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Abstract

We develop a corrective mechanism for neural network approximation: the total avail-
able non-linear units are divided into multiple groups and the first group approx-
imates the function under consideration, the second approximates the error in ap-
proximation produced by the first group and corrects it, the third group approxi-
mates the error produced by the first and second groups together and so on. This
technique yields several new representation and learning results for neural networks:

1. Two-layer neural networks in the random features regime (RF) can memorize arbi-
trary labels for n arbitrary points in Rd with Õ( nθ4 ) ReLUs, where θ is the minimum
distance between two different points. This bound can be shown to be optimal in n
up to logarithmic factors.

2. Two-layer neural networks with ReLUs and smoothed ReLUs can represent functions
with an error of at most ε with O(C(a, d)ε−1/(a+1)) units for a ∈ N ∪ {0} when the
function has Θ(ad) bounded derivatives. In certain cases d can be replaced with
effective dimension q � d. Our results indicate that neural networks with only a
single nonlinear layer are surprisingly powerful with regards to representation, and
show that in contrast to what is suggested in recent work, depth is not needed in
order to represent highly smooth functions.

3. Gradient Descent on the recombination weights of a two-layer random features net-
work with ReLUs and smoothed ReLUs can learn low degree polynomials up to
squared error ε with subpoly(1/ε) units. Even though deep networks can approx-
imate these polynomials with polylog(1/ε) units, existing learning bounds for this
problem require poly(1/ε) units. To the best of our knowledge, our results give the
first sub-polynomial learning guarantees for this problem.

1. Introduction

Neural networks have been shown to be very powerful in various classification and regression
tasks Goodfellow et al. (2016). A lot of the properties of multi-layer networks remain
unexplained rigorously, despite their success in practice. In this paper we focus on three
core questions regarding the capabilities of neural networks: representation, memorization,
and learning low degree polynomials.
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Representation. Neural networks are universal approximators for continuous functions
over compact sets and hence, when trained appropriately can solve a variety of machine
learning problems Cybenko (1989); Hornik et al. (1989); Funahashi (1989); Lu et al. (2017);
Hanin and Sellke (2017). A long line of work, starting with Barron (1993), provides bounds
on the number of activation functions required for two-layer neural networks to achieve a
given error when the function being approximated satisfies certain smoothness conditions
Klusowski and Barron (2018); Ma et al. (2019); Liang and Srikant (2016); Safran and Shamir
(2017); Yarotsky (2017); Li et al. (2019). The papers Barron (1993) and Klusowski and
Barron (2018) use a law of large numbers based argument using random neural networks
(see Section 1.1) to achieve a squared error of 1/N using N neurons, whereas other works
including Liang and Srikant (2016); Safran and Shamir (2017); Yarotsky (2017); Li et al.
(2019) carry out a Taylor series approximation for the target function by implementing
additions and multiplications using deep networks. These assume more smoothness (higher
number of bounded derivatives) of f and give faster than 1/N rates for the squared error.

Deep neural networks are practically observed to be better approximators than shallow
two-layer networks. Depth separation results construct functions that are easily and effi-
ciently approximated by deep networks but cannot be approximated by shallower networks
unless their width is very large (see Safran and Shamir (2017); Daniely (2017a); Delalleau
and Bengio (2011); Telgarsky (2016) and references therein). While the results in Liang
and Srikant (2016); Safran and Shamir (2017); Yarotsky (2017); Li et al. (2019) consider
deep architectures to achieve faster representation results for a class of smooth functions,
it remained unclear whether or not the class of functions they consider can be similarly
represented by shallow networks. Recent work Bresler and Nagaraj (2020) gives sharp rep-
resentation results for arbitrary depth networks which show that deeper networks are better
at representing less smooth functions.

In this work, we show similar representation results to those achieved in Yarotsky (2017)
using deep networks, but for a two-layer neural network. Crucial to our approach is a careful
choice of activation functions which are the same as ReLU activation functions outside of
a small neighborhood of zero and they are smoother near zero. We note that the Sobolev
space assumption for the target function in Yarotsky (2017) is essentially the same as
our assumption of fast enough decay in their Fourier transform (see Section 3) due to
the relationship between smoothness of a function and the decay of its Fourier transform.
The experiments in Zheng et al. (2015) and Elfwing et al. (2018) suggest that considering
smoothed activation functions in some layers along with ReLU in some others can in fact
give measurably better results in various problems. Theoretical results in Li et al. (2019)
show that smooth functions can be more efficiently represented using rectified power units
(RePU), which are smoother than ReLU.

Despite the guarantees given by representation results, in practice finding the opti-
mal parameters for a neural network for a given problem involves large-scale non-convex
optimization, which is in general very hard. Therefore, stating representation results in
conjunction with training guarantees is important, and as described next, we do so in the
context of the memorization and learning low-degree polynomials.

Memorization. Neural networks have the property that they can memorize (or interpo-
late) random labels quite easily Zhang et al. (2016); Belkin et al. (2018). In practice, neural
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networks are trained using SGD and a long line of papers aims to understand memorization
in over-parametrized networks via the study of SGD/GD (see Du et al. (2019); Allen-Zhu
et al. (2018); Jacot et al. (2018) and references therein). A recent line of work studies
the problem of memorization of arbitrary labels on n arbitrary data points and provides
polynomial guarantees (polynomial in n) for the number of non-linear units required (see
Zou et al. (2018); Zou and Gu (2019); Oymak and Soltanolkotabi (2019); Song and Yang
(2019); Ji and Telgarsky (2019); Panigrahi et al. (2019) and references therein). These
polynomials often have high degree (O(n30) in Allen-Zhu et al. (2018) and O(n6) as in Du
et al. (2019)). Oymak and Soltanolkotabi (2019) and Song and Yang (2019) improve this to
O(n2) under stronger assumptions on the data. Moreover, the bounds in Du et al. (2019),
Oymak and Soltanolkotabi (2019) and Song and Yang (2019) contain data and possibly
dimension dependent condition number factors. Panigrahi et al. (2019) obtains intelligible
bounds for such condition number factors for various kinds of activation functions, but do
not improve upon the O(n6) upper bound. Ji and Telgarsky (2019); Chen et al. (2019) show
a polylogarithmic bound on the number of non-linear units required for memorization, but
only under the condition of NTK separability.

We consider the problem of memorization of arbitrary labels via gradient descent for
arbitrary d dimensional data points under the assumption that any two of these points are
separated by a Euclidean distance of at least θ. Under the distance condition which we
use here, the results of Ji and Telgarsky (2019) still require O(n12/θ4) non-linear units.
Our results obtain a dependence of Õ(n/θ4) for two-layer ReLU networks. This is optimal
in n up to log factors. A similar bound is shown in Kawaguchi and Huang (2019), but
with additional polynomial dependence on the dimension. Under additional distributional
assumptions on the data, Daniely (2019) shows the optimal bound of O(n/d) whenever n
is polynomially large in d. Subsequent to the present paper’s appearance on arXiv, Bubeck
et al. (2020) used a similar iterative corrective procedure as proposed in this paper to
address the question of memorizing n points with the smallest possible total weight rather
than number of units. Our memorization results also achieve the optimal dependence for
weight in terms of number of points n, with a better dependence on the error ε and with
fewer assumptions on the data, but a worse dependence on the dimension d.

Learning Low Degree Polynomials. An important toy problem studied in the neural
networks literature is that of learning degree q polynomials with d variables via SGD/GD
when q � d. This problem was first considered in Andoni et al. (2014), and they showed
that a two-layer neural network can be trained via Gradient Descent to achieve an error of
at most ε whenever the number of non-linear units is Ω(d2q/ε2) and Yehudai and Shamir
(2019) gives a bound of Ω(dq

2
/ε4) using the random features model. All the currently known

results for learning polynomials with SGD/GD require Ω
(
d2qpoly(1/ε)

)
non-linear units.

There are several representation theorems for low-degree polynomials with deep net-
works where the depth depends on the error ε (see Liang and Srikant (2016); Safran and
Shamir (2017); Yarotsky (2017)) by systematically implementing addition and multiplica-
tion. They require a total of O(dqpolylog(1/ε)) non-linear units. However, there are no
training guarantees for these deep networks via any algorithm. We show that a two-layer
neural network with O(subpoly(1/ε)) activation functions trained via GD/SGD suffices. In

particular, the number of non-linear units we require is O
(
C(a, q)d2qε

− 1
a+1
)

for arbitrary
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a ∈ N∪ {0}, which is subpolynomial in ε when we take a→∞ slowly enough as ε→ 0. To
the best of our knowledge, these are the first subpolynomial bounds for learning low-degree
polynomials via neural networks trained with SGD.

1.1. The Corrective Mechanism

We now describe the main theoretical tool developed in this work. Let a,N ∈ N. With
aN non-linear units in total, under appropriate smoothness conditions on the function
f : Rd → R being approximated, we describe a way to achieve a squared error of O(1/Na).
The same basic methodology is used, with suitable modifications, to prove all of our results.

For any activation function σ, the construction given in Barron (1993) obtains O(1/N)
error guarantees for a two-layer network by picking Θ1, . . . ,ΘN i.i.d. from an appropriate
distribution such that Eσ(x; Θ1) ≈ f(x) for every x in some bounded domain. Then, the
empirical sum f̂ (1)(x) := 1

N

∑N
i=1 σ(x; Θi) achieves an error of the form C2

f/N as shown by
a simple variance computation, where Cf is a norm on the Fourier transform of f . Since the
Fourier transform is a linear operator, it turns out that the error (or remainder function)
f − f̂ (1)(x) has a Fourier norm on the order of Cf/

√
N , which is much smaller than that

of f . We let the next N activation functions approximate this error function with f̂ (2), so
that f̂ (1) + f̂ (2) achieves an error of at most 1

N2 . We continue this argument inductively to
obtain rates of 1/Na. We note that to carry out this argument, we need stronger conditions
on f than the ones used in Barron (1993) (see Section 3). We next briefly describe some of
the technical challenges and general proof strategy.

Overview of Proof Strategy. The main representation results are given in Theorems 8
and 9 in Section 3. We briefly describe our proof strategy:

1. The Fourier transform of the ReLU function is not well-behaved, due to its non-
differentiability at 0. We construct an appropriate class of smoothed ReLU functions
SReLU, which is the same as ReLU except in a small neighborhood around the origin,
by convolving ReLU with a specific probability density. This is done in Section A.

2. Cosine functions are represented as a convolution of SReLU functions in Theorem 11.

3. We prove a two-layer approximation theorem for f under a Fourier norm condition
using SReLU activation functions. This is done in Theorems 13 and 16.

4. In Theorem 7 we extend the error function f rem := f − f̂ (1) to all of Rd and show
that its Fourier norm is smaller by a factor of 1/

√
N than that of f . Since activation

functions used to construct f̂ (1) are one-dimensional and their Fourier transforms are
generalized functions, we will use the “mollification” trick from Fourier analysis to
extend them to be d dimensional functions with continuous Fourier transforms.

5. We use the next set of non-linear units to represent the error f rem and continue
recursively until the rate of 1

Na is achieved. Since the remainder function becomes less
smooth after each approximation step, we can only continue this procedure while the
remainder is smooth enough to be effectively approximated by the class of activation
functions considered. This depends on the smoothness of the original function f .
(Roughly, an increased number of bounded derivatives of f allows taking larger a.)
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The guarantees we obtain above contain dimension dependent factors which can be quite
large. By considering functions with low-dimensional structure – that is, d dimensional
functions whose effective dimension is q � d as described below, the dimension dependent
factor can be improved to depend only on q and not on d.

1.2. Functions with Low-Dimensional Structure

Let d ∈ N and d ≥ q. We build a function f : Rd → R from real valued functions fi : Rq → R
for i = 1, . . . ,m as follows. Let Bi ⊂ Rd be finite sets such that |Bi| = q and for all u, v ∈ Bi,
〈u, v〉 = δu,v. We fix an ordering for the elements of each set Bi. For ease of notation, for
every x ∈ Rd, define 〈x,Bi〉 ∈ Rq to be the vector whose elements are (〈x, v〉)v∈Bi . Define
f : Rd → R as

f(x) =
1

m

m∑
i=1

fi(〈x,Bi〉) . (1)

This is a rich class of functions that is dense over the set of Cc(Rd) equipped with the L2

norm. This can be seen in various ways, including via universal approximation theorems
for neural networks. Such low dimensional structure is often assumed to avoid overfitting
in statistics and machine learning – for instance, linear regression in which case m = q = 1.

Low-Degree Polynomials. Low-degree polynomials are a special case of functions in the
form of (1). For each V : [d]→ {0} ∪ [d] such that

∑
j∈[d] V (j) ≤ q denote by pV : Rd → R

the corresponding monomial given by pV (x) =
∏
j∈V x

V (j)
j . We note that each pV can

depend on at most q coordinates, and a standard dot and dash argument shows that the
number of distinct V are

(
q+d
q

)
. We consider the class of polynomials of x ∈ Rd with degree

at most q, where q � d, which are of the form

f(x) =
∑
V

JV pV (x) (2)

for arbitrary JV ∈ R. Our results in Theorem 10 show how to approximate f(x) for
x ∈ [0, 1]d under some given probability measure over this set.

