [r]
P((i,j) € E(G)] =4 Po— 5 ificCy, andj € Dy, where hy # hy
Py otherwise

where Py, € (0,1) be such that v/r < Py < 1 — ~. Then let BHPMp(n,r, K, Py,~y) denote the
mixture formed by choosing C' and D randomly as in GHPM p. The problems GHPM(n, r, C, D, )
and BHPM(n, r, K, Py, ) are simple hypothesis testing problems given by

Ho: M ~N(0,1)®" and H;: M ~ GHPMp(n,r, K,7)
Hy:G~Gg(n,n,Py) and H;j:G ~ BHPMp(n,r, K, Py,7)

where Gg(n,n, Py) denotes the Erd6s-Rényi distribution over bipartite graphs with two parts each
indexed by [n] and where each edge is included independently with probability Py.

Semirandom Planted Dense Subgraph. Our hypothesis testing formulation for the problem
SEMI-CR(n, k, P1, Py) has observation G € G,, and two composite hypotheses given by

Hy: G ~Py forsome Py € ADV (G(n, Fy))
H,:G~P; forsomeP; € ADV (G(n,k, Pi, P))
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Here, ADV (G(n, k, P1, Py)) denotes the set of distributions induced by a semirandom adversary that
can only remove edges outside of the planted dense subgraph \S. Similarly, the set ADV (G(n, Pp))
corresponds to an adversary that can remove any edges from the Erdés-Rényi graph G(n, Py). We
will discuss at the end of this section, how computational lower bounds for this hypothesis testing
formulation imply lower bounds for the problem of approximately recovering the vertex subset
corresponding to the planted dense subgraph.

Negative Sparse PCA. Our hypothesis testing formulation for NEG-SPCA(n, k, d, 0) is the spiked
covariance model introduced in Johnstone and Lu (2004) and used to formulate ordinary SPCA
in Gao et al. (2017), Brennan et al. (2018) and Brennan and Bresler (2019). This problem has
hypotheses given by

Ho : (Xl,XQ, e ,Xn) ~ii.d. N(O,Id)
Hy: (X1, Xo,..., Xp) ~iga N <0Jd - QUUT>

where v € R? is a k-sparse unit vector with entries in {0, 1/v/k} chosen uniformly at random.

Unsigned and Mixtures of SLRs. Given a vector v € R%, let LRy(v) be the distribution of a
single sample-label pair (X,y) € R? x R given by

y={(v,X)+n where X ~N(0,1I;)and n ~ N(0,1) are independent

Given a subset S C [n], let MSLRp(n, S, d, 7,1/2) denote the distribution over n independent
sample-label pairs (X1, 1), (X2,¥2), ..., (Xn, yn) each distributed as

(Xi, yl) ~ LRd(TSivs) where Si ~iid. Rad

where vg = [S|7'/2 - 15 and Rad denotes the Rademacher distribution which is uniform over
{—1,1}. Note that this is a even mixture of sparse linear regressions with hidden unit vectors vg
and —vg and signal strength 7. Let MSLRp(n, k, d, 7, 1/2) denote the mixture of these distributions
induced by choosing S uniformly at random from all k-subsets of [n]. Our hypothesis testing
formulation for MSLR(n, k, d, 7) has two simple hypotheses given by

Ho : {(Xio0i)Yiepay ~ (N0, 1) N (0,1 +7%)) "
Hi : {(X5,9i) }iepn) ~ MSLRD(n, K, d, 7,1/2)

Our hypothesis testing formulation of USLR(n, k,d, 7) is a simple derivative of this formulation
obtained by replacing each observation (X, y;) with (Xj, |y;|). We remark that, unlike RSME where
an estimation algorithm trivially solved the hypothesis testing formulation, the hypothesis Hy here
is not an instance of MSLR corresponding to a hidden vector of zero. This is because the labels y;
under H have variance 1 + 72, whereas they would have variance 1 if they were this instance of
MSLR. However, this detection problem still yields hardness for the estimation variants of MSLR
and USLR described in Section B.8, albeit with a slightly more involved argument. This is discussed
in Section P.
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Robust SLR. Our hypothesis testing formulation for RSLR(n, k, d, 7, €) has hypotheses given by

Ho  {(Xi,90) b ~ V0, 10) @ N (0,14 72))*"
Hi = {(X5,9i) biepn) ~iia. MIXe (LRg(T0), Do)

where Do is any adversarially chosen outlier distribution on R? x R, where v € R? is a random
k-sparse unit vector chosen uniformly at random from all such vectors with entries in {0, 1/vk}.
As with the other formulations of SLR, we defer discussing the implications of lower bounds in this
formulation for the estimation task described in Section B.9 to Section P.

Tensor PCA. Let TPCA7,(n, 0) denote the distribution on order s tensors 1" € R"“" with dimen-
sions all equal to n given by T' = v®5 + G where G ~ N(0,1)®""" and v € {—1,1}" is chosen
independently and uniformly at random. As already introduced in Section B.10, our hypothesis
testing formulation for TPCA®*(n, 0) is given by

Hy:T ~N(0,1)®""  and Hy: T ~ TPCAS(n,6)

Unlike the other problems we consider, our reductions only show computational lower bounds for
blackboxes solving this hypothesis testing problem with a low false positive probability. As we will
show in Section N, this implies a lower bound for the canonical estimation formulation for tensor
PCA.

Generalized Learning Sparse Mixtures. Let {P,},cr and Q be distributions on an arbitrary
measurable space (X', B) and let D be a distribution on R. Let GLSMp(n, S, d, {Py} uer, Q, D) de-
note the distribution over X1, X, ..., X,, € X% introduced in Section B.11 and let the distribution
GLSMp(n, k,d,{P,}.ecr, Q, D) denote the mixture over these distributions induced by sampling
S uniformly at random from the family of k-subsets of [n]. Our general sparse mixtures detec-
tion problem GLSM(n, S, d, {P,}.er, Q, D) is the following simple vs. simple hypothesis testing
formulation

HO : (XlaXQ) s 7Xn) ~iid. Q®d and
Hy: (X1,Xo,...,X,) ~GLSMp (n, k,d, {Pu}uer, Q, D)

Lower bounds for this formulation directly imply lower bounds for algorithms that return an esti-
mate S of S given samples from GLSMp(n, S,d, {Pu}.er, Q, D) with \5‘AS| < k/2 with proba-
bility 1/2 + Q(1) for all |S| < k. Note that under Hy, such an algorithm would output some set
S of size less than k /2 and, under Hj, it would output a set of size greater than k/2, each with
probability 1/2 4 €(1). Thus thresholding | S| at k/2 solves this detection formulation in the sense
of Section 3.

E.4. Notation

In this section, we establish notation that will be used repeatedly throughout this paper. Some of
these definitions are repeated later upon use for convenience. Let £(X) denote the distribution
law of a random variable X and given two laws £ and Lo, let £; + L5 denote £L(X + Y') where
X ~ Ly and Y ~ L5 are independent. Given a distribution P, let P®" denote the distribution
of (X1, Xo,...,X,) where the X; are i.i.d. according to P. Similarly, let P®"*" denote the
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distribution on R™*" with i.i.d. entries distributed as P. We let R"®" denote the set of all order
s tensors with dimensions all n in size that contain n® entries. The distribution P®"“" denotes a
tensor of these dimensions with entries independently sampled from P. We say that two parameters
a and b are polynomial in one another if there is a constant C' > 0 such that a'/¢ < b < aC as
a — oo. In this paper, we adopt the standard asymptotic notation O(-), Q(-),0(-),w(+) and O(+).
Weleta < b,a < band a 2 bbe shorthands for a = O(b),a = O(b) and a = Q(b), respectively. In
all problems that we consider, our main focus is on the polynomial order of growth at computational
barriers, usually in terms of a natural parameter n. Given a natural parameter n that will usually be
clear from context, we let a = O(b) be a shorthand for a = O (b - (log n)®) for some constant ¢ > 0,
and define Q(-),6(-),@(-) and ©(-) analogously. Oftentimes, it will be true that b is polynomial in
n, in which case n can be replaced by b in the definition above.

Given a finite or measurable set X, let Unif[X’] denote the uniform distribution on X. Let
Rad be shorthand for Unif[{—1, 1}], corresponding to the special case of a Rademacher random
variable. Let dyy, dki, and x? denote total variation distance, KL divergence and y? divergence,
respectively. Let N (u,Y) denote a multivariate normal random vector with mean 1 € R¢ and
covariance matrix Y, where X is a d x d positive semidefinite matrix, and let Bern(p) denote the
Bernoulli distribution with probability p. Let [n] = {1,2,...,n} and G, be the set of simple
graphs on n vertices. Let G(n, p) denote the Erd6s-Rényi distribution over n-vertex graphs where
each edge is included independently with probability p. Let Gg(m,n,p) denote the Erdds-Rényi
distribution over (m + n)-vertex bipartite graphs with m left vertices, n right vertices and such that
each of the mn possible edges included independently with probability p. Throughout this paper,
we will refer to bipartite graphs with m left vertices and n right vertices and matrices in {0, 1}"*"
interchangeably. Let 1g denote the vector v € R” withv; = 1if¢ € Sandv; = 0if¢ € S
where S C [n]. Let MIX.(D;,D3) denote the e-mixture distribution formed by sampling D; with
probability (1 — €) and Dy with probability e. Given a partition E of [N] with k parts, let Uy (E)
denote the uniform distribution over all k-subsets of [N] containing exactly one element from each
part of E.

Given a matrix M € R™ ", the matrix Mgy € R¥** where S, T are k-subsets of [n] refers
to the minor of M restricted to the row indices in S and column indices in 7. Furthermore,
(Ms)ij = Mog(i)or(;) Where og @ [k] — S is the unique order-preserving bijection and o7
is analogously defined. Given an index set I, subset S C I and pair of distributions (P, Q), let
M (S, P, Q) denote the distribution of a collection of independent random variables (X; : i € I)
with X; ~ P ifi € Sand X; ~ Qifi ¢ S. When S is a random set, this M (S, P, Q) denotes a
mixture over the randomness of S e.g. Mn(Un(E), P, Q) denotes a mixture of My(S, P, Q)
over S ~ Un(E). Generally, given an index set I and |I| distributions Py, Pa, ..., Py, let
M(P; : i € I) denote the distribution of independent random variables (X; : ¢ € I) with
X; ~ P; for each i € I. The planted Bernoulli distribution PB(n, i, p, q) is over V' € {0, 1}" with
independent entries satisfying that V; ~ Bern(g) unless j = 4, in which case V; ~ Bern(p). In other
words, PB(n, i, p, q) is a shorthand for My, ({i},Bern(p), Bern(g)). Similarly, the planted dense

subgraph distribution G(n, S, p, ¢) can be written as M ((g) ,Bern(p), Bern(q)) where I = ([g]).

Appendix F. Rejection Kernels and Reduction Preprocessing

In this section, we present several average-case reduction primitives that will serve as the key sub-
routines and preprocessing steps in our reductions. These include pre-existing subroutines from
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the rejection kernels framework introduced in Brennan et al. (2018, 2019a); Brennan and Bresler
(2019), such as univariate rejection kernels from binary inputs and GAUSSIANIZE. We introduce the
primitive TO-k-PARTITE-SUBMATRIX, which is a generalization of TO-SUBMATRIX from Brennan
et al. (2019a) that maps from the k-partite variant of planted dense subgraph to Bernoulli matrices,
by filling in the missing diagonal and symmetrizing. We also introduce a new variant of rejec-
tion kernels called symmetric 3-ary rejection kernels that will be crucial in our reductions showing
universality of lower bounds for sparse mixtures.

F.1. Gaussian Rejection Kernels

Rejection kernels are a framework in Brennan et al. (2018, 2019a); Brennan and Bresler (2019)
for algorithmic changes of measure based on rejection sampling. Related reduction primitives for
changes of measure to Gaussians and binomial random variables appeared earlier in Ma and Wu
(2015) and Hajek et al. (2015). Rejection kernels mapping a pair of Bernoulli distributions to a
target pair of scalar distributions were introduced in Brennan et al. (2018). These were extended
to arbitrary high-dimensional target distributions and applied to obtain universality results for sub-
matrix detection in Brennan et al. (2019a). A surprising and key feature of both of these rejection
kernels is that they are not lossy in mapping one computational barrier to another. For instance, in
Brennan et al. (2019a), multivariate rejection kernels were applied to increase the relative size k of
the planted submatrix, faithfully mapping instances tight to the computational barrier at lower k to
tight instances at higher k. This feature is also true of the scalar rejection kernels applied in Brennan
et al. (2018).

In this work, we will only need a subset of prior results on rejection kernels. In this section,
we give an overview of the key guarantees for Gaussian rejection kernels with binary inputs from
Brennan et al. (2018) and for GAUSSIANIZE from Brennan and Bresler (2019). We will also need
a new ternary input variant of rejection kernels that will be introduced in Section F.3. We begin
by introducing the Gaussian rejection kernel RK¢ (i, B) which maps B € {0, 1} to a real valued
output and is parameterized by some 0 < ¢ < p < 1. The map RK(u, B) transforms two Bernoulli
inputs approximately into Gaussians. Specifically, it satisfies the two Markov transition properties

RKG(u, B) = N(0,1) if B ~ Bern(q) and RKG (i, B) = N(u,1) if B ~ Bern(p)

where RK¢ (11, B) can be computed in poly(n) time, the ~ above are up to O,,(n~?3) total variation
distance and p = O(1/y/logn). The maps RK¢(p, B) can be implemented with the rejection
sampling scheme shown in Figure 3. The total variation guarantees for Gaussian rejection kernels
are captured formally in the following theorem.

Lemma 19 (Gaussian Rejection Kernels — Lemma 5.4 in Brennan et al. (2018)) Ler Ryx be a
parameter and suppose that p = p(Rgx) and ¢ = q(Rgx) satisfy that 0 < ¢ < p < 1, min(q, 1 —
q)=Q(1)andp—q > R;KO(I). Let 5§ = min {log (%) ,log (g) } Suppose that 1 = p(Rgx) €

(0, 1) satisfies that
)

<
~ 24/6log Rk + 21og(p — q) !

Then the map RKg with N = {65_1 log RRK] iterations can be computed in poly(Ryx) time and
satisfies

drv (RKg(p, Bern(p)), N (u, 1)) = O (Ry?)  and dgv (RKg(u, Bern(q)), N'(0,1)) = O (Rg)

7
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Algorithm RK¢ (11, B)

Parameters: Input B € {0, 1}, Bernoulli probabilities 0 < ¢ < p < 1, Gaussian mean p, number
of iterations N, let p,,(z) = \/#27 -exp (—3(z — p)?) denote the density of A(y, 1)

1. Initialize z « 0.
2. Until z is set or N iterations have elapsed:
(1) Sample 2’ ~ N (0, 1) independently.
(2) If B =0, if the condition
peo(z') = q-pu(z)
holds, then set z + 2’ with probability 1 — ;‘_Z‘;’;Ej? .
(3) If B = 1, if the condition

(1=q) - oulz + 1) = (1=p)-@o(z' +n)
holds, then set z <— 2z’ 4+ p with probability 1 — Wm.
3. Output z.

Algorithm GAUSSIANIZE

Parameters: Collection of variables X; € {0,1} for i € I where I is some index set with |I| = n,

rejection kernel parameter Rgx, Bernoulli probabilities 0 < ¢ < p < 1 withp — ¢ = R;Ko(l) and

min(g,1 — ¢q) = 2(1) and a target means 0 < p; < 7 for each i € I where 7 > 0 is a parameter

1. Form the collection of variables Y € R’ by setting
Y; < RKq(pi, Xi)

for each i € I where each RK is run with parameter Ry and N;, = [65~ ! log Ry ] itera-
tions where § = min {log (%) ,log (}%g) }

2. Output the collection of variables (Y; : ¢ € I).

Figure 3: Gaussian instantiation of the rejection kernel algorithm from Brennan et al. (2018) and the re-

duction GAUSSIANIZE for mapping from Bernoulli to Gaussian planted problems from Brennan and Bresler
(2019).

The proof of this lemma consists of showing that the distributions of the outputs RK¢(p, Bern(p))
and RK¢ (1, Bern(q)) are close to N'(y, 1) and NV'(0, 1) when conditioned to lie in the set of = with
% < ig‘g)) < g and then showing that this event occurs with probability close to one. The

original framework in Brennan et al. (2018) mapped binary inputs to more general pairs of target
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distributions than N (1, 1) and (0, 1), however we will only require binary-input rejection kernels
in the Gaussian. A multivariate extension of this framework appeared in Brennan et al. (2019a).

Given an index set I, subset S C I and pair of distributions (P, Q), let M;(S, P, Q) denote
the distribution of a collection of independent random variables (X; : i € I) with X; ~ P ifi € S
and X; ~ Qif i ¢ S. More generally, given an index set I and |I| distributions Py, Pz, ..., Py, let
M (P; : i € I) denote the distribution of independent random variables (X; : i € I) with X; ~ P;
for each i € I. For example, a planted clique in G(n,1/2) on the set S C [n] can be written as
My ((g),Bern(l),Bern(1/2)> where I = ([g]).

We now review the guarantees for the subroutine GAUSSIANIZE. The variant presented here
is restated from Brennan and Bresler (2019) to be over a general index set I rather than matrices,
and with the rejection kernel parameter Ry decoupled from the size n of I, as shown in Figure 3.
GAUSSIANIZE maps a set of planted Bernoulli random variables to a set of independent Gaussian
random variables with corresponding planted means. The procedure applies a Gaussian rejection
kernel entrywise and its total variation guarantees follow by a simple application of the tensorization
property of dry from Fact 15.

Lemma 20 (Gaussianization — Lemma 4.5 in Brennan and Bresler (2019)) Let I be an index
set with |I| = n and let Rgx, 0 < ¢ < p < 1 and 0 be as in Lemma 19. Let u; be such that
0 < p; < 7 foreacht € I where the parameter T > 0 satisfies that
)
T <
2/61og Ry + 2log(P — Q)1

The algorithm A = GAUSSIANIZE runs in poly(n, Ryx) time and satisfies that
dry (A(M(S,Bern(P),Bern(Q))), M; (N (p; - 1(i € S),1):i € I)) = O (n- Ryy)

for all subsets S C 1.

F.2. Cloning and Planting Diagonals

We begin by reviewing the subroutine GRAPH-CLONE, shown in Figure 4, which was introduced in
Brennan et al. (2019a) and produces several independent samples from a planted subgraph problem
given a single sample. Its properties as a Markov kernel are stated in the next lemma, which is
proven by showing the two explicit expressions for P[z¥/ = v] in Step 1 define valid probability
distributions and then explicitly writing the mass functions of A (G(n, q)) and A (G(n, S, p, q)).

Lemma 21 (Graph Cloning — Lemma 5.2 in Brennan et al. (2019a)) Letrt c N0 <g<p <1
and 0 < Q) < P < 1 satisfy that

1—p 1- P\’ P\* P
=) o () =

Then the algorithm A = GRAPH-CLONE runs in poly(t, n) time and satisfies that for each S C [n],

A(G(n,q)) ~G(n, Q)% and A(G(n,S,p,q)) ~G(n,S,P,Q)"
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Algorithm GRAPH-CLONE

Inputs: Graph G € G, the number of copies ¢, parameters 0 < ¢ < p < land0 < Q < P <1
t t
isfvine 1= 1-P il 3
satisfying ;=" < (1_Q) and <Q> <t
1. Generate 2% € {0,1}* for each 1 < i < j < n such that:

o If {i,j} € E(G), sample x%/ from the distribution on {0, 1} with

Pz = o] = ﬁ [(1=q)- Pl (1= Pyl — (1= p) - QI (1 = @)1

o If {i,j} € F(G), sample 2%/ from the distribution on {0, 1}* with

Pz = o] = ﬁ - QU (1= @)k — g Pl (1 Pyl

2. Output the graphs (G1,Ga, ..., G) where {i,j} € E(G)) if and only if xfj =1.

Figure 4: Subroutine GRAPH-CLONE for producing independent samples from planted graph problems from
Brennan et al. (2019a).

Graph cloning more generally produces a method to clone a set of Bernoulli random variables
indexed by a general index set I instead of the possible edges of a graph on the vertex set [n]. The
guarantees for this subroutine are stated in the following lemma. We remark that both of these
lemmas will always be applied with ¢ = O(1), resulting in a constant loss in signal strength.

Lemma 22 (Bernoulli Cloning) Let I be an index set with |I| =n, lett € N,0 < g < p < 1 and
0 < @ < P < 1 satisfy that

1—p 1-P\* P\' »p
=(ime) ™ (g) <

There is an algorithm A = BERNOULLI-CLONE that runs in poly(t,n) time and satisfying

A (M;(Bern(q))) ~ M;(Bern(Q))®"  and
A (M;(S,Bern(p), Bern(q))) ~ M;(S, Bern(P), Bern(Q))*"

foreach S C I.

We now introduce the procedure TO-k-PARTITE-SUBMATRIX, which is shown in Figure 5 and
will be crucial in our reductions to dense variants of the stochastic block model. This reduction
clones the upper half of the adjacency matrix of the input graph problem to produce an indepen-
dent lower half and plants diagonal entries while randomly embedding into a larger matrix to hide
the diagonal entries in total variation. TO-k-PARTITE-SUBMATRIX is similar to TO-SUBMATRIX
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Algorithm TO-k-PARTITE-SUBMATRIX
Inputs: k-PDS instance G € Gy with clique size k that divides NV and partition E of [N], edge
probabilities 0 < ¢ < p < 1 with ¢ = N~90) and target dimension n > (% + 1) N where

Q=1—+/(1—-p)(1—q)+1y; (Vg—1) and k divides n

1. Apply GRAPH-CLONE to G with edge probabilities P =pand Q =1 — /(1 —p)(1 —q) +
1(p=1; (v/g— 1) and ¢ = 2 clones to obtain (G1, G>).

2. Let F be a partition of [n] with [n] = F; UF,U---U F), and |F;| = n/k. Form the matrix
Mpp € {0,1}™*™ as follows:

(1) Foreacht € [k], sample s{ ~ Bin(N/k,p) and s} ~ Bin(n/k, Q) and let S, be a subset
of F; with |S;| = N/k selected uniformly at random. Sample 7} C S, and T3 C F;\S:
with |T}| = s% and |T%| = max{s — s, 0} uniformly at random.

(2) Now form the matrix Mpp such that its (7, j)th entry is

Lin (i)m()teB(Gy) ifi<jandi,je S
Lin,(i)m()reE(Ge) ifd>jandi,j €S

(MPD)ij = l{iETf’} ifi = _] and Z,] S St
l{ieth} ifi = _] and Z,] € Ft\St
~iid. Bern(Q) ifi # jand (i,7) ¢ S? forat € [k]

where 7, : S; — F is a bijection chosen uniformly at random.

3. Output the matrix Mpp and the partition F.

Figure 5: Subroutine TO-k-PARTITE-SUBMATRIX for mapping from an instance of k-partite planted dense
subgraph to a k-partite Bernoulli submatrix problem.

in Brennan et al. (2019a) and TO-BERNOULLI-SUBMATRIX in Brennan and Bresler (2019) but
ensures that the random embedding step accounts for the k-partite promise of the input k-PDS in-
stance. Completing the missing diagonal entries in the adjacency matrix will be crucial to apply one
of our main techniques, Bernoulli rotations, which will be introduced in the next section.

The next lemma states the total variation guarantees of TO-k-PARTITE-SUBMATRIX and is a k-
partite variant of Theorem 6.1 in Brennan et al. (2019a). Although technically more subtle than the
analysis of TO-SUBMATRIX in Brennan et al. (2019a), this proof is tangential to our main reduction
techniques and deferred to Appendix Q.2. Given a partition E of [N] with k parts, let U (E) denote
the uniform distribution over k-subsets of [/V] containing exactly one element from each part of E.

Lemma 23 (Reduction to k-Partite Bernoulli Submatrix Problems) Ler 0 < g < p < 1 and

Q=1-y{A-p)(1—q)+1p-n (/g — 1). Suppose that n and N are such that

n2<g+1>N and k< QN/4
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Also suppose that ¢ = N~°W) and both N and n are divisible by k. Let E = (E1, Es, ..., EL) and
F = (F\, Fy, ..., Fy) be partitions of [N] and [n|, respectively. Then it follows that the algorithm
A = TO-k-PARTITE-SUBMATRIX runs in poly(N) time and satisfies

2 N2
dry (A(G(N,Un(E), p,q)), Mp)x(n) Un(F), Bern(p), Bern(Q))) < 4k - exp <_ Zpin)

/ CQk2
+ 2n

2n72
dTV (»A(g(Nv Q))a Bern (Q)®”X”) < Ak P (_ 228]9]:71)

where Cg = max {%, %}

For completeness, we give an intuitive summary of the technical subtleties arising in the proof
of this lemma. After applying GRAPH-CLONE, the adjacency matrix of the input graph G is still
missing its diagonal entries. The main difficulty in producing these diagonal entries is to ensure that
entries corresponding to vertices in the planted subgraph are properly sampled from Bern(p). To do
this, we randomly embed the original N x N adjacency matrix in a larger n X n matrix with i.i.d.
entries from Bern(()) and sample all diagonal entries corresponding to entries of the original matrix
from Bern(p). The diagonal entries in the new n — N columns are chosen so that the supports
on the diagonals within each F; each have size Bin(n/k, Q). Even though this causes the sizes
of the supports on the diagonals in each F} to have the same distribution under both Hy and Hj,
the randomness of the embedding and the fact that & = o(y/n) ensures that this is hidden in total
variation.

F.3. Symmetric 3-ary Rejection Kernels

In this section, we introduce symmetric 3-ary rejection kernels, which will be the key gadget in our
reduction showing universality of lower bounds for learning sparse mixtures in Section O. In order
to map to universal formulations of sparse mixtures, it is crucial to produce a nontrivial instance of
a sparse mixture with multiple planted distributions. Since previous rejection kernels all begin with
binary inputs, they do not have enough degrees of freedom to map to three output distributions. The
symmetric 3-ary rejection kernels 3-SRK introduced in this section overcome this issue by mapping
from distributions supported on {—1,0, 1} to three output distributions P, P_ and Q. In order to
produce clean total variation guarantees, these rejection kernels also exploit symmetry in their three
input distributions on {—1,0, 1}.

Let Tern(a, p11, 12) where a € (0,1) and p1, p2 € R denote the probability distribution on
{—1,0, 1} such that if B ~ Tern(a, f1, j12) then

_1—a 1—-a

PX=-1]=——-m+m, PX=0=a-2up PX=1=——+um+pu

if all three of these probabilities are nonnegative. The map 3-SRK(B), shown in Figure 6, sends an
input B € {—1,0, 1} to a set X simultaneously satisfying three Markov transition properties:

1. if B ~ Tern(a, u1, p2), then 3-SRK(B) is close to Py in total variation;
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Algorithm 3-SRK(B, P, P_, Q)

Parameters: Input B € {—1,0,1}, number of iterations N, parameters a € (0,1) and sufficiently
small nonzero u1, o € R, distributions P, P_ and Q over a measurable space (X, B) such that
(P4, Q) and (P_, Q) are computable pairs
1. Initialize z arbitrarily in the support of Q.
2. Until z is set or N iterations have elapsed:
(1) Sample 2’ ~ Q independently and compute the two quantities
_ dPy dP_

APy dpP_

/ n o / N _ / Gr—on
El(z)fdg(z) dQ(z) and L5(2) dQ(Z)+ dQ(z) 2
(2) Proceed to the next iteration if it does not hold that
2
Yl > 144 and 2l s )

max{a,1 —a}
(3) Set z «+ 2’ with probability P4(z, B) where

. L4 go - Lo(2) + g - L1(2) ifB=1
Pa(eB) =5 1= 55 £al#) if B =0

4dpo
Lt g Lo(2) = 5= - L1(2) if B=-1

3. Output z.

Figure 6: 3-ary symmetric rejection kernel algorithm.

2. if B ~ Tern(a, — 1, p2), then 3-SRK(B) is close to Q in total variation; and
3. if B ~ Tern(a, 0,0), then 3-SRK(B) is close to P_ in total variation.

In order to state our main results for 3-SRK(B), we will need the notion of computable pairs from
Brennan et al. (2019a). The definition below is that given in Brennan et al. (2019a), without the
assumption of finiteness of KL divergences. This assumption was convenient for the Chernoff
exponent analysis needed for multivariate rejection kernels in Brennan et al. (2019a). Since our
rejection kernels are univariate, we will be able to state our universality conditions directly in terms
of tail bounds rather than Chernoff exponents.

Definition 24 (Relaxed Computable Pair Brennan et al. (2019a)) Define a pair of sequences of
distributions (P, Q) over a measurable space (X,B) where P = (P,) and Q = (Q,) to be
computable if:

1. there is an oracle producing a sample from Q,, in poly(n) time;
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2. for all n, Py, and Q,, are mutually absolutely continuous and the likelihood ratio satisfies
ar,, \~
=1
(i) ]
dPp

3. there is an oracle computing 75™(x) in poly(n) time for each x € X.

dPn
dQn

E.vo, [ <x>] —Euop,

where ggz is the Radon-Nikodym derivative; and

We remark that the second condition above always holds for discrete distributions and generally
for most well-behaved distributions P and Q. We now state our main total variation guarantees for
3-SRK. The proof of the next lemma follows a similar structure to the analysis of rejection sampling
as in Lemma 5.1 of Brennan et al. (2018) and Lemma 5.1 of Brennan et al. (2019a). However,
the bounds that we obtain are different than those in Brennan et al. (2018, 2019a) because of the
symmetry of the three input Tern distributions. The proof of this lemma is deferred to Appendix

Q.3.

Lemma 25 (Symmetric 3-ary Rejection Kernels) Lera € (0,1) and 1, 2 € R be nonzero and
such that Tern(a, p1, p2) is well-defined. Let Py, P— and Q be distributions over a measurable
space (X, B) such that (P, Q) and (P—, Q) are computable pairs with respect to a parameter n.
Let S C X be the set

o . dP_A,_ . dP-_ 2‘M2| d77_|_ dP-_ .
S—{:CEX.2|M1]2 E(az) E(x) and >'dQ (x) + 10 (x) 2'}

max{a,l —a} —

Given a positive integer N, then the algorithm 3-SRK : {—1,0,1} — X can be computed in
poly(n, N) time and satisfies that

dry (3—SRK(TGI'H(CL, M1, M2))’ 73+) 1 N
drv (3-SRK(Tern(a, —p1, f12)), P—) ¢ <26 (1+ ||~ + |M2!1)+<2 +8 (L4 ||t + |u2!1))
drv (3-SRK(Tern(a, 0,0)), Q)

where § > 0 is such that Px .p, [X & S], Pxp_[X & S] and Px.o[X & S] are upper bounded
by 6.

Appendix G. Dense Bernoulli Rotations

In this section, we formally introduce dense Bernoulli rotations and constructions for their design
matrices and tensors, which will play an essential role in all of our reductions. For an overview
of the main high level ideas underlying these techniques, see Sections C.2 and C.3. As mentioned
in Sections C.2, dense Bernoulli rotations map PB(7,%,p,q) to N (u)\*l . Ai,Im) for each i €
[T] and Bern(q)®” to N (0, I,,) approximately in total variation, where = ©(1), the vectors
A1, As, ..., A7 € R™ are for us to design and A is an upper bound on the singular values of the
matrix with columns A;.

Simplifying some technical details, our reduction to RSME in Section 1.1 roughly proceeds as
follows: (1) its input is a k-BPC instance with parts of size M and N and biclique dimensions
k = kpr and kpn; (2) it applies dense Bernoulli rotations with p = 1 and ¢ = 1/2 to the Mky
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vectors of length T = N/ky representing the adjacency patterns in {0, 1} /kN between each of
the M left vertices and each part in the partition of the right vertices; and (3) it pads the resulting
matrix with standard normals so that it has d rows. Under H7, the result is a d x kym matrix
lgu' 4+ N(0,1)®9xknm where S is the left vertex set of the biclique and u consists of scaled
concatenations of the A;. We design the adversary so that the target data matrix D in RSME is
roughly of the form

N (th=Y/2.1) ifi € S and j is not corrupted
Dij ~ ¢ N (e1(1—e)7k~Y21) ifi € S and j is corrupted
N(0,1) otherwise

for each ¢ € [d] and j € [n] where n = kxym. Matching the two distributions above, we arrive at
the following desiderata for the A;.

e We would like each A\~14; to consist of (1 — ¢)m entries equal to 7k~'/2 and ¢'m entries

equal to €11 - ¢ )Tk?_l/ 2 where 7 is just below the desired computational barrier 7 =
O (kY2 /2p=1/4) and ¢ < € where € = O(e).

e Now observe that the norm of any such A" 4; is © (re~1/2m!/2k~1/2) which is just below
anorm of ©(m!/2n=1/4) at the computational barrier for RSME. Note that the normalization
by A~! ensures that each A~!A4; has /5 norm at most 1. To be as close to the computational
barrier as possible, it is necessary that m'/2n~1/4 = ©(1) which rearranges to m = O(ky)
since n = kym.

e When the input is an instance of k-BPC nearly at its computational barrier, we have that
N = O(k%) and thus our necessary condition above implies that m = O(N/ky) = O(T),
and hence that A is nearly square. Furthermore, if we take the A; to be unit vectors, our
desiderata that the \~' A; have norm © (m'/?n~1/4) reduces to A = O(1).

Summarizing this discussion, we arrive at exactly the three conditions outlined in Section C.3. We
remark that while these desiderata are tailored to RSME, they will also turn out to be related to
the desired properties of A in our other reductions. We now formally introduce dense Bernoulli
rotations.

G.1. Mapping Planted Bits to Spiked Gaussian Tensors

Let PB(n,,p, q) and PB(S, 7, p, q) denote the planted bit distributions defined in Sections C.2 and
E.4. The procedures BERN-ROTATIONS and its derivative TENSOR-BERN-ROTATIONS are shown
in Figure 7. Recall that the subroutine GAUSSIANIZE was introduced in Figure 3. Note that positive
semidefinite square roots of n x n matrices can be computed in poly(n) time. The two key Markov
transition properties for these procedures that will be used throughout the paper are as follows.

Lemma 26 (Dense Bernoulli Rotations) Ler m and n be positive integers and let A € R™*™ be
a matrix with singular values all at most A\ > 0. Let Rpx, 0 < q¢ < p < 1 and p be as in Lemma 19.
Let A denote BERN-ROTATIONS applied with rejection kernel parameter Rgy, Bernoulli probability
parameters 0 < q < p < 1, output dimension m, matrix A with singular value upper bound A and
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Algorithm BERN-ROTATIONS

Inputs: Vector V € {0,1}", rejection kernel parameter Ry, Bernoulli probability parameters
0 < g < p < 1, output dimension m, an m X n matrix A with singular values all at most A > 0,
intermediate mean parameter x> 0

1. Form V; € {0,1}™ by applying GAUSSIANIZE to the entries in the vector V' with rejection
kernel parameter Ryx, Bernoulli probabilities ¢ and p and target mean parameters all equal
to p.

2. Sample a vector U ~ N'(0,1)®™ and let (1,,, — A7 AAT)U2 be the positive semidefinite
square root of I,,, — A=2- AAT. Now form the vector

Vo= AL AV + (I, — A2 44020
3. Output the vector V5.

Algorithm TENSOR-BERN-ROTATIONS

Inputs: Order s tensor T' € T ,,({0,1}), rejection kernel parameter Ryx, Bernoulli probability
parameters 0 < ¢ < p < 1, output dimension m, an m x n matrices A;, Ao, ..., A, with singular
values less than or equal to Ay, Aa, ..., As > 0, respectively, mean parameter p > 0

1. Flatten T into the vector V; € {0, 1}”S , form the Kronecker product A = 41 ® A2 ®- - - ® A,
and set A = A\ Ao - A,

2. Let V3 be the output of BERN-ROTATIONS applied to V; with parameters Rgx, 0 < ¢ < p <
1, A, A\, p and output dimension m?®.

3. Rearrange the entries of V; into a tensor 17 € T ,,,(R) and output T3.

Figure 7: Subroutines BERN-ROTATIONS and TENSOR-BERN-ROTATIONS for producing spiked Gaussian
vectors and tensors, respectively, from the planted bits distribution.

mean parameter (1. Then A runs in poly(n, Rgx) time and it holds that

drv (A (PB(n,4,p,q)) , N (pA™" - A, 1)) = O (n- Red)
dry (A (Bern(q)®™) , N (0,1,)) = O (n - Ry)

foralli € [n), where A.; denotes the ith column of A.

Proof Let A; denote the first step of A = BERN-ROTATIONS with input V' and output V1, and let
A, denote the second step of .4 with input V; and output V5. Fix some index i € [n]. Now Lemma
20 implies

drv (A1 (PB(n,i,p,q)), N (- e, 1)) = O (n- Reid) (1)
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where e; € R™ is the ith canonical basis vector. Suppose that V3 ~ N (i -e;, I,) and let V] =
w-e;+W where W ~ N (0, I,). Note that the entries of AW are jointly Gaussian and Cov(AW) =
AAT. Therefore, we have that

AVi = pi- Ay + AW ~ N (u : A.J-,AAT)

If U ~ N(0,1)®™ is independent of W, then the entries of AW + (A\? - I,,, — -AAT)I/2 U are
jointly Gaussian. Furthermore, since both terms are mean zero and independent the covariance
matrix of this vector is given by

1/2 1/2
Cov <AW + <)\2 Ty — AAT) U) — Cov (AW) + Cov ((V Ty — AAT> U)
=AAT + (N2 1, —AATY = X2 I,
Therefore it follows that AW + (A2 I, — AAT)"* U ~ A7(0,\2 - I,,,) and furthermore that

Vo= A"l AVi + (In — 272 AAT)W Un N (uA™h - Ay In)

Where Vo ~ As (N (- €, I,,)). Now applying As to both distributions in Equation (1) and the
data-processing inequality prove that drv (A (pB(n,1,p,q)), N (,u)\_l “A, Im)) =0 (n : R,;,;D’).
This argument analyzing A5 applied with . = 0 yields that Ay (N(0, I,)) ~ N(0, I,,). Combining
this with

drv (A; (Bern(q)®™), N (0,1,)) = O (n - Rg)

from Lemma 20 now yields the bound drvy (A (Bern(q)®"), N (0,1,)) = O (n- Ry), which

completes the proof of the lemma. |
Corollary 27 (Tensor Bernoulli Rotations) Let s, m andn be positive integers, let A1, Ao, ..., As €
R™*™ be matrices with singular values less than or equal to \1, \a, . .., s > 0, respectively. Let

Rrx, 0 < g < p < 1and i be as in Lemma 19. Let A denote TENSOR-BERN-ROTATIONS applied
with parameters 0 < q < p < 1, output dimension m, matrix A = A1 @ A3 ® -+ Q A with
singular value upper bound X = A1 )s - - - s and mean parameter 1. If s is a constant, then A runs
in poly(n, Rgx) time and it holds that for each e € [n)®,

drv (A (PBs(n,€,p,q)) , N (M()\l)\g e /\5)71 A QA L® A, Igs))
dry (A (Bem()*"™") , N (0,15°))

O (ns . Rl;f’)
0] (ns . Rl;g)

where A. ; denotes the ith column of A.

Proof Let og for 1 <4 < r; be the nonzero singular values of A; for each 1 < j < s. Then the
nonzero singular values of the Kronecker product A = A; ® A ® --- ® Aj are all of the products
03101-22 <o} forall (41,42, ...,4s) with 1 < i; <rjforeach 1 < j <s. Thusif o] < \; for each
1 <j<s,then A = Aj A2 --- A is an upper bound on the singular values of A. The corollary now
follows by applying Lemma 26 with parameters p, ¢, 1 and A, matrix A, output dimension m?® and

input dimension n®. |

80



STATISTICAL-COMPUTATIONAL GAPS FROM SECRET LEAKAGE

G.2. ! Design Matrices

In this section, we introduce a family of matrices K, ; that plays a key role in constructing the
matrices A in our applications of dense Bernoulli rotations. Throughout this section,  will denote
a prime number and ¢ will denote a fixed positive integer. As outlined in the beginning of this
section and in Section C.3, there are three desiderata of the matrices K.; that are needed for our
applications of dense Bernoulli rotations. In the context of K, ;, these three properties are:

1. The rows of K, ; are unit vectors and close to orthogonal in the sense that the largest singular
value of K ; is bounded above by a constant.

2. The matrices K both contain exactly two distinct real values as entries.
3. The matrices K, ; contain a fraction of approximately 1/ negative entries per column.

The matrices K,.; are constructed based on the incidence structure of the points in F. with the
Grassmanian of hyperplanes in .. and their affine shifts. The construction of K., is motivated by
the projective geometry codes and their applications to constructing 2-block designs. We remark
that a classic trick counting the number of ordered d-tuples of linearly independent vectors in [
shows that the number of d-dimensional subspaces of F. is

)5 =) o = )

(rt t_
7= ) =)

Ly —
‘Gr(dv Fr)’ - (T’d

-1
-1
This implies that the number of hyperplanes in F. is £ = 7::11~ We now give the definition of

the matrix K, ; as a weighted incidence matrix between the points of Fﬁ and affine shifts of the
hyperplanes in the Grassmanian Gr(t — 1, F%).

Definition 28 (Design Matrices K, ;) Let Pi, Py, ..., Py« be an enumeration of the points in F.

and Vi, Va, ..., Vy, where £ = 7;1—11 be an enumeration of the hyperplanes in F.. For each V;, let

u; # 0 denote a vector in Fﬁ not contained in V;. Define K,; € R™X" 1o be the matrix with the
following entries

(Kr,t)r(i71)+a+17j = . { J ¢

rtr—1) 1—r ifPj€Vi+ay
foreach a € {0,1,...,r — 1} where V; + v denotes the affine shift of V; by v.

We now establish the key properties of K, ; in the following simple lemma. Note that the
lemma implies that the submatrix consisting of the rows of K., corresponding to hyperplanes in F".
has rows that are exactly orthogonal. However, the additional rows of K. ; corresponding to affine
shifts of these hyperplanes will prove crucial in preserving tightness to algorithms in our average-
case reductions. As established in the subsequent lemma, these additional rows only mildly perturb
the largest singular value of the matrix.

Lemma 29 (Sub-orthogonality of K.;) Ifr > 2 is prime, then K, ; satisfies that:

1. foreach 1 <i < kr{, it holds that ||(K,+)i||2 = 1;
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2. the inner product between the rows (K, +); and (K,); where i # j are given by

(Krt)is (Krp)j) = { —(r— 1)*1 if|[(i—1)/r]=(—-1)/r]

0 otherwise

7?_—11 entries equal to \/%

To(r—
Proof Let r; denote the ith row (K, ;); of K. Fixapairl <i < j<rfandletl <i <j' </
and a,b € {0,1,...,7 — 1} be such that i = (¢’ — 1) + a and j = r(j’ — 1) + b. The affine
subspaces of F% corresponding to r; and r; are then A; = Vs + auy and A; = Vjr + buj:. Observe
that

3. each column of K, ; contains exactly

1 (1—r)?

i2: t—A,L' e Aliz
I3 = (" = 1A - sy + A

1

Similarly, we have that

1 1—r (1—1r)?
‘m+(|AiUAj|—|AiﬁAj\)‘m m

for each 1 < ¢,j < rf. Since the size of a subspace is invariant under affine shifts, we have that
|Ai| = |Vir| = |Aj] = |Vjs| = r'~L. Furthermore, since A; N A; is the intersection of two affine
shifts of subspaces of dimension ¢ — 1 of F%, it follows that A; N A; is either empty, an affine shift
of a (¢ — 2)-dimensional subspace or equal to both A; and A;. Note that if ¢ # j, then A; and A;
are distinct. We remark that when ¢ = 1, each A4; is an affine shift of the trivial hyperplane {0} and
thus is a singleton. Now note that the intersection A; N A; is only empty if A; and A; are affine
shifts of one another which occurs if and only if | (i — 1)/r] =4 = j' = [(j — 1)/r]. In this case,
it follows that |A; U A;| = |A;| + |A;| = 2rt~L. In this case, we have

1 -1 1—7r _1
m‘FQ’F 'm——(’r—l)

If i/ # j/, then A; N A; is the affine shift of a (¢ — 2)-dimensional subspace which implies that
|A; N A;| = r'~1. Furthermore, |4; U A;| = |4;| +|A;] — |4 N A4;| = 2rt~1 — rt=2 In this case,
we have that

(ri,rj) = (' =] A; U Aj)) +|Ain Ayl

(ri,r5) = (rt — 27"t_1) .

<7’i77“j>:(7'_1)2'7,2(rl_1)_2(7'_1)':2+T1:0
This completes the proof of (2). We remark that this last case never occurs if £ = 1. Now note that
any point is in exactly one affine shift of each V;. Therefore each column contains exactly £ negative
entries, which proves (3). |

r2

The next lemma uses the computation of (K ¢);, (K¢);) above to compute the singular values
of Kr,t-

Lemma 30 The nonzero singular values of K, are \/1 + (r — 1)~! with multiplicity (r — 1).

Proof Lemma 29 shows that (K, )(K,;)" is block-diagonal with ¢ blocks of dimension r x 7.
Furthermore, each block is of the form (1+ (r —1)7') I, — (r — 1)7'117. The eigenvalues of
each of these blocks are 1 + (r — 1)~! with multiplicity » — 1 and 0 with multiplicity 1. Thus the
eigenvalues of (K, ;)(K, )" are 1+ (r —1)~! and 0 with multiplicities (r — 1)¢ and ¢, respectively,
implying the result. |
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G.3. F. Design Tensors

. . . . Vi,Vj,L . .
In this section, we introduce a family of tensors Tr(’t 7*L) that will be used in TENSOR-BERN-ROTATIONS

in the matrix case with s = 2 to map to hidden partition models in Section M.2. An overview of

how these tensors will be used in dense Bernoulli rotations was given in Section C.3. Similar to the

. . iy ‘,L . .
previous section, the Tr(‘t/ Vi L) are constructed to have the following properties:

1. Given a pair of hyperplanes (V;, V;) and a linear function L : F,, — IF,., the slice Tr(;/i’Vj’L) of
(‘/;,’V7L)
T HF = 1.

the constructed tensor is an ! x r* matrix with Frobenius norm ‘

2. These slices are approximately orthogonal in the sense that the Gram matrix with entries given

.. 35 Vi, L Vi, Vir L'
by the matrix inner products Tr (T:‘;VJ ). T( Vi)

it ) has a bounded spectral norm.