1.3. Preliminaries and Notation

In this paper d always denotes the dimension of some space like Rd, which we take as the
space of features of our data. We also consider Rq where q � d and functions over them,
especially when considering functions over Rd with a q dimensional structure as defined just
above. B2

q (r) for r > 0 denotes the Euclidean ball {x ∈ Rq : ‖x‖2 ≤ r}. In this paper, we
consider approximating a function f over some bounded set B2

d(r) or B2
q (r). Therefore, we

are free to extend f outside this. The standard `2 Euclidean norm is denoted by ‖ · ‖.
We let capitals denote Fourier transforms. For example the Fourier transform of g :

Rq → R, g ∈ L1(Rq) is denoted by G(ω) =
∫
Rq g(x)ei〈ω,x〉dx . Following the discussion

in Barron (1993), we scale G to G
(2π)q to get the ‘Fourier distribution’ of g. Whenever

G ∈ L1(Rq), the Fourier inversion formula implies that for all x ∈ Rq,

g(x) =

∫
Rq

G(ω)
(2π)q e

−i〈ω,x〉dω . (3)
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Following Barron (1993), we also consider complex signed measures (instead of functions
over Rq) as “Fourier distributions” corresponding to g as long as Equation (3) holds for every

x. In this case the formal integration against G(ω)
(2π)d

dω is understood to be integration with

respect to this signed measure. This broadens the class of functions g that fall within the
scope of our results. We denote the Schwartz space over Rq by S(Rq). This space is closed
under Fourier and inverse Fourier transforms. Finally, for real x let ReLU(x) = max(0, x).

1.4. Random Features Model and Training

The random features model was first studied in Rahimi and Recht (2008b,a, 2009) as an
alternative to kernel methods. The representation results in Barron (1993); Klusowski and
Barron (2018); Sun et al. (2018); Bailey et al. (2019); Ji et al. (2019) and in this work
use random features. In order to approximate a target function f : Rd → R we consider
functions of the form f̂(x; v) =

∑N
j=1 vjσ(〈ωj , x〉 − Tj) . Here we have denoted (vj) ∈ R

in the RHS collectively by v in the LHS, and ωj ∈ Rd and Tj ∈ R are random variables.
We optimize over v, keeping ωj ’s and Tj ’s fixed to find the best approximator for f . More
specifically, we want to solve the following loss minimization problem for some probability
distribution ζ over Rd:

v∗ = arg inf
v∈RN

∫ (
f(x)− f̂(x; v)

)2
ζ(dx) . (4)

The problem above reduces to a least squares linear regression problem which can be
easily and efficiently solved via gradient descent since this is an instance of a smooth convex
optimization problem. By Theorem 3.3 in Bubeck et al. (2015), constant step-size gradient
descent (GD) has an excess squared error O(1/T ) compared to the optimal parameter
v∗ after T steps. In this paper, whenever we prove a learning result, we first show that
with high probability over the randomness in ωj , Tj , there exists a v0 such that the loss

in approximating f via f̂( · ; v0) is at most ε/2. Then, running GD for the objective in

Equation (4) for T = Ω(1/ε) steps, we obtain vT such that
∫ (
f(x)− f̂(x; vT )

)2
ζ(dx) ≤ ε .

Since this paper mainly concerns the complexity in terms of the number of activation
functions, we omit the details about time complexity of GD in our results, but it is under-
stood throughout to be O(1/ε). The random features model is considered a good model for
networks with a large number of activation functions since during training with SGD, the
weights ωj and Tj do not change appreciably compared to the initial random value. Such
a consideration has been used in the literature to obtain learning guarantees via SGD for
large neural networks Andoni et al. (2014); Daniely (2017b); Du et al. (2019).

1.5. Organization

The paper is organized as follows. In Section 2, we illustrate the corrective mechanism by
developing our results on memorization by two-layer ReLU networks via SGD to conclude
Theorem 1. We then proceed to state our main results on function representation and
learning polynomials in Section 3. We give the construction of the smoothed ReLU activation
functions in Section A and state an integral representation for cosine functions in terms of
these activation functions. The proof of the main technical result of the paper, Theorem 7,
is in Section B. Sections C through F contain many of the proofs.
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2. Memorization

We first present our results on memorization, as they are the least technical yet suf-
fice to illustrate the corrective mechanism. Suppose we are given n labeled examples
(x1, y1), . . . , (xn, yn) where each data point xi ∈ Rd has label yi ∈ [0, 1]. In memoriza-
tion (also known as interpolation), the goal is to construct a neural network which can be
trained via SGD and which outputs f̂(xi) = ŷi ≈ yi when the input is xi, for every i ∈ [n].
The basic question is: how many neurons are needed?

Theorem 1 Suppose x1, . . . , xn ∈ Rd are such that ‖xj‖ ≤ 1 and mink 6=l ‖xl − xk‖ ≥
θ. For each i = 1, . . . , n let yi ∈ [0, 1] be an arbitrary label for xi. Let (ωj , Tj)
for j = 1, . . . , N be drawn i.i.d. from the distribution N (0, σ2

0Id) × Unif[−2, 2], where
σ0 = 1/

√
C0 × log n× log max(1/θ, 2) for some large enough constant C0. Let C be

a sufficiently large universal constant and let ε, δ ∈ (0, 1) be arbitrary. If N ≥
Cn log4(max(1/θ,2)) log4 n

θ4
log n

δε , then with probability at least 1 − δ there exist a1, . . . , aN ∈ R
such that the function f̂ReLUN :=

∑N
j=1 ajReLU (〈x, ωj〉 − Tj) satisfies

n∑
k=1

(
f(xk)− f̂ReLUN (xk)

)2 ≤ ε .
Moreover, if we consider only a1, . . . , aN as the free parameters and keep the weights (ωj , Tj)
fixed, SGD/GD obtains the optimum because the objective is a convex function.

Remark 2 In the initial version of this paper, there was an extra factor of d2 in the guar-
antees given above. Based on reviewer comments, we have removed this dependence using
a more refined analysis.

In the remainder of this section we will prove Theorem 1. We will first show a Fourier-
analytic representation. However, instead of using the regular Fourier transform, only in
this section, we use the discrete Fourier Transform. For a function f : {x1, . . . , xn} → R,
define F : Rd → R

F (ξ) :=
n∑
j=1

f(xj)e
i〈ξ,xj〉 .

The proof now proceeds in five steps.

Step 1: Approximation via Fourier transform. Let ξ ∼ N (0, σ2Id) for σ > 0 to be
specified momentarily and consider f̃ : {x1, . . . , xn} → R defined as

f̃(xk) := EF (ξ)e−i〈ξ,xk〉 = f(xk) +
∑
j 6=k

f(xj)Eei〈ξ,xj−xk〉 = f(xk) +
∑
j 6=k

f(xj)e
−
σ2d2jk

2 ,

where djk = ‖xj − xk‖2 and we have used the fact that the Gaussian ξ ∼ N (0, σ2Id)
has characteristic function E[e−i〈t,ξ〉] = exp(−1

2σ
2‖t‖2). Note that when σ is large enough

compared to 1/θ, we have f̃(xk) ≈ f(xk), so in what follows we will aim to approximate f̃ .
We will take σ = θ−1

√
2s log n for some s > 1 to be fixed later.

We now record some properties of the random variable F (ξ). Let ‖f‖p denote the
standard Euclidean `p norm when f is viewed as a n-dimensional vector (f (x1), . . . , f(xn)).
The proof of the following lemma is given in Section E.
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Lemma 3 Let ξ ∼ N (0, σ2Id) where σ =
√

2s log n/θ. We have:

1. |F (ξ)| ≤ ‖f‖1 almost surely,

2. E|F (ξ)|2 ≤ ‖f‖22 + ‖f‖21/ns, and

3. |f(xk)− f̃(xk)| ≤ ‖f‖1/ns.

Step 2: Replacing sinusoids by ReLU. We first state a lemma which allows us to
represent sinusoids in terms of ReLU and Step functions. The proof is given in Section C.

Lemma 4 Let T ∼ Unif[−2, 2]. There exist C∞c (R) functions η( · ;α,ψ), (where α and ψ
are the parameters which define η) such that supT∈R |η(T ;α,ψ)| ≤ 1 and for every t ∈ [−1, 1]
and for some absolute constant C, we have

cos(αt+ ψ) = EC(1 + α2)η(T ;α,ψ)ReLU(t− T )

Consider the event A = {|〈ξ, xk〉| > 2s logn
θ for some k ∈ [n]}. By Gaussian concentration,

we have P(A) ≤ 2/ns−1. Write F (ξ) = |F (ξ)|e−iφ(ξ) for some φ : Rd → R. In Lemma 4
we take α = 2s logn

θ , t = 〈ξ, xk〉/α, and ψ = φ(ξ) to conclude that if T ∼ Unif[−2, 2] and
independent of ξ, then on the event Ac

cos
(
〈ξ, xk〉+ φ(ξ)

)
= ETC(1 + 4s2 log2 n

θ2
)η(T ;α,ψ)ReLU

(
θ 〈ξ,xk〉2s logn − T

)
Here ET denotes the expectation only over the random variable T , C is a universal constant
and η is as given by Lemma 4. We have used the fact that θ〈ξ,xk〉

2s logn ∈ [−1, 1] since the event

Ac holds. Now, by definition of f̃ , we have

f̃(xk) = EF (ξ)e−i〈ξ,xk〉 = E|F (ξ)|e−iφ(ξ)−i〈ξ,xk〉 = E|F (ξ)| cos
(
〈ξ, xk〉+ φ(ξ)

)
.

The last two equations lead to the following lemma, with details given in Section E.

Lemma 5 For some absolute constant C1, we have∣∣∣∣f̃(xk)− CE|F (ξ)|
(
1 + 4s2 log2 n

θ2

)
η(T ;α,ψ)ReLU

(
θ 〈ξ,xk〉2s logn − T

)∣∣∣∣ ≤ C1
s3/2‖f‖1 log3/2 n

θ2ns/2
. (5)

Step 3: Empirical estimate. Let N0 ∈ N. We draw (ξl, Tl) for l ∈ {1, . . . , N0} i.i.d.
from the distribution N (0, σ2Id)× Unif[−2, 2]. We construct the following estimator for f̃ ,
which is in turn an estimator for f :

f̂l(x) := C|F (ξl)|
(
1 + 4s2 log2 n

θ2

)
η(Tl;α, φ(ξl))ReLU

(
θ 〈ξl,xk〉2s logn − Tl

)
.

From Equation (5), we conclude that Ef̂l(xk) = f̃(xk)+O
(
s3/2‖f‖1 log3/2 n

θ2ns/2

)
and we construct

the empirical estimate

f̂(x) :=
1

N0

N0∑
l=1

f̂l(x) . (6)
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Lemma 6 For some universal constant C and L := C s4 log4 n
θ4

,

E
(
f(xj)− f̂(xj)

)2 ≤ [ L
N0

+
Cs3 log3 n

θ4ns−1

]
‖f‖22 .

In particular, letting s = C1+C2 log (max(1/θ, 2)) for some constants C1, C2 and N0 = 2neL
yields

E
(
f(xj)− f̂(xj)

)2 ≤ ‖f‖22
en

. (7)

The proof, given in Section E, follows from an application of Gaussian concentration.

Step 4: Iterative correction. We define f0 : {x1, . . . , xj} → R by f0(xj) := yj where
yj ∈ [0, 1] are the desired labels for xj . In the procedure above, we replace f with f0 and

obtain the estimator f̂0 as per Equation (6). We now define the remainder function f rem,1 :
{x1, . . . , xn} → R as the error obtained by the approximation: f rem,1(xk) := f0(xk)−f̂0(xk).
Summing the bound in Equation 7 over j ∈ [n] yields

E‖f rem,1‖22 ≤
‖f0‖22
e

. (8)

We define higher order remainders f rem,l for l ≥ 2 inductively as follows. Suppose we
have f rem,l−1. We replace f in the procedure above with f rem,l−1 to obtain the estimator
f̂ rem,l−1 as given in Equation (6), independent of all the previous estimators. We define the
remainder f rem,l = f rem,l−1 − f̂ rem,l−1. Repeating the argument leading to Equation (8),
with the given choice of s and N0 we conclude that: E‖f rem,l‖22 ≤ e−l‖f0‖22. Take N = lN0.
Unrolling the recursion above, we note that f rem,l(x) is f0(x)− f̂ l(x), where f̂ l(x) is of the
form

f̂ (l)(x) =
N∑
j=1

ajReLU
(
θ〈ξj ,x〉
2s logn − Tj

)
. (9)

This is the output of a two-layer network with lN ReLU units. We recall that (ξj , Tj) are
i.i.d. N (0, σ2Id) × Unif[−2, 2] which agrees with the choice of weights in Theorem 1. The
remainder f rem,l(x) can be seen as the error of approximating f0 using N0l := N random
activation functions as given in Equation (9). By assumption, the labels f0(xj) ∈ [0, 1], so

‖f0‖22 ≤ n. This gives us an error bound on the L2 loss EN (f0) :=
∑n

j=1(f0(xj)− f̂ (l)(xj))
2:

EEN (f0) ≤ e−ln .

Step 5: Markov’s inequality. Denoting by EN (f0) = e−ln the RHS of the bound just
above, Markov’s inequality implies that for any δ ∈ (0, 1)

P
(
EN (f0) ≥ EN (f0)

δ

)
≤ δ . (10)

Now the choice l ≥ log n+log 1
δ+log 1

ε gives EN (f0)
δ ≤ e−l nδ ≤

n
δ e
− log

n
εδ ≤ ε and plugging into

Equation (10) shows that when s, l and N are chosen as above, we have P(EN (f0) ≥ ε) ≤ δ
as claimed in Theorem 1.

9
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3. Representation via the Corrective Mechanism

We now turn to the representation problem. Given a function g : Rq → R, the goal is to
construct a neural network whose output ĝ is close to g. The arguments resemble those
given in the previous section on memorization, but the details are more technically involved.