. Vi, Vi, L . . : . : . .

3. Eachslice T, 7§,t L) contains two distinct entries and is an average signed adjacency matrix

of a hidden partition model i.e. has these two entries arranged into an r-block community
structure.

: . . Vi,V,L) . . .
4. Matrices formed by specific concatentations of Tr(ﬂf ) into larger matrices remain the av-

erage signed adjacency matrices of hidden partition models. This will be made precise in
Lemma 36 and will be important in our reduction from k-PC.

) . Vi,Vi,L) . . . .
The construction of the family of tensors TT(J 1) is another construction using the incidence

geometry of [F%, but is more involved than the two constructions in the previous section. Throughout
this section, we let V1, V5, ..., Vy and Py, Ps,..., Pt be an enumeration of the hyperplanes and
points of L as in Definition 28. Furthermore, for each V;, we fix a particular point u; # 0 of F%. not
contained in V;. In order to introduce the family 7, (Va,Vy,L)

it , we first define the following important
class of bipartite graphs.

Definition 31 (Affine Block Graphs G,.;) Foreach1 < i < {, let AL U AL U---U AL_| be the
partition of FL. given by the affine shifts AL = (V; + xu;) for each x € F,. Given two hyperplanes
Vi, Vj and linear function L : F, — F,, define the bipartite graph G, (V;,V;, L) with two parts of
size ', each indexed by points in B, as follows:
1. all of the edges between the points with indices in AL in the left part of Grt(Vi, Vj, L) and
the points with indices in A; in the right part are present if L(x) = y; and

2. none of the edges between the points of AfE on the left and A{, on the right are present if

L(z) # y.
We now define the slices of the tensor 7;.; to be weighted adjacency matrices of the bipartite
graphs G, ;(V;, V;, L) as in the following definition.

Definition 32 (Design Tensors 1;.;) For any two hyperplanes V;, V; and linear function L : ;. —

. Vi,Vj,L
F,, define the r* x r' matrix Tr(t“ i)

<T(Vi7Vij)) _ ; ) r—1 if (Pk,Pl) € E(Gr,t(via VjaL))
rit ki rir—1 —1  otherwise

to have entries given by

foreach1 < k,l1 <7t

83



STATISTICAL-COMPUTATIONAL GAPS FROM SECRET LEAKAGE

The next two lemmas establish that the tensor 7). ; satisfies the four desiderata discussed above,
which will be crucial in our reduction to hidden partition models.

Lemma 33 (Sub-orthogonality of T'.;) Ifr > 2 is prime, then T} ; satisfies that:

1. foreach1 < i,j < r'and linear function L, it holds that ‘

VVLH

(V\/JL) (V/V/L)

2. the inner product between the slices T, and T,

is

Tr (T(Vu 5L) T(V' V/L/)) _f —=(r=1)7" if(V;,V;) = (Vir,Vyr) and L = L' + a for some a # 0
10 if (V;,V;) # (Vi,Vy)or L # L' +aforalla € F,

where (V;,V;, L) # (Vi, Vi, L")

Proof Fix two triples (V;, V;, L) and (Vj, Vs, L) andlet Gy = G, (V;,V}, L) and G2 = G, (Vi, Vjr, L').
Now observe that

e (10 Tétviuvj/,y)) _ 7“2t(7“1—1) (12 |B(C) 1 E(GY)|
oy (- D (G U EG) - |B(G) 1 E(Ga))
1

¢

_— — |E(G1)UE(G 2

+r2t(r_1) (r |E(G1) ( 2)’) (2)

Now note that since L is a function, there are exactly 7 pairs (z,y) € IF% such that L(xz) = y and

thus exactly r pairs of left and right sets (A;, A{,) that are completely connected by edges in G1.

This implies that there are |E(G1)| = |E(G2)| = 7?*~1 edges in both G and G2. We now will
show that

r2 =i (Vi Vy, L) = (Vi Vi, 1)
BG)NEG) = 2 i (ViV) £ (Ve V) or L£ D aforallaeF, ()
0 if (V;,V;) = (Vir,Vj) and L = L' + a for some a # 0

We remark that, as in the proof of Lemma 29, it is never true that (V;, V;) # (Vir, Vjy) if t = 1. The
first case follows immediately from the fact that | E(G1)| = r**~1. Now consider the case in which
Vi # Vi and V; # Vji. As in the proof of Lemma 29, any pair of affine spaces A and Af;, either
intersects in an affine space of dimension ¢ — 2, an affine space of dimension ¢t — 1 if A% = Ag,
are equal and in the empty set if A’ and A;’, are affine shifts of one another. Since V; # Vj,
only the first of these three options is possible. Therefore, for all z, 2", y,y’ € F,, it follows that
(AL x A{,) N (A%, x A;/,) = (AL N A%) x (Ag/ X A;l/) has size 72/~ since both AL N A”, and

. .
A x AZ/, are affine spaces of dimension ¢ — 2. Now observe that

|E(G1) N E(G2)] Z Z ) x Al) (Af;, X A?J/,) -

L(z)=y L' (z')=y’

since there are exactly r pairs (:c y) with L(z) = y. Now suppose that V; = Vs and V 75 Vjr. In
this case, we have that A% N AZ is empty if x # 2’ and otherwise has size |A%| = 7!~ Thus it

follows that
{ r2t=3 ifx =121

(AL x Ay 0 (AL x A7)

0 otherwise
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This implies that

|E(G1) N B(Gy)| = ‘(A; X AI) N (Ag, « Aﬂ)‘ g2 2t
L(x)=y L' (z")=y’

since for each fixed z = 2/, there is a unique pair (y,y’) with L(z) = y and L(z’) = 3. The
case in which V; # Vs and V; = Vs is handled by a symmetric argument. Now suppose that
(Vi, Vi) = (Vir, Vyr). Tt follows that (A% x A}) N (A, x Agj,) has size r2 2 if = 2/ and y = ¢/,
and is empty otherwise. The formula above therefore implies that |E(G1) N E(G2)| is r*~2 times
the number of solutions to L(x) = L'(z). Since L— L' is linear, the number of solutions is 0 if L—L’
is constant and not equal to zero, 1 if L — L’ is not constant or r if L = L’. This completes the proof
of Equation (3). Now observe that |[E(G1) U E(G2)| = |E(G1)| + |E(G2)| — |E(G1) N E(G2)| =
2r2=1 — |E(G1) N E(Gy)|. Substituting this expression for |E(G1) U E(Gs)| into Equation (2)
yields that

Tr (T(V""Vj’

rt

L) (Vi Vi L) 72 1
) PV ) = e =) |E(G1) N E(Ge)| - p—

Combining this with the different cases of Equation (3) shows part (2) of the lemma. Part (1) of the
lemma follows from this computation and fact that

V. 2 V. 2
[ e (o))

This completes the proof of the lemma. |

We now define an unfolded matrix variant of the tensor 7;.; that will be used in our applications
of TENSOR-BERN-ROTATIONS to map to hidden partition models. The row indexing in M,.; will
be important and related to the community alignment property of 7). ; that will be established in
Lemma 36.

Definition 34 (Unfolded Matrix M, ;) Let M, be an (r — 1)252 x 12t matrix with entries given
by
T(‘/%'+1"/}'+17La+1,b+1)>

(Mr,t)a(r—1)£2+i'(r—1)€+bé+j’+1,irt+j+1 = ( 7t i
foreach0 <4d',j < (r—1)(—-1,0<a,b<r—2and0<i,j <r'—1 where L.4:F, = F,

denotes the linear function given by L. 4(x) = cx + d.

The next lemma is similar to Lemma 30 and deduces the singular values of M,.; from Lemma
33. The proof is very similar to that of Lemma 30.

Lemma 35 (Singular Values of M,.;) The nonzero singular values of M, are \/1+ (r —1)~1
with multiplicity (r — 1)(r — 2)% and (r — 1)~'/2 with multiplicity (r — 1)¢2.

Proof Observe that the rows of M, ; are formed by vectorizing the slices of 7}.;. Thus Lemma 33

implies that (M,.+)(M,,) " is block-diagonal with (r — 1)¢? blocks of dimension (r — 1) x (r — 1),
where each block corresponds to slices with indices (V;, Vj, L. 4) where 7,j and c are fixed on
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over each block while d ranges over {1,2,...,r — 1}. Furthermore, each block is of the form
(1+ (r—1)"Y) I,_y — (r — 1)71117. The eigenvalues of each of these blocks are 1 + (r — 1)~}
with multiplicity 7 — 2 and (r — 1)~! with multiplicity 1. Thus the eigenvalues of (M,.;)(M, ;)"
are 1 + (r — 1)~! and (r — 1)~! with multiplicities (r — 1)(r — 2)¢? and (r — 1)¢2, respectively,
which implies the result. n

Given m? matrices M1, MV2 . MEF € R Jet € (MY, M2, ..., M*™F) denote the
matrix X € R*¥"**" formed by concatenating the M%7 with

Xantbitentasr = Myfoifl forall0<a,e<k—1land0<bd<n-—1

We refer to a matrix M € R"™*"™ as a k-block matrix for some k that divides n if there are two values

x1,x2 € R and two partitions [n] = Fy U EyU---U Ep = F; U Fy U - - - U F}, both into parts of
size n/k such that

[V ! if (i,7) € B, x F, forsome 1 < h <k
771 z9 otherwise

The next lemma shows an alignment property of different slices of 7. ; that will be crucial in stitch-
ing together the local applications of TENSOR-BERN-ROTATIONS with M,.; in our reduction to
hidden partition models. This lemma will use indexing the in M, ; and the role of linear functions
L in defining the affine block graphs G ;.

Lemma 36 (Community Alignmentin 7} ;) Let 1 < s1,s2,...,5; < (r — 1){ be arbitrary in-
dices and

Mi,j — T(‘t/z/ 7‘/}/»L)
T7

foreachl <i,5 <k

where i' and j' are the unique 1 < 7', j" < { such that i’ = s; (mod ¢) and j' = s; (mod ¢) and
L(z) = ax + b where a = [s;/0] and b = [s;/{]. Then it follows that C (M, M2, ... M"F)
is an r-block matrix.

Proof Let ¢; = i’ be the unique 1 < i’ < ¢ such that ¢/ = s; (mod ¢) and let a; = [s;/{] €

{1,2,...,r — 1} for each 1 < 4 < /. Furthermore, let L;j(x) = a;x + a; for 1 < 4,5 < k and,

foreachx € Rand 1 < ¢ < /, let Ai be the affine spaces as in Definition 31. Note that since

0 < a; < r, it follows that each L;; is a non-constant and hence invertible linear function. Given a

subset S C F! and some s € N, let I(s, S) denote the set of indices I(s,S) = {s+i: P, € S}.
Now define the partition [kr'] = Eg U Eo U - - - U E,_1 as follows

k
Ei = U I <(] — 1)?"2;4?1.].) where xij = Lj_ll(Ln(i))
j=1
and similarly define the partition [kr!] = Fy U Fo U - -- U F,._; as follows

k
Fi = U I ((] — 1)Tt,AZJ;j) where yz-j = Llj(i)
j=1
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Let X € RF"**" denote the matrix X = C (ML M2 MPF). We will show that
r—1
Suppose that (a,b) € E; x F; and specifically that (j, — 1)rt +1 < a < jortand (j, — 1)rf +1 <
b < jyrt for some 1 < ju,j» < k. The definitions of F; and F} imply that z, € A% where

Tija

Xap = if (a,b) € E; x F;forsome 0 <i<r—1 ()

Za = Py_(j,—1)rt and 2z, € A;ﬂ;b where z, = B, _(j, —1),+. Note that
— jav.j
Xap = MG, 1yt p(p—1)re
by the definition of C. Therefore by Definition 32, it suffices to show that (z,, z) is an edge of the
bipartite graph G7.+(V4,, , V4, , Lj.j,) for all such (a, b) to establish (4). By Definition 31, (zq, 2) is
an edge if and only if L, j, (zij,) = vij,. Observe that the definitions of x;;, and y;;, yield that

joTij, + a1 = L1 (wij,) = L (i) = a1- i+ a1 (5)
Yig, = L, (1) = a1 - i + aj,
Ljajb (l’) = CLja.fU + ajb

Adding aj, — a; to both sides of Equation (5) therefore yields that

Ljujy(ija) = @ ijo + aj, = a1 -1+ aj, = Yij,
which completes the proof of (4). Now note that each M/ contains exactly '~ entries equal to
(r — 1)/r'/r — 1 and thus X contains exactly k%72~1 such entries. The definitions of E; and F;
imply that they each contain exactly kr'~! elements. Thus Ul:é E; x F; contains k?r?~! elements.

Therefore (4) also implies that X, , = —1/r'\/r — 1 for all (a,b) & U;:OIEi x F;. This proves that
X is an r-block matrix and completes the proof of the lemma. |

The community alignment property shown in this lemma is directly related to the indexing of
rows in M, ;. More precisely, the above lemma implies that for any subset S C [(r — 1)], the
rows of M, ; indexed by elements in the support of 15 ® 1g can be arranged as sub-matrices of an
|S|rt x |S|r! matrix that is an 7-block matrix. This property will be crucial in our reduction from
k-PC and k-PDS to hidden partition models in Section M.2.

G.4. A Random Matrix Alternative to K, ;

In this section, we introduce the random matrix analogue R, . of K, ; defined below. Rather than
have all independent entries, I?,, . is constrained to be symmetric. This ends up being technically
convenient, as it suffices to bound the eigenvalues of I?,, . in order to upper bound its largest singular
value. This symmetry also yields a direct connection between the eigenvalues of R, . and the
eigenvalues of sparse random graphs, which have been studied extensively.

Definition 37 (Random Design Matrix R, () Ife € (0,1/2], let R,, . € R™*™ denote the random
symmetric matrix with independent entries sampled as follows

[ 1—€
(Rne)ij = (Rn,e)ji ~ -

€

= with prob. 1 — ¢

with prob. e

foralll <i<j<mn, and (Rne)ii = ,/ﬁforeachl <i<n.
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We now establish the key properties of the matrix R,, .. Consider the graph G where {7, j} €
E(G) if and only if (R, ¢);; is negative. By definition, we have that G is an e-sparse Erd6s-Rényi
graph with G ~ G(n, €). Furthermore, if A is the adjacency matrix of G, a direct calculation yields
that R, . can be expressed as

€ 1

A—an =t l—omn EA =4 ©

Rn,e =

A line of work has given high probability upper bounds on the largest eigenvalue of E[A] — A in
order to study concentration of sparse Erd6s-Rényi graphs in the spectral norm of their adjacency
matrices (Fiiredi and Komlés, 1981; Vu, 2005; Feige and Ofek, 2005; Lu and Peng, 2013; Bandeira
and Van Handel, 2016; Le et al., 2017). As outlined in Le et al. (2017), the works Fiiredi and
Komlés (1981), Vu (2005) and Lu and Peng (2013) apply Wigner’s trace method to obtain spectral
concentration results for general random matrices that, in this context, imply with high probability
that
|E[A] — A|| = 2Vd (1 4+ 0,(1))  for d > (logn)*

where d = en and || - || denotes the spectral norm on n X n symmetric matrices. In Feige and Ofek
(2005), Bandeira and Van Handel (2016) and Le et al. (2017), it is shown that this requirement on d
can be relaxed and that it holds with high probability that

|E[A] - All = 0,(Vd) ford = Q,(logn)

These results, the fact that R,, . is symmetric and the above expression for R,, . in terms of A are
enough to establish our main desired properties of I?,, ., which are stated formally in the following
lemma.

Lemma 38 (Key Properties of R, ) Ife € (0,1/2] satisfies that en = wy,(logn), there is a con-
stant C' > 0 such that the random matrix R,,  satisfies the following two conditions with probability
1 —op(1):

1. the largest singular value of R,, . is at most C; and

2. every column of R, . contains between en — C+/enlogn and en + C+/enlogn negative

entries.

Proof The number of negative entries in the ith column of R,, ¢ is distributed as Bin(n — 1,¢). A
standard Chernoff bound for the binomial distribution yields that if X ~ Bin(n — 1, €), then

27’L— €
PWX—W—lwzém—nqumeﬁ<31>>

for all § € (0,1). Setting 6 = C’y/n~te~1llogn for a sufficiently large constant C' > 0 and
taking a union bound over all columns ¢ implies that property (2) in the lemma statement holds with
probability 1 — 0,,(1). We now apply Theorem 1.1 in Le et al. (2017) as in the first example in
Section 1.4, where the graph is not modified. Since en = wy,(logn), this yields with probability
1 — o0, (1) that

|E[4] - Al| < C"Vd
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for some constant C” > 0, where A and d are as defined above. The decomposition of R, . in
Equation (6) now implies that with probability 1 — 0, (1)

[Bnell < ,/(1 _ee)n + \/6(11_76)71 - C"Vd = 0,(1)

since € € (0,1/2] and d = en. This establishes that property (1) holds with probability 1 — 0, (1).
A union bound over (1) and (2) now completes the proof of the lemma. |

While R,, . and K, ; satisfy similar conditions needed by our reductions, they also have differ-
ences that will dictate when one is used over the other. The following highlights several key points
in comparing these two matrices.

e R, and K, are analogous when n = r* and € = 1/r. In this case, both matrices contain the
same two values 1/4/rt(r — 1) and —/(r — 1)/rt. The rows of K, ; are unit vectors and
the rows of R,, . are approximately unit vectors — property (2) in Lemma 38 implies that the
norm of each row is 1 + O, (+/(en)~tlogn). Like K, +, Lemma 38 implies that R,  is also
approximately orthogonal with largest singular value bounded above by a constant.

e While K, ; has exactly a (1/r)-fraction of entries in each column that are negative, R,,  only
has approximately an e-fraction of entries in each of its columns that are negative. For some of
our reductions, such as our reductions to RSME and RSLR, having approximately an e-fraction
of its entries equal to the negative value in Definition 37 is sufficient. In our reductions
to ISBM, GHPM, BHPM and SEMI-CR, it will be important that K. ; contains exactly (1/r)-
fraction of negative entries per column. The approximate guarantee of I2,,  would correspond
to only showing lower bounds against algorithms that are adaptive and do not need to know
the sizes of the hidden communities.

e As is mentioned in Section B.4 and will be discussed in Section L, our applications of dense
Bernoulli rotations with K, ; will generally be tight when a natural parameter 7 in our prob-
lems satisfies that \/n = (:)(rt). This imposes a number theoretic condition (T) on the pair
(n,r), arising from the fact that ¢ must be an integer, which generally remains a condition in
the computational lower bounds we show for ISBM, GHPM and BHPM. In contrast, ?,, . places
no number-theoretic constraints on n and €, which can be arbitrary, and thus the condition (T)
can be removed from our computational lower bounds for RSME and RSLR. We remark that
when r = n°1), which often is the regime of interest in problems such as RSME, then the
condition (T) is trivial and places no further constraints on (n, ) as will be shown in Lemma
80.

e R, . is random while K, ; is fixed. In our reductions, it is often important that the same
design matrix is used throughout multiple applications of dense Bernoulli rotations. Since
R, ¢ is a random matrix, this requires generating a single instance of R,, . and using this one
instance throughout our reductions. In each of our reductions, we will rejection sample 12,
until it satisfies the two criteria in Lemma 38 for a maximum of O((logn)?) rounds, and
then use the resulting matrix throughout all applications of dense Bernoulli rotations in that
reduction. The probability bounds in Lemma 38 imply that the probability no sample from
R, . satisfying these criteria is found is n~«»(1) This is a failure mode for our reductions
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and contributes a negligible n~“»(1) to the total variation distance between the output of our
reductions and their target distributions.

e For some of our reductions, applying dense Bernoulli rotations with either of the two ma-
trices I, ¢ or K, ; yields the same guarantees. This is the case for our reductions to MSLR,
GLSM and TPCA, where r = 2 and the condition (T) is trivial and mapping to columns with
approximately half of their entries negative is sufficient. As mentioned above, this is also the
case when 7 < e ' = n°(1) in RSME.

e Some differences between R,, . and K.; that are unimportant for our reductions include that
R, ¢ is exactly square while K.; is only approximately square and that R, . is symmetric
while K ; is not.

For consistency, the pseudocode and analysis for all of our reductions are written with K. ; rather
than R,, .. Modifying our reductions to use R,,  is straightforward and consists of adding the rejec-
tion sampling step to sample 2, . discussed above. In Sections I.1, 1.2 and L, we discuss in more
detail how to make these modifications to our reductions to RSME and RSLR and the computational
lower bounds they yield.

There are several reasons why we present our reductions with K, ; rather than R,, . The analysis
of K, ; in Section G.2 is simple and self-contained while the analysis of R,, . requires fairly involved
results from random matrix theory. The construction of K, ; naturally extends to 7’. ; while a random
tensor analogue 7). ; seems as though it would be prohibitively difficult to analyze. Reductions
with K.; give an explicit encoding of cliques into the hidden structure of our target problems as
discussed in Section C.8, yielding slightly stronger and more explicit computational lower bounds
in this sense.

Appendix H. Negatively Correlated Sparse PCA

This section is devoted to giving a reduction from bipartite planted dense subgraph to negatively
correlated sparse PCA, the high level of which was outlined in Section C.5. This reduction will
be used in the next section as a crucial subroutine in reductions to establish conjectured statistical-
computational gaps for two supervised problems: mixtures of sparse linear regressions and robust
sparse linear regression. The analysis of this reduction relies on a result on the convergence of the
Wishart distribution and its inverse. This result is proven in the second half of this section.

H.1. Reducing to Negative Sparse PCA

In this section, we give our reduction BPDS-TO-NEG-SPCA from bipartite planted dense subgraph to
negatively correlated sparse PCA, which is shown in Figure 8. This reduction is described with the
input bipartite graph as its adjacency matrix of Bernoulli random variables. A key subroutine in this
reduction is the procedure x2-RANDOM-ROTATION from Brennan and Bresler (2019), which is also
shown in Figure 8. The lemma below provides total variation guarantees for y2-RANDOM-ROTATION
and is adapted from Lemma 4.6 from Brennan and Bresler (2019) to be in our notation and apply to
the generalized case where the input matrix M is rectangular instead of square.

This lemma can be proven with an identical argument to that in Lemma 4.6 from Brennan and
Bresler (2019), with the following adjustment of parameters to the rectangular case. The first two
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Algorithm x2-RANDOM-ROTATION

Inputs: Matrix M € {0,1}™*"™, Bernoulli probabilities 0 < ¢ < p < 1, planted subset size k,, that
divides n and a parameter 7 > 0

1. Sample r1,72,...,7 ~iida. v/Xx%2(n/ky) and truncate the r; with r; < min {rj,Q n/kn}
for each j € [n].

2. Compute M’ by applying GAUSSIANIZE to M with Bernoulli probabilities p and ¢, rejection
kernel parameter Ry« = mn, parameter 7 and target mean values p;; = %T -1 - \/kn/n for
eachi € [m] and j € [n].

3. Sample an orthogonal matrix R € R™*™ from the Haar measure on the orthogonal group
O,, and output the columns of the matrix M’R.

Algorithm BPDS-TO-NEG-SPCA

Inputs: Matrix M € {0,1}™>", Bernoulli probabilities 0 < ¢ < p < 1, planted subset size k,, that
divides n and a parameter 7 > 0, target dimension d > m

1. Compute X = (X1, Xa,...,X,) where X; € R™ as the columns of the matrix output by
x2-RANDOM-ROTATION applied to M with parameters p, ¢, k,, and 7.

2. Compute 3 = >, X;X," and let R € R™*" be the top m rows of an orthogonal matrix
sampled from the Haar measure on the orthogonal group O,, and compute the matrix

M' =\/n(n—m—1)-7'2R

1/2 is the positive semidefinite square root of the inverse of 3.

where 3~

3. Output the columns of the d x n matrix with upper left m x n submatrix M’ and all re-
maining entries sampled i.i.d. from A(0, 1).

Figure 8: Subroutine x?-RANDOM-ROTATION for random rotations to instances of sparse PCA from Bren-
nan and Bresler (2019) and our reduction from bipartite planted dense subgraph to negative sparse PCA.

steps of x2-RANDOM-ROTATION maps Mimixn) (S x T',p, q) approximately to

K
S\ Lsug + N (0, 1)

where ur is the vector with (ur); = r; if i € T and (ur); = 0 otherwise. The argument in Lemma
4.6 from Brennan and Bresler (2019) shows that the final step of x2-RANDOM-ROTATION maps
this distribution approximately to

T |k,

71 T 01®m><n
9 n Sw +N(7)
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where w ~ N (0, I,,). Now observe that the entries of this matrix are zero mean and jointly Gaus-

72k, |S| T
in

sian. Furthermore, the columns are independent and have covariance matrix I,,, + FUSVg

where vg = |S|~1/2 . 15. Summarizing the result of this argument, we have the following lemma.

Lemma 39 (x> Random Rotations — Adapted from Lemma 4.6 in Brennan and Bresler (2019))
Given parameters m,n, let 0 < q < p < 1 be such that p — q = (mn)~°W) and min(q, 1 — q) =
Q(1), let k,, < n be such that ky, divides n and let T > 0 be such that

T < 0 where ¢ = min {log <p> ,log <1—q>}
2/61log(mn) + 2log(p — q) 1 q L—p

The algorithm A = x?-RANDOM-ROTATION runs in poly(m, n) time and satisfies that

7-2kn|S| T o — —3\n/2k
o -USUS) < O ((mn) 1)+k‘n(4e 3/ 2kn

dry (.A (Bem(q)@)mxn) 7 _/\[(07 1)®m><n) -0 ((mn)fl)

drv («4 (Mpmxm) (S x T, p,q)) , N <07]m +

where vg = \/ﬁ -1g € R™ for all subsets S C [m] and T C [n] with |T'| = ky,.
Throughout the remainder of this section, we will need to use properties of the Wishart and
inverse Wishart distributions. These distributions on random matrices are defined as follows.

Definition 40 (Wishart Distribution) Ler n and d be positive integers and ¥ € R be a pos-
itive semidefinite matrix. The Wishart distribution W;(n, ) is the distribution of the matrix ¥ =
Yoy X;X,” where X1, Xa, ..., X ~iia N(0,%).

Definition 41 (Inverse Wishart Distribution) Let n,d and 3 be as in Definition 40. The inverted
Wishart distribution W} *(n, X) is the distribution of >~! where ¥ ~ Wy(n, %).

In order to analyze BPDS-TO-NEG-SPCA, we also will need the following observation from
Brennan and Bresler (2019). This is a simple consequence of the fact that the distribution N(0, I,)
is isotropic and thus invariant under multiplication by elements of the orthogonal group O,,.

Lemma 42 (Lemma 6.5 in Brennan and Bresler (2019)) Suppose that n > d and let ¥. € R%*¢
be a fixed positive definite matrix and let $. ~ Wg(n,Y). Let R € R¥™ be the matrix consisting of
the first d rows of an n X n matrix chosen randomly and independently of . from the Haar measure
uo, on Oy. Let (Y1,Ya,...,Y,) be the n columns onéﬂR, then Y1,Ya, ..., Y, ~ija. N(0,X).

We now will state and prove the main total variation guarantees for BPDS-TO-NEG-SPCA in the
theorem below. The proof of the theorem below crucially relies on the upper bound in Theorem
44 on the KL divergence between Wishart matrices and their inverses. Proving this KL divergence
bound is the focus of the next subsection.

Theorem 43 (Reduction to Negative Sparse PCA) Let m,n,p,q, k, and T be as in Lemma 39
and suppose that d > m and n > m3 as n — oc. Fix any subset S C [m)] and let 05 be given by

72kn|S|

S 4n+72k3n|5|
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Then algorithm A = BPDS-TO-NEG-SPCA runs in poly(m,n) time and satisfies that

dry <.A (M[m]x[n](S x T, p, q)) N (0, 1;— stgvgf—)@n) <0 (m3/2n—1/2) + k;n(4e_3)n/2kn
dry (A (Bern(q)®™*™) , N(0, 1)®dX”) =0 (m3/2n_1/2)

where vg = ﬁ - 15 € R for all subsets S C [m] and T C [n] with |T| = ki,.
Proof Let A; denote the application of x?-RANDOM-ROTATION with input M and output X in
Step 1 of A. Let Ay, denote the Markov transition with input X and output n(n —m — 1) - £71, as
defined in Step 2 of A, and let Ay, 3 denote the Markov transition with input Y = n(n—m—1) 3t
and output Z formed by padding Y''/2R with i.i.d. A/(0,1) random variables to be d x n i.e. the
output of A. Furthermore, let A3 = Ajp.3 0 Az, denote Steps 2 and 3 with input X and output Z.
Now fix some positive semidefinite matrix ¥ € R™*" and observe thatif A = " | ZiZ;r ~
Wi (n, I,) where Z1, Za, ..., Zp ~iia. N (0, I,), then it also follows that

$1/2 451/2 _ zn: (El/QZi) (El/QZi)T ~ Wi (1, %)

=1

since X21/2Z; ~ N(0,%). Now observe that (£1/2A%1/2)~1 = 5=1/24-15%-1/2 and thus if B ~
Wi l(n, I,,) then 2 ~1/2BY =12 . W-l(n, %), Let 7 = n(n—m—1) and C ~ WX (n, B-I).
Therefore we have by the data processing inequality for total variation in Fact 15 that
dry (Win(n, ), Wit (n,8-57Y) = dry (£ (2124812) , £ (3120512))
<drv (£(A), £(O))

1 _
< \/ 5 -k (Wi, In) | Wi (0, 8- 1)
-0 <m3/2n—1/2)
where the last inequality follows from the fact that n >> m?, Theorem 44 and Pinsker’s inequality.

Suppose that X ~ N (0, I, + G’Svsvg)(@n where 0, = %. Then we have that the output
Y of Ay, satisfies Y = n(n —m —1) - 271 ~ W1 (n,B-X7!) where

—1 9/
Y= (Im + Q/S'US’U;'—) =1, — T +50, cvdv =1, — Osvgvd
S

Therefore it follows from the inequality above that
T\ %" T 3/2 —1/2
drv (AZa (N (0,Im + Hfgvgvs> ) , Win (n,Im — 95v5v5>> =0 (m 12~V )
Similarly, if X ~ A (0, I,,,)®" then we have that

dry (Aza (N (0,1,,)%™) , Wiy (1, Ip)) = O (m3/2n—1/2>
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applying the same argument with © = I,,,. Now note that if Y ~ W, (n, I, — Osvgvd) then

Lemma 42 implies that A3 produces Z ~ N (O Iy — Osvgvg )®n. Similarly, it follows that if
Y ~ Wy (n, I,) then Lemma 42 implies that Z ~ N (0, I;)®".

We now will use Lemma 16 applied to the steps .4; above and the following sequence of distri-
butions

Po = Mim)xin (S X T,p,q)
Xn

Pr=N (0, I, + QQUSU;E)

Paa = Whn (n I, — esvsvg)

T\ "
Pz =N (0, I; — 951}51}5)

As in the statement of Lemma 16, let ¢; be any real numbers satisfying drv (A;(Pi—1),P;) < ¢
for each step i. A direct application of Lemma 39, shows that we can take ¢; = O(m~'n"1) +
k(4e=3)"/2k The arguments above show we can take ez, = O(m3/?n~/2) and ey,3 = 0. Lemma
16 now implies the first bound in the theorem statement. The second bound follows from an analo-
gous argument for the distributions

PO = Bern(q)®m><n7 Pl = N (07 Im)®n7 Pza = W’m (n7 Im) and PZb—3 = N (07 Id)®n

with e = O(m™In71Y), e = O(m3/2n_1/2) and €3,.3 = 0. This completes the proof of the
theorem. |

H.2. Comparing Wishart and Inverse Wishart

This section is devoted to proving the upper bound on the KL divergence between Wishart matrices
and their inverses in Theorem 44 used in the proof of Theorem 43. As noted in the previous subsec-
tion, the next theorem also implies total variation convergence between Wishart and inverse Wishart
when n >> d® by Pinsker’s inequality. This theorem is related to a line of recent research exam-
ining the total variation convergence between ensembles of random matrices in the regime where
n > d. A number of recent papers have investigated the total variation convergence between the
fluctuations of the Wishart and Gaussian orthogonal ensembles, also showing these converge when
n> d (Jiang and Li, 2015; Bubeck et al., 2016; Bubeck and Ganguly, 2016; Récz and Richey,
2019), convergence with other matrix ensembles at intermediate asymptotic scales of d < n < d*
(Chételat and Wells, 2019) and applications of these results to random geometric graphs (Bubeck
et al., 2016; Eldan and Mikulincer, 2016; Brennan et al., 2019b).
Let I'y(z) and 14(z) denote the multivariate gamma and digamma functions given by

d . d
Ty(a) = 7D/ T <a - 2_21> and  g(a) = alog Fd =3 (a _i 1)

=1 =1

where I'(z) and 1) = I"(z) /T'(2) denote the ordinary gamma and digamma functions. We will need
several approximations to the log-gamma and digamma functions to prove our desired bound on KL
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divergence. The classical Stirling series for the log-gamma function is

1 1 - By,
logI'(z) ~ 3 log(2m) + <z — 2> logz — 2+ Z 2%(2k — 1)1
k=1

where B, denotes the mth Bernoulli number. While this series does not converge absolutely for
any z because of the growth rate of the coefficients Boy, its partial sums are increasingly accurate.
More precisely, we have the following series approximation to the log-gamma function (see e.g. pg.
67 of Remmert (2013)) up to second order

1 1 1
logT'(2) = 5 log(27) + (z — 2> logz — z+ 125 +0(z7%)

as z — oo. A similar series expansion exists for the digamma function, given by

1 < By
o) oz - 5= Y oty

This series also exhibits the phenomenon that, while not converge absolutely for any z, its partial
sums are increasingly accurate. We have the following third order expansion of ¢)(z) given by

P(z) =1 ! ! +2/OO e dt =1 ! Lo
T RE Ty T2 T 2 ), (et 1) T 8T T o T 122 T UV

as z — oo. We now state and prove the main theorem of this section.

Theorem 44 (Comparing Wishart and Inverse Wishart) Letn > d 4 1 and m > d be positive
integers such that n = ©(m), |/m — n| = o(n) and n — d = Q(n) as m,n,d — oo, and let

1

B ig s2d(d+1) B 5sd? sd?
~ 6n 8n? 24n?  12mn
+ 0 (d®n3|s]P +d'n 2 + d*n7 1)

dis (Wd(n, 1) H Wil(m, 8- Id))

where s = n — m. In particular, when m = n and n > d° it follows that
i (Waln, L) | W7 (n. 8- 1)) = o(1)

Proof Note that the given conditions also imply that m — d = Q(m). Let X ~ Wy(n, I;) and
Y ~W, Y(m, B-1;). Throughout this section, A € R4*¢ will denote a positive semidefinite matrix.
It is well known that the Wishart distribution Wy(n, 1) is absolutely continuous with respect to the
Lebesgue measure on the cone CdPSD of positive semidefinite matrices in R4 (Wishart, 1928).
Furthermore the density of X with respect to the Lebesgue measure can be written as

1 1
- = A|—d-D/2 _Z
fx(A) 202 Ty (2] |A| exp < 2Tr(A))
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A change of variables from A — 37! - A~! shows that the distribution Wd_l(m, B - 1) is also
absolutely continuous with respect to the Lebesgue measure on C};SD. It is well-known (see e.g.
Gelman et al. (2013)) that the density of Y can be written as

B—md/Q

fr(A) = omd/2 Ty (m

-1
. |A’7(m+d+l)/2 - exp (_/82 . Tr (Al))

Now note that

long(A)—logfy(A):(m;n)d-log2+logfd (%) long< )+7d log 8
min, |A|——Tr(A)+5—1 Tr (A7Y)

+

The expectation of log | A| where A ~ Wy(n, 1) is well known (e.g. see pg. 693 of Bishop (2006))
to be equal to

n
Eacw,(n,1z) l0g [All = a (5) + dlog2

Furthermore, it is well known (e.g. see pg. 85 of Mardia et al. (1979)) that the mean of A~! if
A~ Wyn, 1) is
I
—1 d
Eawanta) [A7'] = —7—

Therefore we have that E 4y, (n,1,) [Tr (A™1)] = d/(n—d—1). Similarly, we have that E 4y, (n.1,) [4] =
n - Iq and thus E 4y, (n,1,) [Tr(A)} = nd. Combining these identities yields that

diw (Waln, L) || Wit (m. 8- 1)) = E s, llog fx(4) = log fy (4)]

(m —n)d md

:T-log2+logfd(%> 10ng( )+7 log B

+m—i—n <¢d( >+dlog2) —712d+2(nﬁ_61ﬁ_1)
(N

We now use the series approximations for I'(z) and (z) mentioned above to approximate each of
these terms. Note that since m — d = Q(m), we have that

d .
m\  d(d—1) m—i+1
log Ty <5> —Tlogw—k E 10gF<2>

d(d log7r+z< log(27) <m2_i>log <m _2”1)
(") sy o)
d(d—1) d dm A1) |

:Tlogﬂ—l—flog(Zw)—T—i— 1

3 (5o () + (25 s (- 52+ )

96




STATISTICAL-COMPUTATIONAL GAPS FROM SECRET LEAKAGE

using the fact that Zle(i —1) =d(d—1)/2. Let H,, denote the harmonic series H,, = » . ; 1/i.
Using the well-known fact that ¢)(n + 1) = H,, — 7 where -y is the Euler-Mascheroni constant, we
have that

0
——— =H,, — Hp,_

Z m—1i+1 " m—d

=1
= log(m + 1) —log(m —d + 1) + O(m™")

¢, & +O0(d*m ) + O(m™)
= m m
m+1  2(m+1)2
=0 (dm_l)
where the second last estimate follows applying the Taylor approximation log(1 —x) = —z— %x2 +

O(x3) for x = miﬂ € (0,1). Applying this Taylor approximation again, we have that

S (Mg (1)

d

m —1)(i — m—i)(i —1)?
:_;Z<( 721( D 23722 1) +O(i3m2)>
=1

I ((m=1)(i-1) (i—-12 (m-1)>GE-1)2 (i—1)3
:O(d4m_2)2;<( n)l( )_(m)+( 27)752 )(2m2))

m—1)dd—1) dd—1)(2d—1) (m—1dd-1)2d—1) d?(d—1)
:O(d4m_2)—( im( ) dl 1;§n ) ( )(24m2>( ) (16m2)
Oty - 4D A= 10+

using the identities 2% (i — 1)2 = d(d — 1)(2d — 1)/6 and %, (i — 1)> = d>(d — 1)?/4.
Combining all of these approximations and simplifying using the fact that m — d = Q(m) yields
that

m\  d(d—1) d dm dm m d(d+1) m
loga () = =g logm + S log(2m) — = + = log () = == log (5
d(d — 1)(2d + 5)

24m

+ 0 (d477f2 + dmfl)

as m,d — oo and m — d = Q(m). An analogous estimate is also true for log 'y (%) Similar
approximations now yield since n — d = (n), we have that

() =35 (e ("5 iy w00

i=1

d .
:dlog(Z)—i—Zlog(l—Z;l)—Hn—i—Hnd+O(dn_2)

i=1

d . .
B n i—1  (i—1)? 3 _3 d d?
_d10g<2>_;< w T e PO ) T T sy
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+ O (dgn_?’ + dn_2)

= dlog (%) - dd-1) _dd=DBd=l) 4, o (g 4+ dn2)

2 2n 12n? n+1
Here we have expanded ¢ (n + 1) = H,, — 7y to an additional order with the approximation
1 1
Hy— Hyq =1 1) —log(n —d+1) — O(n™?
n = Hya=log(n+1) —log(n —d+1) dn+ 1) 2m—d+1) (n™)
d d?
= + +O0(dn™?)

n+1 2(n+1)2
Combining all of these estimates and simplifying with 3~ = m(n — d — 1) now yields that

diL (Wd(n, 1) H Wil(m, 3 - Id))

md nd B~1d m n m-4+n n
—mdlog2+ logp -2y 2 L 4 oeT (7)—1 r <7> - <7>
mdlog2 + —-logf = 5 4 5 — =y Tloelal(y) ~leela(5 )+ ——val3

_(m+ nii(d ~1)  (m+ n)d(;l4;21)(2d -1) (;Zn++n1);z LO (4 )
M) (o D () i (02
_(m+ n)d(;l4;21)(2d —1) (- m)d(;lh;nl)@d +5 (@072 + o)
_ (m+ nii(d 1), d(d;r 1) <n ., (n 2—n12n)2 o (n_3|8|3))
N d;n (d:; 1 N (d;;l;)2 N 0(d3n—3)) _ (m+ n)d(;l4;21)(2d —1)
sd(d —1)(2d + 5)

4, -2 2 —1
A + 0 (d*n? +d*n")
& sPd(d+1)  5sd? sd3

_ 2 _ 9] d2 =313 d4 —2 d2 -1

6n 8n? 202+ gy T OIS AT d )
In the fourth equality, we used the fact that 1/(n + 1) = 1/n + O(n™2), that s = n — m = o(n)
and the Taylor approximation log(1 — z) = —2 — 2% 4+ O(23) for || < 1. The last line follows

from absorbing small terms into the error term. The second part of the theorem statement follows
immediately from substituting m = n and s = 0 into the bound above and noting that the dominant
term is d®/6n when n > d°. [ |

We now make two remarks on the theorem above. The first motivates the choice of the parameter
3 to satisfy 371 = m(n—d—1). Note that the KL divergence in Equation (7) depends on 3 through

the terms 8 .
md —d
il | o~z %
y et o —a—
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which is minimized at the stationary point 3~ = m(n—d—1). Thus the KL divergence in Equation
(7) is minimized for a fixed pair (m,n) at this value of 5. We also remark that the distributions
Wa(n,1z) and W Y(m, B - I;) only converge in KL divergence if d > n® as the expression in
Theorem 44 is easily seen to not converge to zero if d = O(n?).

Appendix I. Negative Correlations, Sparse Mixtures and Supervised Problems

In the first part of this section, we introduce and give a reduction to the intermediate problem im-
balanced sparse Gaussian mixtures, as outlined in Section C.3 and the beginning of Section G. This
reduction is then used in the second part of this section, along with the reduction to negative sparse
PCA in the previous section, as a subroutine in a reduction to robust sparse linear regression and
mixtures of sparse linear regressions, as outlined in Section C.4. Our reduction to imbalanced sparse
Gaussian mixtures will also be used in Section L to show computational lower bounds for robust
sparse mean estimation.

I.1. Reduction to Imbalanced Sparse Gaussian Mixtures

In this section, we give our reduction from k-BPDS to the intermediate problem ISGM, which we
will reduce from in subsequent sections to obtain several of our main computational lower bounds.
We present our reduction to ISGM with dense Bernoulli rotations applied with the design matrix K ¢
from Definition 28, and at the end of this section sketch the variant using the random design matrix
alternative R,, . introduced in Section G.4. Throughout this section, the input k-BPDS instance will
be described by its m x n adjacency matrix of Bernoulli random variables. The problem ISGM,
imbalanced sparse Gaussian mixtures, is a simple vs. simple hypothesis testing problem defined
formally below. A similar distribution was also used in Diakonikolas et al. (2017) to construct an
instance of robust sparse mean estimation inducing the tight statistical-computational gap in the
statistical query model.

Definition 45 (Imbalanced Sparse Gaussian Mixtures) Given some € R and € € (0,1), let 1/
be such that € - ' + (1 — €) - p = 0. For each subset S C [d], 1ISGMp(n, S, d, i, €) denotes the
distribution over X = (X1, Xo, ..., X,,) where X; € RY where

X17X2a .. 7Xn ~iid MIXe (N(,U : 1S,Id),./\/’(/.l// : 157Id))

We will use the notation ISGM(n, k, d, p, €) to refer to the hypothesis testing problem between
Hy : X1,Xs,..., Xy ~iig. N(0,1;) and an alternative hypothesis H; sampling the distribution
above where S is chosen uniformly at random among all k-subsets of [d]. Our reduction k-BPDS-
TO-ISGM is shown in Figure 9. The next theorem encapsulates the total variation guarantees of
this reduction. A key parameter is the prime number r, which is used to parameterize the design
matrices /. in the BERN-ROTATIONS step.

To show the tightest possible statistical-computational gaps in applications of this theorem, we
ideally would want to take n such that n = ©(k,r!). When r is growing with N, this induces
number theoretic constraints on our choices of parameters that require careful attention and will be
discussed in Section L.1. Because of this subtlety, we have kept the statement of our next theorem
technically precise and in terms of all of the free parameters of the reduction £-BPDS-TO-ISGM.
Ignoring these number theoretic constraints, the reduction k-BPDS-TO-ISGM can be interpreted as
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Algorithm k-BPDS-TO-ISGM

Inputs: Matrix M € {0,1}™*", dense subgraph dimensions k,, and k,, where k,, divides »n and
the following parameters

e partition F of [n] into k,, parts of size n/k,, edge probabilities 0 < ¢ < p < 1 and a slow
growing function w(n) = w(1)
e target ISGM parameters (N, d, u, €) satisfying that e = 1/r for some prime number r,

c
and <
= Vrt(r — 1) log(k,mrt)

wN <kp,rl, m<d, n<k," <poly(n)

rt—1
r—1

for some t € N, a sufficiently small constant ¢ > 0 and where ¢ =

1. Pad: Form Mpp € {0,1}™*k=m" by adding k,r* — n new columns sampled i.i.d. from
Bern(q)®™ to the right end of M. Let F’ be the partition formed by letting F/ be F; with
exactly r* — n/k, of the new columns.

2. Bernoulli Rotations: Fix a partition [k,rf] = F{' U F}'U---U F} into k, parts each of size
r¢ and compute the matrix My € R™**=7¢ a5 follows:

(1) For each row i and part F, apply BERN-ROTATIONS to the vector (Mpp);, F! of entries
in row i and in columns from F with matrix parameter K., rejection kernel param-
eter Ryx = k,mrt, Bernoulli probabilities 0 < ¢ < p <1, A = /1 + (r — 1)~1, mean
parameter \y/rt(r — 1) - ;1 and output dimension r¥.

(2) Set the entries of (Mg); Fy 10 be the entries in order of the vector output in (1).

3. Permute and Output: Form X € RN by choosing N distinct columns of Mg uniformly
at random, embedding the resulting matrix as the first m rows of X and sampling the
remaining d — m rows of X i.i.d. from N (0, Iv). Output the columns (X, Xs,..., Xy) of
X.

Figure 9: Reduction from bipartite k-partite planted dense subgraph to exactly imbalanced sparse Gaussian
mixtures.

essentially mapping an instance of k-BPDS with parameters (m, n, ky,, kn, p, q) with k,, = o(y/n),
km = o(y/m) and planted row indices S where |S| = ky, to the instance ISGMp (N, S, d, i, €)
where € € (0, 1) is arbitrary and can vary with n. The target parameters N, d and p satisfy that

! ckn
Vlogn n

All of our applications will handle the number theoretic constraints to set parameters so that they
nearly satisfy these conditions. The slow-growing function w(n) is so that Step 3 subsamples the
produced samples by a large enough factor to enable an application of finite de Finetti’s theorem.

d=Q(m), N=o(n) and px=
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We now state our total variation guarantees for k-BPDS-TO-ISGM. Given a partition F of [n]
with [n] = F1 UFy U --- U Fy, , let Uy, (F') denote the distribution of k,-subsets of [n] formed by
choosing one member element of each of Fi, Fy, ..., Fy, uniformly at random. Let 4, , denote
the uniform distribution on k,,-subsets of [n].

Theorem 46 (Reduction from k-BPDS to ISGM) Let n be a parameter, r = r(n) > 2 be a prime
number and w(n) = w(1) be a slow-growing function. Fix initial and target parameters as follows:

e Initial k-BPDS Parameters: vertex counts on each side m and n that are polynomial in one
another, dense subgraph dimensions k,, and k, where k, divides n, edge probabilities 0 <
q < p<1lwithmin{q,1—q} = Q1) and p — q > (mn)~°W, and a partition F of [n).

e Target ISGM Parameters: (N, d, i, €) where € = 1/r and there is a parameter t = t(N) € N
with .
k -1
wN < nr(rl)’ m < d <poly(n), n< k,rt < poly(n) and
r —

) 1
= 2./61log(k,mrt) + 2log(p — q) 1 . Vrttr =11+ (r—1)71)

where § = min {log (%) ,log G%g) }

Let A(G) denote k-BPDS-TO-ISGM applied with the parameters above to a bipartite graph G with
m left vertices and n right vertices. Then A runs in poly(m,n) time and it follows that

0<p

drv (A (M)« (S % T, p,q)) , 15SGMp(N, S, d, ji,€)) = O (W' + ki 2m 2 2)
drv (.A (Bern(q)®mxn) , N(O,Id)®N) —0 (k52m727'72t)

for all subsets S C [m] with |S| = ky, and subsets T C [n] with |T| = ky, and |T N F;| = 1 for
eachl < i <k,.

In the rest of this section, let A denote the reduction k-BPDS-TO-ISGM with input (M, F') where
F is a partition of [n] and output (X1, Xo,...,Xy). Let Hyp(V, K, n) denote a hypergeometric
distribution with n draws from a population of size N with K success states. We will also need the
upper bound on the total variation between hypergeometric and binomial distributions given by

4
drv (Hyp(N, K,n), Bin(n, K/N)) < Fn
This bound is a simple case of finite de Finetti’s theorem and is proven in Theorem (4) in Diaconis
and Freedman (1980). We now proceed to establish the total variation guarantees for Bernoulli
rotations and subsampling as in Steps 2 and 3 of A in the next two lemmas.

Before proceeding to prove these lemmas, we make a definition that will be used in the next few
sections. Suppose that M is a b X a matrix, F' and F’ are partitions of [ka| and [kb] into k equally
sized parts and S C [kb] is such that |[S N F;| = 1 for each 1 < i < k. Then define the vector
v=uvgpp(M)e R*® to be such that the restriction v P! to the elements of F! is given by

sz’/ =M.

o, () where j is the unique element in S N F;
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Here, M. ; denotes the jth column of M and o, denotes the order preserving bijection from F;
to [b]. In other words, vg r 5 is the vector formed by concatenating the columns of M along the
partition F”, where the elements S N F; select which column appears along each part F/. In this
section, whenever S N F; has size one, we will abuse notation and also use S N F; to denote its
unique element.

Lemma 47 (Bernoulli Rotations for ISGM) Let F' and F" be a fixed partitions of [k,r'] and
[knrl] into ky, parts of size vt and r{, respectively, and let S C [m] be a fixed ky,-subset. Let
T C [kyr'] where [T N F!| = 1 for each 1 < i < k. Let Ay denote Step 2 of k-BPDS-TO-ISGM
with input Mpp and output M. Suppose that p, q and | are as in Theorem 46, then it follows that

drv (Az (Mt (S x T, Bern(p), Bern(q))) ,
L (u rt(r—1) - Levr pr pr (Kr,t)—r + N(0, 1)®ka”M>) =0 (kjgzm_%’_%)
dry <A2 (Bern(q)®m><k:nrt> N, 1)®mxknre) = O (k7 2m~ %)

Proof First consider the case where Mpp ~ M) [k,,rt] (S X T, Bern(p), Bern(q)). Observe that
the subvectors of Mpp are distributed as

PB (Fj(,TﬂFj{,p,q) ifiesS
Bern(q)®"" otherwise

(Mep )i,y ~ {

and are independent. Combining upper bound on the singular values of K ; in Lemma 30, Lemma
26 applied with Ryx = k,mr® and the condition on y in the statement of Theorem 46 implies that

dry ((MR)i,F]f’v N (M ri(r—1)- (Kr,t),TﬂFJfa Iré)) =0 (k,*m™r™%) ifie s
drv ((MR)i,FJf’a N(O,Irg)> =0 (k,*m™3r™?")  otherwise

Now observe that the subvectors (Mg); p are also independent. Therefore the tensorization prop-
g

erty of total variation in Fact 15 implies that dry (Mg, £(Z)) = O (k,*m™?r=%) where Z is
defined so that its subvectors Z; p are independent and distributed as
I

7z ) ] N <Mm : (Kryt)-,TﬂF]UITﬂ) if 7 & S
o N(O’L"f) otherwise

Note that the entries of Z are independent Gaussians each with variance 1. Furthermore, the mean
of Z can be verified to be exactly p\/7t(r — 1) - 1gvp pr pr (KM)T. This completes the proof of
the first total variation upper bound in the statement of the lemma. The second bound follows from
the same argument above applied with S = (). |

Lemma 48 (Subsampling for ISGM) Let F', F”, S and T be as in Lemma 47. Let A3 denote Step
3 of k-PDS-TO-ISGM with input Mg and output (X1, Xo, ..., Xn). Then

dTV <A3 (7’ . 1SUT,F’,F’/(Kr,t)T —I—N(O, 1)®ka"M> ,ISGMD(N, S, d, M, 6)) < 4w_1

where e = 1/r and p = ﬁ Furthermore, it holds that A3 (N(0,1)®™*k76) ~ N(0, I7)®N.
re(r—
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Proof Suppose that Mg ~ 715K, yr n +N(0,1)m*kne For fixed S, T, F” and F", the entries
of My are independent. Observe that the columns of Mz are independent and either distributed
according N (pu- 1g, I,) or N' (¢’ - 1g, I,y,) where ¢/ = 7(1—r)/+/rt(r — 1) depending on whether
the entry of vy g v (K, ;) at the index corresponding to the column is 1//7(r — 1) or (1 —
r)//rt(r —1).

By Lemma 29, it follows that each column of K, ; contains exactly ¢ entries equal to (1 —
r)/+/rt(r — 1). This implies that exactly &, (r — 1)¢ entries of vy g+ g (K, ;) are equal to the value
1/+/7t(r — 1). Define Ry (s) to be the distribution on RY with a sample v ~ Ry(s) generated
by first choosing an s-subset U of [IN] uniformly at random and then setting v; = 1/4/7t(r — 1)
ifi e Uandv; = (1 —r)//rt(r —1)if i ¢ U. Note that the number of columns distributed as
N(p-1g,1I;,) in Mg chosen to be in X is distributed according to Hyp(ky,,r¢, k,(r — 1)¢, N). Step
3 of A therefore ensures that, if My is distributed as above, then

X~ £ (7 1R (Hyp(Fnl, kn(r = 16, N))T 4+ N0, )5
Observe that the data matrix for a sample from ISGMp (N, S, d, 1, €) can be expressed similarly as
1S6Mp (N, 8, d, 1, ¢) = L (T 1R, (Bin(N, 1 — €))7 + N(0, 1)®de)

where again we set = 7/+/rt(r — 1). The conditioning property of drv in Fact 15 now implies
that

< 4wt

4N
dry (L(X),1SGMp(N, S, d, p,€)) < dpy (Bin(N,1 — €), Hyp (kprl, ky(r — 1)¢, N)) < P

The last inequality follows from the application of Theorem (4) in Diaconis and Freedman (1980)
to hypergeometric distributions above along with the fact that 1 — ¢ = (k,(r — 1)¢)/k,r¢ and
wN < k,rf. This completes the proof of the upper bound in the lemma statement. Now consider
applying the above argument with 7 = 0. It follows that A3z (N/(0, 1)®m*knrt) ~ A7(0, 1)V =
N (0, I;)®", which completes the proof of the lemma. |

We now combine these lemmas to complete the proof of Theorem 46.
Proof [Proof of Theorem 46] We apply Lemma 16 to the steps A; of A under each of Hy and Hy
to prove Theorem 46. Define the steps of .A to map inputs to outputs as follows

(M, F) 2% (Mpp, F') 22 (Mg, F") 2% (X1, Xa, ..., XN)

We first prove the desired result in the case that H; holds. Consider Lemma 16 applied to the steps
A; above and the following sequence of distributions

Po = M{y)xjn) (S x T, Bern(p), Bern(q))

P1 = Mimjx[k,rt] (S x T, Bern(p), Bern(q))

Py = /1 (r — 1) - Lgvp pr g (Kpy) T 4+ N(0,1)2m>Fnrt
P3 =1SGMp(N, S, d, i, €)

As in the statement of Lemma 16, let ¢; be any real numbers satisfying dyy (A;(Pi—1), P;) < ¢; for
each step 7. By construction, the step .A; is exact and we can take €; = 0. Lemma 47 yields that
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we can take 2 = O (k,, >m~?r~?'). Applying Lemma 48 yields that we can take e3 = 4w~'. By
Lemma 16, we therefore have that

drv (.A (M[m]x[n}(S x T, p, q)) , ISGMD(N, S,d, u, 6)) =0 (wil + k;2m727"72t)

which proves the desired result in the case of H;. Now consider the case that Hy holds and Lemma
16 applied to the steps .4; and the following sequence of distributions

Po = Bern(Q)®™*™, Py = Bern(Q)®"™**™" | Py = N(0,1)2knrC and Py = N(0, 1)V
As above, Lemmas 47 and 48 imply that we can take

e1=0, e&=0 (k;Qm*QT*Qt) and e3=0
By Lemma 16, we therefore have that

drv (‘A (Bem(Q)@)mxn) , MV(0, Id)®N) =0 (k‘_Qm_Qr_Qt)

n

which completes the proof of the theorem. |

As discussed in Section G.4, we can replace K. ; in k-BPDS-TO-ISGM with the random matrix
alternative R, .. More precisely, let k-BPDS-TO-ISGMpg denote the reduction in Figure 9 with the
following changes:

e At the beginning of the reduction, rejection sample Ry, . for at most ©((log L)?) iterations
until the criteria of Lemma 38 are met, as outlined in Section G.4. Let A € RL*L pe the
resulting matrix or stop the reduction if no such matrix is found. The latter case contributes
L) to each of the total variation errors in Corollary 49.

e The dimensions ¢ and r* of the matrix K, used in BERN-ROTATIONS in Step 2 are both
replaced throughout the reduction by the parameter L. This changes the output dimensions
of Mpp and Mpy in Steps 1 and 2 to both be m x k, L.

e In Step 2, apply BERN-ROTATIONS with A instead of K, ; and let \ = C where C'is the
constant in Lemma 38.

The reduction k-BPDS-TO-ISGMp eliminates a number-theoretic constraint in k-BPDS-TO-ISGM
arising from the fact the intermediate matrix Mg has a dimension that must be of the form k!
for some integer ¢. In contrast, k-BPDS-TO-ISGMp, only requires that this dimension of Mg be a
multiple of k,,. This will remove the condition (T) from our computational lower bounds for RSME,
which is only restrictive in the very small e regime of € = n~2(1), We will deduce this computational
lower bound for RSME implied by the reduction k-BPDS-TO-ISGMp, formally in Section L.1.

The reduction k-BPDS-TO-ISGM g can be analyzed using an argument identical to the one above,
with Lemma 38 used in place of Lemma 30 and accounting for the additional L~“(!) total variation
error incurred by failing to obtain a I?,, . satisfying the criteria in Lemma 38. Carrying this out yields
the following corollary. We remark that the new condition € > L' log L in the corollary below
will amount to the condition ¢ > N~/2log N in our computational lower bounds. This is because,
in our applications, we will typically set N = (:)(knL) and k,, to be very close to but slightly smaller
than \/n = ©(v/N), to ensure that the input k-BPDS instance is hard. These conditions together
with e > L' log L amount to the condition on the target parameters given by € > N~1/2]log N.
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Corollary 49 (Reduction from k-BPDS to ISGM with R}, ) Letn be a parameter and let w(n) =
w(1) be a slow-growing function. Fix initial and target parameters as follows:

e Initial £-BPDS Parameters: m, n, ky,, kn, p, ¢ and F' as in Theorem 46.

e Target ISGM Parameters: (N, d, i, €) such that there is a parameter L = L(N) € N such that
L(N) — oo and it holds that

max{wN,n} < k,L <poly(n), m <d < poly(n),

< (o) €
~ log(kymL) +1log(p—q)~' VL

for some sufficiently small constant C' > 0, where ¢ is as in Theorem 46.

0<p

If A denotes k-BPDS-TO-ISGMp, applied with the parameters above, then A runs in poly(m,n)
time and

dry (A (M[m]x[n](s x T, p, q)) , ISGMp (N, S, d, u, e)) =o0(1)
dry (A (Bern(q)®™") , N'(0, 1)) = o(1)

for all ky,-subsets S C [m| and ky,-subsets T' C [n]| with |T N F;| = 1 foreach 1 < i < ky,.

I.2. Sparse Mixtures of Regressions and Negative Sparse PCA

In this section, we combine the previous two reductions to NEG-SPCA and ISGM with some addi-
tional observations to produce a single reduction that will be used to prove two of our main results
in Section L.3 — computational lower bounds for mixtures of SLRs and robust SLR. We begin this
section by generalizing our definition of the distribution MSLRp(n, S, d, v, 1/2) from Section E.3
to simultaneously capture the mixtures of SLRs distributions we will reduce to and our adversarial
construction for robust SLR.

Recall from Section E.3 that LRy4(v) denotes the distribution of a single sample-label pair
(X,y) € RY x R given by y = (v, X) + 1 where X ~ AN(0,1;) and n ~ N(0,1). Our gen-
eralization of MSLRp will be parameterized by ¢ € (0,1). The canonical setup for mixtures of
SLRs from Section E.3 corresponds to setting ¢ = 1/2 and formally is restated in the following
definition for convenience.

Definition 50 (Mixtures of Sparse Linear Regressions with ¢ = 1/2) Let v € R be such that
v > 0. For each subset S C [d], let MSLRp(n, S, d,~y,1/2) denote the distribution over n-tuples
of independent data-label pairs (X1,v1), (Xo2,92), .-, (Xn,yn) where X; € R? and y; € R are
sampled as follows:

o first sample n independent Rademacher random variables s1, sa, . . ., Sy, ~iid. Rad; and
e then form data-label pairs (X;,y;) ~ LRq(ys;vg) for each 1 <i < n.

where vs € RY is the | S|-sparse unit vector vg = |S|~Y/? - 1.
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Algorithm k-BPDS-TO-MSLR

Inputs: Matrix M € {0,1}™*", dense subgraph dimensions k,, and k,, where k,, divides »n and
the following parameters

e partition F', edge probabilities 0 < ¢ < p < 1 and w(n) as in Figure 9

e target MSLR parameters (IV,d, v, €) and prime r and ¢t € N where N, d,r,t,¢ and e = 1/r are
as in Figure 9 with the additional requirement that N < n and where v € (0, 1) satisfies

that
2 < c-min o Fonkom
= rtt1log(k,mrt)log N' nlog(mn)

for a sufficiently small constant ¢ > 0.

. Clone: Compute the matrices Mgy € {0,1}*™ and Mygo-spca € {0,1}™*™ by apply-
ing BERNOULLI-CLONE with ¢ = 2 copies to the entries of the matrix M with input
Bernoulli probabilities p and ¢, and output probabilities pand Q =1 — /(1 —p)(1 —¢) +

L=y (VA — 1)

. Produce 1SGM Instance: Form (Zy,Zs,...,Zy) where Z; € R? as the output of

k-BPDS-TO-ISGM applied to the matrix Msqy With partition F, edge probabilities 0 < @ <

p < 1, slow-growing function w, target ISGM parameters (N, d, u,¢) and x4 > 0 given by
_ 4/}/ log"f\f

. Produce NEG-SPCA Instance: Form (W, Ws,...,W,) where W; € R? as the output of

BPDS-TO-NEG-SPCA applied to the matrix Mygs-spca With edge prob%bilities 0<@Q<p<l,

target dimension d and parameter 7 > 0 satisfying that 72 = %

. Scale and Label 1SGM Instance: Generate y1,%s, . . .,yn ~iid. N (0,1 +~?) and truncate each

y; to satisfy |y;| < 24/(1+~2)log N. Generate G1,Ga,...,Gn ~jia. N(0,I;) and form
(21,74, ...,2%) where Z! € R? as

Z = 1/ - Z; ,
¢ 1—&-7 lOgN +\/ 1—1-7 2logN G

% (Z! + W;) and output the N labelled

. Merge and Output: Foreach1 < : < N, let X; =
pairs (Xla yl)a (X2ay2)a ey (XNa yN)

Figure 10: Reduction from bipartite planted dense subgraph to mixtures of sparse linear regressions through
imbalanced Gaussian mixtures and negative sparse PCA

Our more general formulation when ¢ < 1/2 is described in the definition below. When
€ < 1/2, the distribution MSLRp(n, S, d,~, €) can always be produced by an adversary in robust
SLR. This observation will be discussed in more detail and used in Section L.3 to show com-
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putational lower bounds for robust SLR. The reason we have chosen to write these two different
distributions under a common notation is that the main reduction of this section, k-BPDS-TO-MSLR,
will simultaneously map to both mixtures of SLRs and robust SLR. Lower bounds for the mix-
ture problem will be obtained by setting » = 2 in the reduction to ISGM used as a subroutine
in k-BPDS-TO-MSLR, while lower bounds for robust sparse regression will be obtained by taking
r > 2. These implications of k-BPDS-TO-MSLR are discussed further in Section L.

Definition 51 (Mixtures of Sparse Linear Regressions with ¢ < 1/2) Let v > 0, ¢ € (0,1/2)
and let a denote a = ¢ '(1 — €). For each subset S C [d), let MSLRp(n, S, d,~,€) denote the
distribution over n-tuples of data-label pairs (X1,y1), (X2,y2), ..., (Xn, yn) sampled as follows:

e the pairs (b1, X1,y1), (b2, X2,92), ..., (bp, X, yn) arei.id. and by, by, ... b, ~ijq Bern(1—
€);

e ifb; =1, then (X;,y,) ~ LRyg(yvs) where vg is as in Definition 50; and

o ifb; = 0, then (X;,y;) is jointly Gaussian with mean zero and (d + 1) x (d + 1) covariance

matrix ) ,
[Exx EXy:| _ |Mat (aljri)ﬁ cvgul —ay - vg
Yyx Dy —ay - v:gr 1+ 2

The main reduction of this section from k-BPDS to MSLR is shown in Figure 10. This reduc-
tion inherits the number theoretic constraints of our reduction to ISGM mentioned in the previous
section. These will be discussed in more detail when k-BPDS-TO-MSLR is used to deduce compu-
tational lower bounds in Section L.3. The following theorem gives the total variation guarantees for
k-BPDS-TO-MSLR.

Theorem 52 (Reduction from k-BPDS to MSLR) Let n be a parameter, v = r(n) > 2 be a prime
number and w(n) = w(1) be a slow-growing function. Fix initial and target parameters as follows:

e Initial k-BPDS Parameters: vertex counts on each side m and n that are polynomial in one
another and satisfy the condition that n > m?, subgraph dimensions k, and k, where k;,
divides n, constant densities 0 < q < p < 1 and a partition F of [n).

e Target MSLR Parameters: (N, d,y, €) where € = 1/r and there is a parameter t = t(N) € N
with

knr(rt — 1) "
N<n, wN< — 1 m < d<poly(n), and n <k,r" < poly(n)
r —

and where v € (0,1/2) satisfies that

km knkm }

2 - i
1= e {rtﬂ log(kn,mrt)log N' nlog(mn)

for a sufficiently small constant ¢ > 0.
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Let A(G) denote k-BPDS-TO-MSLR applied with the parameters above to a bipartite graph G with
m left vertices and n right vertices. Then A runs in poly(m,n) time and it follows that

dTV (A (M[m]x[n](s X T7p7 Q)) ) MSLRD(N7 Sa d7 s 6)) =0 (wil + k52m727'72t + m3/2n71/2)
+0 (kn(4e‘3)"/2’“" + N‘l)
dry (.A (Bern(q)®™*™) , (N(0, Iq) ® A (0,1 + 72))®N> —-0 (k,‘;zm_zr_zt + m3/2n_1/2>

for all subsets S C [m] with |S| = ky, and subsets T C [n] with |T'| = ky, and |T' N F;| = 1 for
eachl <i < k,.

The proof of this theorem will be broken into several lemmas for clarity. The following four
lemmas analyze the approximate Markov transition properties of Steps 4 and 5 of k-BPDS-TO-
MSLR. The first three lemmas establishes a total variation upper bound in the single sample case.
The fourth lemma is a simple consequence of the first two and establishes the Markov transition
properties for Steps 4 and 5 together.

Lemma 53 (Planted Single Sample Labelling) Let N be a parameter, v, 1/ € (0,1), C > 0 be
a constant and v € R? be such that ||u|lz = 1 and 4C%*y* < (1)%?/log N. Define the random
variables (X, y) and (X', y') where X, X' € R% and y,y' € R as follows:

o Let X ~ N (0,14) and n ~ N(0,1) be independent, and define
y=7-{u,X)+n

e Lety be a sample from N'(0,1 + ~2) truncated to satisfy |y'| < C+\/(1 +~2)log N, and let
Z ~ N -u,1y), G~ N(,1;) and W ~ N <0, I;— 2 uuT) be independent. Now

1++2
let X' be
L[ ryv2 vy
X = — | LYVe o oY)
N AV i) GtV ®)

Then it follows that, as N — oo,
drv (£(X,y), L(X',y)) = O (N~C*12)

Proof First observe that 4C2?~2 < (u')?/log N implies that since || < C+/(1 + ~2) log N holds
almost surely and v € (0, 1), it follows that

2
vy _
2 (i) <2070 o <

and hence X' is well-defined almost surely.
Now note that since y is a linear function of X and 7, which are independent Gaussians, it
follows that the d + 1 entries of (X, y) are jointly Gaussian. Since |lull2 = 1, it follows that
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Var(y) = 1 + 2 and furthermore Cov(y, X) = E[Xy] = ~ - u. This implies that the covariance
matrix of (X, y) is given by
1y vu
[fy w1+ ’}/2]

It is well known that X |y is a Gaussian vector with mean and covariance matrix given by

2

vy g T
LX|Y)=N|—= u, Ij— U
Xl =N (Bl fa = )

Now consider £(X'|y'). Let Z = /- u + G’ where G’ ~ N (0, I;) and note that

/ / ’ 2
7Y vy r, 1 vy 1
X' = “u+ G+ —=- 1—2() G+ —=-W
1472 p(1+97) V2 p(1+97) V2
Note that since 3, G’, G and W are independent, it follows that all of the entries of the second,
third and fourth terms in the expression above are jointly Gaussian conditioned on y’. Therefore

the entries of X'|y’ are also jointly Gaussian. Furthermore the second, third and fourth terms in the
expression above for X’ have covariance matrices given by

vy 1 vy 1 7
1Y ), (- (L2 ) ) and Z-I,— cuu”
#1492 2 \wW(l+9?) 2 1+~2

respectively, conditioned on /. Since these three terms are independent conditioned on 3/, it follows
2
v
1++2

that X'|y’ has covariance matrix [y — -un! and therefore that

2

X'|y)) = Ty I, — Y o T
L(X'y") N<1+72 u, Iy T2 uu

and is hence identically distributed to £(X|y). Let ®(z) = \/% I e~**/2dz be the CDF of
N (0, 1). The conditioning property of total variation in Fact 15 therefore implies that
drv (L(X,y), L(X',y)) < drv (L(y), L(y))

=P [|y| > cy/(1 +'y2)logN}

-2 (10 (ovien)

-0 <N‘CQ/2>

where the first equality holds due to the conditioning on an event property of total variation in Fact
15 and the last upper bound follows from the standard estimate 1 — ®(z) < \/% cxl e /2 for

x > 1. This completes the proof of the lemma. |

The next lemma establishes single sample guarantees that will be needed to analyze the case in
which € < 1/2. The proof of this lemma is very similar to that of Lemma 53 and is deferred to
Appendix Q.4.
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Lemma 54 (Imbalanced Planted Single Sample Labelling) Let N, -, 1/, C and u be as in Lemma
53 and let i € (0,1). Define the random variables (X, y) and (X', ') as follows:

e Let (X,y) where X € R% and y € R be jointly Gaussian with mean zero and (d+1) x (d+1)
covariance matrix given by

2 1\2
|:ZXX EXy:| _ Id + (a1+i)2"f . UUT ay-u
EyX Zyy ay - uT 1+ ’yZ

o Lety',Z,G and W be independent where y', G and W are distributed as in Lemma 53 and
Z ~ Ny - u,ly). Let X' be defined by Equation (8) as in Lemma 53.

Then it follows that, as N — oo,
dry (£(X,y), L(X',y')) = O (N=C*/2)

We now state a similar lemma analyzing a single sample in Step 4 of k-BPDS-TO-MSLR in the
case where X and W are not planted. Its proof is also deferred to Appendix Q.4.

Lemma 55 (Unplanted Single Sample Labelling) Let N,~, i/, C and u be as in Lemma 53. Sup-

pose that y' is a sample from N'(0,1 + ~+2) truncated to satisfy |y'| < C+/(1 +~2)log N and
Z,G,W ~jiia. N(0, 1) are independent. Let X' be defined by Equation (8) as in Lemma 53. Then,
as N — oo,

dry (ﬁ(X”y’)’_/\/’(O,Id) ®_/\/'((),1 +,72>) -0 (N_CQ/Q)

Combining these three lemmas, we now can analyze Step 4 and Step 5 of A. Let Ay5(Z, W)
denote Steps 4 and 5 of A with inputs Z = (Z1,Zs,...,Zy) and W = (W, Wa, ..., W,) and
output ((X1,41), (X2,42),-..,(Xn,yn)). The next lemma applies the previous two lemmas to
establish the Markov transition properties of A4._s.

Lemma 56 (Scaling and Labelling ISGM Instances) Ler r, N,d,~, e, m,n, ky, ky, and S C [m)]
where |S| = ky, be as in Theorem 52 and let 1,7y, 6 > 0 be such that

[log N 9 8n'y2 72k km
H 7 km 7 knkm(l - '72) an 4dn + T2knkm

If Z ~1SGM(N, S, d, p, €) and W ~ N (O, I;— 9vsv§)®n, then
drv (Ass(Z, W), MSLRp(N, S,d,v,¢)) = O (N 1)

If Z ~ N(0,I)%N and W ~ N(0,1)24", then

dry (Aus(2.W), (N (0.1) 9 N (0.1)°) = 0 (V)
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Proof We treat the cases in which e = 1/2 and € < 1/2 as well as the two possible distributions
of (Z, W) in the lemma statement separately. We first consider the case where e = 1/2 and r = 2
and Z ~ 1SGMp(N, S, d, ji,€) and W ~ N (0, I;— 9’051);:)@”. The Z; are independent and can
be generated by first sampling s1, So, ..., Sy ~iiqd. Bern(1/2) and then setting

7 Nk -vs, Ig)  ifs;=1
’ N(=p k- vs, 1) ifs; =0

where vg = kﬁll/ 2. 1g. Let ¢/ = puv/kn,. It can be verified that the settings of u,~ and 6 above

ensure that )
2 1 2
V2 = . and 0= 2y
wW(14+92)  4(1+42) VlogN 1442

Let X ~ N(0,1;) and n ~ N(0,1) be independent. Applying Lemma 53 with ¢/ = vk,
C =2, u = vg and u = —vg, the equalities above and the definition of X; in Figure 10 now imply
that

dry (L(Xs,yilsi = 1), L (X, 7 (vs,X) + 1)) = O(N?)
dry (L(Xs,yilsi = 0), L (X, = - (vs, X) + 1)) = O(N?)

for each 1 < ¢ < N. The conditioning property of total variation from Fact 15 now implies that if
L1 =L(X,y (vs,X)+n)and Lo = L (X, —7 - (vs, X) + 1), then we have that

drv (L(Xi,yi), MIXy (L1, L2)) = O(N7?)

For the given distribution on (Z, W), observe that the pairs (X;, y;) for 1 < i < N are independent
by construction in 4. Thus the tensorization property of total variation from Fact 15 implies that

drv (£ ((le y1>7 (X27 yQ)v cee (XNv yN)) ) MSLR(N7 S7 d?V? 1/2)) = O(N_l)

where MSLRp (N, S, d,~,1/2) = MIXy/9(L1, L2)®Y, which establishes the desired bound when
€ = 1/2 and for the first distribution of (Z, W).

The other two cases will follow by nearly identical arguments. Consider the case where € is
arbitrary and if Z ~ N(0,1;)®Y and W ~ N(0,1)®4*", applying Lemma 55 with C' = 2 and
i = pu/kn, yields that

drv (L£(Xi,9:), N(0,13) ® N'(0,1)) = O(N™?)

Applying the tensorization property of total variation from Fact 15 as above then implies the second
bound in the lemma statement. Finally, consider the case in which € < 1/2, r > 2 and (Z, W) is
still distributed as Z ~ 1SGMp (N, S, d, p,€) and W ~ N (O, Iy — 9vsv§)®n. If the s; are defined
as above, then the Z; are distributed as

7 N (,U\/ K - Us,fd) ifs; =1
! N (—a,u\/k:m - Vg, Id) ifs; =0
" /

where a = e (1 — €). Now consider applying Lemma 54 with p/ = pvkn, p = ap’ =
pe (1 —¢€), C =2and u = —vg. This yields that

dry (L(Xs,yilsi = 0), L(X,y)) = O(N?)
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where X and y are as in the statement of Lemma 54. Combining this with the conditioning property
of total variation from Fact 15, the application of Lemma 53 in the first case above, the tensorization
property of total variation from Fact 15 as in the previous argument and Definition 51 yields that

dTV (E ((Xla yl): (X27 y2)7 R (XN7 yN)) ) MSLR(N7 Sa d?’)/a E)) =0 (N_l)

which completes the proof of the lemma. |

With this lemma, the proof of Theorem 52 reduces to an application of Lemma 16 through a
similar argument to the proof of Theorem 46.
Proof [Proof of Theorem 52] Define the steps of .A to map inputs to outputs as follows

A A
M = (MISGMa MNEG-SPCA) = (Zv MNEG-SPCA) (Z W) ((X17 yl) (X27 3/2)7 S (XNv yN))

where Z = (Z1,Za,...,Zn) and W = (Wq, Wa, ..., W,) in Figure 10. First note that the condi-
tion on 7y in the theorem statement along with the settings of ¢ and 7 in Figure 10 imply that

J

. 1-Q
< 2\/6 Tog(mm) T 2log(p — Q)1 where ¢ = min {log (Q) log < = > }
) 1

2\/610g (kpmrt) +2log(p — Q)~ \/rt (r—1D1+(r-1)"1
for a sufficiently small constant ¢ > 0 since 0 < ¢ < p < 1 are constants. Let 6 and vg be as

in Lemma 56. Consider Lemma 16 applied to the steps .A; above and the following sequence of
distributions

Po = M[m]x[n](s x T, Bern(p), Bern(q))
P1 = Mip)xn) (S x T, Bern(p), Bern(Q)) @ My, x[n) (S X T, Bern(p), Bern(Q))
Py =1SGMp(N, S,d, p, €) @ M xn) (S x T, Bern(p), Bern(Q))
®n
Ps; = ISGMD(N, S, d, u, E) QN (0, I; — Gvsvg)
Pss = MSLRp (N, S,d,~,¢€)

Combining the inequalities above for p and 7 with Lemmas 22 and 56 and Theorems 46 and 43
implies that we can take

e1=0, e©=0 (w_1 + k;Qm_Qr_%) , e=0 (m3/2n_1/2 + kn(4e_3)n/2kn) and eq5 = O(N™Y)

Applying Lemma 16 now yields the first total variation upper bound in the theorem. Now consider
Lemma 16 applied to

Po = Bern(q)®"™*"

P; = Bern(Q)®™*"™ @ Bern(Q)®™*™
Pa = N(0, 1) @ Bern(Q)*""
Ps = N(0,1)%N @ N(0,15)"
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Pas = (N(0,1q) @ N(0,1 + ’YQ))®N

By Lemmas 22 and 56 and Theorems 46 and 43, we can take

n

e1=0, e&=0 (k:_Qm_Qr_Qt) , e=0 <m3/2n_1/2) and €45 =O(N™Y

Applying Lemma 16 now yields the second total variation upper bound in the theorem and com-
pletes the proof of the theorem. |

As in the previous section, the random matrix 27, . can be used in place of K. ; in our reduction
k-BPDS-TO-MSLR. Specifically, replacing k-BPDS-TO-1SGM in Step 2 with k-BPDS-TO-ISGMp and
again replacing * with the more flexible parameter L yields an alternative reduction k-BPDS-TO-MSLR g.
The guarantees below for this modified reduction follow from the same argument as in the proof of
Theorem 52, using Corollary 49 in place of Theorem 46.

Corollary 57 (Reduction from k-BPDS to MSLR with Ry, ) Letn be a parameter and let w(n) =
w(1) be a slow-growing function. Fix initial and target parameters as follows:

e Initial £-BPDS Parameters: m, n, kn,, kn, p, ¢ and F' as in Theorem 52.

e Target MSLR Parameters: (N, d,~y, €) and a parameter L = L(N) € N such that N < n and
(N, d, €, L) satisfy the conditions in Corollary 49. Suppose that v € (0, 1/2) satisfies that

ek knkm
Llog(k,mL)log N’ nlog(mn)

nySC'min{

for a sufficiently small constant ¢ > 0.

If A denotes k-BPDS-TO-MSLRR applied with the parameters above, then A runs in poly(m,n)
time and

dry (A (M[m]x[n](S’ x T, p, q)) , MSLRp(NV, S, d,~, 6)) =o0(1)
dry (A (Bem(@)*™"), (N(0, 1) @ N (0,1+172)) ") = o(1)

for all ky,-subsets S C [m] and ky,-subsets T' C [n| with |T N F;| = 1 for each 1 < i < k,.

Appendix J. Completing Tensors from Hypergraphs

In this section we introduce a key subroutine that will be used in our reduction to tensor PCA in Sec-
tion N. The starting point for our reduction k-HPDS-TO-TPCA is the hypergraph problem k-HPDS.
The adjacency tensor of this instance is missing all entries with at least one pair of equal indices.
The first procedure ADVICE-COMPLETE-TENSOR in this section gives a method of completing
these missing entries and producing an instance of the planted sub-tensor problem, given access to
a set of s — 1 vertices in the clique, where s is the order of the target tensor. In order to translate
this into a reduction, we iterate over all (s — 1)-sets of vertices and carry out this reduction for each
one, as will be described in more detail later in this section. For the motivation and high-level ideas
behind the reductions in this section, we refer to the discussion in Section C.6.

In order to describe our reduction ADVICE-COMPLETE-TENSOR, we will need the following
definition which will be crucial in indexing the missing entries of the tensor.
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Algorithm ADVICE-COMPLETE-TENSOR

Inputs: HPDS instance H € G with edge probabilities 0 < ¢ < p < 1, an (s — 1)-set of advice
vertices V = {vy,v9,...,0s_1} of H

1. Clone Hyperedges: Compute the (s!)? hypergraphs H°1:°2 € G$ for each pair 01,05 € S
by applying BERNOULLI-CLONE with ¢ = (s!)? to the () hyperedge indicators of H with
input Bernoulli probabilities p and ¢ and output probabilities p and

Q=1-(1-p)' V(1 -gV +15 (ql/t - 1)

2. Form Tensor Entries: For each I = (iy,ia,...,is) € ([N]\V)?, set the (i1,42,...,is)th entry
of the tensor 7" with dimensions (N — s + 1)®* to be the following hyperedge indicator

ﬂl,i27...,is =1 {{’Ul, V2, . .ny 1}3_|p(1)‘} ] {il, i9,... ,is} ek (HTP(I)’TV(I)) }
where P(I), 7p(I) and 7 (I) are as in Definition 58.

3. Outpur: Output the order s tensor 7" with axes indexed by the set [N]\V.

Algorithm ITERATE-AND-REDUCE

Inputs: k-HPDS instance H € G2 with edge probabilities 0 < ¢ < p < 1, partition E of [n] into k
equally-sized parts, a one-sided blackbox B for the corresponding planted tensor problem

1. For every (s — 1)-set of vertices {v1,va,...,vs—1} all from different parts of E, form the
tensor 7' by applying ADVICE-COMPLETE-TENSOR to H and {vy,vs,...,vs_1}, remove the
indices of T that are in the same part of F as at least one of {vq, va,...,vs_1} and run the

blackbox 5 on the resulting tensor 7.

2. Output H; if any application if B in Step 1 output H;.

Figure 11: The first reduction is a subroutine to complete the entries of a planted dense sub-hypergraph prob-
lem into a planted tensor problem given an advice set of vertices. The second reduction uses this subroutine
to reduce solving a planted dense sub-hypergraph problem to producing a one-sided blackbox solving the
planted tensor problem.

Definition 58 (Tuple Statistics) Given a tuple I = (i1, 12, ... ,is) where eachi; € U for some set
U, we define the partition P(I) and permutations 1p(I) and mv(I) of [s] as follows:

1. Let P(I) be the unique partition of [s| into nonempty parts Py, Pa, ..., P, where i, = i if
and only if k,1 € Pj for some 1 < j <'t, and let |P(I)| = t.

2. Given the partition P(I), let 1p(I) be the permutation of [s| formed by ordering the parts
Pj in increasing order of their largest element, and then listing the elements of the parts P;
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according to this order, where the elements of each individual part are written in decreasing
order.

3. Let P|, Py, ..., P be the ordering of the parts of P(I) as defined above and let vy, va, . .., vt
be such that v; = i, forall k € PJ{ or in other words vj is the common value of iy, of all indices
k in the part P](. The values vy, va, . . ., v; are by definition distinct and their ordering induces
a permutation o on [t]. Let Tv(I) be the permutation on [s] formed by setting (tv(I))y = o
and extending o to [s| by taking (7v(I)) (j) = j forallt < j < s.

Note that |P(I)| is the number of distinct values in I and thus |P(I)| = |{i1,i2,...,is}| for
each I. For example, if [ = (4,4,1,2,2,5,3,5,2) and s = 9, then P(I), 7p(I) and 7y () are

P(I)={{1,2},{3},{4,5,9},{6,8},{7}}, m»()=1(2,1,3,7,8,6,9,5,4) and
wv(I)=(4,1,3,5,2,6,7,8,9)

We now establish the main Markov transition properties of ADVICE-COMPLETE-TENSOR.
Given a set X, let £x  be the set ()S() of all subsets of X of size s.

Lemma 59 (Completing Tensors with Advice Vertices) Ler0 < g < p < 1 be such that min{q, 1—
q} = Qn(1) and let s be a constant. Let 0 < Q) < p be given by

Q=1-(1-p) "1 =g + 1oy (¢ — 1)

wheret = (s!)2. Let V be an arbitrary (s—1)-subset of [N and let A denote ADVICE-COMPLETE-TENSOR
with input H, output T, advice vertices V' and parameters p and q. Then A runs in poly(N) time
and satisfies

A <M€m,5 (Esuvs, Bem(p)’Bem(‘J))) ~ M(vpvy (5%, Bern(p), Bern(Q))
A (MS[N],S (Bern(Q))> ~ M([N]\V)S (Bern(Q))
for all subsets S C [N] disjoint from V.

Proof First note that Step 2 of A is well defined since the fact that |P(I)| = [{i1,i2,...,is}]
implies that {v1,v2,...,vs_|p)} U {i1,d2,...,is} is always a set of size s. We first consider
the case in which H ~ Mg,  (Esuv,s, Bern(p), Bern(g)). By Lemma 22, it follows that the
hyperedge indicators of H“1:92 are all independent and distributed as

Bern(p) ifeCSUV
Bern((Q) otherwise

1{c € E(H")} ~ {

foreach 01,09 € Ss and subset e C [N] with |e| = s. We now observe that T" agrees in its entrywise
marginal distributions with M y1\v)s (S°, Bern(p), Bern(Q)). In particular, we have that:

e if (i1,i2,...,1s)issuchthati; € Sforalll < j < sthen we have that {vy,va, ..., vs_|p(p)}U
{i1,12,...,1s} € S UV and hence

Ty ig,.ie = 1 {{Ul,w, s Usp(n)} Ui, g2, is) € B (HTP(I)’TV(I))} ~ Bern(p)
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e if (i1,i2,...,1s) is such that there is some j such that i;j € S, then {v1,va, ..., vs_|p(n)} U
{i1,42,...,is} £ SUV and T}, 4, i, ~ Bern(Q).

It suffices to verify that the entries of 1" are independent. Since all of the hyperedge indicators of
the H7172 are independent, it suffices to verify that the entries of T" are equal to distinct hyperedge
indicators.

To show this, we will show that {i;,da,...,is}, 7p() and 7v([) determine the tuple I =
(41,92, ...,1s), from which the desired result follows. Consider the longest increasing subsequence
of 7p(1) starting with (7p(7)) (1). The elements of this subsequence partition 7p(1) into contiguous
subsequences corresponding to the parts of P([). Thus 7p(/) determines P(I). Now the first | P(I)|
elements of 7y (/) along with {41, 49, ..., is} determine the values v; in Definition 58 corresponding
to I on each part of P(I). This uniquely determines the tuple I. Therefore the entries 75, ;, . i, all
correspond to distinct hyperedge indicators and are therefore independent. Applying this argument
with S = () yields the second identity in the statement of the lemma. This completes the proof of
the lemma. |

We now analyze the additional subroutine ITERATE-AND-REDUCE. This will show it suffices
to design a reduction with low total variation error in order to show computational lower bounds
for Tensor PCA. Let k-PST (N, k, p, q) denote the following planted subtensor hypothesis testing
problem with hypotheses

Hy: T ~ Mnps (Bern(q)) and  Hy : T ~ Myps (5%, Bern(p), Bern(q))

where S is chosen uniformly at random from all k-subsets of [/V] intersecting each part of E in one
element. The next lemma captures our key guarantee of ITERATE-AND-REDUCE.

Lemma 60 (Hardness of One-Sided Blackboxes by Reduction) Fix a pair 0 < q < p < 1 with
min{q, 1 — q} = Q(1), a constant s and let Q be as in Figure 11. Suppose that there is a reduction
mapping both hypotheses of k-PST%(N — (s — 1)N/k,k — s + 1,p, Q) with k = o(v/N) to the
corresponding hypotheses Hy and Hy of a testing problem P within total variation O(N~%). Then
the k-HPC® or k-HPDS?® conjecture for constant 0 < q < p < 1 implies that there cannot be a
poly(n) time algorithm A solving P with a low false positive probability of Py, [A(X) = Hi] =
O(N %), where X denotes the observed variable in P.

Proof Assume for contradiction that there is a such a poly(n) time algorithm A4 for P with
Py, [A(X) = Hi] = O(N~*) and Type I+II error

Piy[A(X) = Hi] + Py, [A(X) = Ho] < 1— e

for some ¢ = 2(1). Furthermore, let R denote the reduction described in the lemma. If H) and Hj
denote the hypotheses of k-PST%,(N — (s —1)N/k,k — s+ 1,p, Q) and T' denotes an instance of
this problem, then R satisfies that

drv (R (L (1)), £11y(T)) + drv (R (L(T)) £, (T)) = O(N ™)

Now consider applying ITERATE-AND-REDUCE to: (1) a hard instance H of k-HPDS(N, k, p, q)
with k = o(v/N); and (2) the blackbox B = A o R. Let IR(H) € {H}{!, H}'} denote the output of
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ITERATE-AND-REDUCE on input H, and let H{ and H{' be the hypotheses of k-HPDS(N, k, p, q).