The approximation guarantees of our theorems depend on certain Fourier norms. These
can be thought of as measures of the complexity of the function g to be approximated. Let
g : Rq → R be the function we are trying to approximate over the domain B2

q (r) and let
G(ω)
(2π)q be the ‘Fourier distribution’ of g : Rq → R as defined in Equation (3). We take its

magnitude-phase decomposition to be: G(ω) = |G(ω)|e−iψ(ω). For each integer s ≥ 0 we
define the Fourier norm

C(s)
g :=

1

(2π)q

∫
Rq
|G(ω)| · ‖ω‖sdω .

We will assume that C
(s)
g <∞ for s = 0, 1, . . . , L for some L ∈ N.

Because having small Fourier norm can be thought of as a smoothness property, smoothed
ReLU functions can be efficiently used for the task of approximating such functions. In Sec-
tion A we define a sequence of smoothed ReLU functions SReLUk for integers k ≥ 0, of
increasing smoothness. These are obtained from the ReLU by convolving with an appropri-
ate function. The use of smoothed ReLU functions is crucial in order that the remainder
following approximation is itself sufficiently smooth, which then allows the approximation
procedure to be iterated. We start with the basic approximation theorem, which has an
approximation guarantee as well as a smoothness guarantee on the remainder.

Theorem 7 Let k ≥ max(1, q−3
4 ). Let g : Rq → R be such that C

(2k+2)
g , C

(0)
g <∞. Then,

given any probability measure ζ over B2
q (r) there exists a two-layer SReLUk network, with

N non-linear units, whose output is ĝ(x) such that the following hold simultaneously:

1. ∫
(g(x)− ĝ(x))2ζ(dx) ≤

C(r, k)
(
C

(0)
g + C

(2k+2)
g

)2
N

.

2. There exists a function grem : Rq → R such that:

(a) For every x ∈ B2
q (r), grem(x) = g(x)− ĝ(x).

(b) Its Fourier transform Grem ∈ L1(Rq) ∩ C(Rq).

(c) For every s < 3−q
2 + 2k, C

(s)
grem ≤ C1(s, r, q, k)(C

(0)
g + C2k+2

g )/
√
N .

We will use this theorem to give a faster approximation rate of 1
Na+1 for g, where

a ∈ N ∪ {0}. We then extend this to functions of the from given in Equation (1). The
main conclusion of the following theorem is that the approximating network achieves an

error of at most ε with N = O(C(a)ε−
1
a+1 ) activation functions. If the theorem below holds

for every a ∈ N ∪ {0}, we note that if we take a → ∞ slowly enough as ε → 0, we get
subpolynomial dependence on ε.

10
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Theorem 8 Fix q ∈ N and for each b ∈ N ∪ {0} let

kb =

{
b
⌈1+q

4

⌉
if q 6≡ 3 (mod 4)

b
(

1+q
4 + 1

)
if q ≡ 3 (mod 4) .

(11)

Suppose g : Rq → R has bounded Fourier norms C
(0)
g < ∞ and C

(2ka+2)
g < ∞ for some

a ∈ {0}∪N. Then, for any probability measure ζ over B2
q (r), there exists a two-layer neural

network with random weights and N activation functions consisting of a mixture of SReLUkb
units for b ∈ {0, 1, . . . , a} with output ĝ : Rq → R such that

1. For every x ∈ B2
q (r), Eĝ(x) = g(x).

2.

E
∫ (

g(x)− ĝ(x)
)2
ζ(dx) ≤ C0(q, r, a)

(
C

(0)
g +C

(2ka+2)
g

)2
Na+1 .

The expectation here is with respect to the randomness in the weights of the neural network.
Moreover, writing ĝ in the form ĝ(x) =

∑N
j=1 κjSReLUk(j)(〈ωj , x〉 − Tj), the κj and ωj

satisfy
∑N

j=1 |κj | ≤ C1(q, r, a)(C0
g + C2ka+2

g ) and ‖ωj‖ ≤ 1
r almost surely.

Proof The main idea of the proof is to use Theorem 7 repeatedly. We will first use
∼ N/(a + 1) SReLUka units to approximate g by ĝ(0). This gives a squared error of the
order O(1/N). We then consider the error term g − ĝ(0) and approximate this error term
using another ∼ N/(a + 1) SReLUka−1 units and try to offset the first error to obtain
a squared error guarantee of 1/N2, and repeat this procedure until we obtain the stated
guarantees. We reduce the smoothness parameter k in every iteration as error terms become
progressively less smooth. A complete proof is provided in Section F.

Now we prove the version of Theorem 8 for functions of the form in Equation (1). The
main advantage of Theorem 9 is that the bounds do not depend on the dimension d, only
on the effective dimension q � d.

Theorem 9 Consider the low-dimensional function defined in Equation (1). Assume that

sup
i

(
C

(0)
fi

+ C
(2ka+2)
fi

)2
≤M .

Then, for any probability measure ζ over B2
d(r), there exists a one non-linear layer neural

network with ReLU and SReLUk units for k ≤ ka with N neurons with output f̂ : Rd → R
such that ∫ (

f(x)− f̂(x)
)2
ζ(dx) ≤ C0(q, r, a, l)Mma

Na+1 .

Proof We use N/m neurons to approximate each of the component functions fi just like
in Theorem 8, and then average the outputs. The full proof is in Section F.

We will now develop our results on learning low-degree polynomials. The results are
based on Theorem 32 which is similar to Theorem 9, but with a stronger bounded sup
norm type assumption on the Fourier transform instead. This has the advantage that we
can sample the weights independent of the target function g and k to construct our network.
The proofs are developed in Section D, which is roughly similar to Section B.

11
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Let the probability measure µl over R be defined by µl(dt) ∝ dt
1+t2l

for l ∈ N. Given

a,m,N ∈ N ∪ {0} such that N
(a+1)m ∈ N and the orthonormal sets Bi be as used in Equa-

tion (1), consider the following sampling procedure:

1. Partition [N ] ⊆ N into m disjoint sets, each with N/(m(a+ 1)) elements.

2. For i ∈ [m], b ∈ {0, . . . , a}, j ∈ [ N
m(a+1) ], we draw ω0

i,j,b ∼ Unif
(
Sspan(Bi)

)
and Ti,j,b ∼

µl independently for some l ≥ max(q + 3, 3a+ 3).

We now specialize to the low degree polynomials defined in Equation (2). Define the
following orthonormal set associated with each V in the summation:

BV = {ej : V (j) 6= 0} ∪ B̄V ,

where ej are the standard basis vectors in Rd and B̄V ⊆ {e1, . . . , ed} is chosen such that
|BV | = q. Consider the sampling procedure given above with the bases BV . Since the bases
BV are known explicitly, this sampling can be done without knowledge of the polynomial.
We have the following theorem about learning low-degree polynomials, proved in Section F.

Theorem 10 Let m =
(
q+d
q

)
, r =

√
q and let J be the m-dimensional vector whose entries

are JV . Let a ∈ N ∪ {0}, δ ∈ (0, 1) and ε, Rc > 0 be arbitrary. Let N be chosen such that
and N/(a + 1)m ∈ N. Let ζ be any probability measure over [0, 1]d. Generate the weights
(ω0
i,j,b, Ti,j,b) according to the sampling procedure described above. Construct the two-layer

neural network with N activation functions

f̂(x; v) =
m∑
i=1

a∑
b=0

N
m(a+1)∑
j=1

vi,j,bSReLUkSb

(
〈ω0
i,j,b,x〉
r − Ti,j,b

)
. (12)

Here we have denoted the vector comprising of vi,j,k by v. Let v∗ ∈ arg infv∈B2
N (Rc)

∫
(f(x)−

f̂(x; v))2ζ(dx). Let b ∈ N ∪ {0}, b ≤ a. There exists a constant C(a, q, l) such that if

N ≥ C(a, q, l) max

(
δ−1/(b+1)‖J‖2

2(b+1)
m2−1/(b+1)

R2
c

,
(
‖J‖22
εδ

) 1
a+1

m

)
,

then with probability at least 1− δ,∫ (
f(x)− f̂(x; v∗)

)2
dζ ≤ ε .

Moreover, we can obtain the coefficients v∗i,j,b using GD over the outer layer only since this
is a convex optimization problem.
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Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size
and weights size for memorization with two-layers neural networks. arXiv preprint
arXiv:2006.02855, 2020.
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Appendix A. Smoothed ReLU functions and Integral Representations

In this section we introduce the necessary technical results and constructions for function
approximation by smoothed ReLU units SReLUk, as used in Theorems 7 and 8. In The-
orem 11 we show that cosine functions can be represented in terms of SReLUk functions
similar to Step 2 in Section 2. This will later be used along with the Fourier inversion
formula to represent the target function g in terms of the activation functions SReLUk. We
note that this idea is taken from Barron (1993) and Klusowski and Barron (2018). All of
the results stated here are proved in Section C.

A.1. Smoothing the ReLU

Consider the triangle function

λ(t) =

{
1− |t| for |t| ≤ 1

0 otherwise .
(13)

Clearly, λ is a symmetric, bounded and continuous probability density over R. Denoting

the Fourier transform of λ by Λ, one can verify the standard fact that Λ(ξ) = sin2(ξ/2)
(ξ/2)2

.

We also consider k-fold convolution of λ with itself: Let λ1 := λ and λl+1 := λ1 ∗ λl
for l ≥ 1. For each k ≥ 1 the function λk has support [−k, k], it is a symmetric, bounded

and continuous probability density over R, and its Fourier transform is Λk(ξ) = sin2k(ξ/2)
(ξ/2)2k

.

For arbitrary w0 > 0, we define λk,w0(t) := k
w0
λk(

tk
w0

), which can also be verified to be a
symmetric, continuous probability density over R with support [−w0, w0], and its Fourier
transform is given by Λk,w0(ξ) = Λk(

ξw0

k ).
We now “cosine regularize” λk so that its Fourier transform is non-zero everywhere.

This transformation is for purely technical reasons and is useful in the proof of Theorem 11
stated below. Let α0 > 0 and w0 ≤ min( π

2α0
, πk4α0

) and define

λα0
k,w0

(t) := cos(α0t)λk,w0(t)

/∫ ∞
−∞

cos(α0T )λk,w0(T )dT . (14)

The constraints given on α0 and w0 ensure that λα0
k,w0

(t) ≥ 0 for every t. We will henceforth
think of α0 and w0 as fixed (say w0 = 0.5 and α0 = π

16). We define the smoothed ReLU
functions

SReLUk := ReLU ∗ λα0
k,w0

for all k ≥ 1

and hide the dependence on w0, α0. Clearly, SReLUk is an increasing, positive function and
SReLUk(t) = ReLU(t) whenever t /∈ (−w0, w0). We follow the convention that for k = 0,
SReLUk = ReLU. In particular, SReLUk(t) = 0 whenever t ≤ −w0. We give an illustration
of these functions in Figure 1. The higher the value of k, the smoother the function is at 0.
In the sequel, whenever we say “smoothed by filter λα0

k,w0
”, we mean convolution with the

function λα0
k,w0

.

Theorem 11 (Cosine Representation Theorem) Consider the probability measure µl

over R given by µl(dT ) =
cµldT

1+T 2l (here cµl is the normalizing constant). Let α,ψ ∈ R be
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(a) ReLU (b) SReLU1

Figure 1: Illustrating ReLU and SReLU activation functions.

given. There exists a continuous function κ : R→ R depending on α, θ, l, k, w0 and α0 such
that ‖κ‖∞ ≤ C(k, l)

(
1 + |α|2k+2

)
and for every t ∈ [−1, 1]

cos(αt+ ψ) =

∫ ∞
−∞

κ(T )SReLUk(t− T )µl(dT ) .

Remark 12 We note that the upperbound on κ gets worse as the smoothness parameter k
gets larger. This is due to the fact that smoother activation functions find it harder to track
fast oscillations in cos(αt+ ψ) as α gets larger.

Appendix B. Proof of Theorem 7: Unbiased Estimator for the Function
and its Fourier transform

Through the following steps, we describe the proof of Theorem 7, which was in turn used
to prove Theorem 8.

Step 1: Representing g in terms of SReLUk Consdier the setup in section 3 and assume

C
(2k+2)
g , C

(0)
g < ∞. From Fourier inversion formula, using the fact that g is real-valued, it

follows that

g(x) =

∫
Rq

cos(〈ω, x〉+ ψ(ω))
|G(ω)|
(2π)q

dω . (15)

We combine Theorem 11 and Equation (15) to show the following integral representation
for g. The proof is given in Section C.

Theorem 13 Let µl be the probability measure defined by its density µl(dt) ∝ dt
1+t2l

for a

given l ∈ N. Define the probability distribution νg,k by νg,k(dω) = 1+r2k+2‖ω‖2k+2

C
(0)
g +r2k+2C

(2k+2)
g

|G(ω)|
(2π)q dω.

For every x ∈ B(2)
q (r)

g(x) = βg,k

∫∫
η(T ; r, ω)SReLUk

(
〈ω,x〉
r‖ω‖ − T

)
µl × νg,k(dT × dω) , (16)

where |η(T ; r, ω)| ≤ 1 almost surely with respect to measure µl × νg,k and η(T ; r, ω) = 0

whenever T > 1 + w0 and βg,k :=
(
C

(0)
g + r2k+2C

(2k+2)
g

)
C(k, l)
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Remark 14 The case ω = 0 might appear ambiguous in the integral representations above.
But following our discussion preceding Theorem 13, we use the convention that 〈ω,x〉‖ω‖ := 0
whenever ω = 0. We check that even the constant function can be represented as an integral
in Theorem 11 by setting α = 0.