. -1 S
Furthermore, let 71, Ty, . . ., T denote the tensors formed in the K = (&)* (_*)) iterations of

Step 1 of ITERATE-AND-REDUCE. Note that each T; has all of its s dimensions equal to N —
(s — 1)N/k since exactly s — 1 parts of E of size N/k are removed from [/N] in each iteration of
Step 1 of ITERATE-AND-REDUCE. First consider the case in which H{f holds. Each tensor in the
sequence 11, Ty, . .., Tk is marginally distributed as My _(s_1)n/ks (Bern(Q)) by Lemma 59. By
definition IR(H) = H7 if and only if some application of B(7;) outputs H;. Now note that by a
union bound, the definition of drv and the data-processing inequality, we have that

K
Pry [R(H) = H!] < 3 Ppyl Ao R(T) = Hy]
i=1
K
<y [PHO [A(X) = Hy] + drv (R (LHé (T)) L (T))}
=1
—O(K-N"*)=0(NY)

since K = O(N*~1). Now suppose that H{ holds and let i* be the first iteration of ITERATE-AND-
REDUCE in which each of the vertices {v1,v2,...,vs_1} are in the planted dense sub-hypergraph
of H. Lemma 59 shows that T} is distributed as M{y_(s_1)n/x)s (S°, Bern(p), Bern(Q)) where S
is chosen uniformly at random over all (k — s + 1)-subsets of [N — (s — 1) N/k| with one element
per part of the input partition E associated with H. We now have that

]P)H{’ [IR(H) = H(/)I] <1 _]P)H{’ [IR(H) = H{I] <1 —PH{/[AOR(E*) = Hl]

<1 B [AX) = H] + drv (R (Lg(T)) L, (T))
= Py, [A(X) = Ho] + O(N ™)

Therefore the Type 1411 error of ITERATE-AND-REDUCE is
Pyy [IR(H) = HY] + Py [IR(H) = Hy] = P, [A(X) = Ho] + O(N~') <1—e+O(N1)

and ITERATE-AND-REDUCE solves k-HPDS, contradicting the k-HPDS conjecture. |
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Part 111
Computational Lower Bounds from PC,

Appendix K. Secret Leakage and Hardness Assumptions

In this section, we further discuss the conditions in the PC, conjecture and provide evidence for it
and for the specific hardness assumptions we use in our reductions. In Section K.1, we show that
k-HPC?® is our strongest hardness assumption, explicitly give the p corresponding to each of these
hardness assumptions and show that the barriers in Conjecture 3 are supported by the PC,, conjecture
for these p. In Section K.2, we give more general evidence for the PC,, conjecture through the failure
of low-degree polynomial tests. We also discuss technical conditions in variants of the low-degree
conjecture and how these relate to the PC, conjecture. Finally, in Section K.3, we give evidence
supporting several of the barriers in Conjecture 3 from statistical query lower bounds.

We remark that, as mentioned at the end of Section 2, all of our results and conjectures for
PC, appear to also hold for PDS, at constant edge densities 0 < ¢ < p < 1. Evidence for these
extensions to PDS, from the failure of low-degree polynomials and SQ algorithms can be obtained
through computations analogous to those in Sections K.2 and K.3.

K.1. Hardness Assumptions and the PC, Conjecture

In this section, we continue the discussion of the PC, conjecture from Section 2. We first show that
k-HPC?® reduces to the other conjectured barriers in Conjecture 3. We then formalize the discussion
in Section 2 and explicitly construct secret leakage distributions p such that the graph problems
in Conjecture 3 can be obtained from instances of PC, with these p. We then verify that the PC,
conjecture implies Conjecture 3 up to arbitrarily small polynomial factors. More precisely, we verify
that these p, when constrained to be in the conjecturally hard parameter regimes in Conjecture 3,
satisfy the tail bound conditions on p,(s) in the PC, conjecture.

The k-HPC® Conjecture is the Strongest Hardness Assumption. First note that when s = 2,
our conjectured hardness for k-HPC? is exactly our conjectured hardness for k-PC in Conjecture 3.
Thus it suffices to show that Conjecture 3 for k-HPC® implies the conjecture for k-BPC and BPC.
This is the content of the following lemma.

Lemma 61 Ler « be a fixed positive rational number and w = w(n) be an arbitrarily slow-
growing function with w(n) — oo. Then there is a positive integer s and a poly(n) time reduction
from k-HPC®(n, k,1/2) with k = o(\/n) to either of the problems k-BPC(M, N, kyr, kn,1/2) or
BPC(M, N, ks, kv, 1/2) for some parameters satisfying M = O(N®) and Cw™ VN < ky =
o(v/N) and Cw="/M < ky; = o(~/M) for some positive constant C > 0.

Proof We first describe the desired reduction to k-BPC. Let o« = a/b for two fixed integers a and
b, and let H be an input instance of k-HPC%(n, k, 1/2) where E is a fixed known partition of [n].
Suppose that H is a nearly tight instance with w1/ ™2x(@0), /n < k = o(,/n). Now consider the

following reduction:

1. Let Ry, Ra, ..., Ry yp be a partition of [k] into a + b sets of sizes differing by at most 1, and
let E(R;) = UieRj E; foreach j € [a + b)].
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2. Form the bipartite graph G with left vertex set indexed by Vi = E(R1) X E(R2)x---x E(R,)
and right vertex set Vo = F(Rg41) X E(Rg42) X - -+ X E(Rg4p) such that (uy, ug, ..., u,) €
Viand (v1,vg,...,vp) € Vo are adjacent if and only if {u1, ..., uq,v1,...,vp} isahyperedge
of H.

3. Output G with left parts F;, x E;, X --- x Ej;_ forall (i1,42,...,7,) € Ri X Ra X -+ X R,
and right parts E;, x E;, x --- x E;, forall (i1,12,...,i5) € Rat1 X Rata X -+ X Rayp,
after randomly permuting the vertex labels of G within each of these parts.

Note that since a 4+ b = ©(1), we have that | E(R;)| = ©(n) for each i and thus N = |V5| = ©(n?)
and M = |Vi| = ©(n%) = ©(N®). Under Hy, each possible hyperedge of H is included inde-
pendently with probability 1/2. Since the edge indicators of G corresponds to a distinct hyperedge
indicator of H in Step 2 above, it follows that each edge of G is also included with probability 1/2
and thus G ~ Gp(M, N,1/2).

In the case of H;, suppose that H is distributed according to the hypergraph planted clique
distribution with clique vertices S C [n| where S ~ U,(F). Examining the definition of the
edge indicators in Step 2 above yields that G is a sample from Hy of k-BPC(M, N, kyr, kn,1/2)
conditioned on having left biclique set [[{_, (SN E(R;)) and right biclique set [¢~" f 1 (SNE(Ry)).
Observe that these sets have exactly one vertex in G in common with each of the parts described in
Step 3 above. Now note that since S has one vertex per part of E, we have that |SNE(R;)| = |R;| =
O(k) since a + b = O(1). Thus kps = |[[{_,(S N E(R;))| = ©(k%) and ky = O (k). The bound
on k now implies that the two desired bounds on kx and kj; hold for a sufficiently small constant
C' > 0. Thus the permutations in Step 3 produce a sample exactly from k-BPC(M, N, ks, kn, 1/2)
in the desired parameter regime. If instead of only permuting vertex labels within each part, we
randomly permute all left vertex labels and all right vertex labels in Step 3, the resulting reduction
produces BPC instead of k-BPC. The correctness of this reduction follows from the same argument
as for k-BPC. |

We remark that since m and n are polynomial in each other in the setup in Conjecture 3 for
k-BPC and BPC, the lemma above fills out a dense subset of this entire parameter regime — where
m = O(n®) for some rational «. In the case where « is irrational, the reduction in Lemma 61, when
composed with our other reductions beginning with £-BPC and BPC, shows tight computational
lower bounds up to arbitrarily small polynomial factors n® by approximating « arbitrarily closely
with a rational number.

Hardness Conjectures as Instances of PC,. We now will verify that each of the graph problems
in Conjecture 3 can be obtained from PC,. To do this, we explicitly construct several p and give
simple reductions from the corresponding instances of PC,, to these graph problems. We begin with
k-PC, BPC and k-BPC as their discussion will be brief.

Secrets for k-PC, BPC and k-BPC. Below are the p corresponding to these three graph problems.
Both BPC and k-BPC can be obtained by restricting to bipartite subgraphs of the PC, instances with
these p.

e k-partite PC: Suppose that k divides n and F is a partition of [n] into k parts of size n/k.
By definition, k-PCg(n, k,1/2) is PCy(n, k,1/2) where p = pjpc(E,n, k) is the uniform
distribution U,,(E)) over all k-sets of [n] intersecting each part of E in one element.
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e bipartite PC: Let pgpc(m, 1, ki, ky,) be the uniform distribution over all (k,, + ky,)-sets of
[n+m] with k,, elements in {1,2,...,n} and k,, elements in {n+1,n+2,...,n+m}. An
instance of BPC(m, n, kp,, kn, 1/2) can then be obtained by outputting the bipartite subgraph
of PC,(m + n, ky, + kn,1/2) with this p, consisting of the edges between left vertex set
{n+1,n+2,...,n+ m} and right vertex set {1,2,...,n}.

e k-part bipartite PC: Suppose that k,, divides n, k,,, divides m, and E and F’ are partitions of
[n] and [m] into k,, and k,, parts of equal size, respectively. Let pg_gpc(E, F, m,n, kp, kn)
be uniform over all (k,, + k,)-subsets of [n + m| with exactly one vertex in each part of
both £ and n + F'. Here, n + F denotes the partition of {n + 1,n + 2,...,n + m} induced
by shifting indices in F' by n. As with BPC, k-BPC(m,n, ky,, kn, 1/2) can be realized as
the bipartite subgraph of PC,(m + n,kp, + kp,1/2), with this p, between the vertex sets
{n+1,n+2,...;,n+m}and {1,2,... ,n}.

Secret for k-HPC®. We first will give the secret p corresponding to k-HPC® for even s, which can be
viewed as roughly the pushforward of U, (F) after unfolding the adjacency tensor of k-HPC®. The
secret for odd s will then be obtained through a slight modification of the even case.

Suppose that s = 2t. Given a set S C [n], let P/*(S) denote the subset of [n!] given by

t—1
Ptn(S): 1+Z(aj—1)nj:ao,al,...,at_lGS
=0

In other words, P}*(S) is the set of all numbers z in [n!] such that the base-n representation of z — 1
only has digits in S — 1, where S — 1 is the set of all s — 1 where s € S. Note that if |S| = &
then | P*(S)| = k'. Given a partition E of [n] into k parts of size n/k, let p_ypcs (E,n, k) be the
distribution over k’-subsets of [n!] sampled by choosing S at random from U, (E) and outputting
P/*(S). Throughout the rest of this section, we will let I(ag, a1, ...,a;—1) denote the sum 1 +
Z;;B(aj —1)n’. We now will show that k-HPC%;(n, k, 1/2) can be obtained from PC,(nt, k%, 1/2)
where p = pi_upcs (E, n, k). Intuitively, this instance of PC, has a subset of edges corresponding to
the unfolded adjacency tensor of -HPC7,. More formally, consider the following steps.

1. Let G be an input instance of PC p(nt, kt 1/2) and let H be the output hypergraph with vertex

set [n].

2. Construct H as follows: for each possible hyperedge e = {a1,az,...,ax}, with1 < a3 <
ag < --- < agr < n, include e in H if and only if there is an edge between vertices
I(ay,a9,...,a;) and I(ay41,ai42, ..., az) in G.

Under Hy, it follows that G ~ G(n?,1/2). Note that each hyperedge e in Step 2 identifies a unique
pair of distinct vertices I (a1, ag, ..., a;) and I(a;41,ai42,...,az) in G, and thus the hyperedges
of H are independently included with probability 1/2. Under Hj, it follows that the instance of
PC,(n', k', 1/2) is sampled from the planted clique distribution with clique vertices P;*(S) where
S ~ U, (F). By the definition of P}*(S), it follows that I (a1, ag, . .., a;) is in this clique if and only
if a1, ag,...,a; € S. Examining the edge indicators of I then yields that H is a sample from the
hypergraph planted clique distribution with clique vertex set .S. Since S ~ U,,(F), under both H
and H1, it follows that H is a sample from k-HPC?.
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Now suppose that s is odd with s = 2¢ 4+ 1. The idea in this case is to pair up adjacent
digits in base-n expansions and use these pairs to label the vertices of k-HPC®. More precisely
suppose that n = N2 and k = K? for some positive integers K and N. Let E be a fixed partition
of [n] into k = K? equally sized parts and let p.ypcs (F, 1, k) be pj_ypc2s (F, N, K) as defined
above for the even number 2s, where F is a fixed partition of [N] into K equally sized parts.
We now will show that k-HPC%,(n, k,1/2) can be obtained from PC,(N*®, K*,1/2) where p =
Prupc2s (F, N, K). Let I’ be the analogue of I for base-N expansions i.e. let I(bg,by,...,b—1)
denote the sum 1 + Z;;B(bj — 1)N7. Consider the following steps.

1. Let G be an instance of PC,(N*, K*,1/2) and let H be the output hypergraph with vertex set
[n].
2. Let o : [n] — [n] be a bijection such that, for each i € [k], we have that
o(E;) = {I'(bo,b1) : by € Fyy and by € Fy, }
where ¢y, ¢; are the unique elements of [K] withi — 1 = (¢p — 1) + (c; — 1) K.

3. Construct H as follows. For each possible hyperedge e = {a1,a2,...,as}, with 1 < a; <
ag < -+ < as < n, let by;_1, by; be the unique elements of [N] with I'(bg;—1,be;) = o(a;)
for each 7. Now include e in H if and only if there is an edge between the two vertices
I(bl, bg, ey bs) and [(b5+1, b5+2, ce ,bgs) in G.

4. Permute the vertex labels of H within each part F; uniformly at random.

Note that o always trivially exists because the K? sets E, Es,. .., Ex> and the K? sets Fi’J =
{I'(bo,b1) : bp € Fyandby € Fj} for1 < i,j < K are both partitions of [n] into parts of
size N2/K?. As in the case where s is even, under H; we have that G ~ G(N?%,1/2) and the
hyperedges of H are independently included with probability 1/2, since Step 3 identifies distinct
pairs of vertices for each hyperedge e. Under Hy, let S ~ Uy (F) be such that the clique vertices
in G are PN (S). By the same reasoning as in the even case, after Step 3, the hypergraph H
is distributed as a sample from the hypergraph planted clique distribution with clique vertex set
o~ 1(I'(S,S)) where I'(S,S) = {I'(s0,51) : 0,51 € S}. The definition of & now ensures that
this clique has one vertex per part of E. Step 4 ensures that the resulting hypergraph is exactly a
sample from H; of k-HPC®. We remark that the conditions n = N2 and & = K? do not affect our
lower bounds when composing the reduction above with our other reductions. This is due to the
subsequence criterion for computational lower bounds in Condition E.1.

Verifying the Conditions of the PC, Conjecture. We now verify that the PC, conjecture corre-
sponds to the hard regimes in Conjecture 3 up to arbitrarily small polynomial factors. To do this, it
suffices to verify the tail bound on p,(s) in the PC, conjecture for each p described above, which is
done in the theorem below. In the next section, we will show that a slightly stronger variant of the
PC, conjecture implies Conjecture 3 exactly, without the small polynomial factors.

Theorem 62 (PC, Conjecture and Conjecture 3) Suppose that m and n are polynomial in one
another and let € > 0 be an arbitrarily small constant. Let p be any one of the following distribu-
tions:

1. prvc(E,n, k) where k = O(n'/?=¢);
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2. pepe(m,n, kp, ky) where k, = O(n'/?>=¢) and k,, = O(m'/?~¢);
3. pr-sec(E, Fym,n, kpy, kn) where k, = O(n'/?=¢) and k,, = O(m/?=¢); and
4. peypct(E,n,k,1/2) fort > 3 where k = O(n'/27¢).

Then there is a constant & > 0 such that: for any parameter d = O, ((logn)'*%), there is some
Po = 0n(1) such that p,(s) satisfies the tail bounds

(s) < po - 275 if1<s?<d
Pp\8) = Po 724 §f 2>y

Proof We first prove the desired tail bounds hold for (1). Let C > 0 be a constant such that k <
Cnl/?=¢. Note that the probability that S and S’ independently sampled from p = pj_pc(E, 1, k)
intersect in their elements in E; is 1/|E;| = k/n for each 1 < ¢ < k. Furthermore, these events
are independent. Thus it follows that if p = py_pc(E,n, k), then p, is the PMF of Bin(k, k/n). In
particular, we have that

= () (5 0-2) 2w (5= (5 2o

Let po = po(n) be a function tending to zero arbitrarily slowly. The bound above implies that
pp(s) <po- 25" as long as s < C' log n for some sufficiently small constant C'; > 0. Furthermore
a direct computation verifies that p,(s) < po - s~24~* as long as

$> Codlogd
— logn

for some sufficiently large constant Cy > 0. Thus if d = O,,((logn)'*?) for some & € (0,1), then
Cﬁgglcfd < v/d and C; logn > v/d for sufficiently large n. This implies the desired tail bound for
(D).

The other three cases are similar. In the case of (3), if S and S’ are independently sampled
from p = py_gpc(F, F,m,n, ky,, ky,), then the probability that S and S’ intersect in their elements
in E; is k,/n for each 1 < i < kj,, and the probability that they intersect in their elements in
n + F; is ky,/m for each 1 < i < ky,,. Thus D 1s distributed as independent sum of samples from

Bin(ky,, ki /m) and Bin(k,,, ky, /n). It follows that
no=2 ()G 05 () G) ()
s o\ ¢ 2\ s 2\ S 2\ S
() G =omdG)G)) <9>
—0 n m n m

Repeating the bounding argument as in (1) shows that the desired tail bound holds for (3) if d =
On((logn)'*9) for some § € (0,1). Since m and n are polynomial in one another implies that
logm = O(logn), the (k2,/m)* term and the additional factor of s do not affect this bounding
argument other than changing the constants C'y and C5. In the case of (2), similar reasoning as in
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(3) yields that the distribution p, where p = pepc(m, n, kn, ky) is the independent sum of samples
from Hyp (n, ky, ky,) and Hyp (m, ky,, ky, ). Now note that

(kn) (n—kn) k! (n—é) -1 ki 2 14
P[Hyp (n,kn,kn) _ E] _ Y4 kn—2¢ < n\k, -4 _ ké n ' < <n)
(i) (5.) ! 1}3 moroAn
This implies the same upper bound on p,(s) as in Equation (9) also holds for p in the case of (2).
The argument above for (3) now establishes the desired tail bounds for (2).

We first handle the case in (4) where ¢ is even with ¢ = 2r. We have that p = pj_ypct (E, 0, k,1/2)
can be sampled as P;*(S) C [n"] where S ~ Uy (E). Thus p,(s) is the PMF of |P*(S) N P*(S")]
where S, S" ~jid. U, (E). Furthermore the definition of P implies that |P(S) N P (S")| =
|S N S’|" and, from case (1), we have that |S N S’| ~ Bin(k, k/n). It now follows that

1/r k—gl/T

po(s) = () (B) (11— &) if s is an rth power
P 0 otherwise

The same bounds as in case (1) therefore imply that p,(s) < (k?/ n)sl/r for all s > 0. A similar
analysis as in (1) now shows that p,(s) < pg - 27%" holds if s < C (logn)"™/™=1) for some
sufficiently small constant C; > 0, and that p,(s) < po - s~2¢=% holds if

for some sufficiently large constant Cy > 0. As long as d = O,,((logn)*?) for some 0 < § <
T
1/(2r — 1), we have that C (dlogd> < V/dand C;(logn)™/ =1 > /d for sufficiently large n.

logn
Since t and r are constants here, § can be taken to be constant as well. In the case where ¢ is odd,
it follows that pj,_ypct (E, 1, k,1/2) is the same as pj,_ypc2t (F, v/, vk, 1/2) for some partition F
as long as n and k are squares. The same argument establishes the desired tail bound for this prior,
completing the case of (4) and proof of the theorem. |

K.2. Low-Degree Polynomials and the pC, Conjecture

In this section, we show that the low-degree conjecture — that low-degree polynomials are optimal
for a class of average-case hypothesis testing problems — implies the PC, conjecture. In particular,
we will obtain a simple expression capturing the power of the optimal low-degree polynomial for
PC, in Proposition 67. We then will apply this proposition to prove Theorem 68, showing that
the power of this optimal low-degree polynomial tends to zero under the tail bounds on p, in the
PC, conjecture. We also will discuss a stronger version of the PC, conjecture that exactly implies
Conjecture 3. First, we informally introduce the low-degree conjecture and the technical conditions
arising in its various formalizations in the literature.

Polynomial Tests and the Low-Degree Conjecture. In this section, will draw heavily from sim-
ilar discussions in Hopkins and Steurer (2017) and Hopkins’s thesis Hopkins (2018). Throughout,
we will consider discrete hypothesis testing problems with observations taken without loss of gener-
ality to lie in the discrete hypercube {—1, 1} . For example, an n-vertex instance of planted clique
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can be represented in the discrete hypercube by the above-diagonal entries of its signed adjacency
matrix when N = (TQL) Given a hypothesis Hy, the term D-simple statistic refers to polynomials
f: {=1,1}¥ — R of degree at most D in the coordinates of {—1,1}* that are calibrated and
normalized so that Ey, f(X) = 0 and Ep, f(X)? = 1.

For a broad range of hypothesis testing problems, it has been observed in the literature that D-
simple statistics seem to capture the full power of the SOS hierarchy (Hopkins and Steurer, 2017;
Hopkins, 2018). This trend prompted a further conjecture that D-simple statistics often capture
the full power of efficient algorithms, leading more concretely to the low-degree conjecture which
is stated informally below. This conjecture has been used to gather evidence of hardness for a
number of natural detection problems and has generally emerged as a convenient tool to predict
statistical-computational gaps (Hopkins and Steurer, 2017; Hopkins, 2018; Kunisky et al., 2019;
Bandeira et al., 2019). Variants of this low-degree conjecture have appeared as Hypothesis 2.1.5
and Conjecture 2.2.4 in Hopkins (2018) and Conjectures 1.16 and 4.6 in Kunisky et al. (2019).

Conjecture 63 (Informal — Hypothesis 2.1.5 in Hopkins (2018)) For a broad class of hypothesis
testing problems Hq versus Hi, there is a test running in time N OD) vith Type I+11 error tending

to zero if and only if there is a successful D-simple statistic i.e. a polynomial f of degree at most D
such that By, f(X) = 0and Eg, f(X)? = 1 yet By, f(X) — o0.

Detailed discussions of the low-degree conjecture and the connections between D-simple statis-
tics and other types of algorithms can be found in Kunisky et al. (2019) and Holmgren and Wein
(2020). The informality in the conjecture above is the undefined “broad class” of hypothesis testing
problems. In Hopkins (2018), several candidate technical conditions defining this class were pro-
posed and subsequently have been further refined in Kunisky et al. (2019) and Holmgren and Wein
(2020). These conditions are discussed in more detail later in this section.

The utility of the low-degree conjecture in predicting statistical-computational gaps arises from
the fact that the optimal D-simple statistic can be explicitly characterized. By the Neyman-Pearson
lemma, the optimal test with respect to Type I+II error is the the likelihood ratio test, which de-
clares Hy if LR(X) = Py, (X)/Py,(X) > 1 and Hy otherwise, given a sample X. Computing
the likelihood ratio is typically intractable in problems in high-dimensional statistical inference.
The low-degree likelihood ratio LRS? is the orthogonal projection of the likelihood ratio onto the
subspace of polynomials of degree at most D. When Hj is a product distribution on the discrete
hypercube {—1, 1}, the following theorem asserts that LR=P is the optimal test of a given degree.
Here, the projection is with respect to the inner product (f, g) = Ep, f(X)g(X), which also defines

anorm | f|% = (f, f).

Theorem 64 (Page 35 of Hopkins (2018)) The optimal D-simple statistic is the low-degree likeli-
hood ratio, i.e. it holds that

EHlf(X>

serlsp /Ep (X2

]EHOf(X)zo

= [ILR=P — 1|2

Thus existence of low-degree tests for a given problem boils down to computing the norm of
the low-degree likelihood ratio. When Hy is the uniform distribution on {—1, 1}V, the norm above
can be re-expressed in terms of the standard Boolean Fourier basis. Let the collection of functions
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{Xa(X) = Il.cq Xe : @ C [N]} denote this basis, which is orthonormal over the space {—1, 1}
with inner product defined above. By orthonormality, any x,, with 1 < |a| < D satisfies that

(Xas LRZP = 1) = (Xa, LR) = Egyxa(X)LR(X) = Ex, Xa(X)

and EHOLRSD =Ep,1 = 1so that (1, LRSP — 1) = 0. It then follows by Parseval’s identity that
1/2

RSP — 1= > (Em,xa(X))? (10)
1<|a|<D

which is exactly the Fourier energy up to degree D.

Technical Conditions, S, -Invariance and Counterexamples. While Conjecture 63 is believed
to accurately predict the computational barriers in nearly any natural high-dimensional statistical
problem including all of the problems we consider, a precise set of criteria exactly characterizing this
“broad class” has yet to be pinned down in the literature. The following was the first formalization
of the low-degree conjecture, which appeared as Conjecture 2.2.4 in Hopkins (2018).

Conjecture 65 (Conjecture 2.2.4 in Hopkins (2018)) Ler 2 be a finite set or R, and let k be a
fixed integer. Let N = (Z), let v be a product distribution on QN and let i be another distribution
on QN . Suppose that  is Sy-invariant and (log n)'t*M) -wise almost independent with respect to
v. Then no polynomial time test distinguishes Tsu and v with probability 1 — o(1), for any 6 > 0.
Formally, for all § > 0 and every polynomial-time test t : QN — {0, 1} there exists ' > 0 such

that for every large enough n,

1 1

5Py [t(z) =0] + 3 Pantsn tz)=1<1-¢

_ This conjecture has several key technical stipulations attempting to conservatively pin down the
O in Conjecture 63 and a set of sufficient conditions to be in this “broad class”. We highlight and
explain these key conditions below.

1. The distribution s is required to be S,-invariant. Here, a distribution z on Q¥ is said to
be Sy-invariant if P,(z) = P, (7 - z) forall 7 € S, and z € QF, where 7 acts on = by
identifying the coordinates of x with the k-subsets of [n| and permuting these coordinates
according to the permutation on k-subsets induced by 7.

2. The (logn) 14+9(1)_wise almost independence requirement on p essentially enforces that poly-
nomials of degree at most (logn)'*?()) are unable to distinguish between z and v. More
formally, a distribution p is D-wise almost independent with respect to v if every D-simple
statistic f, calibrated and normalized with respect to v, satisfies that E,, f(x) = O(1).

3. Rather than p, the distribution the conjecture asserts is hard to distinguish from v is the result
Tsu of applying the noise operator T. Here, the distribution 751 is defined by first sampling
x ~ u, then sampling iy ~ v and replacing each x; with y; independently with probability .

These technical conditions are intended to conservatively rule out specific pathological examples.
As mentioned in Hopkins (2018), the purpose of T is to destroy algebraic structure that may lead
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to efficient algorithms that cannot be implemented with low-degree polynomials. For example, if
w1 uniform over the solution set to a satisfiable system of equations mod 2 and v is the uniform
distribution, it is possible to distinguish these two distributions through Gaussian elimination while
the lowest D for which a D-simple statistic does so can be as large as D = Q(N). The noise
operator T rules out distributions with this kind of algebraic structure. The (logn)'*®()_wise
requirement on the almost independence of 1 and the O(D) in Conjecture 63 are both to account for
the fact that some common polynomial time algorithms for natural hypothesis testing problems can
only be implemented as degree O(log n) polynomials. For example, Section 4.2.3 of Kunisky et al.
(2019) shows that spectral methods can typically be implemented as degree O(log n) polynomials.

In Hopkins (2018), it was mentioned that the S, -invariance condition was included in Con-
jecture 65 mainly because most canonical inference problems satisfy this property and, further-
more, that there were no existing counterexamples to the conjecture without it. Recently, Holm-
gren and Wein (2020) gave two construction of hypothesis testing problems based on efficiently-
correctable binary codes and Reed-Solomon codes. The first construction is for binary €2 and admits
a polynomial-time test despite being €2(n)-wise almost independent. This shows that T} is insuf-
ficient to always rule out high-degree algebraic structure that can be used in efficient algorithms.
However, this construction also is highly asymmetric and ruled out by S,,-invariance condition in
Conjecture 65. The second construction is for 2 = R and admits a polynomial-time test despite
being both (n)-wise almost independent and S,,-invariant, thus falsifying Conjecture 65 as stated.
However, as discussed in Holmgren and Wein (2020), the conjecture can easily be remedied by
replacing Ty with another operator, such as the Ornstein-Uhlenbeck noise operator. In this work,
only the case of binary {2 will be relevant to the PC, conjecture.

The pc, Conjecture, Technical Conditions and a Generalization. The PC, hypothesis testing
problems and their planted dense subgraph generalizations PDS,, that we consider in this work can
be shown to satisfy a wide range of properties sufficient to rule out known counterexamples to the
low-degree conjecture. In particular, these problems almost satisfy all three conservative conditions
proposed in Hopkins (2018), instead satisfying a milder requirement for sufficient symmetry than
full S,,-invariance.

1. By definition, a general instance of PC, with an arbitrary p is only invariant to permutations
™ € S, that p is also invariant to. However, each of the specific hardness assumptions we use
in our reductions corresponds to a p with a large amount of symmetry and that is invariant
to large subgroups of .S,,. For example, k-PC and k-PDS are invariant to permutations within
each part F;, each of which has size n/k = w(y/n). This symmetry seems sufficient to
break the error-correcting code approach used to construct counterexamples to the low-degree
conjecture in Holmgren and Wein (2020).

2. As will be shown subsequently in this section, the conditions in the PC, conjecture imply that
a PC, instance be (log n)HQ(l)—wise almost independent for it to be conjectured to be hard.

3. While PC,, is not of the form T, its generalization PDS , at any pair of constant edge densities
0 < g < p < 1alwaysis. All of our reductions also apply to input instances of PDS,, and thus
a PDS,, variant of the PC, conjecture is sufficient to deduce our computational lower bounds.
That said, we do not expect that the computational complexity of PC, and PDS,, to be different
as long as p and ¢ are constant.
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As mentioned in Section 2, while we restrict our formal statement of the PC, conjecture to the
specific hardness assumptions we need for our reductions, we believe it should hold generally for
p with sufficient symmetry. A candidate condition is that p is invariant to a subgroup H C S,, of
permutations such that, for each index i € [n], there are at least n‘{") permutations m € H with
(i) # 4. This ensures that p has a large number of nontrivial symmetries that are not just permuting
coordinates known not to lie in the clique.

We also remark that there are many examples of hypothesis testing problems where the three
conditions in Hopkins (2018) are violated but low-degree polynomials still seem to accurately pre-
dict the performance of the best known efficient algorithms. As mentioned in Holmgren and Wein
(2020), the spiked Wishart model does not quite satisfy .S,,-invariance but still low-degree predic-
tions are conjecturally accurate. Ordinary PC is not of the form 75 and the low-degree conjecture
accurately predicts the PC conjecture, which is widely believed to be true.

The Degree Requirement and a Stronger PC, Conjecture. Furthermore, the degree requirement
for the almost independence condition of Conjecture 65 is often not exactly necessary. Itis discussed
in Section 4.2.5 of Kunisky et al. (2019) that, for sufficiently nice distributions Hy and H;, low-
degree predictions are often still accurate when the almost independence condition is relaxed to
only be w(1)-wise for any w(1) function of n. This yields the following stronger variant of the PC,,
conjecture.

Conjecture 66 (Informal - Stronger PC, Conjecture) For sufficiently symmetric p, there is no
polynomial time algorithm solving PC,(n, k, 1/2) if there is some function w(n) = wy(1) such that
the tail bounds on p,(s) in Conjecture 2 are only guaranteed to hold for all d < w(n).

We conjecture that the p in Conjecture 3 are symmetric enough for this conjecture to hold. A
nearly identical argument to that in Theorem 62 can be used to show that this stronger PC,, conjecture
implies the exact boundaries in Conjecture 3, without the small polynomial error factors of O(nc)
and O(m°).

We now make several notes on the degree requirement in the PC, conjecture, as stated in Con-
jecture 2. As will be shown later in this section, the tail bounds on p,(s) for a particular d directly
imply the d-wise almost independence of PC,. Now note that for any p and k& > logn, there is
always a d-simple statistic solving PC,, with d = O((log n)?). Specifically, G(n, 1/2) has its largest
clique of size less than (2 + €) log, n with probability 1 — 0,(1) and any instance of H; of PC,
with k& >> logn has n*(!) cliques of size [3log, n|. Furthermore, the number of cliques of this size
can be expressed as a degree O((logn)?) polynomial in the edge indicators of a graph. Similarly,
the largest clique in an s-uniform ErdSs-Rényi hypergraph is in general of size O((logn)/(s=1)
and a simple clique-counting test distinguishing this from the planted clique hypergraph distribu-
tion can be expressed as an O((logn)*/(*~1)) degree polynomial. This shows that for all p, the
problem PC, is not O((logn)?)-wise almost independent. Furthermore, for any § > 0, there is
some p corresponding to a hypergraph variant of PC such that PC,, is not O((log n)'*9)-wise almost
independent. Thus the tail bounds in Conjecture 2 never hold for 6 > 1 and, for any ¢’ > 0, there is
some p requiring 6 < ¢’ for these tail bounds to be true.

Finally, we remark that there are highly asymmetric examples of p for which Conjecture 66 is
not true. Suppose that n is even, let ¢ > 0 be an arbitrarily large integer and let 51, S2, ..., Spe C
[/2] be a known family of subsets of size [3log, n]. Now let p be sampled by taking the union of
an S; chosen uniformly at random and a size k — [3log, n] subset of {n/2 + 1,n/2 + 2,...,n}
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chosen uniformly at random. The resulting PC, problem can be solved in polynomial time by
exhaustively searching for the subset S;. However, this p only violates the tail bounds on p, in
Conjecture 2 for d = Q,(logn/loglogn). If S1,Ss,. .., Sy are sufficiently pseudorandom, then
the structure of this p only appears in the tails of p,(s) when s > [3logyn]. In particular, the
probability that s > [3log, n] under p, is at least the chance that two independent samples from
p choose the same .S;, which occurs with probability n~¢. It can be verified the the tail bound of
po-s~24=% in Conjecture 2 only excludes this possibility when d = ,,(logn/ loglog n). We remark
though that this p is highly asymmetric and any mild symmetry assumption that would effectively
cause the number of S; to be super-polynomial would break this example.

The Low-Degree Conjecture and PC,. We now will characterize the power of the optimal D-
simple statistics for PC,. The following proposition establishes an explicit formula for LR=P in
PC,, which will be shown in the subsequent theorem to naturally yield the PMF decay condition in
the PC,, conjecture.

Proposition 67 Ler LR be the low-degree likelihood ratio for the hypothesis testing problem
PC,(n, k,1/2) between G(n,1/2) and G,(n, k,1/2). For any D > 1, it follows that

ILRSP —1||3 = Eg g1 =2 [# of nonempty edge subsets of S N S’ of size at most D]

Proof In the notation above, let N = (3) and identify X € {—1,1}" with the space of signed
adjacency matrices X of n-vertex graphs. Let Pg be the distribution on graphs in this space induced
by PC(n, k, 1/2) conditioned on the clique being planted on the vertices in the subset S i.e. such that
X;j =1ifi € Sandj € S and otherwise X;; = £1 with probability half each. Now let o C &y
be a subset of possible edges. The set of functions {xa(X) = [[.co Xe : @ C &} comprises the

standard Fourier basis on {—1,1}¢0. For each fixed clique S, because Ep, X, = 0 if e ¢ (g) and
non-clique edges are independent, we see that

Eps[xa(X)] = 1{V(a) € 5}
We therefore have that
Em [Xa(X)] = Es~pEpg[xa(X)] = Es~, [1{V(a) € S} =P, [V(a) C 5]
Now suppose that S is drawn from p independently of S. It now follows that

Ew, [Xa(X)]? = Ese, [1{V(a) C S}H?
= Es, [1{V(a) € S}] - Egroyy [1{V () C S'}]
= Eg.5npe2 [1{V(@) € S} H{V(e) € S'}]

=Eg 502 [1{V(a) CSNS'}]

From Equation (10), we therefore have that

ILRSP — 13 = > Ep, a(X)] =Esgpez | Y. 1{V(e)C SN}
1<la|<D 1<|a|<D
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Now observe that the sum

Y 1{V(e) < Sns'}

1<|a|<D

counting the number of nonempty edge subsets of S N S’ of size at most D. |

This proposition now allows us to show the main result of this section, which is that the condition
in the PC,, conjecture is enough to show the failure of low-degree polynomials for PC,. Combining
the next theorem with Conjecture 63 would suggest that whenever the PMF decay condition of the
PC,, condition holds, there is no polynomial time algorithm solving PC,(n, k, 1/2).

Theorem 68 (PC, Implies Failure of Low-Degree) Suppose that p satisfies that for any parame-
ter d = Oy (logn), there is some py = o0y(1) such that p,(s) satisfies the tail bounds

(<p. {20 f1<s<d
DPp\S) = Po s724 jf 2> g

Let LRSP be the low-degree likelihood ratio for the hypothesis testing problem PC,(n, k,1/2). Then
it also follows that for any parameter D = O,,(logn), we have

ILRSP — 1|2 = 0a(1)

Proof First observe that the number of nonempty edge subsets of S NS’ of size at most D can be

expressed explicitly as
D
s(s—1)/2
fD(S>:Z< ( 0 )/ >

=1
if s = |S N S’|. Furthermore, we can crudely upper bound fp in two separate ways. Note that the
number of nonempty edge subsets of S N .S’ is exactly 23) —1ifs = |S' M S’|. Therefore we have
that fp(s) < 9(). Furthermore using the upper bound that (7) < a*, we have that if s > 3 then

M)D“

o= () < (7)<

=1 =1 (@) —1

Combining these two crude upper bounds, we have that fp(s) < min {2(3), s2(D+1) } Also note
that fp(0) = fp(1) = 0. Combining this with the given bounds on p,(s), we have that

< 2D+

ILRSP = 1]3 = Eg ginpe2 [fD(1S N S"))]
k
= " ppls) - fo(s)
s=2
<po- Y 27 fp(s) + po- > s fp(s)

1<s2<D D<s2<k?
_ <2 s _ _
<po- Z 278 .2(2)_|_p0. Z s 2D 4-82(D+1)
1SS2<D DS52S]€2
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D o
_(s+1 _
:p()'g 2(2)+p0'§ 572 = On(po)
s=1 s=1

which completes the proof of the theorem. |

K.3. Statistical Query Algorithms and the PC, Conjecture

In this section, we verify that the lower bounds shown by Feldman et al. (2013) for PC for a gener-
alization of statistical query algorithms hold essentially unchanged for SQ variants of k-PC, k-BPC
and BPC. We remark at the end of this section why the statistical query model seems ill-suited to
characterizing the computational barriers in problems that are tensor or hypergraph problems such
as k-HPC. Since it was shown in Section K.1 that there are specific p in PC, corresponding to k-HPC,
it similarly follows that the SQ model seems ill-suited to characterizing the barriers PC, for general
p. Throughout this section, we focus on k-PC, as lower bounds in the statistical query model for
k-BPC and BPC will follow from nearly identical arguments.

Distributional Problems and SQ Dimension. The Statistical Algorithm framework of Feldman
et al. (2013) applies to distributional problems, where the input is a sequence of i.i.d. observations
from a distribution D. In order to obtain lower bounds in the statistical query model supporting
Conjecture 3, we need to define a distributional analogue of k-PC. As in Feldman et al. (2013), a
natural distributional version can be obtained by considering a bipartite version of k-PC, which we
define as follows.

Definition 69 (Distributional Formulation of k-PC) Let k divide n and fix a known partition E
of [n] into k parts Ey, Es, ..., Ey with |E;| = n/k. Let S C [n] be a subset of indices with
|S N E;| =1 foreach i € [k|. The distribution Dg over {0, 1}" produces with probability 1 — k/n
a uniform point X ~ Unif ({0, 1}") and with probability k/n a point X with X; = 1 forall i € S
and Xge ~ Unif({0,1})"~*. The distributional bipartite k-PC problem is to find the subset S given
some number of independent samples m from Dg.

In other words, the distribution k-PC problem is k-BPC with n left and n right vertices, a
randomly-sized right part of the planted biclique and no k-partite structure on the right vertex set.
We remark that many of our reductions, such as our reductions to RSME, NEG-SPCA, MSLR and
RSLSR, only need the k-partite structure along one vertex set of k-PC or k-BPC. This distributional
formulation of k-PC is thus a valid starting point for these reductions.

We now formally introduce the Statistical Algorithm framework of Feldman et al. (2013) and SQ
dimension. Let X = {0, 1}" denote the space of configurations and let D be a set of distributions
over X. Let F be a set of solutions and Z : D — 27 be a map taking each distribution D € D
to a subset of solutions Z(D) C F that are defined to be valid solutions for D. In our setting, F
corresponds to clique positions .S respecting the partition £. Furthermore, since each clique position
is in one-to-one correspondence with distributions, there is a single clique Z(D) corresponding to
each distribution D. For m > 0, the distributional search problem Z over D and F using m samples
is to find a valid solution f € Z(D) given access to m random samples from an unknown D € D.

Classes of algorithms in the framework of Feldman et al. (2013) are defined in terms of access
to oracles. The most basic oracle is an unbiased oracle, which evaluates a simple function on a
single sample as follows.
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Definition 70 (Unbiased Oracle) Let D be the true unknown distribution. A query to the oracle

consists of any function h : X — {0, 1}, and the oracle then takes an independent random sample
X ~ D and returns h(X).

Algorithms with access to an unbiased oracle are referred to as unbiased statistical algorithms.
Since these algorithms access the sampled data only through the oracle, it is possible to prove
unconditional lower bounds using information-theoretic methods. Another oracle is the VST AT,
defined below, which is similar but also allowed to make an adversarial perturbation of the function
evaluation. It is shown in Feldman et al. (2013) via a simulation argument that the two oracles are
approximately equivalent.

Definition 71 (V. ST AT Oracle) Let D be the true distribution and t > 0 a sample size parameter.
A query to the VST AT (t) oracle consists of any function h : X — [0, 1], and the oracle returns an
arbitrary value v € [Eph(X)—7, Eph(X)+7], where 7 = max{1/t, /Eph(X)(1 — Eph(X))/t}.

We borrow some definitions from Feldman et al. (2013). Given a distribution D, we define the

inner product (f, g)p = Ex~pf(X)g(X) and the corresponding norm || f||p = /{f, f)p. Given
two distributions D and D2 both absolutely continuous with respect to D, their pairwise correlation

is defined to be

D D ~ o~
xp (D1, Da) = )<fl -1, 62 - 1>D‘ = |{(D1, D2)p|.
where Dy = % — 1. The average correlation p(D, D) of a set of distributions D relative to

distribution D is then given by

1 1 Dy Dy
D.D)=—= Di.Ds)= = > )<——1,——1> (
10( ) ’DP XD( 1 2) ’DP D D D
D1,D2€D D1,D2€D

Given these definitions, we can now introduce the key quantity from Feldman et al. (2013), statistical
dimension, which is defined in terms of average correlation.

Definition 72 (Statistical dimension) Fix v > 0,7 > 0, and search problem Z over set of solu-
tions F and class of distributions D over X. We consider pairs (D, Dp) consisting of a “reference
distribution” D over X and a finite set of distributions Dp C D with the following property: for
any solution f € F, the set Dy = Dp \ Z71(f) has size at least (1 —n) - |Dp|. Let {(D,Dp) be
the largest integer { so that for any subset D' C Dy with |D'| > |Dy|/{, the average correlation is
|p(D', D)| < ~ (if there is no such { one can take ¢ = 0). The statistical dimension with average
correlation vy and solution set bound 1 is defined to be the largest {(D, Dp) for valid pairs (D, Dp)
as described, and is denoted by SDA(Z, v, n).

In Feldman et al. (2013), it is shown that statistical dimension immediately yields a lower bound
on the number of queries to an unbiased oracle or a V.ST AT oracle needed to solve a given distri-
butional search problem.

Theorem 73 (Theorems 2.7 and 3.17 of Feldman et al. (2013)) Let X be a domain and Z a search
problem over a set of solutions F and a class of distributions D over X. For v > 0 and n € (0, 1),
let ¢ = SDA(Z,~,n). Any (possibly randomized) statistical query algorithm that solves Z with
probability § > n requires at least £ calls to the V.ST AT (1/(37)) oracle to solve Z.
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Moreover, any statistical query algorithm requires at least m calls to the Unbiased Oracle for
2
m = min { gg:z)), (5;22) } In particular, if n < 1/6, then any algorithm with success probability

at least 2/3 requires at least min{¢/4,1/48~} samples from the Unbiased Oracle.

We remark that the number of queries to an oracle is a lower bound on the runtime of the statisti-
cal algorithm in question. Furthermore, the number of “samples” m corresponding to a V.ST AT (t)
oracle is t, as this is the number needed to approximately obtain the confidence interval of width 27
in the definition of the V.ST AT oracle above.

SQ Lower Bounds for Distributional k-PC. We now will use the theorem above to deduce SQ
lower bounds for distributional k-PC. Let S be the set of all k-subsets of [n] respecting the partition
Fie S =1{S:|S| =kand|SNE;| =1fori € [k]}. Note that |S| = (n/k)*. We henceforth
use D to denote the uniform distribution on {0, 1}". The following lemma is as in Feldman et al.
(2013), except that we further restrict S and 7" to be in S rather than arbitrary size k subsets of [n],
which does not change the bound.

Lemma 74 (Lemma 5.1 in Feldman et al. (2013)) For S,T € S, xp(Dg, D7) = |<155, ﬁT>D| <
2\SQT|k2/n2.

The following lemma is crucial to deriving the SQ dimension of distributional k-PC and is
similar to Lemma 5.2 in Feldman et al. (2013). Its proof is deferred to Appendix R.1.

Lemma 75 (Modification of Lemma 5.2 in Feldman et al. (2013)) Let 6 > 1/logn and k
nY/279 For any integer ¢ < k, S € S, and set A C S with |A| > 2|S\/n2£‘5,

IN

1 PPN k>
A > |(Ds,Dr)p| < 2”3?-
TeA

This lemma now implies the following SQ dimension lower bound for distributional k-PC.

Theorem 76 (Analogue of Theorem 5.3 of Feldman et al. (2013)) For § > 1/logn and k <
nt/2=9 let Z denote the distributional bipartite k-PC problem. If { < k, then it follows that
SDA(Z,253k2 /n2, (2) ") > n269 8,

Proof For each clique position S let Dg = D\ {Dg}. Then |Dg| = (%)k -1=(1- (%)_k) |D|.
Now for any D’ with |D’| > 2|S|/n?* we can apply Lemma 75 to conclude that p(D’, D) <
2/+3k2 /n2. By Definition 72 of statistical dimension this implies the bound stated in the theorem.
|

Applying Theorem 73 to this statistical dimension lower bound yields the following hardness
for statistical query algorithms.

Corollary 77 (SQ Lower Bound for Recovery in Distributional k-PC) For any constant § > 0
and k < n'/?79, any SQ algorithm that solves the distributional bipartite k-PC problem requires
Q(n?/k%logn) = Q(n'*2%) queries to the Unbiased Oracle.
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This is to be interpreted as impossible, as there are only n right vertices vertices available in
the actual bipartite graph. Because all the quantities in Theorem 76 are the same as in Feldman
et al. (2013) up to constants, the same logic as used there allows to deduce a statement regarding
the hypothesis testing version, stated there as Theorems 2.9 and 2.10.

Corollary 78 (SQ Lower Bound for Decision Variant of Distributional k-PC) For any constant
6 > 0, suppose k < n*/279. Let D = Unif({0,1}") and let D be the set of all planted bipartite
k-pC distributions (one for each clique position). Any SQ algorithm that solves the hypothesis
testing problem between D and D with probability better than 2/3 requires Q(n?/k?) queries to
the Unbiased Oracle.

A similar statement holds for VSTAT. There is at = nS2108n) sych that any randomized SQ
algorithm that solves the hypothesis testing problem between D and D with probability better than
2/3 requires at least t queries to VST AT (n?>70 /k?).

We conclude this section by outlining how to extend these lower bounds to distributional ver-
sions of k-BPC and BPC and why the statistical query model is not suitable to deduce hardness of
problems that are implicitly tensor or hypergraph problems such as k-HPC.

Extending these SQ Lower Bounds. Extending to the bipartite case is straightforward and fol-
lows by replacing the probability of including each right vertex from k/n to k,,/m where k,, =
O(m!/?=9). This causes the upper bound in Lemma 74 to become x p(Ds, D) = \(f)g, ﬁT)D] <
218 mT'kTQ,L /m?. Similarly, the upper bound in Lemma 75 becomes 232, /m?, the relevant statisti-

cal dimension becomes SDA(Z, 273k2, /n2,, () _k) > n2% /8 and the query lower bound in the

final corollary becomes Q(m?/k2 logn) = Q(m!*+2%) which yields the desired lower bound for
k-BPDS. The lower bound for BPDS follows by the same extension to the ordinary PC lower bound
in Feldman et al. (2013).

Hypergraph pC and SQ Lower Bounds. A key component of formulating SQ lower bounds is
devising a distributional version of the problem with analogous limits in the SQ model. While there
was a natural bipartite extension for PC, for hypergraph PC, such an extension does not seem to
exist. Treating slices as individual samples yields a problem with statistical query algorithms that
can detect a planted clique outside of polynomial time. Consider the function that given a slice,
searches for a clique of size & in the induced (s — 1)-uniform hypergraph on the neighbors of the
vertex corresponding to the slice, outputting 1 if such a clique is found. Without a planted clique, the
probability a slice contains such a clique is exponentially small, while it is k/n if there is a planted
clique. An alternative is to consider individual entries as samples, but this discards the hypergraph
structure of the problem entirely.

Appendix L. Robustness, Negative Sparse PCA and Supervised Problems

In this section, we apply reductions in Part II to deduce computational lower bounds for robust
sparse mean estimation, negative sparse PCA, mixtures of SLRs and robust SLR that follow from
specific instantiations of the PC,, conjecture. Specifically, we apply the reduction k-BPDS-TO-ISGM
to deduce a lower bound for RSME, the reduction BPDS-TO-NEG-SPCA to deduce a lower bound for
NEG-SPCA and the reduction £-BPDS-TO-MSLR to deduce lower bounds for MSLR, USLR and RSLR.
This section is primarily devoted to summarizing the implications of these reductions and making
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explicit how their input parameters need to be set to deduce our lower bounds. The implications
of these lower bounds and the relation between them and algorithms was previously discussed in
Section 3. In cases where the discussion in Section 3 was not exhaustive, such as the details of
starting with different hardness assumptions, the number theoretic condition (T) or the adversary
implied by our reductions for RSLR, we include omitted details in this section.

All lower bounds that will be shown in this section are computational lower bounds in the
sense introduced in the beginning of Section 3. To deduce our computational lower bounds from
reductions, it suffices to verify the three criteria in Condition E.1. We remark that this section is
technical due to the number-theoretic constraints imposed by the prime number 7 in our reductions.
However, these technical details are tangential to the primary focus of the paper, which is reduction
techniques.

L.1. Robust Sparse Mean Estimation

We first observe that the instances of ISGM output by the reduction k-BPDS-TO-ISGM are instances
of RSME in Huber’s contamination model. Let r be a prime number and € > 1/r. It then follows
that a sample from ISGMp(n, k, d, pt, 1/r) is of the form

MIX, (N(,u -1g, Id),Do)®n where Do = MIX,-1,-1 (N(M -1g, Id),N(ul . ].S,Id))

for some possibly random S with |S| = k and where (1 — 1)+ =1 - i/ = 0. Note that this is a
distribution in the composite hypothesis H; of RSME(n, k, d, 7, €) in Huber’s contamination model
with outlier distribution Do and where 7 = ||11 - 15||2 = pv/k. This observation and the discussion
in Section E.2 yields that it suffices to exhibit a reduction to ISGM to show the lower bound for
RSME in Theorem 4.

We now discuss the condition (T) and the number-theoretic constraint arising from applying
Theorem 46 to prove Theorem 4. As mentioned in Section B.3, while this condition does not
restrict our computational lower bound for RSME in the main regime of interest where e ! = n°(1),
it also can be removed using the design matrices R, . in place of K ;. Despite this, we introduce
the condition (T) in this section as it will be a necessary condition in subsequent lower bounds in
Part III.

As discussed in Section I, the prime power 7! in k-BPDS-TO-ISGM is intended to be a fairly
close approximation to each of k,,/n and v/N. We will now see that in order to show tight
computational lower bounds for RSME, this approximation needs to be very close to asymptotically
exact, leading to the technical condition (T). First note that the level of signal y produced by the
reduction k£-BPDS-TO-ISGM is

0 . 1 — O (/2
= 24/61log(k,mrt) +2log(p — )1 +/rt(r —1)(1 + (r —1)-1) e < )

where § = ©O(1) and the estimate above holds whenever p and ¢ are constants. Therefore the
corresponding 7 is given by 7 = puvk = O(kl/ 2p—(t+1)/ 2). Furthermore, in Theorem 46, the output
number of samples N is constrained to satisfy that N = o(k,7') and n = O(k,,r"). Combining this
with the fact that in order to be starting with a hard k-BPDS instance, we need k,, = o(y/n) to hold,
it is straightforward to see that these constraints together require that N = o(r2). If this is close to
tight with N = ©(r?"), the computational lower bound condition on 7 becomes

=0 <k1/2T—(t+1)/2> -0 (k1/261/2N—1/4>
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where we also use the fact that e = O(1/r). Note that this corresponds exactly to the desired
computational lower bound of N = 6(k%e?/7*). Furthermore, if instead N = ©(a~'72") for some
a = w(1), then the lower bound we show degrades to N = 6(k?e2/at?), and is suboptimal by a
factor a = w(1). Thus ideally we would like the pair of parameters (N, r) to be such that there
infinitely many N with something like N = ©(r%!) true for some positive integer ¢ € N. This leads
exactly to the condition (T) below.

Definition 79 (Condition (T)) Suppose that (N,r) is a pair of parameters with N € N and r =
7(N) is non-decreasing. The pair (N,r) satisfies (T) if either r = NeW as N — oo orif r =
O(N*) where t € N is a constant even integer.

The key property arising from condition (T) is captured in the following lemma.

Lemma 80 (Property of (T)) Suppose that (N,r) satisfies (T) and let v' = 1'(N) be any non-
decreasing positive integer parameter satisfying that v’ = ©(r). Then there are infinitely many
values of N with the following property: there exists s € N such that VN = © ((r')*).

Proof If r = ©(N'/) where t € N is a constant even integer, then this property is satisfied trivially
by taking s = t/2. Now suppose that r = N °(1) and note that this also implies that 7’ = N°(1).

Now consider the function
log N

T Sg )

Since ' = N°(1)_ it follows that f (N) — oo as N — oo. Suppose that N is sufficiently large so
that f(IN) > 1. Note that, for each N, either 7'(N + 1) > #/(N) + 1L or #/(N + 1) = v/(N). If
(N +1)=7'(N),then f(N +1) > f(N). If /(N +1) > r'(N) + 1, then

JN+1) _g(N)
FN) = gl (V)

Note that g(x) is a decreasing function of x for x > 2. Since f(N) > 1, it follows that '(N) < N
and hence the above inequality implies that f(N 4+ 1) < f(N). Summarizing these observations,
every time f(/V) increases it must follow that /(N 4 1) = r/(IV). Fix a sufficiently large positive
integer s and consider the first N for which f(N) > s. It follows by our observation that 7/(N) =
/(N —1) and furthermore that f(N —1) < s. This implies that N —1 < r/(N)2$ and N > r/(N)?*.
Since 7/(N) is a positive integer, it then must follow that N = 7/(N)?5. Since such an N exists for
every sufficiently large s, this completes the proof of the lemma. |

1 1
where g(z) = log(z +1)

log x

This condition (T) will arise in a number of others problems that we map to, including robust
SLR and dense stochastic block models, for a nearly identical reason. We now formally prove
Theorem 4. All remaining proofs in this section will be of a similar flavor and where details are
similar, we only sketch them to avoid redundancy.

Theorem 4 (Lower Bounds for RSME) If k, d and n are polynomial in each other, k = 0(\/&) and
€ < 1/2 is such that (n, e~ ') satisfies (T), then the k-BPC conjecture or k-BPDS conjecture for con-
stant 0 < q < p < 1 both imply that there is a computational lower bound for RSME(n, k,d, T, €)
at all sample complexities n = 6(k*e*/1%).
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Proof To prove this theorem, we will to show that Theorem 46 implies that k-BPDS-TO-ISGM fills
out all of the possible growth rates specified by the computational lower bound n = 6(k2€2/7%)
and the other conditions in the theorem statement. As discussed earlier in this section, it suffices to
reduce in total variation to ISGM(n, k, d, i, 1/r) where 1/r < e and pu = 7/Vk.

Fix a constant pair of probabilities 0 < ¢ < p < 1 and any sequence of parameters (n, k, d, T, €)
all of which are implicitly functions of n such that (n, e 1) satisfies (T) and (n, k, d, 7, €) satisfy the
conditions

k22 9
ngc-W and wk* <d
for sufficiently large n, an arbitrarily slow-growing function w = w(n) — oo at least satisfying that
w(n) = n°@ a sufficiently small constant ¢ > 0 and a sufficiently large constant ¢’ > 0. In order
to fulfill the criteria in Condition E.1, we now will specify:

1. a sequence of parameters (M, N, kys, kn, p, q) such that the £-BPDS instance with these pa-
rameters is hard according to Conjecture 3; and

2. a sequence of parameters (n’, k,d, 7, €) with a subsequence that satisfies three conditions:
(2.1) the parameters on the subsequence are in the regime of the desired computational lower
bound for RSME; (2.2) they have the same growth rate as (n, k, d, 7, €) on this subsequence;
and (2.3) such that RSME with the parameters on this subsequence can be produced by the
reduction k-BPDS-TO-ISGM with input k-BPDS(M, N, kas, kn, p, q).

By the discussion in Section E.2, this would be sufficient to show the desired computational lower
bound. We choose these parameters as follows:

e let r be a prime with 7 > e~ ! and 7 < 2¢~!, which exists by Bertrand’s postulate and can be
found in poly(e~!) < poly(n) time;

e let ¢ be such that 7 is the closest power of 7 to \/n, let n/ = |w=2r?|, let ky = |v/n/]| and
let N = wk3 < kyr'; and

o set = T/\/E, ky = k and M = wk?.
The given inequality and parameter settings above rearrange to the following condition on n':

2t 2.2
/ -2, 2t r kZe
n<w rT=0(— G557
- < n 74 (logn)2t+2e )
Furthermore, the given inequality yields the constraint on y that

1/4,1/2 t/2
M:T‘k71/2< cl/el/ =0 rt/ . !
~ nl/4(logn)(1+<)/2 nl/4 /it (log n) e

As long as /n = O(r?) then: (2.1) the inequality above on n’ would imply that (n/, k, d, 7, €) is in
the desired hard regime; (2.2) n and n’ have the same growth rate since w = n°M); and (2.3) taking
’ large enough would imply that y satisfies the conditions needed to apply Theorem 46 to yield the
desired reduction. By Lemma 80, there is an infinite subsequence of the input parameters such that
N (:)(rt). This verifies the three criteria in Condition E.1. Following the argument in Section
E.2, Lemma 14 now implies the theorem. |
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As alluded to in Section B.3, replacing K, ; with R, . in the applications of dense Bernoulli
rotations in k-BPDS-TO-ISGM removes condition (T) from this lower bound. Specifically, applying
k-BPDS-TO-1SGMp and Corollary 49 in place of k-BPDS-TO-ISGM and replacing the dimension
r* with L in the argument above yields the lower bound shown below. Note that condition (T) in
Theorem 4 is replaced by the looser requirement that € = Q(n_l/ 2). As discussed at the end of
Section .1, this requirement arises from the condition ¢ > L~!log L in Corollary 49. We remark
that the condition ¢ = €(n~'/2) is implicit in (T) and hence the following corollary is strictly
stronger than Theorem 4.

Corollary 81 (Lower Bounds for RSME without Condition (T)) If k,d and n are polynomial in
each other, k = o(\/d) and € < 1/2 is such that ¢ = Q(n~Y/2), then the k-BPC conjecture or
k-BPDS conjecture for constant 0 < q < p < 1 both imply that there is a computational lower
bound for RSME(n, k, d, 7, €) at all sample complexities n = 6(k*e% /7).

We remark that only assuming the k-PC conjecture also yields hardness for RSME. In particular
k-PC can be mapped to the asymmetric bipartite case by considering the bipartite subgraph with & /2
parts on one size and k/2 on the other. Showing hardness for RSME from k-PC then reduces to the
hardness yielded by k-BPC with M = N. Examining this restricted setting in the theorem above
and passing through an analogous argument yields a computational lower bound at the slightly
suboptimal rate

=6 (k*/7*) aslongas 77logn = o(e)

n
When (logn)~9(1) < ¢ < 1/logn, then the optimal k-to-k? gap is recovered up to polylog(n)
factors by this result.

L.2. Negative Sparse PCA

In this section, we deduce Theorem 7 on the hardness of NEG-SPCA using the reduction BPDS-TO-NEG-SPCA
and Theorem 43. Because this reduction does not bear the number-theoretic considerations of the
reduction to RSME, this proof will be substantially more straightforward.

Theorem 7 (Lower Bounds for NEG-SPCA) If k,d and n are polynomial in each other, k =
o(v/d) and k = o(n'/®), then the BPC or BPDS conjecture for constant 0 < q < p < 1 both imply
conjecture implies a computational lower bound for NEG-SPCA(n, k,d, 8) at all levels of signal

0 = 6(/k2/n).

Proof We show that Theorem 43 implies that BPDS-TO-NEG-SPCA fills out all of the possible
growth rates specified by the computational lower bound 6 = (+/k2/n) and the other conditions
in the theorem statement. Fix a constant pair of probabilities 0 < ¢ < p < 1 and a sequence of
parameters (n, k, d, 0) all of which are implicitly functions of n such that

k2

—, wk < nt/6  and  wk? <d
n(logn)?

0<cwt-

for sufficiently large n, an arbitrarily slow-growing function w = w(n) — co where w(n) = n°W)
and a sufficiently small constant ¢ > 0. In order to fulfill the criteria in Condition E.1, we now will
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specify: a sequence of parameters (M, N, kas, kn, p, q) such that the BPDS instance with these pa-
rameters is hard according to Conjecture 3, and such that NEG-SPCA with the parameters (n, k, d, 0)
can be produced by the reduction BPDS-TO-NEG-SPCA applied to BPDS(M, N, kys, kn, p, q). These
parameters along with the internal parameter 7 of the reduction can be chosen as follows:

o let N =n,ky =w t/n, ky = kand M = wk?; and

e let 7 > 0 be such that
9 4no

T T k(1 —0)

It is straightforward to verify that the inequality above upper bounding 6 implies that 7 < 4c¢/+/logn
and thus satisfies the condition on 7 needed to apply Lemma 39 and Theorem 43 for a sufficiently
small ¢ > 0. Furthermore, this setting of 7 yields

2knk

0= NV
4?2—1—7’2ka

Furthermore, note that d > M and n >> M? by construction. Applying Theorem 43 now verifies
the desired property above. This verifies the criteria in Condition E.1 and, following the argument
in Section E.2, Lemma 14 now implies the theorem. |

We remark the the constraint & = o(n'/%), as mentioned in Section B.7, is a technical condition
that we believe should not be necessary for the theorem to hold. This is similar to the constraint
arising in the strong reduction to sparse PCA given by CLIQUE-TO-WISHART in Brennan and
Bresler (2019). In CLIQUE-TO-WISHART, the random matrix comparison between Wishart and
GOE produced the technical condition that k = o(n'/6) in a similar manner to how our comparison
result between Wishart and inverse Wishart produces the same constraint here. We also remark that
the reduction CLIQUE-TO-WISHART can be used here to yield the same hardness for NEG-SPCA as
in Theorem 7 based only on the PC conjecture. This is achieved by the reduction that maps from PC
to sparse PCA with d = wk? as a first step using CLIQUE-TO-WISHART and then uses the second
step of BPDS-TO-NEG-SPCA to map to NEG-SPCA.

L.3. Mixtures of Sparse Linear Regressions and Robustness

In this section, we deduce Theorems 82, 8 and 9 on the hardness of unsigned, mixtures of and robust
sparse linear regression, all using the reduction k-BPDS-TO-MSLR with different parameters (7, €)
and Theorem 52. We begin by showing bounds for USLR(n, k, d, 7).

We first make the following simple but important observation. Note that a single sample from
USLR is of the form y = |7 - (vg, X) + N(0, 1)|, which has the same distribution as |y’| where
y' =7r-(vg,X)+ N(0,1) and r is an independent Rademacher random variable. Note that 3/ is
a sample from MSLRp(n, k, d,~y,1/2) with v = 7. Thus to show a computational lower bound for
USLR(n, k, d, 7), it suffices to show a lower bound for MSLR(n, k, d, 7).

Theorem 82 (Lower Bounds for USLR) If k,d and n are polynomial in each other, k = o(~\/d)

and k = 0(n1/6), then the k-BPC or k-BPDS conjecture for constant 0 < q < p < 1 both imply that
there is a computational lower bound for USLR(n, k, d, T) at all sample complexities n = 6(k*/74).
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Proof To prove this theorem, we will show that Theorem 52 implies that £-BPDS-TO-MSLR applied
with » = 2 fills out all of the possible growth rates specified by the computational lower bound
n = 6(k?/7*) and the other conditions in the theorem statement. As mentioned above, it suffices to
reduce in total variation to MSLR(n, k, d, 7). Fix a constant pair of probabilities 0 < ¢ < p < 1 and
any sequence of parameters (n, k, d, 7) all of which are implicitly functions of n with

]{32

1/6 2
n<c'w2-7'4~(logn)4’ wk:gn/ and wk” <d

for sufficiently large n, an arbitrarily slow-growing function w = w(n) — oo and a sufficiently
small constant ¢ > 0. In order to fulfill the criteria in Condition E.1, we now will specify: a
sequence of parameters (M, N, kas, kn, p, q) such that the k-BPDS instance with these parameters
is hard according to Conjecture 3, and such that MSLR with the parameters (n, k, d, 7,1/2) can be
produced by the reduction k-BPDS-TO-MSLR applied with » = 2 to BPDS(M, N, kas, kn, p, q).
By the discussion in Section E.2, this would be sufficient to show the desired computational lower
bound. We choose these parameters as follows:

e let ¢ be such that 2 is the smallest power of two greater than w+/n, let ky = |y/n] and let
N = wk]zv < kn2t; and

e setky = kand M = wk?.

Now note that 72 is upper bounded by

1/2
2 < c k e knkn
wn'/2 . (logn)? Nlog(MN)
Furthermore, we have that

) Ry T o K
=~ wnl/2 - (logn)? o 2t og(kn M - 2t) logn

T

Therefore 7 satisfies the conditions needed to apply Theorem 52 for a sufficiently small ¢ > 0. Also
note that n > M3 and d > M by construction. Applying Theorem 52 now verifies the desired
property above. This verifies the criteria in Condition E.1 and, following the argument in Section
E.2, Lemma 14 now implies the theorem. |

The proof of the theorem above also directly implies Theorem 8. This yields our main compu-
tational lower bounds for MSLR, which are stated below.

Theorem 8 (Lower Bounds for MSLR) If k,d and n are polynomial in each other, k = o(\/ZZ)
and k = o(nl/ﬁ), then the k-BPC or k-BPDS conjecture for constant 0 < q < p < 1 both imply that
there is a computational lower bound for MSLR(n, k, d, T) at all sample complexities n = 6(k? /74).

Now observe that the instances of MSLR output by the reduction £-BPDS-TO-MSLR applied with
r > 2 are instances of RSLR in Huber’s contamination model. Let r be a prime number and € > 1/7.
Also let X ~ N(0,1;) and y = 7 - (v, X) + n where n ~ N (0, 1) where |S| = k. By Definition
51, MSLRp(n, k,d, 7,1/r) is of the form

MIX, (£(X,y),Do)®" where Do = MIX.-1,-1 (L(X,y), L)
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for some possibly random S with |S| = k and where £’ denotes the distribution on pairs (X, y) that
are jointly Gaussian with mean zero and (d + 1) x (d 4 1) covariance matrix

2 1\a2
[Exx ny] _ |da+ (“H?;Y Svgul —ay - vg
ZyX Eyy fa/y . v;— 1 + 72

This yields a very particular construction of an adversary in Huber’s contamination model, which
we show in the next theorem yields a computational lower bound for RSLR. With the observations
above, the proof of this theorem is similar to that of Theorem 4 and is deferred to Appendix R.2.

Theorem 83 (Lower Bounds for RSLR with Condition (T)) If k, d and n are polynomial in each
other;, € < 1/2 is such that (n, e 1) satisfies (T), k = o(v/d) and k = o(n'/), then the k-BPC con-
Jjecture or k-BPDS conjecture for constant 0 < q < p < 1 both imply that there is a computational
lower bound for RSLR(n, k, d, T, €) at all sample complexities n = 6(k*e*/7%).

Our main computational lower bound for RSLR follows from the same argument applied to
the reduction k-BPDS-TO-MSLRp, instead of k-BPDS-TO-MSLR and using Corollary 57 instead of

Theorem 52. As in Corollary 81, this replaces condition (T) with the weaker condition that € =
Q(n=1/2).

Theorem 9 (Lower Bounds for RSLR) If k,d and n are polynomial in each other, ¢ < 1/2 is
such that € = Q(n~12), k = o(\/d) and k = o(n'/®), then the k-BPC conjecture or k-BPDS
conjecture for constant 0 < q < p < 1 both imply that there is a computational lower bound for
RSLR(n, k, d, T, €) at all sample complexities n = 6(k*%/74).

Appendix M. Community Recovery and Partition Models

In this section, we devise several reductions based on BERN-ROTATIONS and TENSOR-BERN-ROTATIONS
using the design matrices and tensors from Section G to reduce from k-PC, k-PDS, k-BPC and
k-BPDS to dense stochastic block models, hidden partition models and semirandom planted dense
subgraph. These reductions are briefly outlined in Section C.3.

Furthermore, the heuristic presented at the end of Section C.3 predicts the computational barriers
for the problems in this section. The /3 norm of the matrix E[X] corresponding to a k-PC instance
is ©(k), which is just below ©(y/n) when this k-PC is near its computational barrier. Furthermore,
it can be verified that the /2 norm of the matrices E[ X | corresponding to the problems in this section
are:

e If v = P;; — P, in the ISBM notation of Section B.4, then a direct calculation yields that the
¢ norm corresponding to ISBM is ©(nvy/k).

e In GHPM and BHPM, the corresponding /2 norm can be verified to be © (K~+/r).

e In our adversarial construction for SEMI-CR, the corresponding /5 norm is © (k) where v =
P - PB.

Following the heuristic, setting these equal to é(\/ﬁ) yields the predicted computational barriers of
7v? = O(k%/n) in I1SBM, v? = O(n/rK?) in GHPM and BHPM and 7 = O(n/k?) in SEMI-CR. We
now present our reduction to ISBM.
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M.1. Dense Stochastic Block Models with Two Communities

We begin by recalling the definition of the imbalanced 2-block stochastic block model from Section
B.4.

Definition 84 (Imbalanced 2-Block Stochastic Block Model) Let k and n be positive integers such
that k divides n. The distribution ISBMp(n, k, P11, P12, Pa2) over n-vertex graphs G is sampled by
first choosing an (n/k)-subset C C [n| uniformly at random and sampling the edges of G indepen-
dently with the following probabilities

Py ifi,jeC
P[{i,j} € E(G)] = P12 ifexactly oneof 4,7 isin C
Py ifi,j € [n]\C

Given a subset C' C [n] of size n/k, we let ISBMp(n, C, P11, P12, Pa2) denote ISBM as defined
above conditioned on the latent subset C'. As discussed in Section E.3, this naturally leads to a
composite hypothesis testing problem between

Hy:G~G (TL,PQ) and H;:G ~ ISBMD(TL, kZ,Pll,Plg,ng)

where P is any edge density in (0, 1). This section is devoted to showing reductions from k-PDS
and k-PC to I1SBM formulated as this hypothesis testing problem. In particular, we will focus on
P11, P12, Pog and Py all of which are bounded away from 0 and 1 by a constant, and which satisfy
that

1 1 1 1
Py=—-"-P 1—-=)P=—--P 1—— )P 11
0= Pn + < k:) 12 = 12 + < k:) 99 (11)
These two constraints allow P;1, P12, Pas to be reparameterized in terms of a signal parameter 7y as
Y Y
n=-rh+y, Pe=R—-—7 ad Py 04-(1'{:71)2 12)

There are two main reasons why we restrict to the parameter regime enforced by the density con-
straints in (11) — it creates a model with nearly uniform expected degrees and which is a mean-field
analogue of recovering the first community in the k-block stochastic block model.

e Nearly Uniform Expected Degrees: Observe that, conditioned on C, the expected degree of a
vertex ¢ € [n] in ISBM(n, k, P11, P12, Pa2) is given by

(2—1).-Py+ED p, ificC

E [deg(i)|C] = { n. Py + (% - 1) - Py ifi € [n]\C

Thus the density constraints in (11) ensure that these differ by at most 1 from each other
and from (n — 1) P,. Thus all of the vertices in ISBM(n, k, Py1, P12, P»2) and the Hy model
G (n, Py) have approximately the same expected degree. This precludes simple degree and
total edge thresholding tests that are optimal in models of single community detection that
are not degree-corrected. As discussed in Section B.6, the planted dense subgraph model has
a detection threshold that differs from the conjectured Kesten-Stigum threshold for recovery
of the planted dense subgraph. Thus to obtain computational lower bounds for a hypothesis
testing problem that give tight recovery lower bounds, calibrating degrees is crucial. The main
result of this section can be viewed as showing approximate degree correction is sufficient to
obtain the Kesten-Stigum threshold for ISBM through a reduction from k-PDS and k-PC.
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e Mean-Field Analogue of First Community Recovery in k-SBM: As discussed in Section
B.4, the imbalanced 2-block stochastic block model I1SBMp(n, k, P11, Pi2, Py2) is roughly
a mean-field analogue of recovering the first community C; in a k-block stochastic block
model. More precisely, consider a graph G wherein the vertex set [n] is partitioned into
k latent communities Cy, Co, ..., C} each of size n/k and edges are then included in the
graph GG independently such that intra-community edges appear with probability p while inter-
community edges appear with probability ¢ < p. The distribution ISBMp(n, k, P11, P12, P2)
can be viewed as a mean-field analogue of recovering a first community C' = C7 in the k-
block model, when

k—1 k—1

Here, P»2 approximately corresponds to the average edge density on the subgraph of the k-
block model restricted to [n]\C}. This analogy between ISBM and k-SBM is also why we
choose to parameterize ISBM in terms of & rather than the size n/k of C.

1 1
Pu=p, Pa2=g and P22:.p+<1_>q

As discussed in Section B.4, if k& = o(y/n), the conjectured recovery threshold for efficient
recovery in k-SBM is the Kesten-Stigum threshold of

(p—9q)? o K
q(l—q)~ n

while the statistically optimal rate of recovery is when this level of signal is instead Q(k4 /n?). Fur-
thermore, the information-theoretic threshold and conjectured computational barrier are the same
for ISBM in the regime defined by (11). Parameterizing ISBM in terms of ~ as in (12), the Kesten-
Stigum threshold can be expressed as 2 = Q(k‘2 /n). The objective of this section is give a reduc-
tion from k-PDS to ISBM in the dense regime with min{ Py, 1— Py} = Q(1) up to the Kesten-Stigum
threshold.

The first reduction of this section k-PDS-TO-ISBM is shown in Figure 12 and maps to the case
where Py = 1/2 and (12) is only approximately true. In a subsequent corollary, a simple modi-
fication of this reduction will map to all Py with min{Py,1 — Py} = (1) and show (12) holds
exactly. The following theorem establishes the approximate Markov transition properties of k-PDS-
TO-1SBM. The proof of this theorem follows a similar structure to the proof of Theorem 46. Recall
that ®(z) = \/% I . ¢~**/2dz denotes the standard normal CDF.

Theorem 85 (Reduction to ISBM) Let N be a parameter and v = r(N) > 2 be a prime number.
Fix initial and target parameters as follows:

e Initial k-BPDS Parameters: vertex count N, subgraph size k = o(N) dividing N, edge prob-
abilities 0 < ¢ < p < 1 withmin{q,1 — ¢} = Q(1) and p — ¢ > N=°W, and a partition E
of [N].

e Target ISBM Parameters: (n,r) where { =
N satisfying that that

thll and n = krl for some parametert = t(N) €

m < krt <krl < poly (V)

where m is the smallest multiple of k larger than (% + 1) N and where
RQ=1-v(1-p(1-q +1p-13(Vg-1)

142



STATISTICAL-COMPUTATIONAL GAPS FROM SECRET LEAKAGE

e Target ISBM Edge Strengths: (Py1, P2, Pa2) given by

p(r —1) p(r—1) p
Pll:(p(rrtﬂ y P12:@ _W and PQQZ(b(rt?)

where p € (0, 1) satisfies that

< ! - min {log <p) log (1_Q> }
~ 2y/6log(krt) + 2log(p — Q)1 Q)’ I—p

Let A(G) denote k-PDS-TO-ISBM applied to the graph G with these parameters. Then A runs in
poly(N) time and it follows that

k
drv (A(Ge(N, k,p,q)), 1SBMp(n, 7, P11, P12, Po)) = O (\/N 4 e AUNZ/km) 4 (kr£)1>

dry (A(G(N.q)), G(n,1/2)) = O (efQ(Nz/km n (M)fl)

To prove this theorem, we begin by proving a lemma analyzing the dense Bernoulli rotations
step of k-PDS-TO-ISBM. Define vg g+ g (M) as in Section I.1. The proof of the next lemma follows
similar steps to the proof of Lemma 47.

Lemma 86 (Bernoulli Rotations for 1SBM) Let F' and F" be a fixed partitions of [krt] and [kr/)
into k parts of size v and v, respectively, and let S C [kr']| where |SNF]| = 1 for each 1 <i < k.
Let A3z denote Step 3 of k-PDS-TO-ISBM with input Mppy, and output My. Suppose that p, Q and p
are as in Theorem 85, then it follows that

dTV(-A3 (M[k:rt]x[k:rt] (S X S, Bern(p),Bern(Q))) s
L (M v, (Kt )vs e (Kpg) T 4+ N (O, 1)®kMXkM>> =0 ((kr))™)
dry <A3 (Bern(Q)m’“th’“t) LN, 1)®krzxkrz> = 0 ((krt)™Y)

Proof First consider the case where Mppy ~ Mt krt) (S X S, Bern(p), Bern(Q)). Observe
that the submatrices of Mpp, are distributed as follows

(MPDZ)FZ.’7FJ( ~ PB (Fz/ X Fjlv (SmF;,Sﬂ F]l)apa Q)

and are independent. Combining upper bound on the singular values of K, ; in Lemma 30 with
Corollary 27 implies that

p(r—1)

drv <(MR)FZ.”,F]’-’7 L < . (Kr,t)~,SﬁF{(KT7t)TSmFJ( + N(0, 1)®MXM)> -0 (T2t . (k:?“f)_3)

Since the submatrices (Mg)p» v are independent, the tensorization property of total variation in
107

Fact 15 implies that dry (Mg, £(Z)) = O (k*r?" - (kr£)=3) = O ((kr¢)~') where the submatrices
Z Fy Fy are independent and satisfy

p(r—1)

ZF(/F//N,a(
i r

(Krt).sor (Krt) [gnpr + N (O, 1)®’“5W>
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Algorithm k-PDS-TO-ISBM

Inputs: k-PDs instance G € Gy with dense subgraph size & that divides N, and the following
parameters

e partition E of [N] into k parts of size N/k, edge probabilities0 < ¢ < p <1

e let m be the smallest multiple of  larger than (% + 1) NwhereQ=1—/(1—-p)(1—q)+
Lyp=1y (V2 —1)

e output number of vertices n = kr¢ where r is a prime number r, { =
and m < krt < krt < poly(NV)

rt—1
r—1

for some t € N

e mean parameter p € (0, 1) satisfying that

< = - min {1og (p) ,log (1_Q>}
2¢/6logn + 2log(p — Q)1 Q 1-p

1. Symmetrize and Plant Diagonals: Compute Mpp; € {0,1}™*™ with partition F' of [m] as
Mpp; + TO-k-PARTITE-SUBMATRIX(G) applied with initial dimension N, partition F, edge
probabilities p and ¢ and target dimension m.

2. Pad: Form Mpp, € {0,1}*"" k" by embedding Mpp, as the upper left principal submatrix
of Mpp, and then adding kr* —m new indices for columns and rows, with all missing entries
sampled i.i.d. from Bern(Q). Let F/ be F; with r® — m/k of the new indices. Sample k
random permutations o; of F; independently for each 1 < ¢ < k and permute the indices
of the rows and columns of Mpp, within each part F, according to o;.

3. Bernoulli Rotations: Let F”' be a partition of [kr¢] into k equally sized parts. Now compute
the matrix My € RF"ExkrL a5 follows:

(1) For each i,j € [k], apply TENSOR-BERN-ROTATIONS to the matrix (Mpp2)r, F; with
matrix parameter A, = A, = K, , rejection kernel parameter Ryx = kr¢, Bernoulli
probabilities 0 < @ < p < 1, output dimension 74, Ay = Ay = \/1+ (r —1)~! and
mean parameter y.

(2) Set the entries of (Mg)ry, r to be the entries in order of the matrix output in (1).
4. Threshold and Output: Now construct the graph G’ with vertex set [kr¢] such that for each

i > j with 4,5 € [kr(], we have {i,j} € E(G’) if and only if (Mg);; > 0. Output G’ with
randomly permuted vertex labels.

Figure 12: Reduction from k-partite planted dense subgraph to the dense imbalanced 2-block stochastic
block model.
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Note that the entries of Z are independent Gaussians each with variance 1 and Z has mean given
by p(1 4 r71) - vg,Fr g (Kr ) Vs pr g (Km)T, by the definition of vg pr g (K, ). This proves
the first total variation upper bound in the statement of the lemma. Now suppose that Mpp, ~
Bern(Q)®*" k" Corollary 27 implies that

drv ((MR)F;',F;/» N(0, 1)®T€XM> =0 (r* - (krt)™?)

for each 1 < 4,5 < k. Since the submatrices (Mg) /' FY of My are independent, it follows that

dry (M, N(0, 1) 47) — O (22 (krt) ) = O ((krt) ™)
by the tensorization property of total variation in Fact 15, completing the proof of the lemma. M
The next lemma is immediate but makes explicit the precise guarantees for Step 4 of k-PDS-TO-ISBM.

Lemma 87 (Thresholding for 1SBM) Let F', ", S and T be as in Lemma 86. Let A4 denote Step
4 of k-PDS-TO-1SBM with input Mg and output G'. Then

r—1
Ay <,u(r) ~vg g (K )vs,pr pn (Krg) T+ N(O, 1)®krexm) ~ ISBMp(krl,r, Pi1, P12, Pa2)
Ag (N(0, 1)) G kre,1/2)
where P11, P and Pyo are as in Theorem 85.

Proof First observe that, since Lemma 29 implies that each column of K.; contains exactly

(r — 1)¢ entries equal to 1/4/7t(r — 1) and ¢ entries equal to (1 — r)/+/rt(r — 1), it follows
that vg pr pr(Kr+) contains k(r — 1) entries equal to 1/4/7t(r — 1) and k¢ entries equal to (1 —

r)/+/7t(r — 1). Therefore there is a subset T' C [kr{] with |T'| = k¢ such that the kr¢ x kr{ mean
matrix Z = v57F/7F~(KT7t)vSVF/’pu(Kr,t)T has entries
1 (r—1)2 ifi,jes
Zij:ﬁ- —(r—1) ifieSandjg Sorig Sandje€ S
ri(r—1) 1 ifi,j &9

Since the vertices of G’ are randomly permuted, it follows by definition now that if
r—1
Mr~ L <M(r) ~vg,pr o (K t)vs pr o (Kog) T+ N (O, 1)®’“"5X’““5>

then G' ~ 1SBMp(krt, kl, P11, P12, Py3), proving the first distributional equality in the lemma.
The second distributional equality follows from the fact that $(0) = 1/2. [

We now complete the proof of Theorem 85 using a similar application of Lemma 16 as in the
proof of Theorem 46.
Proof [Proof of Theorem 85] We apply Lemma 16 to the steps A; of A under each of Hy and H;.
Define the steps of .A to map inputs to outputs as follows

(G, E) 2% (Mppy, F) 22 (Mppa, F') 225 (Mg, F") 2% &'
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Under H;, consider Lemma 16 applied to the following sequence of distributions

PO = gE(Nv k7p7 Q)
P1 = Mp)xjm) (S % S,Bern(p),Bern(Q)) where S ~ Uy, (F)
Po = Mt xirt) (S % S, Bern(p), Bern(Q))  where S ~ Uy, (F)

-1
py = Mr=1)
r

Py = 1sSBMp (krl,r, Py, Py2, Pas)

. 'US,F’,F”(Kr,t)US,F/,F” (Krjt)—r + N(O, 1)®kr€><k:r€ where S ~ ukrt (F/)

Applying Lemma 23, we can take

Q2N2 ) CQk2

=4k - -
“l P < 48pkm

2m

where Cg = max {%, % } The step As is exact and we can take €2 = 0. Applying Lemma

86 and averaging over S ~ Uy,.«(F") using the conditioning property of total variation in Fact 15
yields that we can take e5 = O ((kr¢)~!). By Lemma 87, Step 4 is exact and we can take ¢4 = 0.
By Lemma 16, we therefore have that

k
drv (A(Ge(N,k,p,q)), 1SBM(n, 7, P11, P12, P2)) = O <\/ﬁ 4 e UN/km) (krﬁ)*)

which proves the desired result in the case of H;. Under Hy, consider the distributions
7)0 == g(N7 q)
P; = Bern(Q)®™*™
Py = Bern(Q)®krthrt
733 :N(O 1)®k‘7‘f><k‘7‘f
Py = g(k"l"f, 1/2)

As above, Lemmas 23, 86 and 87 imply that we can take

€1 = 4k - exp —Q2N2 =0, e=0(krt)™") and e =0
1 aspkm )0 2% e 4

By Lemma 16, we therefore have that
drv (A(G(N, ), G(n,1/2)) = O (74 4 (rp)~1)
which completes the proof of the theorem. |

We now prove that a slight modification to this reduction will map to all Py with min{FPp, 1 —
Py} = Q(1) and to the setting where the density constraints in (12) hold exactly.
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Corollary 88 (Reduction to Arbitrary Py) Let 0 < g < p < 1 be constant and let N,r, k, E /
and n be as in Theorem 85 with the additional condition that kr3/? = o(r?*). Suppose that P,
satisfies min{ Py, 1 — Py} = Q(1) and v € (0, 1) satisfies that

C

< -
7= rt=1y/log(kr/)

for a sufficiently small constant ¢ > 0. Then there is a poly(N) time reduction A from graphs on N
vertices to graphs on n vertices satisfying that

v gl
N P, Py — F
dTV<A(QE( ,k,p,q)), ISBMp (nﬂ“, 0+ 70— 0+(k—1)2>>

3,.3/2
=0 (k“T; + \/kﬁ + e SN /km) (kr€)1>

drv (A(G(N.q)), G(n, Py)) = O (e‘Q(NQ/km) + (krﬁ)_l)

Proof Consider the reduction A that adds a simple post-processing step to k-PDS-TO-ISBM as
follows. On input graph G with NV vertices:

1. Form the graph GG; by applying k-PDS-TO-ISBM to GG with parameters N, r, k, E, £, n and u
where (4 is given by

ritl (1,1 ]
H:(r—1)2'(1)7 <2+2-m1n{P0,1—P0} -’y)

and @1 is the inverse of the standard normal CDF.

2. If Py < 1/2, output the graph G2 formed by independently including each edge of G in G
with probability 2P. If Py > 1/2, form G5 instead by including each edge of G in G2 and
including each non-edge of G in G2 as an edge independently with probability 2Py — 1.

This clearly runs in poly(/N) time and it suffices to establish its approximate Markov transition
properties. Let Ay and Az denote the two steps above with input-output pairs (G, G1) and (G1, G2),
respectively. Let C' C [n] be a fixed subset of size n/r and define

p(r — 1) p(r—1) 1
Pll_(I)(rt—&-l , Py =930 —W and PgQ:@(m)

g i

We will show that

kM3T3/2

P2t

drtv (./42 (ISBMD (n, C, Pi1, Pis, PQQ)) , ISBMp (n, C, Plll, P{Q, PéQ)) =0 ( = 0(1)

(13)
where the upper bound is o(1) since kr3/2 = o(r?"). First consider the case where Py < 1/2. Step
2 above yields by construction that

A (1SBMp (n, C, P11, P12, Pa2)) ~ 1SBMp (n, C, 2Py P11, 2Py P12, 2Py Pa2)
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Suppose that X (r) € {0,1}™ is sampled by first sampling X’ ~ Bin(m,r) and then letting X be
selected uniformly at random from all elements of {0, 1} with support size X’. It follows that
X (r) ~ Bern(r)®™ since both distributions are permutation-invariant and their support sizes have
the same distribution. Now the data-processing inequality in Fact 15 implies that

drv (Bern(r)®™, Bern(r')®™) = dry (X(r), X (r")) < drv (Bin(m, r), Bin(m,1"))

which can be upper bounded with Lemma 18. Using the fact that the edge indicators of ISBM
conditioned on C are independent, the tensorization property in Fact 15 and Lemma 18, we now
have that

dry (ISBMD (TL, C,2PyPi1,2Py P9, 2POP22) , ISBMp (n, C, Plll, P{Q, PéQ))
<drv (Bern(2P0P11)®(n2/T), Bern(P{1)®(néT))

®M / ®M
+ dry <Bern(2PoP12) 7, Bemn(Ppp)" 2 )

n(l—1/r)

e )

n/r‘) nQ(T—l)

<lopp _ Pl |. () 2Py P12 — Py -

< |2Py P11 — Py 2P{1(1—P1’1)+‘ 0Pr2 — P \/2T2p1/2(1—P1’2)
n(l—-1/r

()

2P£2(1_P2,2)

+ ’2P0P22 — Pg/z‘ .
n
T

where the third inequality uses the fact that P/, P, and P, are each bounded away from 0 and 1.
Observe that the definition of 1 ensures

11 p(r —1)2
4 =B/
2 opy 7 ( it

which implies that 2PyP;; = P{;. We now use a standard Taylor approximation for the error
function ®(z) — 1/2 around zero, given by ®(z) = 3 + \/% + O(2®) when 2 € (—1,1). Observe
that

< |2PyPy — Pjy|- O (g) + |2PyPi2 — Pjy| - O ( > + |2PyPyy — Pjy| - O(n)

r—1
2Py Pry — Ply| = 2P - ‘q) (—‘W) -

of)

An analogous computation shows that [2P) P — Pjy| = O (p*/r*~!). Combining all of these
bounds now yields Equation (13) after noting that n = kr¢ = O(kr') implies that np3r3/2 /13t =

1 Y

2 2Py(r —1) ’
1

2

e (0 (M) )

= 2P, -
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O(krS/ 2/r2%). A nearly identical argument considering the complement of the graph G and re-
placing with Py with 1 — P, establishes Equation (13) in the case when Py > 1/2. Now observe
that

Az (G(n,1/2)) ~ G(n, Ry)

by definition. Now consider applying Lemma 16 to the steps .4; and .45 using an analogous recipe
as in the proof of Theorem 85. We have that €; is bounded by Theorem 85 and €5 is bounded by
the argument above. Note that in order to apply Theorem 85 here, it must follow that the required
bound on p is met. Observe that

7=2P0(‘1’<W>_;>:@<J1>

and hence if «y satisfies the upper bound in the statement of the corollary for a sufficiently small con-
stant c, then p satisfies the requirement in Theorem 85 since p and ¢ are constant. This application
of Lemma 16 now yields the desired two approximate Markov transition properties and completes
the proof of the corollary. |

We now show that setting parameters in the reduction of Corollary 88 as in the recipe set out
in Theorems 4 and 82 now shows that we can fill out the parameter space for ISBM obeying the
edge density constraints of (12) below the Kesten-Stigum threshold. This proves the following
computational lower bound for ISBM. We remark that typically the parameter regime of interest for
the k-block stochastic block model is when k& = n°(1), and thus the conditions (T) and k = o(n'/3)
are only mild restrictions here. Note that the condition (T) here is the same condition that was
introduced in Section L.1.