Remark 15 The probability measure νg,k depends on the function g and can be complicated.
Therefore, when training a neural network, it is not possible to sample from it since g is
unknown. We only use the existence of this measure to prove representation theorems as
found in the literature (see Barron (1993), Klusowski and Barron (2018)). To give the
training results, we will impose more conditions on G and show that we can get similar
representation theorems when a known, fixed measure ν0 is used instead of νg,k. This is
done in Section D.

We start by converting Theorem 6, the integral representation of g in terms of SReLUk
units, into a statement about existence of a good approximating network ĝ.

Step 2: Empirical estimate. Let µl × νg,k, η and βg,k be as given by Theorem 13. For
j ∈ {1, . . . , N}, draw (Tj , ωj) to be i.i.d. from the distribution µl × νg,k. Let θuj for j ∈ [N ]
be i.i.d. Unif[−1, 1] and independent of everything else. We define

θj := 1
(
θuj < η(Tj ; r, ωj)

)
− 1

(
θuj ≥ η(Tj ; r, ωj)

)
and observe that θj ∈ {−1, 1} almost surely and E [θj |Tj , ωj ] = η(Tj ; r, ωj). That is, it is an
unbiased estimator for η(Tj ; r, ωj) and independent of other θj′ for j 6= j′.

Now define the estimate ĝj(x) based on a single SReLUk unit

ĝj(x) := βg,kθjSReLUk

(
〈ωj ,x〉
r‖ωj‖ − Tj

)
1(Tj ≤ 1 + w0) (17)

where we have made the dependence of ĝj on Tj , ωj implicit. We also define the empirical
estimator

ĝ(x) =
1

N

N∑
j=1

[ĝj(x)] .

Note that ĝ is the output of a two-layer neural network with one SReLUk layer and one
linear layer.

Theorem 16 Consider the probability measure µl with density µl(dt) ∝ dt/(1 + t2l) and
let Tj ∼ µl for l ≥ 2 (so that E|Tj |2 <∞). Then

1. For every x ∈ B2
q (r), g(x) = Eĝj(x).

2. For every x ∈ B2
q (r), E(g(x)− ĝ(x))2 ≤ Cβ2

g,k

N .

3. There is a constant C depending on l such that for any probability distribution ζ over
B2
q (r),

E
∫ (

g(x)− ĝ(x)
)2
ζ(dx) ≤

Cβ2
g,k

N
.
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Therefore there exists a configuration a choice of (Tj , ωj , θj) such that∫ (
g(x)− ĝ(x)

)2
ζ(dx) ≤

Cβ2
g,k

N
.

Proof The first item follows from Theorem 13. For the second item, let x ∈ B2
q (r). Since

ĝj(x) is an unbiased estimator for g(x) as shown in Item 1, we conclude that :

E
(
g(x)− ĝ(x)

)2
=

1

N

[
E
(
ĝj(x))2 − (g(x)

)2] ≤ 1

N
E
(
ĝj(x)

)2
Now |ĝj(x)| ≤ βg,k(1 + |Tj | + w0). Squaring and taking expectations on both sides yields
the result, using that E|Tj |2 < ∞ since l ≥ 2. For Item 3, we use Fubini’s theorem and
Item 2 to conclude that

E
∫

(g(x)− ĝ(x))2ζ(dx) ≤
Cβ2

g,k

N
.

The desired bound holds in expectation, so it must also hold for some configuration.

Note that in Theorem 16, the RHS of the error upper bounds depend on the Fourier

norm C
(s)
g . As explained in Section 1.1, in order to apply the corrective mechanism we need

to consider grem(x) = g(x)− ĝ(x) for x ∈ B2
q (r) and show that, roughly, the corresponding

Fourier norm C
(s)
grem ≤ C

C
(s)
g√
N

. Since Fourier transform is a linear mapping, an unbiased

estimator for g (i.e, ĝ) should be such that the Fourier transform of ĝ (i.e, Ĝ(ξ)) is an
unbiased estimator for G(ξ) for every ξ ∈ Rq. There are several technical roadblocks to this
argument:

1. ĝ(x) is only an unbiased estimator when x ∈ B2
q (r).

2. ĝj(x) is a ‘one dimensional function’ - that is it depends only on 〈ωj , x〉. This makes
its Fourier transform contain tempered distributions like dirac delta and we cannot
apply a variance computation to show that the Fourier transform contracts by 1/

√
N .

3. ĝj(x), even along the direction 〈ωj , x〉 is not well behaved since SReLUk(·) is not
compactly supported. Therefore this is not an L1 function and hence its Fourier
transform isn’t very well behaved.

We resolve the issues above by considering the fact that we only care about the values
of g (and ĝ) in B2

q (r) and hence we are free to modify g (and ĝ) outside this domain. Along
these lines, we modify g to g( · ;R) and ĝj to ĝj( · ;R). Ultimately, we will show the existence
of grem : Rq → R such that grem(x) = g(x) − ĝ(x) whenever x ∈ B2

q (r) and such that its
Fourier transform is ‘well behaved enough’ to carry out the corrective mechanism describe
above and in Section 1.1. As a first step towards modification, we resolve item 3 first above
by replacing SReLUk by smoothed triangles S∆k as defined below. This compactifies ĝj
along the direction ωj .
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Step 3: Replacing SReLU by smoothed triangles. In the notations used below, we
hide the dependence on r, w0, α0 and l for the sake of clarity. Consider the statement of
Theorem 13 for every x ∈ B2

q (r):

g(x) = βg,k

∫∫
η(T ; r, ω)SReLUk

(
〈ω,x〉
r‖ω‖ − T

)
µl(dT )νg,k(dω) . (18)

For t ∈ R, let

S∆k (t;T ) := SReLUk (t− T )− 2SReLUk (t− 1− w0) + SReLUk (t− 2− 2w0 + T ) ,

and
∆ (t;T ) := ReLU (t− T )− 2ReLU (t− 1− w0) + ReLU (t− 2− 2w0 + T ) .

Note that ∆ = S∆0. Clearly, when T ≤ 1 + w0 and x ∈ B2
q (r), we have

SReLUk

(
〈ω,x〉
r‖ω‖ − T

)
= S∆k

(
〈ω,x〉
r‖ω‖ , T

)
,

and η(T ; r, ω) = 0 whenever T > 1 + w0. Therefore, we can replace SReLUk with S∆k in
Equation (18). When T ≤ 1 + w0, ∆( · ;T ) : R→ R gives a triangle graph as can be easily
verified and hence is compactly supported. Its Fourier transform is an L1 function. S∆k

is obtained by convolving ∆ with the filter λα0
k,w0

. We refer to Figure 2 for an illustration.
Lemma 17 below follows from the preceding discussion.

(a) ∆ (b) S∆1

Figure 2: Illustrating ∆ and S∆1 activation functions.

Lemma 17 For every x ∈ B2
q (r),

g(x) = βg,k

∫∫
η(T ; r, ω)S∆k

(
〈ω,x〉
r‖ω‖ , T

)
µl(dT )νg,k(dω) .

Consider the technical issues listed before Step 3. We resolved item 3 in Step 3 above. In
Step 4 below, will resolve item 2 by modifying ĝj by first replacing SReLUk with S∆k as in
Step 3 to ‘compactify’ it along the direction ωj and then ‘mollify’ it along the perpendicular
directions by multiplying it with a function which is 1 in B2

q (r) and vanishes outside a
compact set to obtain ĝj( · ;R). To resolve item 1, we define g(x;R) to be the expectation
of ĝj(x;R) for every x. As a consequence we have show that for ξ ∈ Rq, the fourier
transform of ĝj( · ;R), given by Ĝj(ξ;R) is an unbiased estimator for G(ξ;R) which is the
Forier transfrom of g( · ;R).
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Step 4: Truncation and modification Let γ ∈ S(R) be the function defined in Sec-
tion 1.3 - such that γ(t) ≥ 0 for every t ∈ R, γ(t) = 0 when |t| ≥ 2 and γ(t) = 1
for every t ∈ [−1, 1]. Let R ≥ r and q > 1. For every x ∈ Rd and ω 6= 0, we define

γ⊥ω (x) := γ

(
‖x‖2− 1

‖ω‖2
〈ω,x〉2

R2

)
when q > 1. We use the convention that when ω = 0,

1
‖ω‖2 〈ω, x〉

2 := 0 as stated in Remark 14. When q = 1, we let γ⊥ω (x) := 1 for every x. Let

l ≥ 2. Draw (Tj , ωj) i.i.d. from the distribution µl × νg,k and let the random variable θj be
as in Equation (17). Define ĝj( · ;R) : Rq → R:

ĝj(x;R) :=


0 when Tj > 1 + w0

βg,kθjS∆k (0, Tj) γ(‖x‖
2

R2 ) othwerwise when ωj = 0

βg,kθjS∆k

(
〈ωj ,x〉
r‖ωj‖ , Tj

)
γ⊥ωj (x) otherwise .

(19)

We also define g( · ;R) : Rq → R by

g(x;R) = Eĝj(x;R) . (20)

The expectation on the RHS exists for every x whenever l ≥ 2 because then ET∼µl |T | <
∞. We note that g(x;R) and ĝj(x;R) are both implicitly dependent on k, l, α0, w0. Let
Ĝj(ξ;R) be the Fourier transform of ĝj(x;R) and let G(ξ;R) be the Fourier transform of
g(x;R). Even though we allowed the Fourier distribution G/(2π)d to be singular entities
like δ measures, we will see that for our extension, we show below that the G(ξ;R) is
a L1(Rq) ∩ C(Rq) function. This allows us to construct estimators for G( · ;R). In the
lemma below we construct an unbiased estimator for g( · ;R), whose Fourier transform is
an unbiased estimator for G( · ;R).

Let Γq,R be the Fourier transform of γ(‖x‖2/R2). We conclude from spherical symmetry
of the function γ(‖x‖2/R2) that Γq,R(ξ) is a function of ‖ξ‖ only. When convenient, we
will abuse notation and replace Γq,R(ξ) by Γq,R(‖ξ‖). We note some useful identities in
Lemma 18 and give its proof in Section E.

Lemma 18 Let µl be the probability measure defined in Theorem 11. Let l ≥ 2 so that
ET∼µlT 2 <∞.

1. For every x ∈ B2
q (r),

g(x;R) = g(x) and ĝj(x;R) = ĝj(x) ,

where ĝj(x) is as defined in (17).

2. ĝj( · ;R) ∈ L1(Rq) almost surely and g( · ;R) ∈ L1(Rq)

3. For every ξ, ω ∈ Rq such that ω 6= 0 we define ξω := 〈ξ,ω〉
‖ω‖ ∈ R and ξ⊥ω := ξ − ω〈ξ,ω〉

‖ω‖2 .

For any fixed value of Tj and ωj:

Ĝj(ξ;R) =



0 if Tj > 1 + w0

βg,kθjΓq,R(‖ξ‖)S∆k(0;Tj) when Tj ≤ 1 + w0 and ωj = 0

βg,kθjΓq−1,R(‖ξ⊥ωj‖)Λ
α0
k,w0

(ξωj )

[
4e
i(1+w0)rξωj

ξ2ωj r
sin2((1 + w0 − T )ξωjr/2)

]
otherwise

(21)
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Here we stick to the convention that RHS is 〈ω,x〉‖ω‖ = 0 when ωj = 0 and when q = 1,

we let Γq−1,R(·) = 1. We recall that Λα0
k,w0

is the Fourier transform of the filter λα0
k,w0

.

4. Ĝj( · ;R) ∈ L1(Rq) almost surely, G( · ;R) ∈ L1(Rq) and for every ξ ∈ Rq,

G(ξ;R) = EĜj(ξ;R) .

Step 5: Controlling Fourier norm of remainder term. As per Theorem 16, g(x) is
approximated by 1

N

∑N
j=1 ĝj(x) up to a squared error of the order 1

N and 1
N

∑N
j=1 ĝj(x) is

the output of a two-layer SReLUk network with N non-linear activation functions. We will
now consider the remainder term: g(x) − 1

N

∑N
j=1 ĝj(x). Since we are only interested in

x ∈ B2
q (r), we can define the following version of the remainder term using the truncated

functions g(x;R) and ĝj(x;R):

grem(x) := g(x;R)− 1

N

N∑
j=1

ĝj(x;R) .

We will now show that the expected ‘Fourier norm’ of grem(x) is smaller by an order of 1√
N

.

We note that grem is a ‘random function’ such that Egrem(x) = 0 for every x. Let Grem be
the Fourier transform of grem.

Lemma 19 Recall the probability measure µl from Theorem 11. Let l = 3 so that
ET∼µlT 4 <∞ and let R = r. For s ∈ {0} ∪ N, consider

C
(s)
grem :=

∫
Rq
‖ξ‖s · |Grem(ξ)|dξ .

Whenever k ≥ max(1, q−3
4 ) and s < 3−q

2 + 2k, we have that

EC(s)
grem ≤

C(C
(0)
g + C

(2k+2)
g )√

N
,

where C is a constant depending only on s, r, q and k.

We give the proof in Section E. It is based on Item 4 in Lemma 18, which ensures that
|Grem| is of the order 1√

N
in expectation. The technical part of the proof involves controlling

the integral with respect to the Lebesgue measure using a polar decomposition.
We now combine the results above to complete the proof of Theorem 7. The proof

applies Markov’s inequality to the results in Theorem 16 and Lemma 19. Let ĝ and grem be
defined randomly as in the discussion above. By Markov’s inequality:

1. There is a constant C ′ such that with probability at least 3/4,

∫
(g(x)− ĝ(x))2ζ(dx) ≤

C ′
(
C

(0)
g + C

(2k+2)
g

)2

N
.
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2. There is a constant C ′1 such that with probability at least 3/4,

C
(s)
grem ≤

C ′1(C
(0)
g + C2k+2

g )
√
N

.

By the union bound, with probability at least 1/2 both the inequalities above hold, and
hence these must hold for some configuration.

Appendix C. Integral Representations for Cosine Functions

The objective of this section is to prove Theorem 11.
The Lemmas 20 and 21 below establish important properties of the the filter λα0

k,w0
and

will be used extensively in the sequel. Their proofs are given in Section C.

Lemma 20 λα0
k,w0

(t) as defined in Equation (14) is a symmetric, continuous probability
density over R which is supported over [−w0, w0]. Its Fourier transform Λα0

k,w0
is such that

1 ≥ Λα0
k,w0

(ξ) > 0 for every ξ.

Proof The first part of the Lemma follows directly from the definition. Let

Cα0 :=

∫ ∞
−∞

cos(α0T )λk,w0(T )dT > 0 .

For the second part, we observe that

Λα0
k,w0

(ξ) =
1

2Cα0

[
Λk

(
(ξ+α0)w0

k

)
+ Λk

(
(ξ−α0)w0

k

)]

=
1

2Cα0

sin2k
(

(ξ+α0)w0

2k

)
(

(ξ+α0)w0

2k

)2k
+

sin2k
(

(ξ−α0)w0

2k

)
(

(ξ−α0)w0

2k

)2k

 .
We observe that this vanishes only when both sin2k

(
(ξ+α0)w0

2k

)
and sin2k

(
(ξ−α0)w0

2k

)
vanish.

This can happen only if α0 = lπk
w0

for some l ∈ Z. Since by assumption we have 0 < α0 <
πk
2w0

,
this condition cannot hold, which implies the result.

Lemma 21 Let α0 and w0 be fixed. Then, there exist constants C0, C1 > 0 depending only
on α0 and w0 and C2 depending only on α0, w0 and k such that for every ξ ∈ R,

C0

C1 + max(( ξ
α0
− 1)2k, ( ξ

α0
+ 1)2k)

≤ Λα0
k,w0

(ξ) ≤ C2

1 + ξ2k
. (22)

For every i ∈ N, denoting the i times differentiation operator by D(i),∣∣∣∣D(i)
[ 1

Λα0
k,w0

(ξ)

]∣∣∣∣ ≤ C(i, k, w0, α0)
(

1+
∣∣ξ∣∣2k) .

For every ξ ∈ R and i ∈ N there is a constant C1(i, k, w0, α0) such that∣∣D(i)Λα0
k,w0

(ξ)
∣∣ ≤ C1(i, k, w0, α0)

1 + ξ2k
.
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Proof Let θ ≤ π
4 . Define η(x) := sin2k(x+θ)

(x+θ)2k
+ sin2k(x−θ)

(x−θ)2k . We will use the following claim.

Claim 1 Let θ ∈ [0, π4 ]. Then for every x ∈ R, either sin2k(x+ θ) ≥ sin2k(θ) or sin2k(x−
θ) ≥ sin2k(θ).

Proof of claim: It is sufficient to show this for x ∈ [0, π) because of periodicity. If
x ≤ π − 2θ then, θ ≤ x+ θ ≤ π − θ. Therefore, sin2k(x+ θ) ≥ sin2k(θ). If x > π − 2θ then
π − θ > x− θ > π − 3θ ≥ θ. Therefore, sin2k(x− θ) ≥ sin2k(θ). �
Clearly,

η(x) ≥ sin2k(x+θ)

sin2k(x+θ)+(x+θ)2k
+ sin2k(x−θ)

sin2k(x−θ)+(x−θ)2k

≥ min

(
sin2k(θ)

sin2k(θ) + (x− θ)2k
,

sin2k(θ)

sin2k(θ) + (x+ θ)2k

)
=

sin2k(θ)

sin2k(θ) + max((x− θ)2k, (x+ θ)2k)
. (23)

In the second step we have used Claim 1. We note that when θ = α0w0
2k , Λα0

k,w0
(ξ) = c0

2 η( ξw0

2k )

where c0 = 1∫∞
−∞ cos(α0T )λk,w0

(T )dT
≥ 1. From equation (23), we conclude that

Λα0
k,w0

(ξ) ≥ c0

2

sin2k(α0w0
2k )/(α0w0

2k )2k

sin2k(α0w0
2k )/(α0w0

2k )2k + max(( ξ
α0
− 1)2k, ( ξ

α0
+ 1)2k)

≥ 1

2

sin2k(α0w0
2k )/(α0w0

2k )2k

sin2k(α0w0
2k )/(α0w0

2k )2k + max(( ξ
α0
− 1)2k, ( ξ

α0
+ 1)2k)

. (24)

In the second step we have used the fact that c0 ≥ 1. Now, using Taylor’s theorem, we
conclude that when 0 ≤ x ≤ π

2 , sinx
x ≥ 1− x2

6 . Therefore,

lim
k→∞

sin2k(α0w0
2k )/(α0w0

2k )2k = 1 .

Using this, we conclude that we can bound sin2k(α0w0
2k )/(α0w0

2k )2k away from 0, uniformly
for all k. Using this in the Equation (24), we conclude the first part of the lemma. Now,
we will consider the derivatives. We first show the following claim:

Claim 2 Let f ∈ C∞(R) such that f(x) 6= 0 for every x ∈ R. Then, for any i ≥ 1 D(i)( 1
f )

is a linear combination of the functions of the form 1
fr+1

∏r
l=1D

(nl)(f), where 1 ≤ r ≤ i,

nl ∈ N, and
∑r

l=1 nl = i. The coefficients in the linear combination do not depend on f .

Proof of claim: We show this using induction with base case D(1) 1
f = − 1

f2
D(1)f , which

satisfies the hypothesis. Suppose the hypothesis is true for D(i) 1
f . Then D(i+1) 1

f is a linear

combination of functions of the form D(1)
(

1
fr+1

∏r
l=1D

(nl)(f)
)

, where 1 ≤ r ≤ i, rl ∈ N,

and
∑r

l=1 nl = i. Now,

D(1)

(
1

f r+1

r∏
l=1

D(nl)(f)

)
= −r + 1

f r+2
D(1)(f)

r∏
l=1

D(nl)(f)

+
1

f r+1

r∑
l0=1

D(nl0+1)(f)
∏
l 6=l0

D(nl)(f) .
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This is a linear combination with the required property for i + 1. Therefore, we conclude
the claim. �

We now show another estimate necessary for the proof:

Claim 3 For every i ∈ N and some constant C(i, k, w0, α0) > 0 depending only on
i, k, w0, α0,

|D(i)Λα0
k,w0

(ξ)| ≤ C(i, k, w0, α0)

(1 + |ξ|2k)

Proof of claim: Let g(ξ) = sin2k(ξ)
ξ2k

. Since Λα0
k,w0

is a linear combination of the scaled

and shifted version of g, the same bounds hold for Λα0
k,w0

up to constants depending on

k,w0, α0 and i. Clearly, g ∈ C∞(R). Therefore, |D(i)(g)(ξ)| ≤ C(i) whenever |ξ| ≤ 1. Now
assume that |ξ| ≥ 1. It is easy to show that D(i)(g) is a linear combination of the functions

of the form gr(ξ)
ξ2k+r

, where gr(ξ) is a bounded trigonometric function, and r ∈ {0, 1, . . . , i}.
Therefore, |D(i)(g)(ξ)| ≤ C′(i)

|ξ|2k ≤
2C′(i)

1+|ξ|2k whenever |ξ| ≥ 1. Combining this with the case

|ξ| ≤ 1, we conclude the result. �

From Claim 2, it is sufficient to upper bound terms of the form | 1
fr+1

∏r
l=1D

(nl)(f)|,
where 1 ≤ r ≤ i, nl ∈ N, and

∑r
l=1 nl = i for f = Λα0

k,w0
. From the bound in Equation (22)

on Λα0
k,w0

and bounds on the derivatives in Claim 3, we have∣∣∣∣ 1

f r+1

r∏
l=1

D(nl)(f)

∣∣∣∣(ξ) ≤ C(k, i, w0, α0)(1 + |ξ|2k) .

From this we conclude the upper bound on the derivatives. The proof of upper bound on
Λα0
k,w0

is similar to the proof of Claim 3 and the bounds on D(i)Λα0
k,w0

follows from Claim 3.
This completes the proof of Lemma 21.

Let C∞c (R) denote the set of infinitely differentiable, compactly supported real valued
functions. Let p be any symmetric continuous probability density supported over [−w0, w0].
Define

SReLU(t) =

∫ ∞
−∞

ReLU(t− T )p(T )dT . (25)

We also define the convolution operator P : C0(R)→ C0(R) by

Pg(t) :=

∫ ∞
−∞

g(t− T )p(T )dT ,

and let I denote the identity operator over C0(R).

Lemma 22 Let h ∈ C∞c (R) function such that supp(h) ⊆ [a, b] for some a, b ∈ R. Then

1. For any t ∈ [a, b],

h(t) =

∫ ∞
−∞

h′′(T )ReLU(t− T )dT .
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2. Let SReLU be as defined in Equation (25). For every n ∈ N,

h(t) =

∫ ∞
−∞

h′′(T )
[
(I − P)n+1

]
ReLU(t− T )dT

+
n∑
i=0

∫ ∞
−∞

h′′(T )
[
(I − P)iSReLU

]
(t− T )dT .

Proof

1. Since h is infinitely differentiable and supported over [a, b], supp(h′′) ⊆ [a, b]. Therefore,
the integral in question reduces to:∫ b

a
h′′(T )ReLU(t− T )dT =

∫ t

a
h′′(T )(t− T )dT .

The proof follows from integration by parts and using the fact that h′(a) = h(a) = 0.

2. Since h′′ is compactly supported, it is sufficient to show that

n∑
i=0

[
(I − P)iSReLU

]
+
[
(I − P)n+1

]
ReLU = ReLU .

Since SReLU = P (ReLU), this reduces to showing that

n∑
i=0

[
(I − P)i

]
P + (I − P)n+1 = I ,

which can be verified via a straightforward induction argument.

Lemma 23 Let h be as defined in Lemma 22. Let P , the Fourier transform of density p be
such that P (ξ) ∈ R for every ξ and 1 ≥ P (ξ) > 0 for almost all ξ (w.r.t lebesgue measure
over R). Then for every t ∈ [a, b] the following limit holds uniformly.

lim
n→∞

∫ ∞
−∞

h′′(T )
[
(I − P)n+1ReLU

]
(t− T )dT = 0 .

And for every t ∈ [a, b] the following holds uniformly:

h(t) = lim
n→∞

n∑
i=0

∫ ∞
−∞

[
(I − P)ih′′

]
(T )SReLU(t− T )dT .

Proof Fix t ∈ [a, b]. By a simple application of Fubini’s theorem, the fact that h′′ has
compact support and that p(·) is compactly supported, it is easy to show the following
“self-adjointness” of the operator P. For any continuous f : R→ R:∫ ∞

−∞
h′′(T ) [Pf ] (t− T )dT =

∫ ∞
−∞

[
Ph′′

]
(T )f(t− T )dT . (26)
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From Equation (26) it follows that∫ ∞
−∞

h′′(T )
[
(I − P)n+1ReLU

]
(t− T )dT =

∫ ∞
−∞

[(I − P)n]h′′(T ) [(I − P)ReLU] (t− T )dT .

From the definition of the ReLU and the fact that p is symmetric and of compact
support, it is clear that [(I − P)]ReLU is a continuous function with compact support.
‖ [(I − P)]ReLU‖2 < ∞ where ‖ · ‖2 is the standard L2 norm of functions w.r.t Lebesgue
measure. Hence, by the Cauchy-Schwarz inequality,∣∣∣∣ ∫ ∞

−∞
h′′(T )

[
(I − P)n+1ReLU

]
(t− T )dT

∣∣∣∣
=

∣∣∣∣ ∫ ∞
−∞

[
(I − P)nh′′

]
(T ) [(I − P)ReLU(t− T )] dT

∣∣∣∣
≤ ‖(I − P)ReLU‖2‖(I − P)nh′′‖2
≤ C‖(I − P)nh′′‖2 , (27)

where C is independent of n. To prove the lemma, it is sufficient to show that limn→∞ ‖(I−
P)nh′′‖2 = 0. We do this using Parseval’s theorem. Let H(2) be the Fourier transform of
h′′. We note that H(2) ∈ L2 since h ∈ S(R). By the duality of convolution-multiplication
with respect to Fourier transform, we conclude that the Fourier transform of (I −P)nh′′ is
(1− P )nH(2). By Plancherel’s theorem,

‖(I − P)nh′′‖2 =
1√
2π
‖(1− P )nH(2)‖2 . (28)

Since 0 < P (ξ) ≤ 1 almost everywhere, we conclude that limn→∞(1 − P )nH(2) = 0
almost everywhere. Since |(1 − P )nH(2)| ≤ |H(2)| almost everywhere and H(2) ∈ L2, we
conclude by dominated convergence theorem that

lim
n→∞

‖(I − P)nh′′‖2 =
1√
2π

lim
n→∞

‖(1− P )nH(2)‖ = 0 .

Equation (27) along with item 2 of Lemma 22, this implies that for every t ∈ [a, b], the
following uniform convergence holds:

h(t) = lim
n→∞

n∑
i=0

∫ ∞
−∞

h′′(T )
[
(I − P)iSReLU

]
(t− T )dT .

Using Equation (26) along with the equation above, we get

h(t) = lim
n→∞

n∑
i=0

∫ ∞
−∞

[
(I − P)ih′′

]
(T )SReLU(t− T )dT .

In Lemma 24 below, we will show that when we choose the operator P carefully, the

sum h
(2)
n :=

∑n
i=0(I − P)ih′′ converges a.e. and in L2 to a Schwartz function h̄ : R → R.