Theorem 5 (Lower Bounds for ISBM) Suppose that (n, k) satisfy condition (T), that k is prime
or k = wn(1) and k = o(n'/3), and suppose that Py € (0, 1) satisfies min{ Py, 1 — Py} = Q,,(1).
Consider the testing problem 1SBM(n, k, P11, P12, Pso) where

gl gl
Py =P Po=FP— —— d Po=FP+ - —
11 ot Ii2 0= 3 22 0+(k—1)2
Then the k-PC conjecture or k-PDS conjecture for constant 0 < q < p < 1 both imply that there is

a computational lower bound for 1ISBM(n, k, Pi1, P12, Pa2) at all levels of signal below the Kesten-
Stigum threshold of v* = 6(k? /n).

Proof It suffices to show that the reduction A in Corollary 88 applied with » > 2 fills out all of
the possible growth rates specified by the computational lower bound 2 = 6(k?/n) and the other
conditions in the theorem statement. Fix a constant pair of probabilities 0 < ¢ < p < 1 and
any sequence of parameters (n, k,~y, Py) all of which are implicitly functions of n such that (n, k)
satisfies (T) and

2 K

7% < 2w )’k <n'? and min{Py,1— P} = Q,(1)

w’' -nlogn’
for sufficiently large n and w’ = w’(n) = (logn)¢ for a sufficiently large constant ¢ > 0. Now let
w = w(n) — oo be an arbitrarily slow-growing increasing positive integer-valued function at least
satisfying that w(n) = n°(!). As in the proof of Theorem 4, we now specify the following in order
to fulfill the criteria in Condition E.1:
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1. asequence (N, ky) such that the k-PDS(N, kn, p, q) is hard according to Conjecture 3; and

2. a sequence (n’,k’,~, Py) with a subsequence that satisfies three conditions: (2.1) the pa-
rameters on the subsequence are in the regime of the desired computational lower bound for
ISBM; (2.2) they have the same growth rate as (n, k, 7, Py) on this subsequence; and (2.3)
such that 1ISBM with the parameters on this subsequence can be produced by A with input
k-PDS(N, kn,p, q).

As discussed in Section E.2, this is sufficient to prove the theorem. We choose these parameters as
follows:

e let ¥’ = r be the smallest prime satisfying that k¥ < r < 2k, which exists by Bertrand’s
postulate and can be found in poly(n) time;

e let ¢ be such that 1! is the closest power of 7 to /n and let
1 p\~ -2 sft
kn = 3 1—1—@ w™? - min {r',v/n}

where @ =1 — /(1 —p)(1 —q) + 113 (/7 —1);and

o letn' = kxrl where ¢ = ’::11 and let N = wk%,.

Note that we have that w?r < nt/3 since r < 2k. Now observe that we have the following bounds

) ot ot
n = kyrt =< <w_ -min{\/ﬁ,l} : \/ﬁ> n
knr3/? < w2 - min {rt,vn} - w?Vn < (w_4 . 1) 2

r2t
m <2 <g + 1> wk%v < (w_3 . ﬁ) knrt
knre < poly(N)
9 k? 1 r? log(knrl)

< pu— .
= nlogn  w' -r2=2log(kyrl) nlogn

2 < r? 5 . rt rt logn’ r? rt
vV ———(w " mins —,1; - . < C—
w’ - n'logn/ Vn vn/) logn ~ w -w?-n'logn’ /n

where m is the smallest multiple of & larger (% + 1) N. Now observe that as long as \/n = C:)(rt)

then: (2.1) the last inequality above on «? would imply that (n’, k', v, Py) is in the desired hard
regime; (2.2) n and n’ have the same growth rate since w = n°M and k and k' = r have the same
growth rate since either ¥’ = k or k¥’ = ©(k) = w(1); and (2.3) the middle four bounds above
imply that taking c¢ large enough yields the conditions needed to apply Corollary 88 to yield the
desired reduction. By Lemma 80, there is an infinite subsequence of the input parameters such that
V/n = O(rt), which concludes the proof as in Theorem 4. [
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M.2. Testing Hidden Partition Models

In this section, we establish statistical-computational gaps based on the k-PC and k-PDS conjectures
for detection in the Gaussian and bipartite hidden partition models introduced in Sections B.5 and
E.3. These two models are bipartite analogues of the subgraph variants of the k-block stochastic
block model in the constant edge density regime. Specifically, they are multiple-community variants
of the subgraph stochastic block model considered in Brennan et al. (2018).

The motivation for considering these two models is to illustrate the versatility of Bernoulli
rotations as a reduction primitive. These two models are structurally very different from planted
clique yet can be produced through Bernoulli rotations for appropriate choices of the output mean
vectors A1, As, ..., An. The mean vectors specified in the reduction are vectorizations of the slices
of the design tensor 7). ; constructed based on the incidence geometry of Fi. The definition of 7. ;
and several of its properties can be found in Section G.3. The reduction in this section demonstrates
that natural applications of Bernoulli rotations can require more involved constructions than K, ; in
order to produce tight computational lower bounds.

We begin by reviewing the definitions of the two main models considered in this section —
Gaussian and bipartite hidden partition models — which were introduced in Sections B.5 and E.3.

Definition 89 (Gaussian Hidden Partition Models) Let n,r and K be positive integers, let v €
RandletC = (C1,Cy, ..., C;) be a sequence of disjoint K -subsets of [n]. Let D = (D1, Ds, ..., D;)
be another such sequence. The distribution GHPMp (n,r, C, D, ~y) over matrices M € R™*™ is such
that M;; ~iia. N (pij, 1) where

vy ifi € Cj, and j € Dy, for some h € [r|
pij =< —2g ifi € Cp, and j € Dy, where hy # ho
0 otherwise

foreachi,j € [n|. Furthermore, let GHPMp(n, 1, K, 7) denote the mixture over GHPMp(n,r,C, D, ~)
induced by choosing C' and D independently and uniformly at random.

Definition 90 (Bipartite Hidden Partition Models) Let n,r, K,C and D be as in Definition 89
and let Py,~y € (0, 1) be such that y/r < Py < 1 — ~. The distribution BHPMp(n,r,C, D, Py,~)
over bipartite graphs G with two parts of size n, each indexed by [n], such that each edge (i,j) is
included in G independently with the following probabilities

Py+~ ifi € Cp and j € Dy, for some h € [r]
P((i,j) € E(G)] =} Po— 5 ifieCy andj € Dy, where hy # hy
Py otherwise

foreach i,j € [n]. Let BHPMp(n,r, K, Py, ) denote the mixture over BHPMp(n,r,C, D, Py, )
induced by choosing C and D independently and uniformly at random.

The problems we consider in this section are the two simple hypothesis testing problems GHPM
and BHPM from Section E.3, given by

Hy: M ~N(0,1)®"" and H;: M ~ GHPM(n,r, K, )
Hy:G~Gp(n,n,Py) and H;j:G ~ BHPM(n,r, K, Py,7)
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An important remark is that the hypothesis testing formulations above for these two problems seem
to have different computational and statistical barriers from the tasks of recovering C and D. We
now state the following lemma, giving guarantees for a natural polynomial-time test and exponential
time test for GHPM. The proof of this lemma is tangential to the main focus of this section —
computational lower bounds for GHPM and BHPM — and is deferred to Appendix R.2.

Lemma 91 (Tests for GHPM) Given a matrix M € R™", let sc(M) = Y71, Mizj —n? and

s1(M) = max DYDY My

h=11i€C}y, jeDy,

where the maximum is over all pairs (C, D) of sequences of disjoint K -subsets of [n]. Let w = w(n)
be any increasing function with w(n) — oo as n — oc. We prove the following:

1. If M ~ GHPMp(n,r, K,~), then with probability 1 — o,,(1) it holds that

K? K
so(M) > TK272+T—1-72—1U <n + KT+ 7) and  s;(M) > rK2y—wr'2K
r— T

2. If M ~ N(0,1)®"" then with probability 1 — 0,,(1) it holds that

so(M) <wn and s;(M) < 2rK3/%wy\/(logn + logr)

This lemma implies upper bounds on the computational and statistical barriers for GHPM. Specif-
ically, it implies that the variance test s¢ succeeds above vgomp = O(n/rK?) and the search test s;
succeeds above 7, = O(1/K). Thus, showing that there is a computational barrier at this level of
signal veomp is sufficient to show that there is a nontrivial statistical-computational gap for GHPM.
For Py with min{Fy,1 — Py} = (1), analogous tests show the same upper bounds on Yeomp and
~rt for BHPM.

Consider the case when n = r K, which corresponds to a testing variant of the bipartite k-block
stochastic block model. In this case, the upper bounds shown by the previous lemma coincide at
yczomp, ¥4 = O(r/n) and hence do not support the existence of a statistical-computational gap.
The subgraph formulation in which 7K < n seems crucial to yielding a testing problem with a
statistical-computational gap. We also remark that while this testing formulation when n = rK
may not have a gap, the task of recovering C and D likely shares the gap conjectured in the k-block
stochastic block model. Specifically, the conjectured computational barrier at the Kesten-Stigum
threshold lies at v2 = ©(r2/n), which lies well above the 7 /n limit in the testing formulation.

The rest of this section is devoted to giving our main reduction k-PDS-TO-GHPM showing a
computational barrier at v = 6(n/rK?). This reduction is shown in Figure 13 and its approxi-
mate Markov transition guarantees are stated in the theorem below. The intuition behind why our
reduction is tight to the algorithm s¢ is as follows. Bernoulli rotations are approximately £3-norm
preserving in the signal to noise ratio if the output dimension is comparable to the input dimension
with m =< n. Much of the effort in constructing 7;.; and M,.; in Section G.3 was devoted to the
linear functions L which are crucial in designing M,.; to be nearly square and hence achieve m < n
in Bernoulli rotations. Any reduction that is approximately ¢>-norm preserving in the signal to noise
ratio will be tight to a variance test such as s¢.
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Algorithm k-PDS-TO-GHPM

Inputs: k-PDs instance G € Gy with dense subgraph size & that divides N, and the following
parameters

e partition E, edge probabilities 0 < ¢ < p <1, Q € (0,1) and m as in Figure 12

e refinement parameter s and number of vertices n = ksr! where r is a prime number,

l= % for some ¢ € N satisfy that m < ks(r — 1)¢ < poly(N)

e mean parameter y € (0, 1) as in Figure 12

1. Symmetrize and Plant Diagonals: Compute Mpp; € {0,1}™*™ and F as in Step 1 of Figure
12.

2. Pad and Further Partition: Form Mpp, and F” as in Step 2 of Figure 12 modified so that
Mpps is a ks(r — 1)¢ x ks(r — 1)¢ matrix and each F] has size s(r — 1)¢. Let F* be the
partition of [ks(r — 1)/] into ks parts of size (r — 1)¢ by refining F’ by splitting each of its
parts into s parts of equal size arbitrarily.

3. Bernoulli Rotations: Let F° be a partition of [ksr'] into ks equally sized parts. Now compute
the matrix Mg € R*s7"xks™* a5 follows:

(1) Foreach i, j € [ks], flatten the (r —1)¢ x (r — 1)¢ submatrix (Mp)ps r; into a vector
Vi; e RU"D* and let A = M, € R” *("~D* a5 in Definition 34.

(2) Apply BERN-ROTATIONS to V;; with matrix A, rejection kernel parameter Ry« = ksr?,
Bernoulli probabilities 0 < Q < p < 1, output dimension 72!, A\ = /1 + (r — 1)1
and mean parameter /.

(3) Set the entries of (Mg)rp, re to be the entries of the output in (2) unflattened into a
matrix.

4. Permute and Output: Output the matrix My with its rows and columns independently per-
muted uniformly at random.

Figure 13: Reduction from k-partite planted dense subgraph to gaussian hidden partition models.

The key to the reduction k-PDS-TO-GHPM lies in the construction of 7;.; and M,.; in Section
G.3. The rest of the proof of the following theorem is similar to the proofs in the previous section.
We omit details that are similar for brevity. We recall from Section E.4 that, given a matrix M €
R™*", the matrix Mg € R¥** where S, T are k-subsets of [n] refers to the minor of M restricted
to the row indices in S and column indices in 7". Furthermore, (Ms1)ij = My ()00 ()
os : [k] — S is the unique order-preserving bijection and o is analogously defined.

Theorem 92 (Reduction to GHPM) Let N be a parameter and r = r(N) > 2 be a prime number.
Fix initial and target parameters as follows:
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e Initial £-BPDS Parameters: k, N, p, q and E as in Theorem 85.

rt—1
r—1

e Target GHPM Parameters: (n,r, K,v) where n = ksr!, K = krt=! and ¢ = for some

parameters t = t(N),s = s(N) € N satisfying that that
m < ks(r — 1)¢ < poly(N)

where m and () are as in Theorem 92. The target level of signal ~y is given by v = “T(:i\;%)

where

uw< L - min {log (p) log (1_(02)}
~ 2y/6log(ksrt) +2log(p — Q)1 Q) I—p

Let A(G) denote k-PDS-TO-GHPM applied to the graph G with these parameters. Then A runs in
poly(N) time and it follows that

VN
dry (A(GN, @), N (0,1)57") = O (&N /hm) . (josrt)~1)

drv (A(Gu(N, k,p, ) GHPMp (n, 7, K, 7)) = O (k RN ) (ksrtrl)

In order to state the approximate Markov transition guarantees of the Bernoulli rotations step
of k-PDS-TO-GHPM, we need the formalism from Section G.3 to describe the matrix M, ;, tensor
T} + and their community alignment properties. While this will require a plethora of cumbersome
notation, the goal of the ensuing discussion is simple — we will show that Lemma 36 guarantees that
stitching together the individual applications of BERN-ROTATIONS in Step 3 of k-PDS-TO-GHPM
yields a valid instance of GHPM.

Recall (MUY MY2 ... M¥F$) denotes the concatenation of k%s% matrices M/ € R <!
into a ksr! x ksr! matrix, as introduced in Section G.3. Given a partition F of [ksr!] into ks equally
sized parts, let Cp(MYY, M2 ... M ks ks ) denote the concatenation of the M*/, where now the
entries of M %/ appear in Cr on the index set F; x F;. For consistency, we fix a canonical embedding
of the row and column indices of R” %" to F} x F}; by always preserving the order of indices.

Let F° and F* be fixed partitions of [ksr’] and [ks(r — 1)/] into k parts of size r* and (r — 1),
respectively, and let S C [ks(r — 1)¢] be such that |S| = k and S intersects each part of F** in at
most one element. Now let Mg s po(T}.¢) € RFsT*xkst be the matrix

hhpfwng:@m@ﬂhMm,”JﬁMﬂ where M = { Tnt ;
0 otherwise

where ¢;,1; and L;; are given by:

o leto : [ks(r—1)¢] — [ks(r—1)¢] be the unique bijection transforming the partition F'* to the
canonical contiguous partition {1, ..., (r—1)¢}U---U{(ks—1)(r—1)(+1,... ks(r—1)¢}
while preserving ordering on each part F® for 1 < ¢ < ks;

e let s, be the unique element in o (S N F?) for each ¢ for which this intersection is nonempty,
and let s; be the unique positive integer with 1 < s; < (r —1)¢and s; = s; (mod (r — 1)¢);
and
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e t;,t;and L;; are as in Lemma 36 given these s; i.e. ¢; and ¢ are the unique 1 < ¢;,¢; < £ such
thatt; = s; (mod /) andt; = s; (mod /) and L;; : F,, — F, is given by L;;(z) = a;z + a;
where a; = [s;/¢] and a; = [s;/¢].

The next lemma makes explicit the implications of Lemma 26 and Lemma 36 for the approximate
Markov transition guarantees of Step 3 in k-PDS-TO-GHPM. The proof follows a similar structure
to the proof of Lemma 86 and we omit identical details.

Lemma 93 (Bernoulli Rotations for GHPM) Let F° and F* be a fixed partitions of [ksr'] and
[ks(r — 1)€] into k parts of size r* and (r — 1)¢, respectively, and let S C [ksr'] be such that
|S| = kand |SNEF| < 1foreach 1 < i < ks. Let Az denote Step 3 of k-PDS-TO-GHPM with
input Mpp, and output Mg. Suppose that p, Q) and . are as in Theorem 85, then it follows that

dTv(A3 (Migsr—1)gx ksr—1)q (S xS, Bern(p), Bern(Q))) ,

"

dry (A3 (Bern(Q)@)kS(r—l)gX]%’(T—l)€> , N0, 1)®ks7"t><ksrt> -0 ((ksrt)_l)

MSFg FO rt) _|_N(0 1)®ksr x ksrt )) -0 ((kSTt)il)

and furthermore, for all such subsets S, it holds that the matrix Mg ps po(Ty1) has zero entries
other than in a krt x krt submatrix, which is also r-block as defined in Section G.3.

Proof Define s}, s;,t; and L;; as in the preceding discussion for all 4, j with S N ¥ and S N F 7
nonempty. Let (1) and (2) denote the following two cases:

1. Mppa ~ Ms(r—1)gx[ks(r—1)q (S % S, Bern(p), Bern(Q)); and
2. Mppy ~ Bern(Q)®ks(r71)Z><ks(rfl)é‘
Now define the matrix M} with independent entries such that
\%
() /LY A0, 1) i (1) holds, SN Ep £ O and S 1 FS £ 0
R s s ™
o N(0,1)rxr! otherwise if (1) holds or if (2) holds

foreach 1 < i, j < ks. The vectorization and ordering conventions we adopt imply that if SN F’ #
(0 and S N F; # 0, then the unflattening of the row with index (s; — 1)(r — 1) + s; in M, is the
approximate output mean of A3 on the minor (MR ), s when applying Lemma 26 under (1). By
Definition 34 and the definitions of a;, ; and L;;, this unflattened row is exactly the matrix

Mid — T(;/tithj:Lij)
T,
Combining this observation with Lemmas 26 and 35 yields that under both (1) and (2), we have that

dTV ((MR)FZS’FJS , <MI{{)F1-S,F].S> — O (,r2t . (k‘srt)_3)
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for all 1 < 4,5 < ks. Through the same argument as in Lemma 86, the tensorization property of
total variation in Fact 15 now yields that dry (£(Mg), £L(My)) = O ((ksr*)™") under both (1) and
(2). Now note that the definition of Cro implies that

Ao d S M e (Th) + N0, 1)®ksr>ksr’if (1) holds

N(0, 1)®ksrxksrt if (2) holds
which completes the proof of the approximate Markov transition guarantees in the lemma statement.
Now note that Mg ps po(T}.+) is zero everywhere other than on the union U of the F? over the i
such that S N F¥ # (. There are exactly k such i and thus |U| = kr'. Note that r-block matrices
remain 7-block matrices under permutations of column and row indices, and therefore Lemma 36

implies the same conclusion if C is replaced by Cro. Applying Lemma 36 to the submatrix of
Mg s po(Tr,+) restricted to the indices of U now completes the proof of the lemma. |

We now complete the proof of Theorem 92, again applying Lemma 16 as in the proofs of
Theorems 46 and 85. In this theorem, we let 2/*(F) denote the uniform distribution over subsets
S C [n] of size k intersecting each part of the partition F' in at most one element. When F' has
exactly k parts, this definition recovers the previously defined distribution U, (F).

Proof [Proof of Theorem 92] Let the steps of .4 to map inputs to outputs as follows
(G, E) 2% (Mppy, F) 22 (Mppy, F*) 225 (Mg, F°) 2% My,

where here M}, denotes the permuted form of My after Step 4. Under H;, consider Lemma 16
applied to the following sequence of distributions

Py = gE(Na k, p, Q)
P1 = Mp)xjm) (S x S,Bern(p), Bern(Q)) where S ~ Uy, (F)

Py = M[ks(r—l)@x[ks(r—l)ﬂ](s X S, Bem(p)7Bern(Q)) where S ~ ulfs(r—l)ﬁ(Fs)

-1
P3 = M\/T Mg ps po(Trt) + N (O, 1)®ksrtxk87”t where S ~ ulljs(rfl)‘(Fs)

Let Cg = max {%, %} and consider setting

P4+ = GHPMp <k5rt, r, kr

2772 2
QN ) Cok , €&=0, e=0 ((k:srt)_l) and € =0

48pkm
As in the proof of Theorem 85, Lemma 23 implies this is a valid choice of ¢; and A5 is exact

so we can take e = 0. The choice of e3 is valid by applying Lemma 93 and averaging over
S~ U,’:S(T_l) ,(F'*) using the conditioning property of total variation in Fact 15. Now note that the

€1 = 4k - exp < 5
m

r—1 1 .
s and — AT Thus the matrix

H\/E Mg, s, o (Trt) is of the form of the mean matrix (i;;)1<; j<ksrt in Definition 89 for some
choice of C and D where K = kr'~! and
B r—1 r—1  plr—-1)
TR ro rir—1  riyr
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This implies that permuting the rows and columns of P3 yields P4 exactly with ¢4 = 0. Applying
Lemma 16 now yields the first bound in the theorem statement. Under Hy, consider the distributions

Po=G(N,q), P1=Bem(Q)*™™, Py=Bem(Q)*"~Hxklr=tl,

Py =Py = N(O, 1)®ksrt><ksrt

As above, Lemmas 23 and 93 imply that we can take €; = 4k - exp (—%) and €9, €3 and €4 as
above. Lemma 16 now yields the second bound in the theorem statement. |

We now append a final post-processing step to the reduction k£-PDS-TO-GHPM to map to BHPM.
The proof of the following corollary is similar to that of Corollary 88 and is deferred to Appendix
R.2.

Corollary 94 (Reduction from GHPM to BHPM) Let 0 < q < p < 1 be constant and let the
parameters k, N, E,r . {,n,s and K be as in Theorem 92 with the additional condition that k+/r =
o(r?t). Let v € (0,1) be such that

c(r—1)

for a sufficiently small constant ¢ > 0. Suppose that Py satisfies min{Py,1 — Py} = Q(1). Then
there is a poly(N) time reduction A from graphs on N vertices to graphs on n vertices satisfying
that

ke |k _Q(N2/km -1
dTV(A(gE(Nakapaq))a BHPMD(TL,T,K,PO,’Y))_O(M+\/N+€ (N/ )—|—(k87')

drv (A(G(N,q)), Gs(N,N, Ry)) = O (eme?/km) n (ksrt)fl)

Collecting the results of this section, we arrive at the following computational lower bounds for
GHPM and BHPM matching the efficient test s¢ in Lemma 91.

Theorem 6 (Lower Bounds for GHPM and BHPM) Suppose that > K? = &(n) and ([r?K?/n],7)
satisfies condition (T), suppose 1 is prime or v = wy(1) and suppose that Py € (0,1) sat-

isfies min{Py,1 — Py} = Q,(1). Then the k-PC conjecture or k-PDS conjecture for constant

0 < q < p < 1 both imply that there is a computational lower bound for each of GHPM(n, 1, K, ~)

for all levels of signal v* = 6(n/r K?). This same lower bound also holds for BHPM (n, r, K, Py, )

given the additional condition n = o(rK*/3).

Proof The proof of this theorem will follow that of Theorem 5 with several modifications. We begin
by showing a lower bound for GHPM. It suffices to show that the reduction k-PDS-TO-GHPM fills
out all of the possible growth rates specified by the computational lower bound v = 6(n/rK?) and
the other conditions in the theorem statement. Fix a constant pair of probabilities 0 < ¢ < p <1
and any sequence of parameters (n,r, K, ) all of which are implicitly functions of n such that
([r2K?/n],r) satisfies (T) and

2 n

v <e and r’K?>w'n

W' -rK2?logn

157



STATISTICAL-COMPUTATIONAL GAPS FROM SECRET LEAKAGE

for sufficiently large n and w’ = w’(n) = (logn)¢ for a sufficiently large constant ¢ > 0. Now let
w = w(n) — oo be an arbitrarily slow-growing increasing positive integer-valued function at least
satisfying that w(n) = n°Y). As in Theorem 5, we now specify the following parameters which are
sufficient to establish the lower bound for GHPM:

1. asequence (N, ky) such that k-PDS(N, kn, p, q) is hard according to Conjecture 3; and

2. asequence (n',r’', K’ ~, s, t, u) with a subsequence that satisfies three conditions: (2.1) the
parameters on the subsequence are in the regime of the desired computational lower bound for
GHPM; (2.2) the parameters (n’, 7/, K',~y) have the same growth rate as (n,r, K,~) on this
subsequence; and (2.3) such that GHPM(n’, 7/, K, ) with the parameters on this subsequence
can be produced by k-PDS-TO-GHPM with input k-PDS(N, kx, p, ¢) applied with additional
parameters s, ¢ and p.

We choose these parameters as follows:

e let ' = r be the smallest prime satisfying that » < 7’ < 2r, which exists by Bertrand’s
postulate and can be found in poly(n) time;

e let ¢ be such that (r’)! is the closest power of 7/ to 'K /y/n, let s = [n/r' K] and let u =
AV
T

B

e now let ky be given by

3 eng) e ptes]

where Q@ =1 — /(1= p)(1 = q) + 1p=1} (VG — 1); and
o let K/ = kn(r')71 letn/ = kns(r’)! and let N = wk?,.

Now observe that we have the following bounds

n < kys(r')t < (w‘Q -min {1, W}) n

/ Nt—1
K =<kn(') ! = oo <w2 - min {1, (T)K\/ﬁ}) K
r's

w2 (e )ud < (o { e s Y - e
kns(r' —1)f < poly(N)

'K 2
(r")?(K")? > (TTK ) D!

n/
B 7(7“’)t\/77 < r (rt=ty/n 2
=1 — Vo K (w')1/2\/logn
2 o n 7;’ QI (K")? logn'
T w' -r'(K")2logn’ r n K2 logn
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where m is the smallest multiple of & larger <% + 1) Nand/ = (7;:/):1

as 'K //n = ©((r")!) then: (2.1) the last inequality above on +2 would imply that (n’, 7/, K’,~)
is in the desired hard regime; (2.2) the pairs of parameters (n,n’), (K, K') and (r,r’) have the
same growth rates since w = n°(!) and either ' = r or ’ = O(r) = w(1); and (2.3) the third
through sixth bounds above imply that taking c large enough yields the conditions needed to apply
Corollary 88 to yield the desired reduction. By Lemma 80, there is an infinite subsequence of the
input parameters such that 7/ K //n = ©((r')!), which concludes the proof of the lower bound for
GHPM as in Theorems 4 and 5.

The computational lower bound for BHPM follows from the same argument applied to A from
Corollary 94 with the following modification. The conditions in the theorem statement for BHPM
add the initial condition that 7 K%/3 > w/n. The parameter settings above then imply that ky+/r’ =
6((r")?") holds on the parameter subsequence with /K /y/n = ©((r')!). The same reasoning
above then yields the desired computational lower bound for BHPM and completes the proof of the
theorem. |

. Now observe that as long

M.3. Semirandom Single Community Recovery

In this section, we show that the k-PC and k-PDS conjectures with constant edge density imply the
PDS Recovery Conjecture under a semirandom adversary in the regime of constant ambient edge
density. The PDS Recovery Conjecture and formulations of semirandom single community recovery
here are as they were introduced in Sections B.6 and E.3. Our reduction from £-PDS to SEMI-CR
is shown in Figure 14. On a high level, our main observation is that an adversary in SEMI-CR with
subgraph size k£ can simulate the problem of detecting for the presence of a hidden ISBM instance
on a subgraph with O(k) in an n-vertex Erdés-Rényi graph. Furthermore, combining the Bernoulli
rotations step with K3 ; as in k-PDS-TO-ISBM with the partition refinement of £-PDS-TO-GHPM can
be shown to map to this detection problem. Furthermore, it faithfully recovers the Kesten-Stigum
bound from the PDS Recovery Conjecture as opposed to the slower detection rate. The key proofs
in this section resemble similar proofs in the previous two sections. We omit details that are similar
for brevity.

Before proceeding with the main proofs of this section, we discuss the relationship between our
results and the reduction of Cai et al. (2015a). In Cai et al. (2015a), the authors prove a detection-
recovery gap in the context of sub-Gaussian submatrix localization based on the hardness of finding
a planted k-clique in a random n /2-regular graph. This degree-regular formulation of PC was pre-
viously considered in Deshpande and Montanari (2015a) and differs in a number of ways from PC.
For example, it is unclear how to generate a sample from the degree-regular variant in polynomial
time. We remark that the reduction of Cai et al. (2015a), when instead applied the usual formulation
of PC produces a matrix with highly dependent entries. Specifically, the sum of the entries of the
output matrix has variance n?/u where y < 1 is the mean parameter for the submatrix localization
instance whereas an output matrix with independent entries of unit variance would have a sum of
entries of variance n?. Note that, in general, any reduction beginning with PC that also preserves the
natural Hy hypothesis cannot show the existence of a detection-recovery gap, as any lower bounds
for localization would also apply to detection.

Formally, the goal of this section is to show that the reduction kPDS-TO-SEMI-CR in Figure 14
maps from k-PC and k-PDS to the following distribution under H1, for a particular choice of 1, o
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and p3 just below the PDS Recovery Conjecture. We remark that k-PDS-TO-SEMI-CR maps to the
specific case where Py = 1/2. This reduction is extended in Corollary 98 to handle Py # 1/2 with
min{Po, 1-— P(]} = Q(l)

Definition 95 (Target SEMI-CR Instance) Given positive integers k, k' < n and Py, ji1, pi2, i3 €
(0, 1) satisfying that py, p2 < Py < 1 — us, let TS1(n, k, k', Py, 1, p12, i13) be the distribution over
G € G, sampled as follows:

1. choose two disjoint subsets S C [n| and S’ C [n] of sizes |S| = k and |S’| = K/, respectively,
uniformly at random, and

2. include the edge {i, j} in E(G) independently with probability p;; where

PO (i7])€S/2

) P if(4,) € [nP\(S U S)?

bij Py— g if(i,j) € Sx S or(i,j) €S xS
Py + us (i,5) € S?

Note that this distribution can be produced by a semirandom adversary in SEMI-CR(n, k, Py +
w3, Po) under H; as follows:

1. samples S’ of size k' uniformly at random from all &’-subsets of [n]\S where S is the vertex
set of the planted dense subgraph; and

2. if the edge {7, j} is in E£(G), remove it from G independently with probability ¢;; where

0 if (4,7) € S?2 U S

a; = m/Po if (i,5) € (SUS)?
pe/Po if (i,5) € S x S or(i,5) € 8" x S

Note that G(n, P}) can be produced by the adversary under Hy of SEMI-CR(n, k, Py + 1, Po) as
long as P} < P, by removing all edges independently with probability 1 — P/ Py. Thus it suffices
to map to a testing problem between some TSI(n, k, k', Py, pu1, p12, p3) and G(n, Py).
The next theorem establishes our main Markov transition guarantees for the reduction kPDS-TO-SEMI-CR,
which map to such a testing problem when Py = 1/2.

Theorem 96 (Reduction to SEMI-CR) Let N be a parameter and fix other parameters as follows:
e Initial £-BPDS Parameters: k, N, p, q and E as in Theorem 85.

e Target SEMI-CR Parameters: (n, K,1/2 +,1/2) where n = 3ks - % and K = (3" — 1)k
for some parameters t = t(N),s = s(N) € N satisfying that

m < 3'ks < n < poly(N)

where m and () are as in Theorem 92. The target level of signal v is given by v = ® (%) -1/2

and the target TSI densities are

B I 1 o n 1
m=®(gr) —5 and pe=pm=2(5) -3
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where p € (0, 1) satisfies that

uw< ! - min {log (p> ,log (1_Q> }
2y/6logn + 2log(p — Q)1 Q L—p

Let A(G) denote k-PDS-TO-SEMI-CR applied to the graph G with these parameters. Then A runs
in poly(N) time and it follows that

v (A(Ge (V. ) T510, K /2172 ) = O (s + ) 3ty
drv (A(G(N0)) , G (n,1/2 — ) = O (7N /km) . (315)~1 )

To prove this theorem, we prove a lemma analyzing the Bernoulli rotations step in Figure 14.
The proof of this lemma is similar to those of Lemmas 86 and 93. We omit details that are identical.
Recall from Section 1.1 the definition of the vector vg ps po(M) € R where ¥ and F° are
partitions of [ab] into a equally sized parts and S is a set intersecting each F}° in exactly one element.
Here we extend this definition to sets S intersecting each F;° in at most one element, by setting

M. snps ifSOE; #0
(vs,7s o (M) po = { 0o if SN F; i@

for each 1 < ¢ < a. We now can state the approximate Markov transition guarantees for the
Bernoulli rotations step of k-PDS-TO-SEMI-CR in this notation.

Lemma 97 (Bernoulli Rotations for SEMI-CR) Let F'® and F° be a fixed partitions of [3'ks] and
[n] into ks parts of size 3" and (3" — 1), respectively, and let S C [3'ks] where |S| = k and
|SNEF?| <1foreachl < i < ks. Let A3 denote Step 3 of k-PDS-TO-SEMI-CR with input Mpp,
and output MRg. Suppose that p, Q) and i are as in Theorem 96, then it follows that

dTV(A3 (M 3trs)x[stks) (S x S, Bern(p), Bern(Q)))

L (2; -vg ps po(K34)vs s ro(Kay) | + N(0, 1)®n><n>) =0 ((3%3)_1)
dry (.,43 (Bem<Q)®3tksx3tk5) L N(O, 1)®an> = 0 ((3tks)™)
Proof Let (1) and (2) denote the following two cases:
1. Mppa ~ M3t x[3tks] (S x S, Bern(p), Bern(Q)); and
2. Mppy ~ Bern(Q)®3'ksx3'ks

Now define the matrix My with independent entries such that

M}, ~ % - vs e o (K30 )us o o (K3,0) T+ N(0, 1) if (1) holds
R N(0,1)®nxn if (2) holds

Similarly to Lemma 93, Lemmas 26 and 30 yields that under both (1) and (2), we have that
dTV ((MR)Ff,F; s (Mé)FiS,FjS> =0 (32t . (Stks)f?))
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Algorithm k-PDS-TO-SEMI-CR

Inputs: k-PDs instance G € Gy with dense subgraph size & that divides N, and the following
parameters

e partition E, edge probabilities 0 < ¢ < p <1, Q € (0,1) and m as in Figure 12

e refinement parameter s and number of vertices n = 3ks - 3;7—1 for some ¢ € N satisfy that
m < 3'ks < n < poly(N)

e mean parameter y € (0, 1) as in Figure 12

1. Symmetrize and Plant Diagonals: Compute Mpp; € {0,1}™*™ and F as in Step 1 of Figure
12.

2. Pad and Further Partition: Form Mpp, and F” as in Step 2 of Figure 12 modified so that
Mpp, is a 3'ks x 3'ks matrix and each F/ has size 3's. Let F'* be the partition of [3'ks]
into ks parts of size 3! by refining F” by splitting each of its parts into s parts of equal size
arbitrarily.

3. Bernoulli Rotations: Let F° be a partition of [n] into ks equally sized parts. Now compute
the matrix My € R™"*"™ as follows:

(1) For each i,j € [k], apply TENSOR-BERN-ROTATIONS to the matrix (Mp)rs,ry With
matrix parameter A; = A; = K3, Bernoulli probabilities 0 < @ < p < 1, output
dimension £ (3" — 1), \; = Ay = 1/3/2 and mean parameter 4.

(2) Set the entries of (M) y, re to be the entries in order of the matrix output in (1).

4. Threshold and Output: Output the graph generated by Step 4 of Figure 12 modified so that
G’ has vertex set [n] and Mg is thresholded at /.

Figure 14: Reduction from k-partite planted dense subgraph to semirandom community recovery.

forall 1 <, 5 < ks. The tensorization property of total variation in Fact 15 now yields that
drv (L(Mg), L(Mg)) = O ((3'ks) ™)
under both (1) and (2), proving the lemma. |

We now complete the proof of Theorem 96, which follows a similar structure as in Theorem 85.
Proof [Proof of Theorem 96] Let the steps of .A to map inputs to outputs as follows

(G, E) 25 (Mppy, F) 22 (Mppo, F*) 22 (Mg, F°) 24 @
Under H1, consider Lemma 16 applied to the following sequence of distributions

7)0 = gE<N7k7p7 Q)
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P1 = My xjm] (S x S,Bern(p), Bern(Q)) where S ~ Uy, (F)
Py = M[Stks}x[?)tks](s X S,Bern(p),Bern(Q)) where S ~ ugtks(FS)

2
Ps = ?ﬂ - vg,ps po(K34)vs s po(Ksy) T+ N(0,1)™"  where S ~ Ul (F?)
7)4 = TSI(H, K7 K/27 1/27 K1, 2, ,u3)

Let Cp = max {%, %} and consider setting

2N? Cok?
61:4k-exp<—Q )—I— @

— — t -1 .
48pkm o ©2=0, @=0(3%s)"") and €=0

Lemma 23 implies this is a valid choice of €1, Ao is exact so we can take e = 0 and €3 is valid
by applying Lemma 97 and averaging over S ~ U%,, (F*) using the conditioning property of total
variation in Fact 15. Now note that for each S the definition of vg ps po(K3 ;) implies that there are

sets S1 and Sy with |S1| = (3! — 1)k and | Ss| = % - k such that

u/3t ifi,j € S1
2;1 T M —M/3t if(i,j) 651 XSQ or (Z,j) GSQ X Sl
<3 . US,FS,FO(KS,t)US,FS7FO(K?),t) >ij - ﬁ—i_ 0 le’] e S2

—u/3Y i, ¢ (51U Sh)

for each 1 < 4,57 < n. Permuting the rows and columns of P3 therefore yields P, exactly with
€4 = 0. Lemma 16 thus establishes the first bound. Under H), consider the distributions

Po=G(N,q), Pi1=Bem(Q)®"*™, Py= Bern(Q)®3tks><3tks,
P3=N(0,1)®" and Py=G(n,1/2— 1)

As in Theorems 85 and 92, Lemmas 23 and 97 imply €; = 4k - exp (— gjﬁ;) and the choices of
€2, €3 and €4 above are valid. Lemma 16 now yields the second bound and completes the proof of

the theorem. n

We now add a simple final step to kPDS-TO-SEMI-CR, reducing to arbitrary Py # 1/2. The
guarantees for this modified reduction are captured in the following corollary.

Corollary 98 (Arbitrary Bounded F,) Define all parameters as in Theorem 96 and let Py €
(0,1) be such that n = min{Py,1 — Py} = Q(1). Then there is a poly(N) time reduction A from
graphs on N vertices to graphs on n vertices satisfying that

k
v (A(Ge(N. K, ) T510n, K K2 Po 2 20, 2p) = O i 706 4 (3 )
dry (A(G(N.q)), G (n, Py = 2npn)) = O (72N /bm) 4 (3s)~1 )
Proof This corollary follows from the same reduction in the first part of the proof of Corollary 88.

Consider the reduction A that adds a simple post-processing step to k-PDS-TO-SEMI-CR as follows.
On input graph G with N vertices:
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1. Form the graph Gy by applying k-PDS-TO-CR to G with parameters N, k, E/, £, n, s,t and p.
2. Form G as in A5 of Corollary 88.

This clearly runs in poly (V) time and the second step can be verified to map TS1(n, K, K/2,1/2, u1, 12, 1i3)
to TSI(n, K, K/2, Py, 2nu1, 2nua, 2nps) and G (n,1/2 — uy) to G (n, Py — 2nuy ) exactly. Apply-
ing Theorem 96 and Lemma 16 to each of these two steps proves the bounds in the corollary state-
ment. |

Summarizing the results of this section, we arrive at the desired computational lower bound for
SEMI-CR. The proof of the next theorem follows the usual recipe for deducing computational lower
bounds and is deferred to Appendix R.2.

Theorem 12 (Lower Bounds for SEMI-CR) If k and n are polynomial in each other with k =
Q(y/n)and 0 < Py < P1 < 1 where min{Py,1 — Py} = Q(1), then the k-PC conjecture or k-PDS
conjecture for constant 0 < q < p < 1 both imply that there is a computational lower bound for

SEMI-CR(n, k, P1, Py) at 53?(1_5032)2) = o(n/k?).

Appendix N. Tensor Principal Component Analysis

In this section, we: (1) give our reduction k-PST-TO-TPCA from k-partite planted sub-tensor to
tensor PCA; (2) combine this with the completing hypergraphs technique of Section J to prove our
main computational lower bound for the hypothesis testing formulation of tensor PCA, Theorem 10;
and (3) we show that Theorem 10 implies computational lower bounds for the recovery formulation
of tensor PCA. We remark that the heuristic at the end of Section C.3 yields the predicted computa-
tional barrier for TPCA. Specifically, the 2 norm for the data tensor E[X ] corresponding to k-HPC®
is ©(k*/?) which is ©(n*/*) just below the conjectured computational barrier for k-HPC?. Further-
more, the corresponding ¢ norm for Hy of TPCA? is (:)(Hns/ 2). Equating these norms correctly
predicts the computational barrier of § = ©(n~*/4).

Our reduction k-PST-TO-TPCA is shown in Figure 15, which applies dense Bernoulli rotations
with Kronecker products of the matrices K5 ; to the planted sub-tensor problem. The following
theorem establishes the approximate Markov transition properties of this reduction. Its proof is
similar to the proofs of Theorems 46 and 85. We omit details that are similar for brevity.

Theorem 99 (Reduction to Tensor PCA) Fix initial and target parameters as follows:

o Initial k-PST Parameters: dimension N, sub-tensor size k that divides N, order s, a partition
F of [N] into k parts of size N/k and edge probabilities 0 < ¢ < p < 1 where min{q,1 —

qt = Qn(1).
e Target TPCA Parameters: dimension n and a parameter t = t(N) € N satisfying that
n<D=2k2'-1), N<2% and t=O(logN)
and target level of signal 0 € (0,1) where
g < c-0
T 2st/2.\/t +1og(p — q) !

for a sufficiently small constant ¢ > 0, where § = min {log <§) ,log <i%g> }
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Algorithm k-PST-TO-TPCA

Inputs: k-pST instance T' € {0,1}V * of order s with planted sub-tensor size & that divides N, and
the following parameters

e partition F' of [N] into k parts of size N/k and edge probabilities 0 < ¢ <p < 1

e output dimension » and a parameter ¢ € N satisfying that

n<D=2k(2"-1), N<2'% and t=O(logN)

o target level of signal 6 € (0, 1) where

c-0
0 <
2172 i+ Toglp— )

for a sufficiently small constant ¢ > 0, where § = min {log (g) ,log (}%g) }

1. Pad: Form Tpp € {0,1}2'%*2'k by embedding T as the upper left principal sub-tensor of
Tpp and then adding 2'k— N new indices along each axis of 7" and filling all missing entries
with i.i.d. samples from Bern(q). Let F/ be F; with 2! — N/k of the new indices. Sample
k random permutations o; of F; independently for each 1 < i < k and permute the indices
along each axis of Tpp within each part F; according to o;.

2. Bernoulli Rotations: Let F" be a partition of [D] into k equally sized parts. Now compute
the matrix Tx € RX®" as follows:

(1) For each block index (iy,is,...,i5s) € [k], apply TENSOR-BERN-ROTATIONS to the
tensor (7pp) FlFY ) with matrix parameters A; = Ay = -+ = A, = Ky, rejec-
tion kernel parameter Ryx = (2'k)*, Bernoulli probabilities 0 < Q < p < 1, output
dimension D/k = 2(2! — 1), singular value upper bounds A\; = Ay = - = A\, = V2
and mean parameter ;. = 6 - 25(t+1/2,

(2) Set the entries of (Tr)p g ... pv to be the entries in order of the tensor output in
1 2 s

(1).

3. Subsample, Sign and Outpur: Randomly choose a subset U C [D] of size |U| = n and
randomly sample a vector b ~ Unif [{—1,1}]®” output the tensor b%* © Ty restricted to the
indices in U, or in other words (b** © Tx) ;. 7> Where © denotes the entrywise product
of two tensors.

Figure 15: Reduction from k-partite Bernoulli planted sub-tensor to tensor PCA.

Let A(T) denote k-PST-TO-TPCA applied to the tensor T with these parameters. Then A runs in
poly(N) time and it follows that

dry (A (M[N}s (SS,Bern(p),Bern(q))) , TPCA} (7, 9)) =0 (k*252*23t)
drv (A (M- (Bemn(qa) , N (0,1)57") = O (k2272)
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forany set S C [N] with |SN E;| = 1foreach1 <1 <k.

We now prove two lemmas stating the guarantees for the dense Bernoulli rotations step and
final step of k-PST-TO-TPCA. Define vg s+ (M) as in Section I.1. Note that the matrix K5 ; has
dimensions 2(2¢ — 1) x 2¢. The proof of the next lemma follows from the same argument as in the
proof of Lemma 47.

Lemma 100 (Bernoulli Rotations for TPCA) Let F' and F" be fixed partitions of [2'k] and [ D]
into k parts of size 2" and 2(2" — 1), respectively, and let S C [2'k] where |S N F!| = 1 for each
1 <4 < k. Let A, denote Step 2 of k-PST-TO-TPCA with input Tpp and output Tr. Suppose that
D, q and 0 are as in Theorem 99, then it follows that

dTV(Az (M[th]s (SS,Bern(p),Bern(q))) ,
r <2st/29 g (Ko g)®* + N0, 1)®D®s>) = O (k2272t)
dry (./42 (M[th]s (Bern(q))) , N(O, 1)®D®S> =0 (k}_282_25t)

Proof This lemma follows from the same argument as in the proof of Lemma 47. We outline the
details that differ. Specifically, consider the case in which Tpp ~ Mats (S, Bern(p), Bern(q)).
Observe that

SNF!