The proof is based on standard techniques from Fourier analysis. Let D(n) denote the n-fold
differentiation operator over R and we take D(0) to be the identity operator.
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Lemma 24 Let the filter p and its Fourier transform P be such that

1. They obey all the conditions in Lemma 23

2. 1
P ∈ C

∞(R)

3. ‖D(i)(P )‖∞ ≤ Ci for some constant Ci.

4. For every n ∈ N ∪ {0} there exists a constant Cn > 0 such that |Dn 1
P (ξ) | ≤ Cn(1 +

ξ2m(n)) for some m(n) ∈ N

Let h̄ be the inverse Fourier transform of H(2)

P , where H(2) is the Fourier transform of h′′.
Then:

1. h̄ ∈ S(R)

2. (1 + |T |3)h
(2)
n (T )→ (1 + |T |3)h̄(T ) as n→∞ uniformly for all T ∈ R

3. For every t ∈ [a, b], h admits the integral representation

h(t) =

∫ ∞
−∞

h̄(T )SReLU(t− T )dT .

Furthermore, the filter p = λα0
k,w0

(defined in Equation (14)) satisfies the above conditions.

Proof Since h′′ ∈ S(R), we conclude that H(2) ∈ S(R) because Fourier transform maps

Schwartz functions to Schwartz functions. It is easy to show from definitions that H(2)

P ∈
S(R). By definition h̄ := F−1

(
H(2)

P

)
(where F−1 denotes the inverse Fourier transform).

Therefore, h̄ ∈ S(R). We will first show that h
(2)
n (T ) → h̄(T ) uniformly for every T ∈ R.

By definition of h
(2)
n ∈ S(R), it is clear that h

(2)
n ∈ C∞c (R) ⊂ S(R) and hence its Fourier

transform H
(2)
n ∈ S(R). Since H

(2)
n (ξ) =

∑n
i=1 (1− P (ξ))iH(ξ). Since 0 < P (ξ) ≤ 1 for

every ξ ∈ R by hypothesis, we conclude that H
(2)
n (ξ) → H

P (ξ) and |H(2)
n (ξ)| ≤

∣∣∣∣HP (ξ)

∣∣∣∣ for

every ξ ∈ R. Therefore,

∣∣∣∣H(2)
n (ξ) − H

P (ξ)

∣∣∣∣ ≤ 2

∣∣∣∣HP (ξ)

∣∣∣∣ ∈ L1(R). From the Fourier inversion

formula, the following holds for every T ∈ R:

|h(2)
n (T )− h̄(T )| = 1

2π

∣∣∣∣ ∫
R
e−iξT

(
H(2)

P
(ξ)−H(2)

n (ξ)

)
dξ

∣∣∣∣
≤ 1

2π

∫
R

∣∣∣∣H(2)

P
(ξ)−H(2)

n (ξ)

∣∣∣∣dξ .
By the dominated convergence theorem, the integral in the last step converges to 0 as

n→∞ and we conclude that h
(2)
n (T )→ h̄(T ) uniformly for every T . To show the uniform

convergence of T 3h
(2)
n (T ) → T 3h̄(T ), we use the duality between multiplication by a poly-

nomial and differentiation under Fourier transform. The Fourier transform of T 3h
(2)
n (T ) is
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iD(3)H
(2)
n (ξ) and that of T 3h̄(T ) is iD(3)H(2)

P . We proceed just like above. We need to show

that D(3)H
(2)
n (ξ)→ D(3)H(2)

P for every ξ and that D(3)H
(2)
n (ξ) is dominated by a L1 function

uniformly for every n. It is clear that H
(2)
n (ξ) − H(2)

P (ξ) = − (1−P (ξ))n+1

P (ξ) H(2)(ξ). Differen-

tiating both sides thrice and applying the product rule, we conclude that D(i)H
(2)
n (ξ) →

D(i)H(2)

P (ξ) for every ξ and for every i ≤ 3. Consider D(3)
[

(1−P (ξ))n+1

P (ξ) H(2)(ξ)
]
, we get a

finite linear combination of the functions of the form

nr
(1− P )n+1−l

P c0
D(a)(H(2))

3∏
s=1

D(bs)(P ) (29)

for some c0, r, l, a, bs, k ∈ N ∪ {0}, all of them independent of n and such that l, r, bs, a ≤ 3
and c0 ≤ 4. To show domination above from a L1 function, it is sufficient to show that each
of terms of the form described in Equation (29). Now, by assumption, ‖D(bs)(P )‖∞ ≤ C
for some constant C. 1

P c0 (ξ) ≤ C(1 + |ξ|2m(0))4 (where m(0) is as given in the conditions

of the lemma and c0 ≤ 4 as given above) and D(a)H(2) ∈ S(R). It is therefore sufficient
to show that nr(1 − P )n+l−1 is dominated by a fixed polynomial in |ξ| for every n large
enough. Indeed, for n ≥ 3, we have

nr(1− P (ξ))n−l+1 ≤ nr(1− P (ξ))n−2

≤ nre−P (ξ)(n−2)

≤ e2nre−P (ξ)n

≤ e2 sup
x≥0

xre−P (ξ)x

=
e2rre−2

P (ξ)r

≤ C(1 + |ξ|2m(0))3 .

Here we have used the fact that r ≤ 3. Therefore, the remainder term for each n is uniformly
dominated by a product of a polynomial of ξ and a Schwartz function. Therefore, we

conclude that the sequence H
(2)
n is dominated by a L1 function and from the discussion

above conclude that (1+ |T |3)h
(2)
n (T )→ (1+ |T |3)h(T ) uniformly for every T ∈ R. To show

the final result, we apply Lemma 23 for t ∈ [a, b] to obtain

h(t) =

∫ ∞
−∞

h(2)
n (T )SReLU(t− T )dT + on(1) ,

where on(1) tends to 0 uniformly for all t ∈ [a, b]. Plugging in this expression for h(t) yields∣∣∣∣h(t)−
∫ ∞
−∞

h̄(T )SReLU(t− T )dT

∣∣∣∣ =

∣∣∣∣ ∫ ∞
−∞

(h(2)
n (T )− h̄(T ))SReLU(t− T )dT

∣∣∣∣+ on(1)
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which we upper bound by

≤
∫ ∞
−∞

∣∣h(2)
n (T )− h̄(T )

∣∣SReLU(t− T )dT + on(1)

=

∫ ∞
−∞

(1 + |T |3)
∣∣h(2)
n (T )− h̄(T )

∣∣SReLU(t− T )

1 + |T |3
dT + on(1)

≤ ‖(1 + |η|3)
∣∣h(2)
n (η)− h̄(η)

∣∣‖∞ ∫ ∞
−∞

SReLU(t− T )

1 + |T |3
dT + on(1)

Now using the fact that |SReLU(s)| =
∫ w0

−w0
ReLU(s − τ)p(τ)dτ ≤ |s| + w0 for every s ∈ R,

the above is bounded as

≤ ‖(1 + |η|3)
∣∣h(2)
n (η)− h̄(η)

∣∣‖∞ ∫ ∞
−∞

b+ |T |+ w0

1 + |T |3
dT + on(1)

= ‖(1 + |η|3)
∣∣h(2)
n (η)− h̄(η)

∣∣‖∞C + on(1)

→ 0 .

It is simple to verify that λα0
k,w0

satisfies all the conditions of the lemma using the results
from Lemma 21.

We will now specialize to the filter defined in Section A and set p := λα0
k,w0

as defined in
Equation (14) for some k ∈ N∪{0}. We denote the activation function obtained as SReLUk,
in keeping with the notation defined in Section A. A well known result from analysis shows
the existence of a “bump function” γ ∈ C∞c (R) ⊂ S(R) such that γ(t) = 1 when |t| ≤ 1,
γ(t) = 0 when |t| ≥ 2 and γ(t) ≥ 0 for every t ∈ R. Let Γ be the Fourier transform of γ.
Henceforth, we let h(t) = γ(t) cos(αt + ψ) for some α,ψ ∈ R. Clearly h ∈ C∞c (R). It is
clear that for t ∈ [−1, 1], h(t) = cos(αt+ ψ). Therefore, from Lemma 24, we conclude that
there exists h̄ ∈ S(R) such that for every t ∈ [−1, 1],

cos(αt+ ψ) =

∫
R
h̄(T )SReLUk(t− T )dT . (30)

In the following discussion, we will estimate about how ‘large’ h̄ is in terms of α. Let
H denote the Fourier transform of h. A simple calculation shows that:

1.

H(ξ) =
1

2

[
eiψΓ(ξ + α) + e−iψΓ(ξ − α)

]
(31)

2.

H(2)(ξ) = −ξ
2

2

[
eiψΓ(ξ + α) + e−iψΓ(ξ − α)

]
(32)

Lemma 25 Let h(t) = γ(t) cos(αt+ψ) and h̄ be the corresponding limiting function given
by Lemma 24. Then for all T ∈ R and l ∈ N, we have

|(1 + T 2l)h̄(T )| ≤ C(k, α0, w0, l)(1 + |α|2k+2) .
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Proof Let H̄ be the Fourier transform of h̄. By the inversion formula we have that for
every T

|h̄(T )| ≤ 1

2π

∫ ∞
−∞
|H̄(ξ)|dξ . (33)

By Lemma 24, it is clear that H̄(ξ) = H(2)(ξ)

Λ
α0
k,w0

(ξ)
. Using Lemma 21, there exists a constant

C(k, α0, ω0) such that:

|H̄(ξ)| =
∣∣∣∣ H(2)(ξ)

Λα0
k,w0

(ξ)

∣∣∣∣
≤ C(k, α0, w0)(1 + |ξ|2k)ξ2

(
|Γ(ξ − α)|+ |Γ(ξ + α)|

)
≤ C(k, α0, w0)(1 + |ξ|2k+2)

(
|Γ(ξ − α)|+ |Γ(ξ + α)|

)
≤ C(k, α0, w0)(1 + |ξ|2k+2)

(
1

1 + |ξ − α|2k+4
+

1

1 + |ξ + α|2k+4

)
. (34)

We have absorbed universal constants and constants depending only on k into
C(k, α0, w0) throughout. In the second step we have used the fact that |ξ|2 ≤ 1 + |ξ|2k+2

for every ξ ∈ R and used the expressions for H(2)(ξ) given in Equation (32). In the last
step, we have used the fact that since Γ ∈ S(R), there exists a constant Ck such that
|Γ(ξ)| ≤ Ck

1+|ξ|2k+4 for every ξ ∈ R. Using Equations (33) and (34) along with an elementary

application of Jensen’s inequality to the function x→ |x|2k+2, we have

|h̄(T )| ≤ C(k, α0, w0)
(

1 + |α|2k+2
)
. (35)

To bound |T 2lh̄(T )|, we consider the derivatives of its Fourier transform. Clearly, the
Fourier transform of T 2lh̄(T ) is (−1)lD(2l)H̄(ξ). Therefore, for all T , we have from the
inversion formula that

|T 2lh̄(T )| ≤ 1

2π

∫ ∞
−∞
|D(2l)H̄(ξ)|dξ .

Now, D(2l)H̄(ξ) = D(2l)

(
− ξ2

2Λ
α0
k,w0

(ξ)

[
eiψΓ(ξ + α) + e−iψΓ(ξ − α)

])
. Using the product

rule here results in a sum of the form

D(2l)H̄(ξ)

= −1

2

∑
a,b,c∈Z+

a+b+c=2l

Na,b,c

(
D(a)ξ2

)(
D(b) 1

Λα0
k,w0

(ξ)

)[
eiψD(c)Γ(ξ + α) + e−iψD(c)Γ(ξ − α)

]

for some positive integers Na,b,c. We consider each term separately.
Using Lemma 21, we conclude for every a, b in the summation,∣∣∣∣D(a)ξ2D(b) 1

Λα0
k,w0

(ξ)

∣∣∣∣ ≤ C(l, k, α0, w0)(1 + |ξ|2k+2) .
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Now, D(c)Γ ∈ S(R) for every c. Therefore we can find a constant Ck such that
∣∣D(c)Γ(ξ)

∣∣ ≤
Ck

1+|ξ|2k+4 . Therefore, using similar integration as the previous case, we conclude that:

|T 2lh̄(T )| ≤ C(l, k, α0, w0)(1 + |α|2k+2) (36)

Combining equations (36) and (35) we conclude the result.

We will now give the proof of Theorem 11 and Lemma 4:
Proof of Theorem 11: From Lemma 24 and Equation (30) we conclude that for every
t ∈ [−1, 1]:

cos(αt+ ψ) =

∫ ∞
−∞

h̄(T )SReLUk(t− T )dT . (37)

For some h̄ ∈ S(R). From Lemma 25 we conclude that

‖(1 + T 2l)h̄(T )‖∞ ≤ C(k,w0, α0, l)(1 + |α|2k+2) .

Taking κ(T ) := (1+T 2l)
cµ

h̄(T ) in Equation (37), we conclude the result. �

Proof of Lemma 4: The proof follows from an application of Lemma 22 with
h(t) = γ(t) cos(αt+ ψ). �

Proof of Theorem 13: From Equation (15) and the definition of νg,k,

g(x) =

∫
C

(0)
g + r2k+2C

(2k+2)
g

1 + r2k+2‖ω‖2k+2
cos
(
r‖ω‖ 〈ω,x〉r‖ω‖ + ψ(ω)

)
νg,k(dω) .

We follow the convention that 〈ω,x〉r‖ω‖ = 0 when ω = 0 without loss of meaning in the

equation above. When x ∈ B2
q (r), Cauchy-Schwarz inequality implies that 〈ω,x〉r‖ω‖ ∈ [−1, 1].

In Theorem 11, we take α = r‖ω‖ and ψ = ψ(ω) to conclude that there exists a continuous
function κ(T ; r, ω) such that for every x ∈ B2

q (r)

g(x) =
(
C(0)
g + r2k+2C(2k+2)

g

)∫∫ κ(T ; r, ω)

1 + r2k+2‖ω‖2k+2
SReLUk

(
〈ω,x〉
r‖ω‖ − T

)
µl(dT )νg,k(dω) ,

where
∣∣ κ(T ;r,ω)

1+r2k+2‖ω‖2k+2

∣∣ ≤ C(k, l) a.s. In order to make the notation more compact we define

η(T ; r, ω) :=
1

C(k, l)

κ(T ; r, ω)1(T ≤ 1 + w0)

1 + r2k+2‖ω‖2k+2

and βg,k :=
(
C

(0)
g + r2k+2C

(2k+2)
g

)
C(k, l) (we hide the dependence on l).

The theorem follows from the discussion above when, in the definition of η, the extra
factor of 1(T ≤ 1 + w0) is removed. However, we note that when x ∈ B2

q (r), 〈ω,x〉r‖ω‖ ≤ 1 and
it follows that when T > 1 + w0,

SReLUk

(
〈ω,x〉
r‖ω‖ − T

)
= 0 .

Therefore, we can include the factor of 1(T ≤ 1 + w0) without altering the equality. �
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Appendix D. Neural Network Approximation with Function
Independent Sampling

We consider a similar setup as in Section 3. Let g : Rq → R be such that g ∈ L1(Rq) and
its Fourier transform G ∈ L1(Rq) ∩ C(Rq). We define the following norms for G:

S(l)
g = sup

ω∈Rq
‖ω‖l(1 + ‖ω‖q+1)

|G(ω)|
(2π)q

. (38)

We assume that S
(l)
g < ∞ for l = 0, 1, . . . , L for some L to be chosen later. We consider

the spherically symmetric probability measure ν0 over Rq defined by its Randon-Nikodym
derivative: ν0(dω) = Cq

dω
1+‖ω‖q+1 , where Cq is the normalizing constant.

Remark 26 We note that G has to be a function and not a generalized function/measure

(like dirac delta) for the norms S
(l)
g to make sense. Unlike νg,k, ν0 depends neither on g nor

on k. We intend to draw the weights ωj ∼ ν0. Clearly ωj 6= 0 almost surely. We therefore
skip the corner cases for ωj = 0 as considered in Section B.

We let µl be as defined in Theorem 11. We again consider Equation (15). Assume
S2k+2
g , S0

g <∞. Suppose x ∈ B2
q (r)

g(x) =

∫
Rq

cos(〈ω, x〉+ ψ(ω))
|G(ω)|
(2π)q

dω

=

∫
cos(〈ω, x〉+ ψ(ω))

|G(ω)|
(2π)q

(1 + ‖ω‖q+1)

Cq
ν0(dω)

=

∫
|G(ω)|(1 + ‖ω‖q+1)(1 + r2k+2‖ω‖2k+2)

Cq(2π)q/C(k, l)
η(T ; r, ω)SReLUk

(
〈ω, x〉
r‖ω‖

− T
)
µl(dT )ν0(dω)

Here we have used Theorem 11 in the third step where |η| ≤ 1 almost surely. For the sake
of clarity, we will abuse notation and redefine

η(T ; r, ω)← |G(ω)|(1 + ‖ω‖q+1)(1 + r2k+2‖ω‖2k+2)

(S
(0)
g + r2k+2S2k+2

g )(2π)q
η(T ; r, ω) .

By similar considerations as in Theorem 13, we can replace η(T ; r, ω) with η(T ; r, ω)1(T ≤
1 + w0). Clearly |η| ≤ 1 almost surely even under this redefinition. We will take βSg,k :=
C(k,l)
Cq

(S0
g + r2k+2S2k+2

g ). We conclude that for every x ∈ Bq
2(r)

g(x) = βSg,k

∫
η(T ; r, ω)SReLUk

(
〈ω, x〉
r‖ω‖

− T
)
µl(dT )ν0(dω) . (39)

For j ∈ {1, . . . , N}, draw (Tj , ωj) to be i.i.d. from the distribution µl × ν0. Let θuj for
j ∈ [N ] be i.i.d. Unif[−1, 1] and independent of everything else. We define

θj := 1
(
θuj < η(Tj ; r, ωj)

)
− 1

(
θuj ≥ η(Tj ; r, ωj)

)
.
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Clearly, θj ∈ {−1, 1} almost surely and E [θj |Tj , ωj ] = η(Tj ; r, ωj). That is, it is an
unbiased estimator for η(Tj ; r, ωj) and independent of other θj′ for j 6= j′. Define the
estimator

ĝj(x) :=

{
0 when T > 1 + w0

βSg,kθjSReLUk

(
〈ωj ,x〉
r‖ωj‖ − Tj

)
otherwise .

(40)

Recall the definition of S∆k in the discussion preceding Lemma 17. We give a similar lemma
below. The proof is the same as the proof of Lemma 17.

Lemma 27 For every x ∈ B2
q (r),

g(x) = βSg,k

∫∫
η(T ; r, ω)S∆k

(
〈ω,x〉
r‖ω‖ , T

)
µl(dT )ν0(dω) .

Recall γ ∈ S(R) , γ⊥ω , R and Γq,R as used in Section B. We define g(x;R) and ĝj(x;R)
similarly. Draw (Tj , ωj) i.i.d. from the distribution µl × ν0. Let

ĝj(x;R) :=

{
0 when Tj > 1 + w0

βSg,kθjS∆k

(
〈ωj ,x〉
r‖ωj‖ , Tj

)
γ⊥ωj (x) otherwise .

(41)

Define for x ∈ Rq
g(x;R) = Eĝj(x;R) .

The definition makes sense when l ≥ 2 in µl since E|Tj | < ∞. We note that g(x;R) is
implicitly dependent on k, l, α0, w0. Let Ĝj(ξ;R) be the Fourier transform of ĝj(x;R) and
let G(ξ;R) be the Fourier transform of g(x;R). In the Lemma below we show that through
the truncation modification above, we can construct an unbiased estimator for both g such
that the estimator’s derivatives are unbiased estimators for the respective derivatives of
g. We give a result similar to Lemma 18 below. The discussion diverges from that in
Section B henceforth. Let b = (b1, . . . , bq) such that b1, . . . , bq ∈ N ∪ {0}. By ∂b we denote
the differential operator where we differentiate partially with respect to i-th co-ordinate bi
times. We define |b| =

∑q
i=1 bi.

Lemma 28 Let R ≥ r and l ≥ 2 (where l determines the measure µl) so that ET∼µl |T |2 <
∞. We also assume that βg,k <∞.

1. For every x ∈ B2
q (r),

g(x;R) = g(x)

ĝj(x;R) = ĝj(x) .

Where ĝj(x) is as defined in Equation (40).

2. For every ξ, ωj ∈ Rq such that ωj 6= 0 we define ξω := 〈ξ,ω〉
‖ω‖ ∈ R and ξ⊥ω := ξ − ω〈ξ,ω〉

‖ω‖2 .

We have, for any fixed value of Tj and ωj:

Ĝj(ξ;R) =


0 if Tj > 1 + w0

βSg,kθjΓq−1,R(‖ξ⊥ωj‖)Λ
α0
k,w0

(ξωj )

[
4e
i(1+w0)rξωj sin2

( (1+w0−T )ξωj r

2

)
ξ2ωj r

]
o/w

(42)
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When q = 1, we let Γq−1,R(·) = 1 identically. We recall that Λα0
k,w0

is the Fourier
transform of the filter λα0

k,w0
.

3. The functions ĝj(x;R) ∈ C2k(Rq) a.s. and for every b ∈ (N ∪ {0})q such that |b| ≤
2k, almost surely the following holds:

∂bĝj( · ;R) ∈ L1(Rq) a.s.

For some constant Bk and for every x ∈ Rq, we have:

|∂bĝj(x;R)| ≤ βSg,kBk(1 + |Tj |)1
(
Tj ≤ −

∣∣ 〈ωj ,x〉
r‖ωj‖

∣∣+ 2 + 3w0

)
1(‖x⊥ωj‖ ≤ 2R)

Where Bk is a constant which depends on q, r, k and R but not on g, Tj or ωj.

4. g(x;R) ∈ C2k(Rq). For every b ∈ (N ∪ {0})q such that |b| ≤ 2k. Then ∂bg( · ;R) ∈
L1(Rq) and for every x ∈ Rq,

∂bg(x;R) = E∂bĝj(x;R) . (43)

Some parts of the proof are similar to the proof of Lemma 18. Items 3 and 4 use the
duality between multiplication by polynomials and differentiation under Fourier transform.

We define the remainder function similarly as in Section B.

grem(x) := g(x;R)− 1

N

N∑
j=1

ĝj(x;R) . (44)

Clearly grem(x) = g(x) − 1
N

∑N
j=1 ĝj(x) whenever x ∈ B2

q (r). Let Grem be its Fourier

transform. Lemma 28 implies that grem(x) is continuous and L1. Therefore, it is clear that
Grem is continuous. The following lemma is the sup type norm variant of Lemma 19.

Lemma 29 Let l ≥ 2 + q so that ET∼µlT 2 < ∞. Assume βSg,k < ∞. For s ∈ {0} ∪ N,
consider

S
(s)
grem := sup

ξ∈Rq
(1 + ‖ξ‖q+1)‖ξ‖s |G

rem(ξ)|
(2π)q

.

Assume 2k ≥ q + 1 and s ≤ 2k − q − 1. We have:

1.

ES(s)
grem ≤

C(S
(0)
g + S

(2k+2)
g )√

N

Where C is a constant depending only on l, s, r, q and k.

2. S
(s)
grem ≤ C(S

(0)
g + S2k+2

g )
(

1
N

∑N
j=1 1 + |Tj |2

)
almost surely.

Remark 30 Instead of the s ≤ 2k − q − 1 above, a more delicate proof would only require
s < 2k − (q + 1)/2. We will prove the weaker version for the sake of clarity.
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Proof We first consider the expectation bound in item 1. We begin by giving a bound on
E
∫
Rq |∂

bgrem(x;R)|dx when |b| ≤ 2k:

E
∫
Rq
|∂bgrem(x;R)|dx ≤

∫
Rq

√
E|∂bgrem(x;R)|2dx

≤ 1√
N

∫
Rq

√
E|∂bĝ1(x;R)|2dx . (45)

Here we have used the fact that ĝj(x;R) are i.i.d. unbiased estimators for g(x;R). Using
the bound in item 3 of Lemma 28, we conclude that

E|∂bĝj(x;R)|2 ≤ (βSg,kBk)
2E
[
(1 + |Tj |2)1

(
Tj ≤ −

∣∣ 〈ωj ,x〉
r‖ωj‖

∣∣+ 2 + 3w0

)
1(‖x⊥ωj‖ ≤ 2R)

]
.

(46)
It is clear from integrating tails that

E
[
(1 + |Tj |2)1

(
Tj ≤ −

∣∣ 〈ωj ,x〉
r‖ωj‖

∣∣+ 2 + 3w0

)∣∣∣∣ωj] ≤ C(l)

1+

∣∣∣∣ 〈ωj ,x〉r‖ωj‖

∣∣∣∣(2l−3)
.

Using this in Equation (46) and absorbing the constant C(l, w0) into Bk gives

E|∂bĝj(x;R)|2 ≤ (βSg,kBk)
2E

1(‖x⊥ωj‖ ≤ 2R)

1+

∣∣∣∣ 〈ωj ,x〉r‖ωj‖

∣∣∣∣(2l−5)

 . (47)

Let

τ(ωj , x) :=
1(‖x⊥ωj‖ ≤ 2R)

1+

∣∣∣∣ 〈ωj ,x〉r‖ωj‖

∣∣∣∣(2l−3)
.

Clearly, |τ(ωj , x)| ≤ 1 almost surely for every x and τ(ωj , x) is non-zero only when ‖x⊥ωj‖ ≤
2R. Consider the following conditions on x:

1. ‖x‖ ≥ 3R.

2. ‖x⊥ωj‖ ≤ 2R

It is clear that under these conditions, we have the following:

5‖x‖2

9
= ‖x‖2(1− 4/9) ≤ ‖x‖2(1− 4R2

‖x‖2 )

= ‖x‖2 − 4R2 ≤
∣∣ 〈x,ωj〉
‖ωj‖

∣∣2 .
Therefore, for some universal constant c > 0,

τ(ωj , x) ≤ 1(‖x‖ ≤ 3R) +
1(‖x‖ > 3R)

1 +
(
c‖x‖
r

)2l−3
. (48)

36



A Corrective View of Neural Networks:Representation, Memorization and Learning

Plugging Equation (47) into Equation (45) gives

E
∫
Rq
|∂bgrem(x;R)|dx ≤

βSg Bk√
N

∫
Rq

√
Eτ(ωj , x)dx ,

and now using Equation (48), we obtain

E
∫
Rq
|∂bgrem(x;R)|dx ≤

βSg Bk√
N

∫
Rq

√√√√1(‖x‖ ≤ 3R) +
1(‖x‖ > 3R)

1 +
(
c‖x‖
r

)2l−5
dx

=
βSg Bk√
N

∫ ∞
ρ=0

Cqρ
q−1

√
1(ρ ≤ 3R) +

1(ρ > 3R)

1 +
( cρ
r

)2l−3
dρ .