127 °

"7SﬁFi/S)7p7Q>

17

(TPDz)Fz‘/lvFi’Q:-wF{S ~ PB (Fi’1 X FZ/2 X e X Fz'/sv (Sn F!

for all (41,42, ...,15) € [k]®. The singular value upper bound on K3 ; in Lemma 30 and the same
application of Corollary 27 as in Lemma 47 yields that

— ®s
drv ((TR)F;Q,...,F;;, L (2 2y (Kat). sy, @+ @ (Kap). sy, + N(O, 1)®(P/k) ))
-0 (k—382—28t)
for all (i1,i2,...,45) € [K]® since [[7_; \; = 25/2. Note that the exponent of 8 is guaranteed
by changing the parameter in Gaussian rejection kernels from n to n'0 to decrease their total vari-

ation error. Note that this step still runs in poly(n'®) time. Combining this bound for all such
(41,192, ...,1s) and the tensorization property of total variation in Fact 15 yields that

drv (TR, L (2_8/2M g (Kap)®® 4+ N(0, 1)®D®s)> =0 (k7227%")

Combining this with the fact that z = 6 - 25¢+1)/2 now yields the first bound in the lemma. The

second bound follows by the same argument but now applying Corollary 27 to the distribution

(Tpp2) g v~ Bern(q)(P/K)®" This completes the proof of the lemma. [
i1 is

-----

Lemma 101 (Signing for TPCA) Let F', F" and S be as in Lemma 100 and let p, q and 6 be as in
Theorem 99. Let A3 denote Step 3 of k-PST-TO-TPCA with input Tr and output given by the output
T of A. Then

Ay (21720 - vg o o (K,)®* + N(0,1)%P% ) ~ TRCAD (1, )

As (N(o, 1)®D®5) ~ N(0,1)87%
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Proof Suppose that T ~ L <25t/29 g (Ko p)®® + N(0, 1)®D®S> andletb ~ Unif [{—1,1}]®"
be as in Step 3 of A. The symmetry of zero-mean Gaussians and independence among the entries
of N'(0,1)®P%" imply that

b®5 o TR ~ L <2St/20 . U®s 4 b®s @N(O, 1)®D®S) —r (2515/20 . U®s +N(O, 1)®D®s)

where u = b ® vg g pr(Kay) and the two terms u®* and N'(0,1)®P%" above are independent.
Now note that each entry of vg g, rr(K2y) is either +2-t/2 by the definition of K ;. This implies
that 2!/24 is distributed as Unif [{—1, 1}]®” and hence that

LGP OTR) =L (0 %5+ (O, 1)®D®S) — 1pCad, (D, 0)

Subsampling the same set U of n coordinates of this tensor along each axis by definition yields
TPCA(n, ), proving the first claim in the lemma. The second claim is immediate by the fact that if
Tk ~ N(0,1)%P%" then it also holds that b ® Tx ~ N(0,1)®P®". This completes the proof of
the lemma. |

We now complete the proof of Theorem 99 by applying Lemma 16 as in Theorems 46 and 85.
Proof [Proof of Theorem 99] Define the steps of .A to map inputs to outputs as follows

(T, F) 2% (Top, F) 22 (Tx, ") 2 1/

Consider Lemma 16 applied to the following sequence of distributions

Po = Mins (5%, Bern(p), Bern(q))

P1 = M= (S°,Bern(p), Bern(q))  where S ~ Usey, (F)

Py = 2520 - vg pr g (Ko.)®* + N(0,1)2P° where S ~ Usej,(F)

P3 = TPCAH(n, 0)
Consider applying Lemmas 100 and 101 while averaging over S ~ U, (F') and applying the
conditioning property of total variation in Fact 15. This yields that we may take e; = 0, eg =

O (k:_252_25t) and e3 = 0. Applying Lemma 16 proves the first bound in the theorem. Now
consider the following sequence of distributions

Po = Minps (Bern(q)),  P1 = Miguys (Bern(q)), Pa = N(0, D®P® and  Ps = N(0,1)2"

Lemmas 100 and 101 imply we can again take ¢; = 0, e = O (k~2272%') and €3 = 0. The second
bound in the theorem now follows from Lemma 16. |

We now apply this theorem to deduce our main computational lower bounds for tensor PCA by
verifying its guarantees are sufficient to apply Lemma 60.

Theorem 10 (Lower Bounds for TPCA) Let n be a parameter and s > 3 be a constant, then the
k-HPC® or k-HPDS® conjecture for constant 0 < q < p < 1 both imply a computational lower
bound for TPCA®(n,0) at all levels of signal § = 6(n~"/*) against poly(n) time algorithms A
solving TPCA®(n, §) with a low false positive probability of P, [A(T) = H1] = O(n™%).
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Proof We will verify that the approximate Markov transition guarantees for k-PST-TO-TPCA in
Theorem 99 are sufficient to apply Lemma 60 for the set of P = TPCA®(n, ) with parameters
(n,6) that fill out the region # = (n°/*). Fix a constant pair of probabilities 0 < Q < p < 1,
a constant positive integer s and any sequence of parameters (n, ) where 6 € (0, 1) is implicitly a

function of n with .

<
— ws/2ps/t/logn
for sufficiently large n, an arbitrarily slow-growing function w = w(n) — oo and a sufficiently

small constant ¢ > 0. Now consider the parameters (/V, k) and input ¢ to k-PST-TO-TPCA defined
as follows:

e let t be such that 2 is the smallest power of two greater than w+/n; and
e let k = [w™'y/n] and let N be the largest multiple of k less than n.

Now observe that these choices of parameters ensure that k divides N, it holds that & = o(v/N) and
N <n<2'%<D=2k(2"-1)

Furthermore, we have that N = ©(n) and 2° = ©(w+/n). For a sufficiently small choice of ¢ > 0,
we also have that

c -9
0 < <
~ w2 logn T 2st/2 .\ /t +log(p — Q)]

where ¢ > 0 is the constant and § is as in Theorem 99. This verifies all of the conditions needed
to apply Theorem 99, which implies that k-PST-TO-TPCA maps k-PST% (NN, k, p, Q) to TPCA®(n, 6)
under both Hy and H; to within total variation error O (k~2$2725") = O(n?%). By Lemma 60, the
k-HPDS?® conjecture for k-HPDS,(N', k', p,q) where N = N’ — (s = 1)N'/k' and k = k' — s+ 1
now implies that there are is no poly(n) time algorithm A solving TPCA®(n, #) with a low false
positive probability of Py, [A(T) = Hi] = O(n~*). This completes the proof of the theorem. W

We conclude this section with the following lemma observing that this theorem implies a com-
putational lower bound for estimating v in TPCA®(n, §) where § = &(n~%/2) and § = 6(n—/%).
Note that the requirement = &(n~"/2) is weaker than the condition § = &(n(1=)/2), which is
necessary for recovering v to be information-theoretically possible, as discussed in Section B.10.
The next lemma shows that any estimator yields a test in the hypothesis testing formulation of tensor
PCA that must have a low false positive probability of error, since thresholding (0, T') where © is an
estimator of v, yields a means to distinguish Hy and H; with high probability. We remark that the
requirement (v, 0) = Q(]|v||2) is weaker than the condition ||v — © - \/n|l2 = o(y/n) when ¥ is a
unit vector and v € {—1,1}". Thus any estimation algorithm with ¢ error o(y/n), directly yields
an algorithm Ag satisfying the conditions of the lemma.

Lemma 102 (One-Sided Blackboxes from Estimation in Tensor PCA) Letr s > 2 be a fixed
constant and suppose that there is a poly(n) time algorithm Ag that, on input sampled from
0v®s + N(0,1)%"" where v € {—1,1}" is fixed but unknown to Ap and 0 = w(n~/2\/slogn),
outputs a unit vector v € R™ with (v,0) = Q(||v||2). Then there is a poly(n) time algorithm Ap
solving TPCA®(n, 0) with a low false positive probability of P, [Ap(T) = Hi] = O(n™%).
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Proof Let 7" be an instance of TPCA®(n, ) with T = v®® + G under H; and T = G under H
where G ~ N(0,1)®"*° . Consider the following algorithm Ap for TPCA®(n, 0):

1. Independently sample G’ ~ A(0,1)®""" and form T} = \%(T—i— G)and T, = %(T -G).

2. Compute ©(77) as the output of Ag applied to 77.
3. Output Hy if (6(11)%%,Ty) < 2+/slogn and output H; otherwise.

First note that the entries of %(G + G’) and %(G — (') are jointly Gaussian but uncorrelated,
which implies that these two tensors are independent. This implies that 77 and 75 are independent.
Since ©(7}) is a unit vector and independent of T, it follows that (¢(77)®%, T5) is distributed as

N(0,1) conditioned on (74 if T is distributed according to Hy of TPCA®(n, #). Now we have that

Py, [Ap(T) = Hy] = P |(6(11)®*, Tn) > 2¢/s1og n] — 0(n~2)

where the second equality follows from standard Gaussian tail bounds. If 7" is distributed according
to Hy, then (9(T1)%%,To) ~ N(0(6(T1),v)%,1). In this case, Ag ensures that (0(T}),v)* =
Q(n®/?) since ||v||2 = \/n, and therefore §(2(T}), v)* = w(y/slogn). It therefore follows that

Py, [Ap(T) = Ho] < P [(6(11)%5, To) — 0(6(T1),v)* < —21/ 1ogn] — O(n~%)

Thus Ap has Type I+1I error that is o(1) and the desired low false positive probability, which
completes the proof of the lemma. |

Appendix O. Universality of Lower Bounds for Learning Sparse Mixtures

In this section, we combine our reduction to ISGM from Section 1.1 with symmetric 3-ary rejection
kernels, which were introduced and analyzed in Section F.3. We remark that the k-partite promise in
k-PDS is crucially used in our reduction to obtain this universality. In particular, this promise ensures
that the entries of the intermediate ISGM instance are from one of three distinct distributions, when
conditioned on the part of the mixture the sample is from. This is necessary for our application of
symmetric 3-ary rejection kernels. An overview of the ideas in this section can be found in Section
C.7.

Our general lower bound holds given tail bounds on the likelihood ratios between the planted
and noise distributions, and applies to a wide range of natural distributional formulations of learning
sparse mixtures. For example, our general lower bound recovers the tight computational lower
bounds for sparse PCA in the spiked covariance model from Gao et al. (2017), Brennan et al.
(2018) and Brennan and Bresler (2019). The results in this section can also be interpreted as a
universality principle for computational lower bounds in sparse PCA. We prove the approximate
Markov transition guarantees for our reduction to GLSM in Section O.1 and discuss the universality
conditions needed for our lower bounds in Section O.2.
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Algorithm k-BPDS-TO-GLSM

Inputs: Matrix M € {0,1}™*", dense subgraph dimensions k,, and k,, where k,, divides »n and
the following parameters

e partition F', edge probabilities 0 < ¢ < p < 1 and w(n) as in Figure 9

e target GLSM parameters (N, k,,,, d) satisfying wN < n and m < d, a mixture distribution D
and target distributions {P, },cr and Q

1. Map to Gaussian Sparse Mixtures: Form the sample Zy, Zs, ..., Zx € R? by setting
(Z1,Zs,...,ZN) < k-BPDS-TO-ISGM (M, F')

where k-BPDS-TO-ISGM is applied with » = 2, slow-growing function w(n), t =

ky
nlogn

[log,(n/ky)], target parameters (N, k,,,d), e = 1/2 and u = ¢; for a sufficiently

small constant ¢; > 0.

2. Truncate and 3-ary Rejection Kernels: Sample v1,vs, ..., vn ~iiq D, truncate the v; to lie
within [—1, 1] and form the vectors X;, X, ..., Xy € R? by setting

Xij <= 3-SRK(TR7(Zi5), Pus Py, Q)

for each i € [N] and j € [d]. Here 3-SRK is applied with N = [4log(dN)] iterations and
with the parameters

0= B(r) ~ (), = 5 (B4 )~ B — ),
pa = 5 (2-B(r) — B(r + ) — B(r — 1)

3. Output: The vectors (X1, Xo, ..., Xy).

Figure 16: Reduction from k-part bipartite planted dense subgraph to general learning sparse mixtures.

0.1. Reduction to Generalized Learning Sparse Mixtures

In this section, we combine symmetric 3-ary rejection kernels with the reduction k-BPDS-TO-ISGM
to map from k-BPDS to generalized sparse mixtures. The details of this reduction k-BPDS-TO-
GLSM are shown in Figure 16. As mentioned in Sections C.7 and F.3, to reduce to sparse mixtures
near their computational barrier, it is crucial to produce multiple planted distributions. Previous
rejection kernels do not have enough degrees of freedom to map to three output distributions given
their binary inputs. The symmetric 3-ary rejection kernels introduced in Section F.3 overcome this
issue by mapping three input to three output distributions. In particular, we will see in this section
that their approximate Markov transition guarantees established in Lemma 25 exactly lead to tight
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computational lower bounds for GLSM. Throughout this section, we will adopt the definitions of
GLSM and GLSM p introduced in Sections B.11 and E.3.

In order to establish computational lower bounds for GLSM, it is crucial to define a meaningful
notion of the level of signal in a set of target distributions D, Q and {P, },cr. This level of signal
was defined in Section B.11 and is reviewed below for convenience. We remark that this definition
will turn out to coincide with the conditions needed to apply symmetric 3-ary rejection kernels. This
notion of signal also implicitly defines the universality class over which our computational lower
bounds hold.

Definition 13 (Universal Class and Level of Signal) Given a parameter N, define the collection
of distributions U = (D, Q, {Py, },er) implicitly parameterized by N to be in the universality class
UC(N) if

e the pairs (P,, Q) are all computable pairs, as in Definition 24, for all v € R;
e D is a symmetric distribution about zero and P,p[v € [-1,1]] =1 — o(N~1); and

e there is a level of signal 74 € R such that for all v € [—1, 1] such that for any fixed constant
K >0, it holds that

P, . dP_, | P, . dP_,
10 70 (x)| = On (1) and dQ(x)+ 70

with probability at least 1 — O (N*K) over each of P, P_, and Q.

(.%') -2 = ON (TZ?{)

(z) =

In our reduction k-BPDS-TO-ISGM, we truncate Gaussians to generate the input distributions
Tern. In Figure 16, TR, : R — {—1,0, 1} denotes the truncation map given by

1 ife>|7|
TR-(z)=4¢ 0 if —|7| <z <|7|
-1 ife < —|7|

The following simple lemma on truncating symmetric triples of Gaussian distributions will be im-
portant in the proofs in this section. Its proof is a direct computation and is deferred to Appendix
R.2.

Lemma 103 (Truncating Gaussians) Let 7 > 0 be constant, . > 0 be tending to zero and let
a, |41, o be such that

TR (N (1, 1)) ~ Ten(a, s, i)
TR’F(N(_:U‘v 1)) ~ TCI'II(CL, —H1, NQ)
TR, (N(0,1)) ~ Tern(a,0,0)

Then it follows that a > 0 is constant, 0 < py = O(u) and 0 < gy = O(u?).

We now will prove our main approximate Markov transition guarantees for k-BPDS-TO-GLSM.
The proof follows from combining Theorem 46, Lemma 25 and an application of tensorization of
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Theorem 104 (Reduction from k-BPDS to GLSM) Let n be a parameter and w(n) = w(1) be a
slow-growing function. Fix initial and target parameters as follows:

e Initial k-BPDS Parameters: vertex counts on each side m and n that are polynomial in one an-
other, dense subgraph dimensions k,, and k, where k,, divides n, constant edge probabilities
0 < ¢ < p < 1and a partition F of [n].

e Target GLSM Parameters: (N, d) satisfying wN < n, N > n¢ for some constant ¢ > 0 and
m < d < poly(n), target distribution collection U = (D, Q,{P, }Ler) € UC(N) satisyfing
that

n

O<my<c-
nlogn

for a sufficiently small constant ¢ > (.

Let A(M) denote k-BPDS-TO-GLSM applied to the adjacency matrix M with these parameters.
Then A runs in poly(m,n) time and it follows that

drv (A (M[m]x[n](s x T,p, q)) , GLSMp(N, S, d, Z/l)) =o(1)+ 0O (w_l + k22 T N_3d_3)
dry <A (Bern(q)®™*") , Q@de) = 0 (k7?m™ % 4 n~2 4 N=3d79)

for all subsets S C [m] with |S| = ky, and subsets T C [n] with |T| = ky, and |T N F;| = 1 for
each 1l < i <k,.

Proof Let A; denote Step 1 of A with input M and output (Z1, Zs,...,Zy). First note that
2t = O(n/ky,) by the definition of ¢ and logm = ©(logn) since m and n are polynomial in one
another. Thus for a small enough choice of ¢; > 0, we have

kn 2—(t+1)/2 » 1— q
w=cy- < - min {log <> ,log <>}
nlogn = 2,/6log(k,m - 2) + 2log(p — q) ! q L-p

since p and ¢ are constants. Therefore u satisfies the conditions needed to apply Theorem 46 to Aj;.
Now let A5 denote Step 2 of A with input (Z1, Zs, ..., Zy) and output (X1, Xo,..., Xy). First
suppose that (Z1, Zs, ..., Zn) ~ I1SGMp(N, S, d, 1, 1/2) or in other words where

Zi ~iid MIXy g (N (p - 1, 1g), N(—p - 1g, 1q))

For the next part of this argument, we condition on: (1) the entire vector v = (v, v9,...,VUN);
and (2) the subset P C [N] of sample indices corresponding to the positive part N (- 1g, 1)
of the mixture. Let C(v, P) denote the event corresponding to this conditioning. After truncating
according to TR, by Lemma 103 the resulting entries are distributed as

Tern(a, 1, o)  if (i,5) € S x P
TR, (Zij) ~ { Tern(a, —p1, pu2) if (i,5) € S x PY
Tern(a, 0,0) ifig S

Furthermore, these entries are all independent conditioned on (v, P). Since 7 is constant, Lemma
103 also implies that a € (0, 1) is constant, 3 = ©(p) and g = O(p?). Let S, be

dP, dP_, 2| pa| dP, dP_,
dQ (@) - dQ ()| and max{a,1 —a} = dQ (@) + dQ (@) - 2’}

Syz{xexzzwz‘
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as in Lemma 25. Since U = (D, Q,{P,},er) € UC(N) has level of signal 7y < ¢ - u for a
sufficiently small constant ¢’ > 0, we have by definition that {x € S,,} occurs with probability at
least 1 — 61 where §; = O(n*4*K1) over each of P,,, P_,, and Q, where K; > 0 is a constant for
which d = O(n1). Here, we are implicitly using the fact that N > n¢ for some constant ¢ > 0.
Now consider applying Lemma 25 to each application of 3-SRK in Step 2 of 4. Note that

lp1|~t = O(y/nlogn) and |us|~! = O(nlogn) since u = Q(+/kn/nlogn) and k, > 1. Now
consider the d-dimensional vectors X}, X}, ..., X}, with independent entries distributed as

P, if(i,j)e SxP

Xj; ~ Py, if(i,j) €S xPY

Q ifi ¢S

The tensorization property of dry from Fact 15 implies that

dTV (‘C(X17X27-- XN’V7P)"C(X{7X57aX],V|V7P))

< ZZdTV (Xijlv, P), L(X];|v, P))

||M2

ZdTV 3 SRK(TRT( Z]) 'P]/17P—V17 Q)aE(lej‘V7 P))

IN

- - 1 B B Nit
Nd 261 (14 1| ™! + el 1)+<2+51 (T+ |pal ™" + el 1)) ]

— 0 (n 2+ N3

since N < n, §; = O(n~*d~!), N;y = [4log(dN)] and by the total variation upper bounds in
Lemma 25.

We now will drop the conditioning on (v, P) and average over v ~ D’ and P ~ Unif [Q[N ]}.
Observe that, when not conditioned on (v, P), it holds that

(X1, X5, ..., XN) ~ GLSMp (N, S,d, (D', Q,{P,}ver))

where D’ is D conditioned to lie in [—1,1]. Note that here we used the fact that D and therefore
D' is symmetric about zero. Coupling the latent 11,15, . .., vy sampled from D and D’ and then
applying the tensorization property of Fact 15 yields that

dTV (GLSMD (N7 Sa d7 (Dlu Q? {PV}I/ER)) 7GLSMD (N7 Sa d7 (D7 Q? {PV}Z/ER)>>
< dry(DP", D) < N - dpy(D, D) < N - o(N~") = o(1)
where drv(D, D) = o(N~1) follow from the conditioning property of dry from Fact 15 and the

fact that P,.p[v € [~1,1]] = 1 — o(N~1). The triangle inequality and conditioning property of
drv in Fact 15 now imply that

dry (As (1ISGMp(N, S, d, u, 1/2)) ,GLSMp (N, S, d,U))
< dyv (L(X1, X2, ..., XN), L(X], X5, ..., X)) +drv (L£(X], X3, ..., X}),GLSMp (N, S, d,U))
< E,p EPNUnif[Q[N]] drv (L(X1,Xa, ..., XN|v, P), L(X1, X3,..., XN|v, P))
+ drv (GLSMp (N, S,d, (D', Q,{P,}ver)) , GLSMp (N, S, d,U))
=0o(1)+0 (n 2+ N"%d7?)
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Now consider the case when Z1, Za, ..., Zn ~iia. N(0, I;). Repeating the argument above with
S = () and observing that (X, X5, ..., X)) ~ Q% yields that

dry (A (N (0, 1)%N), @%FN) = 0 (n2 + N34 7?)

We now apply Lemma 16 to the steps .4; and Ay under each of Hy and Hj, as in the proof of
Theorem 46. Under H1, consider Lemma 16 applied to the following sequence of distributions

Po = Mppxjn(S X T, p,q), P1=1SGMp(N, S,d,;1,1/2) and P2 = GLSMp (N, S,d,U)
By Theorem 46 and the argument above, we can take
a=0w ' +E*m A +n 2+ N 2d%) and e=0(1)+0 (n 2+ N d?)
By Lemma 16, we therefore have that
drv (.A (/\/l[m]x[n](S x T, p, q)) , GLSMp(N, S, d,Z/l)) =o(1)+0 (w_l +k2mm 2 T 4 N_3d_3)

which proves the desired result in the case of H;. Under Hy, similarly applying Theorem 46, the
argument above and Lemma 16 to the distributions

Po = Bern(q)®™*", Py =N(0,1)%N and Py = QFN
yields the total variation bound
drv <A (Bern(q)®™*") , Q@de) = 0 (k7?m™ % 4 n~2 + N=3d79)
which completes the proof of the theorem. |

We now use this theorem to deduce our universality principle for lower bounds in GLSM. The
proof of this next theorem is similar to that of Theorems 4 and 82 and is deferred to Appendix R.2.

Theorem 11 (Computational Lower Bounds for GLSM) Let n, k and d be polynomial in each
other and such that k = o(\/d). Suppose that the collections of distributions U = (D, Q,{P,},cr)
is in UC(n). Then the k-BPC conjecture or k-BPDS conjecture for constant 0 < q < p < 1 both
imply a computational lower bound for GLSM (n, k, d,U) at all sample complexities n = o (TJ4).

0.2. The Universality Class UC(n) and Level of Signal 7,

The result in Theorem 11 shows universality of the computational sample complexity of n =
Q(m, %) for learning sparse mixtures under the mild conditions of UC(n). In this section, we discuss
this lower bound, its implications, the universality class UC(n) and the level of signal 7.

Remarks on UC(n) and 77, The conditions for Y = (D, Q,{P,},ecr) € UC(n) and the defini-
tion of 774 have the following two notable properties.

e They are defined in terms of marginals: The class UC(n) and 74 are defined entirely in terms
of the likelihood ratios dP, /dQ between the planted and non-planted marginals. In partic-
ular, they are independent of the sparsity level k£ and other high-dimensional properties of
the distribution GLSM constructed from the P, and Q. Theorem 11 thus establishes a com-
putational lower bound for GLSM at a sample complexity entirely based on properties of the
marginals of P, and Q.
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e Their dependence on n is negligible: The parameter n only enters the definitions of UC(n)
and 7, through requirements on tail probabilities. When the likelihood ratios dP, /dQ are
relatively concentrated, the dependence of the conditions in UC(n) and 7, on n is nearly neg-
ligible. If the ratios dP,/dQ are concentrated under P, and Q with exponentially decaying
tails, then the tail probability bound requirement of O(n =) only appears as a polylog(n)
factor in 774. This will be the case in the examples that appear later in this section.

D and Parameterization over [—1,1]. D and the indices of P, can be reparameterized without
changing the underlying problem. The assumption that D is symmetric and mostly supported on
[—1,1] is for notational convenience. As in the case of 7, and the examples later in this section,
the tail probability requirement of o(n 1) for D only appears as a polylog(n) factor in the compu-
tational lower bound of n = Q(TJ ) if D is concentrated with exponential tails.

While the output vectors (X7, X2, ..., Xx) of our reduction k-BPDS-TO-GLSM are indepen-
dent, their coordinates have dependence induced by the mixture D. The fact that our reduction sam-
ples the v; implies that if these values were revealed to the algorithm, the problem would still remain
hard: an algorithm for the latter could be used together with the reduction to solve k-PC. However,
even given the v; for the ¢th sample, our reduction is such that whether the planted marginals in the
t1th sample are distributed according to P,, or P_,, remains unknown to the algorithm. Intuitively,
our setup chooses to parameterize the distribution D over [—1, 1] such that the sign ambiguity be-
tween P, or P_,, is what is producing hardness below the sample complexity of n = Q(’TZ; 4).

Implications for Concentrated LLR. We now give several remarks on 74 in the case that the
log-likelihood ratios (LLR) log dP, /dQ(x) are sufficiently well-concentrated if z ~ Q or zz ~ P,,.
Suppose that U = (D, Q,{P,},er) € UC(n), fix some arbitrarily large constant ¢ > 0 and fix
some v € [—1,1]. If Sg is the common support of the P, and Q, define S to be

dpy
dQ

_ dp—y
dQ

S:{xGSQ:c~Tu2' () (z)

and c¢- 7 > 'Cg;/(x)—l— dzlpéy(x) —2‘}

Suppose that 7, = Q(n~%) for some constant X > 0 and let ¢ be large enough that S occurs
with probability at least 1 — O(n %) under each of P,,, P_,, and Q. Note that such a constant ¢ is
guaranteed by Definition 13. Now observe that

1 dP, dP_,
dTV (’Pl/a’Pfu) = 5 'ExGQ H do (:L') - do (ZE) :|
1 dP, dP_, 1 1

<c my+0 () =0(w)
A similar calculation with the second condition defining S shows that
dry (MIXy 5 (P, P—), Q) = O (7)
If the LLRs log dP, /dQ are sufficiently well-concentrated, then the random variables

dQ

dQ

dp—y
dQ

0 @)+

(z) -2

()

@] wna |
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will also concentrate around their means if  ~ Q. LLR concentration also implies that this is true
if x ~ P, or x ~ P_,,. Thus, under sufficient concentration, the definition of the level of signal 7
reduces to the much more interpretable pair of upper bounds

dry (Py,P—,) = O () and drv (MIXy)5 (P, P-y),Q) = O (73)

These conditions directly measure the amount of statistical signal present in the planted marginals
‘P.,. The relevant calculations for an example application of Theorem 11 when the LLR concentrates
is shown below for sparse PCA. In Brennan et al. (2019a), various assumptions of concentration
of the LLR and analogous implications for computational lower bounds in submatrix detection
are analyzed in detail. We refer the reader to Sections 3 and 9 of Brennan et al. (2019a) for the
calculations needed to make the discussion here precise.

We remark that, assuming sufficient concentration on the LLR, the analysis of the k-sparse
eigenvalue statistic from Berthet and Rigollet (2013a) yields an information-theoretic upper bound
for GLSM. Given GLSM samples (X1, Xs, ..., X,,), consider forming the LLR-processed samples
Z; with

Zij = EVND {log (Z/(XU)}
for each i € [n] and j € [d]. Now consider taking the k-sparse eigenvalue of the samples
Z1,23,...,%y. Under sub-Gaussianity assumptions on the Z;;, the analysis in Theorem 2 of
Berthet and Rigollet (2013a) applies. Similarly, the analysis in Theorem 5 of Berthet and Rigollet
(2013a) continues to hold, showing that the semidefinite programming algorithm for sparse PCA
yields an algorithmic upper bound for GLSM. As information-theoretic limits and algorithms are
not the focus of this paper, we omit the technical details needed to make this rigorous.

In many setups captured by GLSM such as sparse PCA, learning sparse mixtures of Gaussians
and learning sparse mixtures of Rademachers, these analyses and our lower bound in Theorem 11
together yield a k-to-k? statistical-computational gap. How our lower bound yields a k? dependence
in the computational barriers for these problems is discussed below.

Sparse PCA and Specific Distributions. One specific example captured by our universality prin-
ciple and that falls under the concentrated LLR setup discussed above is sparse PCA in the spiked
covariance model. The statistical-computational gaps of sparse PCA have been characterized based
on the planted clique conjecture in a line of work (Berthet and Rigollet, 2013b,a; Wang et al., 2016b;
Gao et al., 2017; Brennan et al., 2018; Brennan and Bresler, 2019). We show that our universality
principle faithfully recovers the k-to-k? gap for sparse PCA shown in Berthet and Rigollet (2013b),
Berthet and Rigollet (2013a), Wang et al. (2016b), Gao et al. (2017) and Brennan et al. (2018)
assuming the k-BPDS conjecture. As discussed in Section K, also the k-BPC, k-PDS or k-PC con-
jectures therefore yields nontrivial lower bounds. We remark that Brennan and Bresler (2019) shows
stronger hardness based on weaker forms of the PC conjecture.

We show in the next lemma that sparse PCA corresponds to GLSM (n, k,d,U) for a proper
choice of U = (D, Q,{P,},er) € UC(n) and 7 so that the lower bound n = Q(7;,;*) exactly
corresponds to the conjectured computational barrier in Sparse PCA. Recall that the hypothesis
testing problem SPCA(n, k, d, §) has hypotheses

HO N (Xl, Xg, e ,Xn) ~ii.d. N(O,Id)
Hi: (X1, Xo, .oy Xn) ~iia N (0, I+ em;T)
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where v is a k-sparse unit vector in R? chosen uniformly at random among all such vectors with
nonzero entries equal to 1/v/k.

Lemma 105 (Lower Bounds for Sparse PCA) If, then SPCA(n, k,d,0) can be expressed as the
instance GLSM(n, k,d,U) where U = (D, Q,{P,},cr) € UC(n) is given by

1
Py =N 20/ 2B" 1) forallv e R, Q=A(0,1) and D=A (0,
k 4logn

and has valid level of signal 7y = © < 9(10,%")2> if it holds that 0(logn)? = o(k).
Proof Note thatif X ~ N (0, I+ QUUT) then X can be written as

1
X =24/0logn-gv+ G whereg~/\/(0, 410g> and G ~ N(0, I)
n

and where g and G are independent. This follows from the fact that the random variable on the
right-hand side above is a jointly Gaussian vector with covariance matrix given by the sum of the
covariance matrices of the individual terms. This observation implies that SPCA(n, k, d, 0) is exactly
the problem GLSM(n, k, d,U). Now observe that the probability that = ~ D satisfies x € [—1, 1] is

1 — o(n~1) by standard Gaussian tail bounds. Fix some v € [~1,1] and let t = 2v gk;ﬁg". Note
that

dp, (2) — dP_,
dQ o

if |tx| = o(1). As long as z = O(y/logn), it follows that |tz| = O(7) = o(1) from the definition

of 74 and fact that #(logn)? = o(k). Note that + = O(y/logn) occurs with probability at least

1 — O(n=K) for any constant K > 0 under each of P, where v € [~1,1] and Q by standard
Gaussian tail bounds. Now observe that

dpy( ) + dP—V
x

dQ do
holds if |tx| = o(1), which is true as long as * = O(y/logn) and thus holds with probability

1 — O(n™X) for any fixed K > 0. Since t* = O(73) for any v € [—1, 1], this completes the proof
that U/ € uc(n) with level of signal 7. [ |

<x>' = [t — 72| = @ (e

(x) o 2‘ _ ’et:c—tz/Q + e—tx—t2/2 _9| = @(tQ)

Combining this lemma with Theorem 11 yields the k-BPDS conjecture implies a computational
lower bound for Sparse PCA at the barrier n = 6(k%/62) as long as 6(logn)? = o(k) and k =
o(v/d), which matches the planted clique lower bounds in Berthet and Rigollet (2013b), Berthet
and Rigollet (2013a), Wang et al. (2016b), Gao et al. (2017) and Brennan et al. (2018). Similar
calculations to those in the above corollary can be used to identify the computational lower bound
implied by Theorem 11 for many other choices of U = (D, Q, {P, },er) € UC(n). Some examples
are:

e Balanced sparse Gaussian mixtures where Q = N (0, 1), P, = N (0v, 1) where D is any sym-
metric distribution over [—1, 1] can be shown to satisfy that 7, = © (6+/log n) if 6y/logn =

o(1).
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e The Bernoulli case where @ = Bern(1/2), P, = Bern(1/2 + 6v) and D is any symmetric
distribution over [—1, 1] can be shown to satisfy that 7, = © (0) if § < 1/2.

e Sparse mixtures of exponential distributions where Q = Exp(}), P, = Exp(A + 0v) and D
is any symmetric distribution over [—1, 1] can be shown to satisfy that 7, = © (9)\_1 log n)
if it holds that #log n = o(\).

e Sparse mixtures of centered Gaussians with difference variances where Q@ = N (0,1), P, =
N (0,1 + Ov) and D is any symmetric distribution over [—1, 1] can be shown to satisfy that
Ty = © (Alogn) if Ologn = o(1).

We remark that 7, can be calculated for many more choices of D, Q and P, using the computations
outlined in the discussion above on the implications of our result for concentrated LLR.

Appendix P. Computational Lower Bounds for Recovery and Estimation

In this section, we outline several ways to deduce that our reductions to the hypothesis testing
formulations in the previous section imply computational lower bounds for natural recovery and
estimation formulations of the problems introduced in Section 3. We first introduce a notion of
average-case reductions in total variation between recovery problems and note that most of our
reductions satisfy these stronger conditions in addition to those in Section E.2. We then discuss al-
ternative methods of obtaining hardness of recovery and estimation in the problems that we consider
directly from computational lower bounds for detection.

In the previous section, we showed that lower bounds for our detection formulations of RSME
and GLSM directly imply lower bounds for natural estimation and recovery variants, respectively. In
Section N, we showed that our lower bounds against blackboxes solving the detection formulation
of tensor PCA with a low false positive probability of error directly implies hardness of estimating v
in {5 norm. As discussed in Section B.5, the problems of recovering the hidden partitions in GHPM
and BHPM have very different barriers than the testing problem we consider in this work. In this
section, we discuss recovery and estimation hardness for the remaining problems from Section 3.

P.1. Our Reductions and Computational Lower Bounds for Recovery

Similar to the framework in Section E.2 for reductions showing hardness of detection, there is a
natural notion of a reduction in total variation transferring computational lower bounds between re-
covery problems. Let P(n, 7) denote the recovery problem of estimating § € ©p within some small
loss £p (6, 6) < 7 given an observation from the distribution Pp (6). Here, n is any parameterization
such that this observation has size poly(n) and, as per usual, £p, Op and 7 are implicitly functions
of n. Define the problem P’( N, 7’) analogously. The following is the definition of a reduction in
total variation between P and P’.

Definition 106 (Reductions in Total Variation between Recovery Problems) A poly(n) time al-
gorithm A sending valid inputs for P(n,T) to valid inputs for P'(N,7') is a reduction in total
variation from P to P’ if the following criteria are met for all 6 € Op:

1. There is a distribution D(0) over Op: such that

drv (A(Pp(9)), Egpio) Pp(9')) = 0a(1)
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2. There is a poly(n) time randomized algorithm B(X,0") mapping instances X of P(n,7) and
0" e Op to 6 € Op with the following property: if X ~ Pp(0), ¢ is an arbitrary element of
supp D(0) and 0" is guaranteed to satisfy that {pi(0',0") < 7/, then B(X,0') outputs some 0
with Up(0,0) < T with probability 1 — 0, (1).

While this definition has a number of technical conditions, it is conceptually simple. A ran-
domized algorithm A is a reduction in total variation from P to P’ if it maps a sample from the
conditional distribution Pp () approximately to a sample from a mixture of Pp(6’), where the
mixture is over a distribution D(#) determined by . Furthermore, there must be an efficient way B
to recover a good estimate 6 of 6 given a good estimate 6’ of ¢ and the original instance X of P.
The reason that (2) must be true for any 6" € supp D(6) is that, to transfer recovery hardness from
P to P’, the algorithm B will be applied to the output &’ of a blackbox solving P’ applied to A(X).
In this setting, #” and X are dependent and allowing 6" € supp D(#) in the definition above accounts
for this. Note that, as per usual, .A must satisfy the properties in the definition above oblivious to
0. The following lemma shows that Definition 106 fulfills its objective and transfers hardness of
recovery from P to P’. Its proof is simple and deferred to Appendix Q.1.

Lemma 107 Suppose that there is reduction A from P (n, 1) to P'(N, 7') satisfying the conditions
in Definition 106. If there is a polynomial time algorithm &' solving P'(N,7') with probability
at least p, then there is a polynomial time algorithm £ solving P(n, T) with probability at least
p — on(1).

The recovery variants of the problems we consider all take the form of P(n, 7). For example,
Op is the set of k-sparse vectors of bounded norm and /p is £ in MSLR, and Op is the set of
(n/k)-subsets of [n] and ¢p is the size of the symmetric difference between two (n/k)-subsets in
ISBM. In RSLR, Op can be taken to be the set of al (u,.A) where u is a k-sparse vector of bounded
norm and A is a valid adversary. The loss ¢p is then independent of .4 and given by the /5 norm on
u. Throughout Parts II and III, the guarantees we proved for our reductions among the hypothesis
testing formulations from Section E.3 generally took the form of condition (1) in Definition 106.
Some reductions had a post-processing step where coordinates in the output instance are randomly
permuted or subsampled, but these can simply be removed to yield a guarantee matching the form
of (1). In light of this and Lemma 107, it suffices to show that our reductions also satisfy condition
(2) in Definition 106. We outline how to construct these algorithms B for each of our remaining
problems below.

Reductions from BPC and k-BPC. All of our reductions from BPC and k-BPC to RSME, NEG-SPCA,
MSLR and RSLR map from an instance with left biclique vertex set S with |S| = k,, to an instance
with hidden vector u = = - km'/? - 14 for some v € (0,1). In the notation of Definition 106, D(.5)
is a point mass on u. We now outline how such reductions imply hardness of estimation up to any
g error 7' = o(7y).

To verify condition (2) of Definition 106, it suffices to give an efficient algorithm B recovering
S and the right biclique vertices S’ from the original BPC or k-BPC instance GG and an estimate
satisfying that || — ~ - e/ 152 < 7. Suppose that | S| = k,, and | S| are both w(log n). Let S
be the set of the largest k,,, entries of 4 and note that ||y~! - @ — fe 2 - 1s||2 = o(1), which can be
verified to imply that at least (1 — 0(1))ky, of S must be in S. A union bound and Chernoff bound
can be used to show that, in a BPC instance with left and right biclique sets S and .S’, there is no
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right vertex in [n]\S” with at least 3k, /4 neighbors in S with probability 1 — 0, (1) if k;,, > log n.
Therefore S’ is exactly the set of right vertices with at least 5k, /6 neighbors in S with probability
1 — o,(1). Taking the common neighbors of S’ now recovers S with high probability. Thus this
procedure of taking the k,,, largest entries S of i, taking right vertices with many neighbors in S and
then taking their common neighborhoods, exactly solves the BPC and k-BPC recovery problems. We
remark that hardness for these exact recovery problems follows from detection hardness, as bipartite
Erd6s-Rényi random graphs do not contain bicliques of left and right sizes w(log n) with probability
1 —o0,(1).

We remark that for the values of ~ in our reductions, the condition 7 = o(+y) implies tight
computational lower bounds for estimation in RSME, NEG-SPCA, MSLR and RSLR. In particular, for
RSME, MSLR and RSLR, we may take 7’ to be arbitrarily close to 7 in our detection lower bound
as long as 7/ = o(7). For NEG-SPCA, a natural estimation analogue is to estimate some k-sparse v
within 5 norm 7’ given n i.i.d. samples from A/(0, I; + vo ). For this estimation formulation, we
may take 7/ = o(1/#) where 6 is as in our detection lower bound.

Reductions from %k-PC. We now outline how to construct such an algorithm B for ISBM. We
only sketch the details of this construction as a more direct and simpler way to deduce hardness of
recovery for ISBM will be discussed in the next section. We remark that a similar construction of 5
also verifies condition (2) for our reduction to SEMI-CR.

For simplicity, first consider £-PDS-TO-ISBM without the initial TO-k-PARTITE-SUBMATRIX
step and the random permutations of vertex labels in Steps 2 and 4. Let S C [kr!] be the vertex set
of the planted dense subgraph in Mpp, and let F’ and F” be the given partitions of the indices [kr]
of Mpp, and the vertices [kr¢] of the output graph, respectively. Lemma 86 shows that the output
instance of ISBM has its smaller hidden community C'; of size k¢ on the vertices corresponding to
the negative entries of the vector vg g+ g (K, ). Note that, as a function of this set S, the mixture
distribution D(S ) is again a point mass. We now will outline how to approximately recover S given
a close estimate C of Cy. Suppose that (| is a kl-subset of [kr-¢] such that |C1NCy | > (1—o(1))kL.
Construct the vector ¢ given by

R 1 { 1 ifigCy

YT =) U—r itiely

Since ¢ = ©(r*~1), a direct calculation shows that || — vg v (Kyt)|2 = o(v/k). For each part
F!', consider the vector in R™ formed by restricting © to the indices in F and identifying these
indices with [r/] in increasing order. For each such vector, find the closest column of K ; to this
vector in ¢ norm. If the index of this column is j, add the jth smallest element of F to S. We
claim that the resulting set S contains at least (1 — o(1))k elements of S. The singular values of
K, ; computed in Lemma 30 can be used to show that any two columns of K ; are separated by an
¢y distance of 2(1). Any part I/ for which the correct j € S N F] was not added to S must have
satisfied that ¢ restricted to the part F" was an /5 distance of (1) from the corresponding restriction
of vg pr g (Kyp). Since |0 — vg pr g (Kyt)|l2 = o(vk), the number of such j incorrectly added
to S is o(k), verifying the claim.

Now consider k-PDS-TO-ISBM with its first step and the random permutations. Since the ran-
dom index permutation in TO-k-PARTITE-SUBMATRIX and the subsequent random permutations
in Steps 2 and 4 are all generated by the reduction, they can also be remembered and used in the
algorithm B recovering the clique of the input k-PC instance. When combined with the subroutine
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recovering S from C1, these permutations are sufficient to identify a set of k£ vertices overlapping
with the clique in at least (1 — o(1))k vertices. Now using a similar procedure to the one mentioned
above for BPC, together with the input k-PC instance G, this is sufficient to exactly recover the
hidden clique vertices.

P.2. Relationship Between Detection and Recovery

As shown in the previous section, computational lower bounds from recovery can generally be
deduced from our reductions because they are also reductions in total variation between recovery
problems. We now will outline how our computational lower bounds for detection all either directly
or almost directly imply hardness of recovery. As in Section 10 of Brennan et al. (2018), our
approach is to produce two independent instances X and X’ from Pp(#) without knowing 6, to use
X to recover an estimate 6 of # and then to verify that 6 is a good estimate of 6 using X'. If 6 is
confirmed to closely approximate 6 using X', then output Hy, and otherwise output Hy. This recipe
shows detection is easier than recovery as long as there are efficient ways to produce the pair (X, X’)
and to verify fisa good estimate given a fresh sample X’. In general, the purpose of cloning into the
pair (X, X) is to sidestep the fact that X and 6 are dependent random variables, which complicates
analyzing the verification step. In contrast, 6 and X’ are conditionally independent given 6. We
now show that this recipe applies to each of our problems.

Sample Splitting. In problems with samples, a natural way to produce X and X’ is to simply
split the set of samples into two groups. This yields a means to directly transfer computational
lower bounds from detection to recovery for RSME, NEG-SPCA, MSLR and RSLR. As we already
discussed one way our reductions imply computational lower bounds for the recovery variants of
these problems in the previous section, we only sketch the main ideas here.

We first show an efficient algorithm for recovery in MSLR yields an efficient algorithm for detec-
tion. Consider the detection problem MSLR(2n, k, d, 7), and assume there is a blackbox £ solving
the recovery problem MSLR(n, k, d, 7’) with probability 1 — 0,,(1) for some 7/ = o(7). If the sam-
ples from MSLR(2n, k, d, 7) are (X1, y1), (X2,y2), - - -, (Xon, Yon), apply E to (X1,91), ..., (Xn, Yn)
to produce an estimate .. Under H;, there is some true u = 7 - k~ /2 - 1 for some k-set S and it
holds that ||& — ul|2 = o(7). As in the previous section, taking the largest k coordinates of  yields
a set S containing at least (1 — o(1))k elements of S. The idea is now that we almost know the true
set S, detection using the second group of n samples essentially reduces to MSLR without sparsity
and is easy down to the information-theoretic limit. More precisely, consider using the second half
of the samples to form the statistic

2n
1 ~ \2
7= ey 2 W) (K0 g)

where v denotes the vector equal to v on the indices in S and zero elsewhere. Note that conditioned
on S, the second group of n samples is independent of S. Under Hy, it can be verified that E[Z] =0
and Var[Z] = O(n). Under Hj, it can be verified that ||4(|2 and [|iig]|2 are both (1 + o(1))7 and
furthermore that (u,ig) > (1 — o(1))7%. Now note that since y; = R; - (X;,u) + g; where
gi ~N(0,1) and R; ~ Rad, we have that
L \2 L \2 L \2 .
(yz2 -1 7'2) . <(XZ>S’US'> = <Xi,u)2 . <XZ,US> — 7'2 . <XI,US> + 2Rigi . (Xl,u> . <X1,u§>
L \2
+ (g7 = 1) - (Xi, ig)

2
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The last two terms are mean zero and the second term has expectation —(1+o0(1))7? since || g]|2 =

(140(1))7. Directly expanding the first term in terms of the components of X; yields that its expec-
tation is given by 2(u, tig)? + ||ul|3 - [|ig[|3 > 3(1 — o(1))7*. Combining these computations yields
that E[Z] > 2n(1 —o(1))72, and it can again be verified that Var[Z] = O(n). Chebyshev’s inequal-
ity now yields that thresholding Z at n7? distinguishes Hy and H; as long as 72,/n > 1. Since
the information-theoretic limit of the detection formulation of MSLR is when n = ©(klogd/7%)
(Fan et al., 2018), whenever this problem is possible it holds that 7‘2\/ﬁ > 1. Therefore, whenever
detection is possible, the reduction outlined above shows how to produce a test solving detection in
MSLR using an estimator with ¢ error 7/ = o(7).

Similar reductions transfer hardness of recovery to detection for NEG-SPCA, RSME and RSLR.
For NEG-SPCA and RSME, the same argument as above can be shown to work with the test statis-
tic given by Z = 22221 (Xi,0ig)?, and the same Z used above for MSLR suffices in the case of
RSLR. We remark that to show these statistics Z solve the detection variants of RSME and RSLR, it
is important to use detection formulations incorporating the exact form of our adversarial construc-
tions, which are ISGM in the case of RSME and the adversary described in Section I in the case of
RSLR. An arbitrary adversary could corrupt instances of RSME and RSLR to cause these statistics
Z to not distinguish between Hy and H;. Because our detection lower bounds apply to these fixed
adversaries rather than requiring an arbitrary adversary, this argument yields the desired hardness
of estimation for RSME and RSLR.

Post-Reduction Cloning. In problems without samples, producing the pair (X, X') requires an
additional reduction step. We now outline how to produce such a pair and verification step for
ISBM. The high-level idea is to stop our reduction to ISBM before the final thresholding step, apply
Gaussian cloning as in Section 10 of Brennan et al. (2018), then to continue the reduction with both
copies, eventually using one to verify the output of a recovery blackbox applied to the other. A
similar argument can be used to show computational lower bounds for recovery in SEMI-CR.
Consider the reduction k-PDS-TO-ISBM without the final thresholding step, outputting the ma-
trix Mg € RF"*Fr at the end of Step 3. Now consider adding the following three steps to this re-
duction, given access to a recovery blackbox £. More precisely, given an instance of ISBM(n, k, P11, P12, P22)

with
v

Py =P+, P12:PO_L and P22:P0+m

k—1
as in Section M.1, suppose € is guaranteed to output an (n/k)-subset of vertices C; C [n] with
|C1NC1| > (14 €)n/k? with probability 1 — o,,(1) for some e = €(1). Here, C is the true hidden
smaller community of the input ISBM instance. Observe that when e = ©(1), the blackbox £ has
the weak guarantee of recovering marginally more than a trivial 1/k fraction of Cy. This exactly
matches the notion of weak recovery discussed in Section B.4.

1. Sample W ~ N(0,1)®"*" and form

1_ 1

M,
V2

1

Mg +W) and M2 =
(R ) R \/i

(Mr — W)

2. Using each of M} and Mg, complete the reduction k-PDS-TO-ISBM omitting the random
permutation in Step 4, and complete the additional steps from Corollary 88 replacing p with
1/\/2. Let the two output graphs be G and G2.
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3. Let C} be the output of & applied to G'. Output Hy if the subgraph of G? restricted to C1 has
at least M edges, and output H; otherwise.

We now outline how this solves the detection variant of ISBM. Let C be the true hidden smaller
community of the instance that k-PDS-TO-1SBM would produce if completed using Mg. We claim
that G! and G? are o(1) total variation from independent copies of ISBM(n,C1, P11, P12, Pa2)
where Pj1, P12 and Pao are as above and -y is as in Corollary 88, but defined using 1/ v/2 instead of
. To see this, note that My is o(1) total variation from the distribution

,_,u(r—l)' T o 1 ' 1 ifigCy
My = E— v(C1)v(Cy)' +Y where v(Ch); = 77"’5(7’ 5 U-r ifieq

by Lemma 86, where Y ~ A(0,1)®"*" and ¢ is the internal parameter used in k-PDS-TO-ISBM.
Now it follows that M and M3 are respectively o(1) total variation from

(Mg)" = plr—1). v(Cy)v(Cy) " + 1 (Y +W) and

V2 V2
(a3)' =2 (e + v - )

The entries of % (Y +W) and % (Y — W) are all jointly Gaussian and have variance 1. Fur-
thermore, they can all be verified to be uncorrelated, implying that these two matrices are inde-
pendent copies of N'(0,1)®"*™ and thus (Mé)/ and (Ml%)/ are independent conditioned on C';.
Note that 1 has essentially been scaled down by a factor of v/2 in both of these instances as well.
Thus Step 2 above ensures that G! and G2 are o(1) total variation from independent copies of
ISBM(TL, C1, P11, Pio, P22).

Now consider Step 3 above applied to two exact independent copies of ISBM(n, C1, P11, P12, Ps2).
The guarantee for £ ensures that |C1 N C| > (14 €)n/k? with probability 1 — o, (1). The variance
of the number of edges in the subgraph of G2 restricted to C; is O(n2/k?) under both Hy and H,
and the expected number of edges in this subgraph is Py (”ék) under Hy. Under H, the expected
number of edges is

A oNake: . R n_10yNC
E {’E(G[Cl])q = <‘ ' 9 1’>P11+|C'1001\ : (% - |C’1ﬂ01|> P+ <k | 21 1’>P22

n

A" gt (e = 1) - s (- e + )

C (") e (220)

where the last bound holds since ¢ = Q(1) and k? < n.

By Chebyshev’s inequality, Step 3 solves the hypothesis testing problem exactly when this dif-
ference Q(ve?n?/k*) grows faster than the O(n/k) standard deviations in the number of edges in
the subgraph under Hy and H;. This implies that Step 3 succeeds if it holds that ve? > k3 /n. The
Kesten-Stigum threshold corresponds to 42 = ©(k?/n) and therefore as long as e*n = &(k*), this
argument solves the detection problem just below the Kesten-Stigum threshold. When ¢ = ©(1),
this argument shows a computational lower bound up to the Kesten-Stigum threshold for weak re-
covery in ISBM. Since k% = o(n) is always true in our formulation of ISBM, setting ¢ = O (k)
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yields that for all k it is hard to recover a ©(1/+/k) fraction of the hidden community C. This
guarantee is much stronger than the analysis in the previous section, which only showed hardness
for a blackbox recovering a 1 — o(1) fraction of the hidden community. We remark that the same
trick used in Step 1 above to produce two independent copies of a matrix with Gaussian noise was
used to show estimation lower bounds for tensor PCA in Section N.

Pre-Reduction Cloning. We remark that there is a general alternative method to obtain the pairs
(X, X’) in our reductions that we sketch here. Consider applying Bernoulli cloning either directly to
the input PC or PDS instance or to the output of TO-£-PARTITE-SUBMATRIX, in the case of reduc-
tions from k-PC, and then running the remaining parts of our reductions on each of the two resulting
copies. Ignoring post-processing steps where we permute vertex labels or subsample the output in-
stance, this general approach can be used to yield two copies of the outputs of our reductions that
have the same hidden structure and are conditionally independent given this hidden structure. The
same verification steps outlined above can then be applied to obtain our computational lower bounds
for recovery.

Part IV
Deferred Proofs

Appendix Q. Deferred Proofs from Part I1

Q.1. Proofs of Total Variation Properties

In this section, we present the deferred proofs from Sections E.2 and P. We first prove Lemma 16.

Proof (of Lemma 16) This follows from a simple induction on m. Note that the case when m = 1
follows by definition. Now observe that by the data-processing and triangle inequalities of total
variation, we have thatif B = A4,,_1 0 A,,,_2 0 --- 0 A; then

dTV (A(P0)7 Pm) < dTV (Am S B(PO), Am(Pm—l)) + dTV (Am<Pm—1)7 Pm)
< drv (B(Po), Pr—1) + €m

m
< Z €
i=1

where the last inequality follows from the induction hypothesis applied with m — 1 to 5. This
completes the induction and proves the lemma. |

We now prove Lemma 17 upper bounding the total variation distance between vectors of un-
planted and planted samples from binomial distributions.

Proof (of Lemma 17) Given some P € [0, 1], we begin by computing the y2-divergence given by
x* (Bern(P) + Bin(m — 1,Q), Bin(m, Q)). For notational convenience, let (§) = 0if b > a or
b < 0. It follows that

1+ x? (Bern(P) + Bin(m — 1,Q), Bin(m, Q))

184



STATISTICAL-COMPUTATIONAL GAPS FROM SECRET LEAKAGE

- i ((1 - P)- (m;l)Qt(l — Q)" -t | p. ( )Qt 1( Q)m_t>2
a (1)t —Q)m—t

-2 (Mew-or (155 00)

2
]

=k ( e Q](DI—%)>]

:1+mQ(1_QC§) E[X — Q]+m-E[(X—Qm)2]
:1+m

where X ~ Bin(m, @) and the second last equality follows from E[X] = Qm and E[(X —Qm)?] =
Var[X] = Q(1 — Q)m. The concavity of log implies that dki (P, Q) < log (14 x*(P,Q)) <
x2(P, Q) for any two distributions with P absolutely continuous with respect to Q. Pinsker’s
inequality and tensorization of dgy now imply that

2-dry (L, (Bem(P,) + Bin(m — 1,Q)) Bin(m, Q)**)”

< dy1, (9, (Bern(P,) + Bin(m — 1,Q)) , Bin(m, Q)" )

= ZdKL Bern(P;) + Bin(m — 1,Q), Bin(m, Q))

<ZX Bern(P;) + Bin(m — 1, Q), Bin(m, Q)) :Zni

which completes the proof of the lemma. |

We now prove Lemma 18 on the total variation distance between two binomial distributions.

Proof (of Lemma 18) By applying the data processing inequality for dtvy to the function taking the
sum of the coordinates of a vector, we have that

2. dry (Bin(n, P), Bin(n, Q))? < 2 dry (Bern(P)®", Bern(Q)®")?
< dki (Bern(P)®", Bern(Q)®")
= n - dgr (Bern(P), Bern(Q)
< n-x?*(Bern(P), Bern(Q))
(-
Q1-Q)
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The second inequality is an application of Pinsker’s, the first equality is tensorization of dk;. and
the third inequality is the fact that x upper bounds dp. by the concavity of log. This completes the
proof of the lemma. n

We conclude this section with a proof of Lemma 107, establishing the key property of reduc-
tions in total variation among recovery problems.

Proof (of Lemma 107) As in the proof of Lemma 14 from Brennan et al. (2018), this lemma
follows from a simple application of the definition of dry. Suppose that there is such an &’. Now
consider the algorithm £ that proceeds as follows on an input X of P(n, 7):

1. compute A(X) and the output 6 of &' on input A(X); and
2. output the result § < B(X, 0").

Suppose that X ~ Pp () for some § € Op. Consider a coupling of X, the randomness of A and
Y ~ Eg.p(g) Pp(#') such that PLA(X) # Y] = 0,(1). Since Y is distributed as a mixture of
P}, (0"), conditioned on ¢, it holds that £’ succeeds with probability

P [ep, &), 0) <7

qup

Marginalizing this over 6’ yields that P [(p/(£'(Y),0") < 7/ for some ' € supp D(#)] > p. Now
since A(X) =Y is a probability 1 — 0, (1) event, we have that the intersection of this and the event
above occurs with probability p — 0, (1). Therefore

P {67;1(9’, 0") < ' for some 6’ € supp D(@)} > P [A(X) =Y and &’ succeeds| > p — op (1)
Now note that the definition of B implies that
P {Ep(@, 0) < Ti| > P [ﬂpx(&’, 0"y < 7' for some ' € supp D(#) and B succeeds]
> P [Ep/(ﬂl, 0") < 7' for some 6 € supp D(G)} — P [B fails]
>p—on(1)

which completes the proof of the lemma. |

Q.2. Proofs for To-k-Partite-Submatrix

In this section, we prove Lemma 23, which establishes the approximate Markov transition properties
of the reduction TO-k-PARTITE-SUBMATRIX. We first establish analogue of Lemma 6.4 from
Brennan et al. (2019a) in the k-partite case to analyze the planted diagonal entries in Step 2 of
TO-k-PARTITE-SUBMATRIX.

Lemma 108 (Planting k-Partite Diagonals) Suppose that0 < Q < P < landn > (g + 1) N
is such that both N and n are divisible by k and k < QN /4. Suppose that for each t € [k,

2t ~Bem(P), 25~Bin(N/k—1,P) and 2z~ Bin(n/k,Q)
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are independent. If 2} = max{z} — 2} — 2L, 0}, then it follows that

2?2 Cok?
dry <®f:1£(z§, 2+ 21), (Bern(P) ® Bin(n/k — 1, Q))®k> < 4k - exp <— @ ) /29

48 Pkn 2n

Q2N2
drv <®f:1£(zi + 23 + 24), Bin(n/k, Q)®k> < 4k - exp (_48Pl~m>

— Q_ 1-Q
where Cg = max {@, 7}
Proof Throughout this argument, let v denote a vector in {0, 1}*. Now define the event
k
= {z =2+ +2}
t=1
Now observe that if z{ > Qn/k — QN/2k + 1 and 2} < P(N/k — 1) + QN/2k then it follows

that z§ > 1+ 2§ > v, + 24 for any v, € {0,1} since Qn > (P + Q)N. Now union bounding the
probability that £ does not hold conditioned on z; yields that

k
P[Ec‘zlzv} SZP[z§<vt+z§]
Qn QN i N ON
<ZIP’[ <—%+1}+;P[25>P<k—1>+2k}

(QN/2k — 1)° (QN/2k)*
<k-exp <_3Qn/kz> + k- exp <_2P(N/k—1)>

Q2N2
< 2k - exp <_48le

where the third inequality follows from standard Chernoff bounds on the tails of the binomial dis-
tribution. Marginalizing this bound over v ~ £(z1) = Bern(P)®¥, we have that

2N2
P [50] =Epur:z)P [So‘zl = v} < 2k -exp <_égPW1>

Now consider the total variation error induced by conditioning each of the product measures ®@F_; £(2%+

zb + 2%) and @F_,L(z4) on the event £. Note that under £, by definition, we have that 2} =
2t + 2% + 2! for each t € [k]. By the conditioning property of drv in Fact 15, we have

drv (@lec(zi tb ) L ((2§ Lt € [k)) ‘5)) <P[£°]
dry (®f:1£(z§),£ ((zg € [K]) ‘5)) <P

The fact that ®%_, £(24) = Bin(n/k, Q)®* and the triangle inequality now imply that

Q2N2
drv (@Q‘;lﬁ(zi + 25 + 2b), Bin(n/k, Q)®k) <2-P[E°] <4k -exp <_48Pkn>
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which proves the second inequality in the statement of the lemma. It suffices to establish the first
inequality. A similar conditioning step as above shows that for all v € {0, 1}*, we have that

drv <®,’§:1£ (vt +2b+ 2 21

drv (@ﬁ;lz (z;;

=), £ (v + 2+ 24

:te[k])’ vandé’)) SIP’[EC’zlzv}
P vt) L ((z:t)) it € [k]) ‘zl =0 andé’)) <P {Ec‘zl = v}

The triangle inequality and the fact that z3 ~ Bin(n/k, Q)®* is independent of z; implies that

2t = vt) ,Bin(n/k, Q)®k) < 4k - exp <_ Q*N? )

drv (®f:1£ (Ut + 25 + 2§ 48Pkn

By Lemma 17 applied with P, = v; € {0, 1}, we also have that

k _ 02 2
dry (@le (v + Bin(n/k — 1,Q)) , Bin(n/k, Q)®’“) <> 2];(8(1 _QZ?) </ c;;:
t=1

The triangle now implies that for each v € {0, 1}*,

drv (@leﬁ (zé + zﬁ;‘zf = vt) ,Bin(n/k — 1, Q)®k)
— drv (®51£ (e 2+ 242 = w) @l (v + Bin(n/k — 1,Q)))

Q2N? Co k2
48 Pkn 2n

< 4k - exp (—

We now marginalize over v ~ L(z1) = Bern(P)®*. The conditioning on a random variable
property of drv in Fact 15 implies that

dry (@E1£(4, 2 + 24). (Bern(P) @ Bin(n/k — 1,Q))*")

P Ut) ,Bin(n/k — 1, Q)®k)

< IEv~Bern(P)‘X"lﬂ dTV (®1’5€:1£ (Zé + Z}l
which, when combined with the inequalities above, completes the proof of the lemma. |

We now apply this lemma to prove Lemma 23. The proof of this lemma is a k-partite variant
of the argument used to prove Theorem 6.1 in Brennan et al. (2019a). However, it involves several
technical subtleties that do not arise in the non k-partite case.

Proof (of Lemma 23) Fix some subset R C [N] such that |[R N E;| = 1 for each i € [k]. We will
first show that A maps an input G ~ G(N, R, p, q) approximately in total variation to a sample from
the planted submatrix distribution M, ) (Un(F'), Bern(p), Bern(Q)). By AM-GM, we have that

1-p+1-q)
2

vl —1- <1-VI-p-0g

2
Ifp # L.t follows that P = p > Q = 1 — /(1 — p)(1 — ¢). This implies that 1=2 = (%) and

2 2
the inequality above rearranges to (g) < g. If p =1, then Q = /g and (g) %. Furthermore,
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2
the inequality % < (%) holds trivially. Therefore we may apply Lemma 21, which implies

that (G1,G2) ~ G(N, R,p, Q)%

Let the random set U = {7, '(RN E1), 75 (RN E2),..., 7 (RN Ej)} denote the support
of the k-subset of [n] that R is mapped to in the embedding step of TO-k-PARTITE-SUBMATRIX.
Now fix some k-subset R’ C [n] with |[R' N F;| = 1 for each ¢ € [k] and consider the distri-
bution of Mpp conditioned on the event U = R'. Since (G1,G2) ~ G(n, R,p, Q)®?, Step 2 of
To-k-PARTITE-SUBMATRIX ensures that the off-diagonal entries of Mpp, given this conditioning,
are independent and distributed as follows:

e M;; ~Bern(p) ifi # jand i,j € R’ and
o M;j ~Bern(Q)ifi# jandi € R orj & R'.

which match the corresponding entries of M|, (R x R, Bern(p), Bern(Q)). Furthermore,
these entries are independent of the vector diag(Mpp) = ((Mpp)i; : @ € [k]) of the diagonal en-
tries of Mpp. It therefore follows that

dry (E (MPD‘U - R’) M (R x R, Bem(p), Bem(Q)))
= drv (£ (diag(MPD)’U = R'), My (R, Bem(p), Bem(Q)) )

Let (57,55, ..., 5},) be any tuple of fixed subsets such that |Sj| = N/k, S C F, and R’ N F; € 5]
for each t € [k]. Now consider the distribution of diag(Mpp) conditioned on both U = R’ and
(S1,82,...,8k) = (51,55, ...,5}). It holds by construction that the k vectors diag(Mpp ), are
independent for ¢ € [k] and each distributed as follows:

e diag(Mpp)g; is an exchangeable distribution on {0, 1}N/k with support of size s; ~ Bin(N/k, p),
by construction. This implies that diag(Mpp)s; ~ Bern(p)®N/%. This can trivially be restated
as (MR'nFt,R/mF“diag(MPD)sg\R'> ~ Bern(p) ® Bern(p)®N/*~1,

e diag(Mpp)p,\s; is an exchangeable distribution on {0, 1}N/E with support of size zf =
max{sh — s{,0}. Furthermore, diag(Mpp )\ s is independent of diag(Mpp)g;.

For each ¢ € [k], let 2! = Mpnp, riar, ~ Bern(p) and 25 ~ Bin(N/k — 1,p) be the size of the
support of diag(Mpp) s;\r- As shown discussed in the first point above, we have that 2% and 2! are
independent and 2! + 2§ = s{.

Now consider the distribution of diag(Mpp) relaxed to only be conditioned on U = R/, and no
longer on (51, S2,...,5) = (51,5%,...,5}). Conditioned on U = R’, the S; are independent
and each uniformly distributed among all N/k size subsets of F} that contain the element R’ N F}.

In particular, this implies that the distribution of diag(Mpp) ,\ r’ is an exchangeable distribution on
{0, 1}"/k=1 with support size 2§ + z§ for each ¢. Note that any v ~ M, (R, Bern(p), Bern(Q))
also satisfies that v\ pr is exchangeable. This implies that M, (R', Bern(p), Bern(Q)) and diag(Mpp )
are identically distributed when conditioned on their entries with indices in R’ and on their support
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sizes within the k sets of indices F;\ R’. The conditioning property of Fact 15 therefore implies that
drv <£ (diag(MpD)‘U = R’) s Mn) (R', Bern(p), Bern(Q)))
< dry (@F1£(4, 2 + 24). (Bern(p) @ Bin(n/k — 1,Q))*)

Q2N? . Cok?
48 Pkn 2n

§4l<:-exp<

by the first inequality in Lemma 108. Now observe that U ~ U,,(F') and thus marginalizing over
R ~ L(U) = U, (F) and applying the conditioning property of Fact 15 yields that

drv (-A(G(Na R, p, Q)), M[n] X [n] (un(F)a Bern(p)v Bern(Q)))
< Errets, (F) d1v <[, (MPD‘U = R’) s M) x[n] (R’ X R’,Bern(p),Bern(Q)))

since Mpp ~ A(G(N, R, p, q)). Applying an identical marginalization over R ~ Uy (E) completes
the proof of the first inequality in the lemma statement.

It suffices to consider the case where G ~ G(N,¢q), which follows from an analogous but
simpler argument. By Lemma 21, we have that (G, G2) ~ G(IN, Q)®2. It follows that the entries
of Mpp are distributed as (Mpp);; ~iia. Bern(Q) for all ¢ # j independently of diag(Mpp).
Now note that the k vectors diag(Mpp)r, for ¢t € [k] are each exchangeable and have support
size st + max{sh — s{,0} = 2! + 2L + 2} where z{ ~ Bern(p), 25 ~ Bin(N/k — 1,p) and
st ~ Bin(n/k, Q) are independent. By the same argument as above, we have that

drv (E(MPD), Bem(Q)®”X”) = dtv (E(diag(MpD)), Bern(Q)®”)
=drv (@leﬁ (zi + 25+ zfl) ,Bin(n/k, Q))

2 772
§4k:.exp<QN )

48 Pkn
by Lemma 108. Since Mpp ~ A(G(N, q)), this completes the proof of the lemma. [

Q.3. Proofs for Symmetric 3-ary Rejection Kernels

In this section, we establish the approximate Markov transition properties for symmetric 3-ary re-
jection kernels introduced in Section F.3.

Proof (of Lemma 25) Define £1, L5 : X — R to be

dP dp_ P aP_
Li(z) = TQJF(@ - E(iﬂ) and  Lo(z) = TQJF(JJ) + 90

Note that if = € .S, then the triangle inequality implies that

() -2

a 1
1+ —-|C +—IL <1
(1 g 12+ g 119 <
a 1
1-— | ——|L >0
( ol O g 1“)’)—
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Similar computations show that 0 < P4(z,0) < 1and 0 < Py(z,—1) < 1, implying that each
of these probabilities is well-defined. Now let Ry = Px.p, [X € S], Ry = Px.o[X € S] and
R_; =Px.p_[X € S] where Ri, Ry, R_1 > 1 — ¢ by assumption.

We now define several useful events. For the sake of analysis, consider continuing to iterate
Step 2 even after z is set for the first time for a total of N iterations. Let A}, A? and A; ! be the
events that z is set in the ¢th iteration of Step 2 when B = 1, B = 0 and B = —1, respectively. Let

= (AHC N (ADY NN (AL )¢ N Al be the event that z is set for the first time in the ith
iteration of Step 2. Let C1 = A U AL U---U A} be the event that z is set in some iteration of Step
2. Define Blo , 00, B, !and C~! analogously. Let zq be the initialization of z in Step 1.

Now let Z; ~ Dy = L(3-SRK(1)), Zyp ~ Dy = L(3-SRK(0)) and Z_; ~ D_; = L(3-SRK(—1)).
Note that £(Z;|BY) = L£(Z;| A?) foreacht € {—1,0, 1} since Al is independent of A%, A5, ... Al |
and the sample 2’ chosen in the ith iteration of Step 2. The independence between Steps 2.1 and 2.3
implies that

1 1
11 _ ) .
P [A]] =Ezw0 5 <1+4u2 Lo(z) + ™ El(x)> 15(95)]
1 a 1 1 9 a ., 1 ;4
— el — - — > 2 Z il
2R0+8M2(R1+R*1 2Ro) + M(Rl R-1) 2 5 2<1+2|M2| + 7l >
1 1—a
0] _ - _ . .
P [AZ] = ExNQ _2 <1 m ﬁg(%)) 13(3:)}
1 1— 1 4 1— .
—530— 812 (R1+R 1—2Ry) > 3 2<1+ 1 <] >
1 1
—17 _ - -
P [4;"] =Esno 2<1+4 o - Lo(x) " L1(z ) ]
fR +- L (Ri+R_ —2R)——(R R_ )>1 0 1+ 2] |*1+1| !
0 811 1 1 0 A 1— =5 B 2#2 4M1

The independence of the A! for each t € {—1,0,1} implies that

_P[C"] :,ﬁl(l_P [4Y]) < (; +g (1+;uzl‘1+ !u1|—1>>1v

Note that £(Z;|A!) are each absolutely continuous with respect to Q or each t € {—1,0, 1}, with
Radon-Nikodym derivatives given by

dC(Z1|B}), | dL(Zi|A}), | 1 1

I ) = O ) = o (14 )+ g 60 - 15t6)

dL(Zo|BY), | dL(Zo|AY), | 1 1l-a .

@) = TR ) = e (12 ) 150
dC(Z-A|\B; "), | dL(Za|A7Y, 1 a 1

o ) =@ = s (1442 o)~ 1 £2(0)) 150

Fix one of ¢ € {—1,0,1} and note that since the conditional laws £(Z;|BY) are all identical, we

have that
dD;

dDy dL(Z|B])
dQ

ig @+ (-F[C) L)

(x) =P [C’t] .
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Therefore it follows that

1 dDy

Beno || 9ot - B |

(1-P[C"]) -Euno [uo () +

drv (Di, L(Zy|BY)) =

dL(Z|B])

2
1
< —
=2 dQ

(93)] _1-P[C"]

by the triangle inequality. Since 1 + 77— - Lo(z) + ﬁ - L1(x) > 0 for x € S, we have that

dL(Z,|B1)
BB 4 - (

I T
" |2 Pa]

Euoo H 1+ -2 Lo(z) + 1-E1(x))H

4y 4y

Epmos [(1 + 4%@ Lo(x) + 4/1“ -51(96)) : 15(1‘)]

[ a 1
+Ezn 14+ — Lo(z)+ ——- -1 :(:]

By [(1 + 4‘Zz| - (CZDQ*(:E) + ‘ZZ‘(:U) + 2)) . lsc(x)]

_4uln| | <CZJQ+($) * ddpg(”“’)) s (”“’)]

) a 1 1 3 5 5
< O (1%t 4 2t sl 1o Y =5 (2 4 2 2t
S5 ( + 2’#2’ + 4’/~61\ ) + < +alp2| T + 2\M1| 5 + 4’M2\ + 8\#1\

£1(33)

IA
!
=
ol

By analogous computations, we have that

Evvo Hdﬁ(j‘gB”m (1t ) H <25 (1+ [l + 1l )

E,o Hdﬁ(zngll)(x) - (1 + 4%2 L) — — . Ll(x)> H <26 (14 |pa| ™+ |p2l ™)

Now observe that

P = (gt (1445 L)+ )+ a—20)- (110 Ll

1= (1+m.cg(x)+4;1 c<)>+a (1—14M2“ cz(x)>
pre (”122'52(3”)_4;1“ 1(95))
@ = (P i) - (142 L2+ 40 ) + o= 2m)- (1 1l
+<1;a+u1+u2>-(1+Z:L2~E2(33)—4;1'51($)>
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Let D* be the mixture of £(Z1|B}), L(Zo|BY) and £L(Z_1|By") with weights 15¢ + 1 + p2,a —
2p2 and 1*?“ — p1 + o, respectively. It then follows by the triangle inequality that

drv (3-SRK(Tern(a, i1, p12)), P+)
< drvy (D*,Py) + drv (D*, 3-SRK(Tern(a, ju1, pi2)))

< <1;a+m +u2> ‘Ezng [ %($) - <1+422 La(x) ML”“”)H
|

+w-zmyEm@Hd“iyﬂNm—<1—zm La(o))
Bevo || ) (142 ) - 4|

]__
+<—M1+M2

+ <1 + i+ u2> ~drv (D1, L(Z1|BY)) + (a — 2p2) - drv (D1, L(Zo| BY))

1—a
+< —p1 + p2 | - dry (D—1, L(Z_1|By ))

1 N
<20 (14 ||t + |pa|7Y) + (2 +0 (1+ ||+ !ml‘l))

A symmetric argument shows analogous upper bounds on both drv (3-SRK(Tern(a, —p1, p2)), P—)
and drv (3-SRK(Tern(a, 0,0)), Q), completing the proof of the lemma. [ |

Q.4. Proofs for Label Generation

In this section, we give the two deferred proofs from Section 1.2.

Proof (of Lemma 54) This lemma follows from a similar argument to Lemma 53. As in Lemma
53, the given conditions on C, v, ¢’ and N imply that

/ 2
7Y
2 ————< | <1
(u’(l + 72)> -
and thus X' is well-defined almost surely. First observe thatif Z = p"-u+G’ where G’ ~ N (0, 1)
then

/ / ’ 2
ay-y vy ry 1 vy 1
X' = cu -+ G+ —- 1—2() G+ —= W
1492 P +7?) V2 #1477 V2
where a = " /. Thus by the same argument as in Lemma 53, we have that

2
LX) = ay-y I, — g T
) = (P20t =

Now note that by the conditioning property of multivariate Gaussians, we have that
L(X|y) =N (SxyZy, ¥ Sxx — SxySy, Syx)
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It is easily verified that

2

cuand Sxx — Sxy ¥, Syx = Ip— —— -uu |

_ ay
YD = _ ,

W 1442

and thus £(X|y) and £(X'|y’) are equidistributed. Since y ~ N(0, 1 +~?2), it follows by the same
application of the conditioning property in Fact 15 as in Lemma 53 implies that

drv (L(X,y). L(X'y)) < drv (L), L) = O (N=C72)
which completes the proof of the lemma. -

Proof (of Lemma 55) This lemma follows from a similar argument to Lemma 53. As in Lemmas
53 and 54, the given conditions imply that X’ is well-defined almost surely. Conditioned on 7/,
it holds that Z, G and W are independent. Therefore the three terms in the definition of X’ are
independent and distributed as

/ / 2
vy vy
— . Z~N|0, (L) L],
w(l+9%) ( </~L’(1+72)) d)

2 / 2
oY N A Lo (v N
\/1 2 (iim) O (0’2 - (i) Id) e

~W~/\/’<0,;-Id>

Sl Sl

conditioned on g’. It follows that X'|y/ ~ A(0,1;) and thus X’ is independent of y’. Now let
X € R¥and y € R be such that X ~ A(0,1;) and y ~ N(0,1 + ~2) are independent. The
same application of the conditioning property in Fact 15 as in Lemmas 53 and 54 now completes
the proof of the lemma. |

Appendix R. Deferred Proofs from Part I11

R.1. Proofs from Secret Leakage and the PC, Conjecture

In this section, we present the deferred proof of Lemma 75 from Section K. The proof of this lemma
is similar to the proof of Lemma 5.2 in Feldman et al. (2013).

Proof (of Lemma 75) The proof is almost identical to Lemma 5.2 in Feldman et al. (2013) and we
give a sketch here. Lemma 74 implies that ) ;. 4 ‘(ﬁs, BT>D‘ <D rea 2150T1}:2 /2 If the only
constraint on A is its cardinality, then the maximum value for the RHS is obtained by adding S to
A, next {T : |T'NS| =k — 1}, and so forth with decreasing size of |T"N S|, and we assume that
A is defined in this manner. Letting T\ = {7 : |T'N S| = A}, set A\g = min{\ : T # &} so that
Ty C A for A > \y. We bound the ratio

k\ (n\k—J
iz ()G in | Ty | S|
Tl ~ (hy (o - R e LIS G = G e
J
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Now

1
A< T < IS Y — 5o < 2|S|n20%
i>Xo jon, (U — D=

for n greater than some constant. Thus if [A| > 2|S|/n?®, we must conclude that £ > \g. We

bound the quantity ZT6A2‘SQT| < 2T N Al < 2%|Ty, N A| + dimn+1 PTG <
22| A| + 220F2|Ty 44| < 2203 A < 26+3| A|. Here we used that [T41| < |Tj|n~2 to bound by
a geometric series and also that 7,1 € A. Rearranging and combining with the inequality at the

start of the proof concludes the argument. |

R.2. Proofs for Reductions and Computational Lower Bounds

In this section, we present a number of deferred proofs from Part I1I. The majority of these proofs
are similar to other proofs presented in the main body of the paper.

Proof (of Theorem 9) To prove this theorem, we will to show that Theorem 52 implies that
k-BPDS-TO-MSLR applied with > 2 fills out all of the possible growth rates specified by the
computational lower bound n = 6(k?¢?/74) and the other conditions in the theorem statement. As
discussed above, it suffices to reduce in total variation to MSLR(n, k, d, 7, 1/r) where 1/r < e.

Fix a constant pair of probabilities 0 < ¢ < p < 1 and any sequence of parameters (n, k, d, 7, €)
all of which are implicitly functions of n such that (n, e ') satisfies (T) and (n, k, d, 7, €) satisfy the
conditions

k2e2
n<c wk§n1/6 and wk?®<d

=7 w2t (logn)tt2e”
for sufficiently large n, an arbitrarily slow-growing function w = w(n) — oo at least satisfying
that w(n) = n°1), a sufficiently small constant ¢ > 0 and a sufficiently large constant ¢ > 0.
The rest of this proof will follow that of Theorem 4 very closely. In order to fulfill the criteria in
Condition E.1, we specify M, N, kjs, ky and n’ exactly as in Theorem 4. As in Theorem 4, we
have the inequalities

2 E2e2
oy —2,2t .. rFe
m=wer 0 < n T4. (logn)“%/)

- c1/4e1/21:1/2 /2 kjlvf
T= n'/4(logn)@+e)/2 ni/4 rt+1(logn)2te

Furthermore, we also have that

) A2k hk
~ wnl/2 - (logn)2+te n  Nlog(MN)

As long as \/n = ©(r!) then: (2.1) the inequality above on n/ would imply that (n’, k,d, 7, €) is
in the desired hard regime; (2.2) n and n’ have the same growth rate since w = n°W); and (2.3)
n > M3, d > M and taking ¢ large enough would imply that 7 satisfies the bounds needed to
apply Theorem 52 to yield the desired reduction. By Lemma 80, there is an infinite subsequence of
the input parameters such that \/n = (:)(rt), which concludes the proof as in Theorem 4. |
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Proof (of Lemma 91) First suppose that M ~ GHPMp(n,r,C, D,~) where C' and D are each
sequences of r disjoint sets of size K. Since the M;; are independent for 1 < 7,5 < n, we now
have that

2
ZIE 1] =rK? % + Kl 72
1,j=1
K2
Var [s¢ (M ZVar — —TK2 4~? —i—( SEE 42+ 2n?
1,j=1

Here, we have used the following facts. If X ~ N(0, 1), then
2 2
v v
T ix) —1] =
<r —1 + ) ] (r—1)2
2
< ! +X) ~1
r—1

Note that s¢(M) is invariant to permuting the rows and columns of M and thus s¢ (M) is equidi-
stirbuted under M ~ GHPMp(n,r,C, D,~v) and M ~ GHPMp(n,r, K,v). Now Chebyshev’s
inequality implies the desired lower bound on s¢ (M) in (1) holds with probability 1 — o,,(1). Now

observe that .
My=>">"3 My=Y

h=14i€Cy, jED,

El(y+X)’-1=+° E

Var[X? — 1] =2, Var[(y+X)*—1]=4y*+2, Var

holds almost surely by definition when M ~ GHPMp(n,, C, D, ). Note that Y ~ N (r K27, rK?)
conditioned on C and D and therefore it holds that Y > rK2y — wrl/2K with probability
1 — 0,(1). The second lower bound in (1) now follows since s;(M) is equidistirbuted under
M ~ GHPMp(n,r,C, D,~) and M ~ GHPMp(n,r, K, 7).

Now suppose that M ~ N(0,1)®"*"_1In this case, s¢(M) + n? is distributed as x?(n?) and
the first upper bound in (2) holds by Chebyshev’s inequality and the fact that x?(n?) has variance

2n?. Now note .
=> > > My ~N(0,rK?)

h=11i€C}, jeDy,

Standard gaussian tail bounds imply that

1 1
2 eXP (_ 2rK?

)727’K’w2

2
Y(C, D) > 2rK3?w+/(logn + log r)} < <2rK3/2w (logn + log 7“)) )
< (nr

A crude upper bound on the number of pairs (C, D) is

(3 =t

and therefore a union bound implies that s;(M) = maxc,p Y (C, D) < 2rK3/2w/(logn + logr)
with probability 1 — 0,,(1). This completes the proof of the lemma. |
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Proof (of Corollary 94) Consider the following reduction A that adds a simple post-processing
step to k-PDS-TO-GHPM as in Corollary 88. On input graph G with IV vertices:

1. Form the graph Mg by applying k-PDS-TO-GHPM to G with parameters N, 7, k, E/, {,n, s and
w where p is given by

rt\/r 11
= (24 2 min{Py,1— Py}t
Ry <2+2 min{ Py, 0} ’Y>

and ®~! is the inverse of the standard normal CDF.

2. Let G be the graph where each edge (7, j) with is in G if and only if (Mr);; > 0. Now
form G5 as in Step 2 of Corollary 88, while restricting to edges between the two parts.

This clearly runs in poly(/V) time and it suffices to establish its approximate Markov transition
properties. Let A; denote the first step with input G and output Mg, and let A2 denote the second
step with input Mg and output Go. Let C and D be two fixed sequences, each consisting of 7
disjoint subsets of [ksrf] of size kr'~1. Let Py, P» € (0,1) be

P=a (W) and Py = <_rtlf/?>

Note that by the definition of y, we have that P, = % + % -min{Py,1 — Py}~! - v. Now note that
As applied to Mg ~ GHPMp(ksrt,r, C, D, ) yields an instance of BHPMp (ksrt, r, C, D, ) with
the following modified edge probabilities:

1. The edge probabilities between vertices C}, and Dy, for each 1 < h < r are still Py + 7.

2. The edge probabilities between C, and Dy, for each hy # hg are now

1 1
P() + 2min{P0, 1-— P(]} . (Q’ (—Ttl\jl/;> - 2) = P() + 2min{P0, 1-— P()} . <P2 — 2)

3. All other edge probabilities are still Fj.

We now apply a similar sequence of inequalities as in Corollary 88. For now assume that Py < 1/2.
Using the fact that all of the edge indicators of this model and the usual definition of BHPM are
independent, the tensorization property in Fact 15 and Lemma 18, we now have that

drtv (A2 (GHPMD(k‘srt, r,C, D,’y)) , BHPMD(k‘ST‘t,’I“, C, D,v))

Qk2r2t=1(r 1) 1 Qk2r2t=1(r—1)
<dtv (Bern <P0 - 7) , Bern (Po + 2P, - <P2 - 2>> )

k2r2t=1(r — 1)
O_T (1—P0+ )

‘+2P0 Pg

l\’)\r—t

SR <2
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where the third inequality uses the fact that P is bounded away from 0 and 1 and v = o(1). Now
note that
Y 2P p(r—1) 1
= e (B L) -2
r—1 r—1 rty/r 2
Using the standard Taylor approximation for ®(z) — 1/2 around zero when = € (—1, 1), we have
R Y Gl AR A N Y B A S
r rty/r 2 rty/r 2

—1
~o (")

0% 1
2Py - (Po— = )| =2P,-
1+ 0 (2 2)‘ 0

r —

Therefore we have that
k 3
drv (./42 (GHPMD(k:srt,r, C’,D,’y)) , BHPMp (ksr!, 7, C’,D,’y)) =0 <,u22/77>
r

A nearly identical argument considering the complement of the graph GG; and replacing with Py
with 1 — P, establishes this bound in the case when Py > 1/2. Observe that Ay (AV(0, 1)®">") ~
Gp(n,n, Py). Now consider applying Lemma 16 to the steps .4; and A5 as in Corollary 88. It can
be verified that the given bound on ~y yields the condition on p needed to apply Theorem 92 if ¢ > 0
is sufficiently small. Thus €; is bounded by Theorem 92 and €2 is bounded by the argument above
after averaging over C and D and applying the conditioning property of Fact 15. This application of
Lemma 16 therefore yields the desired two approximate Markov transition properties and completes
the proof of the corollary. |

Proof (of Theorem 12) As discussed in the beginning of this section, it suffices to map to G(n, Py —
w1) under Hy and TSI(n, k, k1, Py, p1, 2, 113) under Hy where us = Py — Py and 1, g > 0. Thus
it suffices to show that the reduction .4 in Corollary 98 fills out all of the possible growth rates
specified by the computational lower bound 531;1(1__131%23 = 6(n/k?) and the other conditions in the
theorem statement. Fix a constant pair of probabilities 0 < ¢ < p < 1 and any sequence of

parameters (n, k, Py, Py) all of which are implicitly functions of n such that

(P — Py)? n
C.
Py(l—PFy) = w3 -k?logn

and min{PO, 1-— P()} = Qn(l)

for sufficiently large n, sufficiently small constant ¢ > 0 and an arbitrarily slow-growing increasing
positive integer-valued function w = w(n) — oo at least satisfying that w(n) = n°). As in the
proof of Theorem 4, it suffices to specify:

1. asequence (NN, k) such that the k-PDS(N, kn, p, q) is hard according to Conjecture 3; and

2. a sequence (n', k', P, Py, s,t, p) satisfying: (2.1) the parameters (n’, k', P, Py) are in the
regime of the desired computational lower bound for SEMI-CR; (2.2) (n/, k') have the same
growth rates as (n, k); and (2.3) such that G(n’, Py—p1) and TSI(n/, k', k' /2, Py, 1, o, P1 —
Py), where £’ is even and j11, 2 > 0, can be produced by A with input k-PDS(N, kn, p, q).

We choose these parameters as follows:

e let ¢ be such that 3! is the smallest power of 3 larger than k/+/n and let s = [2n/3k];
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e let i € (0,1) be given by

2 2

-1
e [3(0g)
where Q@ =1 — /(1 —p)(1 —¢) + 113 (v —1);and

o letn' =3kys- 3t2—_1, let k' = (3" — 1)k and let N = wk%,.

Note that 3' = ©(k/\/n), s = ©(n/k) and 3'kys < poly(IN). Note that this choice of x implies
that

1 1
m = 3t . ‘I)_l < + = min{PO, 11— P()}_l(Pl — P()))

e now let

1
fﬁ:}b+2mmﬂhl—fm~<¢(;>_2)

which implies that the instance of TSI output by .A has edge density P; on its k’-vertex the planted
dense subgraph. It follows that

k n
"< 3kns < — - —
n NS N
_ 2 /
(Pl Po) <. n <. n
Py(1—Py) = w3 -k?logn ™~ w- (k)?logn’

w2 yn=w?n and ¥ =3ky=w’k

m <2 <g+1> wk?v Sw_l\/ﬁ'kN < 3kys

<3l. (P —Py) <3t vn < ¢
n33-(h 0) 3 w3/2 - ky/logn — w3/2\/logn’
where the last bound above follows from the fact that ®(z) — 1/2 ~ x if || — 0. Here, m is
the smallest multiple of &k larger (% + 1) N. Now note that: (2.1) the third inequality above on
(Py — Py)?/Py(1 — Py) implies that (n’, k', Py, Py) is in the desired hard regime; (2.2) (n,n’) and
(k, k") have the same growth rates since w = n°1); and (2.3) the last two bounds above imply
that taking ¢ small enough yields the conditions needed to apply Corollary 98 to yield the desired
reduction. This completes the proof of the theorem. |

Proof (of Lemma 103) The parameters a, 111, 1o for which these distributional statements are true
are given by

a=®(r)—&(—7)

i = 5 (1= B(r = ) = @7 — ) = 5 (B + 1) ~ B(r — )
= 5 (@(r) = B(=7)) = 3 (B(r -+ ) = (=7 + ) = 3 (2-8(r) = B(r + 1) — B(r — 1))
Now note that

=g @+ = =) = —— [ T# e~ /2dt = ©(p)
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and is positive since e~t*/2 is bounded on [T — p, 7 + u] as 7 is constant and p — 0. Furthermore,
note that
1 2 2
=-2-®(1)-®(7+p) —2(r - e 2t / et 2t
p2 =5 (2- (1) = (7 + p) = (7 — p)) 25} 25}

! /Wﬂ‘G;@—mw2_e—ﬁm) /"+“-%H2 (c/2 ~1) a
2427 J~ 2\/ 2

Now note that as y« — 0 and for ¢ € [r,7 + y, it follows that 0 < et*~#*/2 — 1 = ©(y). This
implies that 0 < o = ©(u?), as claimed. [ |

Proof (of Theorem 11) To prove this theorem, we will to show Theorem 104 implies that £-BPDS-TO-GLSM
fills out all of the possible growth rates specified by the computational lower bound n = 6 (7;,*) and

the other conditions in the theorem statement, as in the proof of Theorems 4 and 82. Fix a constant

pair of probabilities 0 < ¢ < p < 1 and any sequence (n, k,d,U) where U = (D, Q,{P,},cr) €

UC(n) all of which are implicitly functions of n with

c
w? - (logn)?

n < and wk?®<d

— szl{ .
for sufficiently large n, an arbitrarily slow-growing function w = w(n) — oo and a sufficiently
small constant ¢ > 0. Now consider specifying the parameters M, N, kjs, kx and ¢ exactly as in
Theorem 82. Now note that under these parameter settings, we have that

1/4 k
c N
< <9cl/4. [N
U= 117 logn — ‘ Nlog N

Therefore 7, satisfies the conditions needed to apply Theorem 104 for a sufficiently small ¢ > 0.
The other parameters (n, k,d,U) and (M, N, kar, kn, p, q) can also be verified to satisfy the con-
ditions of this theorem. We now have that k-BPDS(M, N, kas, kn, p, q) is hard according to Con-
jecture 3, and that GLSM(n, k, d,U) can be produced by the reduction k-BPDS-TO-GLSM applied to
BPDS(M, N, knr, kn, p, q). This verifies the criteria in Condition E.1 and, following the argument
in Section E.2, Lemma 14 now implies the theorem. |
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