The integral on the right is smaller than some constant C(q, l, R, r) if l ≥ q + 2. Absorbing
this constant into Bk too we have that

E
∫
Rq
|∂bgrem(x;R)|dx ≤

βSg Bk√
N

. (49)

By item 4 of Lemma 28, ∂bgrem is a continuous L1 function for |b| ≤ 2k. We conclude
by the Fourier duality of multiplication and differentiation that

Grem(ξ)

q∏
j=1

ξ
bj
j = (i)|b|

∫
Rq
∂bgrem(x)ei〈ξ,x〉dx . (50)

Consider any integer k ≥ u ≥ 0. Now, from Equation (50),

‖ξ‖2uGrem(ξ) =
∑

b:|b|≤2u

Cbi
|b|
∫
Rq
∂bgrem(x)ei〈ξ,x〉dx

for some constants Cb depending only on u and b. Therefore, we have

E sup
ξ∈Rq
‖ξ‖2u|Grem(ξ)| ≤

∑
b:|b|≤2u

|Cb|E
∫
Rq
|∂bgrem(x)|dx

≤
βSg,kBk√

N
. (51)

In the second step we have used Equation (49). We have absorbed the constants |Cb|
into Bk. It is clear that taking Bk large enough, we can make it depend only on k and
not on u. Suppose 2k ≥ q + 1. We let 0 ≤ s ≤ 2k − q − 1. For any t ≥ 0 we have that
ts(1+tq+1) ≤ 2(1+t2k). This follows from the fact that if c1 ≥ c0 > 0, we have tc0 ≤ tc1 +1.

ES(s)
grem = E sup

ξ
‖ξ‖s(1 + ‖ξ‖q+1)|Grem(ξ)|

≤ E sup
ξ

2(1 + ‖ξ‖2k)|Grem(ξ)|

≤
βSg,kBk√

N
.
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Here we have absorbed more constants into Bk. From this we conclude the statement of
the lemma in item 1. We now consider the almost sure bound in item 2. Clearly,

|Grem(ξ)| ≤ |G(ξ;R)|+ 1

N

N∑
j=1

|Ĝj(ξ;R)| .

We will first bound supξ∈Rq |Ĝj(ξ;R)|‖ξ‖s(1 + ‖ξ‖q+1). Integrating the bound in item 3
of Lemma 28, we conclude that the following holds almost surely whenever |b| ≤ 2k:∫

|∂bĝj(x,R)|dx ≤ BkβSg,k(1 + |Tj |2) .

Using similar considerations as in Equation (51), we conclude that whenever 0 ≤ u ≤ k,
almost surely:

sup
ξ∈Rq
‖ξ‖2u|Ĝj(ξ;R)| ≤ BkβSg,k(1 + |Tj |2) .

Since G(ξ;R) = EĜj(ξ;R), taking an expectation of the equation above yields that

sup
ξ∈Rq
‖ξ‖2u|G(ξ;R)| ≤ Bkβg,k .

Combining the results above proves item 2.

For b ∈ N ∪ {0}, define
kSb := bd q+3

2 e . (52)

Henceforth, we fix R = r for the sake of clarity. We proceed with the corrective mechanism

similar to the one in Theorem 8. Suppose for some a ∈ N∪{0} we have S
(0)
g +S

(2kSa+2)
g <∞.

Suppose a = 0. Then, it is clear that there exists a ReLU network with 1 non-linear layer
and N non-linear units which achieves a squared error of the order 1

N . Now consider a ≥ 1.
Define grem,0 to be the remainder for g as defined in equation (44) with k = kSa and N
replaced with N/(a+ 1). Now, by Lemma 29,

E
(
S

(0)
grem,0

+ S
(2kSa−1+2)

grem,0

)
≤ Ba

S0
g + S

2kSa+2
g√
N

.

We recursively obtain grem,j by replacing g in Equation (44) with grem,j−1, the estimators
ĝj by outputs of SReLUkSa−j

units which estimate grem,j−1 and with N replaced with N/(a+

1). Continuing this way, we deduce that

E
(
S

(0)
grem,a−1 + S

(2)
grem,a−1

)
≤ Ba

S0
g + S

2kSa+2
g

Na/2
.

Now, grem,a−1 can be estimated by a N/(a + 1) unit ReLU network with squared error
of the order 1

Na+1 . We note that grem,a−1(x) is equal to g(x) minus the output of smoothed
ReLUs. This implies the following theorem.
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Theorem 31
There exists a random neural network with one non-linear layer and N non-linear acti-

vations of type ReLU and SReLUkSb
for b ≤ a such that for any probability distribution ζ on

B2
q (r), we have

E
∫

(g(x)− ĝ(x))2ζ(dx) ≤ Ba
(S0
g + S

2kSa+2
g )2

Na+1
.

Here the non-linear activation functions SReLUk are of the form SReLUk(
〈ωj ,x
r‖ωj‖ − Tj〉) for

j ∈ [N ] such that (
ωj
‖ωj‖ , Tj) are drawn i.i.d. from probability measure Unif(Sq−1)×µl where

µl is the probability measure defined in Theorem 11 with l ≥ q + 2.

Consider functions of the form defined in Equation (1). Let νi be the uniform distribution
over the sphere embedded in Xi := span(Bi). Clearly, Xi is isomorphic to Rq. Let N/(a+
1)m be an integer. We can find a random neural network, according to Theorem 31 with
N/m neurons such that Ef̂i(x) = fi(x) and

E
∫

(fi(〈Bi, x〉)− f̂i(x))2ζ(dx) ≤ Ba
(
S0
fi

+ S
2kSa+2
fi

)2 ma+1

Na+1
.

To consider functions of the form given by Equation (1) to obtain Theorem 32 we need
to modify Theorem 31 a bit since x ∈ Rd instead of Rq in this case. It is clear that this can
be mitigated if we choose the weights according ωj such that ωj ∼ Unif(Si) where Si is the
sphere embedded in span(Bi).

Theorem 32 Let f : Rd → R be a function of the form given by Equation (1). We assume

that
(
S0
fi

+ S
2kSa+2
fi

)2
=: Mi for some Mi <∞ and define L =

∑m
i=1Mi. Let the probability

measure µl over R be defined by µl(dt) ∝ dt
1+t2l

for l ∈ N. Consider the following sampling
procedure:

1. Partition [N ] ⊆ N into m disjoint sets, each with N/(m(a+ 1)) elements.

2. For i ∈ [m], b ∈ {0, . . . , a}, j ∈ [ N
m(a+1) ], we draw ω0

i,j,b ∼ Unif
(
Sspan(Bi)

)
and Ti,j,b ∼

µl independently for some l ≥ max(q + 3, 3a+ 3).

Let ζ be any probability distribution over Rd such that 〈ζ(dx), Bi〉 is supported over B2
q (r).

There exist random κ1, . . . , κN ∈ R, depending only on ωi,j,b, Ti,j,b such that for

f̂(x) =

m∑
i=1

a∑
b=0

N
m(a+1)∑
j=1

κi,j,bSReLUkSb

(
〈ω0
i,j,b,x〉
r − Ti,j,b

)
, (53)

where κi,j,b = κ(i−1)N
m

+ bN
m(a+1)

+j, we have:

1.

E
∫

(f − f̂)2ζ(dx) ≤ B(l, q, r, a)L
ma−1

Na+1
,
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2. Whenever δ ∈ (0, 1) and ε > 0 are given, then with probability at least 1− δ,∫
(f − f̂)2ζ(dx) ≤ ε ,

whenever N = Ω

(
( Lεδ )

1
a+1m

a−1
a+1

)
. Here Ω( · ) hides factors depending on l, q, r and a

3. With probability at least 1− δ, for any b ∈ N such that b ≤ a,

N∑
j=1

κ2
j ≤

C(l,q,r,a)δ−1/(b+1)

N

(
1
m

m∑
i=1

M
(b+1)
i

)1/(b+1)

.

Proof As in the proof of Theorem 9, we dedicate N/m activation functions to approximate
each of the functions fi with neural network output f̂i using the procedure in the proof of
Theorem 31. We then approximate f(x) := 1

m

∑m
i=1 fi(〈Bi, x〉) by 1

m

∑m
i=1 f̂i(x). We choose

κj as described in the discussion preceding the statement of Theorem 31.

1. The proof is similar to the proof of Theorem 9.

2. The proof follows from a direct application of Markov’s inequality on item 1.

3. Consider the random variable K :=
∑N

j=1 κ
2
j . Consider

EKb+1 = N b+1

 1

N

N∑
j=1

κ2
j

b+1

≤ N bE
N∑
j=1

κ2b+2
j (54)

We have applied Jensen’s inequality in the second step. We will control Eκ2(b+1)
j . Let

κj be the coefficient of the activation function approximating fi. By the preceding the
theorem statement, item 2 in Lemma 29 and the definition of ĝj given Equation 40, which

gives the κj corresponding to ωj , Tj , it is clear that |κj | � Bam
√
Mi

N2

∑ N
(a+1)m
s=1 (1 + |T ′s|2)

where T ′s are chosen i.i.d. from µl and � denotes stochastic domination. Here the extra
factor of N/m in the denominator is due to the fact that when we construct the estimator

ĝ(x) := 1
N ′
∑N ′

j=1 ĝj(x) - there is a division by N ′. Therefore,

E|κj |2(b+1) ≤ E
B

2(b+1)
a M

(b+1)
i m2(b+1)

N4(b+1)


N

m(a+1)∑
s=1

(1 + |T ′s|2)


2(b+1)

= E
B

2(b+1)
a M

(b+1)
i

N2(b+1)(a+ 1)2(b+1)

(a+ 1)m

N

N
m(a+1)∑
s=1

(1 + |T ′s|2)


2(b+1)

.
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Now by Jensen’s inequality and the fact that E(1+|T ′1|2)2(b+1) <∞ by our choice l ≥ 3a+3,
the above is

≤
B

2(b+1)
a M

(b+1)
i

N2(b+1)
E(1 + |T ′1|2)2(b+1)

≤
B

2(b+1)
a M

(b+1)
i

N2(b+1)
C(l, a)

=
B

2(b+1)
a M

(b+1)
i

N2(b+1)
. (55)

In the last step we absorbed factors not depending on m or N into Ba. Using Equation (55)
in Equation (54), we have

EKb+1 ≤
m∑
i=1

B
2(b+1)
a M

(b+1)
i

N b+1m
,

where we have used that fact that there are exactly N/m coefficients κj which corresponding
to the activation functions which approximate fi for any i ∈ [m]. By an application of
Markov’s inequality, for any t ≥ 0,

P(K ≥ t) ≤ EKb+1

tb+1
.

Setting the RHS above to δ completes the proof.

Appendix E. Proofs of Lemmas

E.1. Proof of Lemma 3

The first item follows from the definition of F and the triangle inequality. For the second
item, observe that |F (ξ)|2 =

∑n
j=1 f(xj)

2 +
∑

j 6=k f(xj)f(xk)e
i〈ξ,xj−xk〉. Taking expectation

on both sides, we obtain

E|F (ξ)|2 ≤ ‖f‖22 + ‖f‖21 exp
(
−σ2θ2

2

)
≤ ‖f‖22 +

‖f‖21
ns

.

The third item follows directly from the definition of f̃ and the choice of σ. �
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E.2. Proof of Lemma 5

f̃(xk) = EF (ξ)e−i〈ξ,xk〉 = E|F (ξ)|e−iφ(ξ)−i〈ξ,xk〉 = E|F (ξ)| cos
(
〈ξ, xk〉 − φ(ξ)

)
= E|F (ξ)| cos

(
〈ξ, xk〉 − φ(ξ)

)
1(A)

+ CE|F (ξ)|(1 + 4s2 log2 n
θ2

)η(T ;α,ψ)ReLU
(
θ 〈ξ,xk〉2s logn − T

)
1(Ac)

= O(‖f‖1P(A))− CE|F (ξ)|(1 + 4s2 log2 n
θ2

)η(T ;α,ψ)ReLU
(
θ 〈ξ,xk〉2s logn − T

)
1(A)

+ CE|F (ξ)|(1 + 4s2 log2 n
θ2

)η(T ;α,ψ)ReLU
(
θ 〈ξ,xk〉2s logn − T

)
= O(‖f‖1P(A)) +O

(
s‖f‖1 logn

θ E|〈ξ, xk〉|1(A)
)

+ CE|F (ξ)|(1 + 4s2 log2 n
θ2

)η(T ;α,ψ)ReLU
(
θ 〈ξ,xk〉2s logn − T

)
= O(‖f‖1P(A)) +O

(
s3/2‖f‖1 log3/2 n

θ2

√
P(A)

)
+ CE|F (ξ)|(1 + 4s2 log2 n

θ2
)η(T ;α,ψ)ReLU

(
θ 〈ξ,xk〉2s logn − T

)
= O

(
s3/2‖f‖1 log3/2 n

θ2ns/2

)
+ CE|F (ξ)|

(
1 + 4s2 log2 n

θ2

)
η(T ;α,ψ)ReLU

(
θ 〈ξ,xk〉2s logn − T

)
.

Steps three through five are justified by Item 1 of Lemma 3 to bound |F (ξ)|, the fact that
ReLU(x) ≤ |x| and Item 1 of Lemma 3, and an application of the Cauchy-Schwarz inequality
to show that E|〈ξ, xk〉|1(A) ≤

√
P(A)

√
E|〈ξ, xk〉|2 ≤ σ

√
P(A). �

E.3. Proof of Lemma 6

We begin with a chain of inequalities, justified right afterward:

E(f(xk)− f̂(xk))
2 =

E(f̂1(xk))
2 −

(
Ef̂1(xk)

)2

N0
+ (f̃(xk)− Ef̂1(xk))

2 + (f(xk)− f̃(xk))
2

≤ E(f̂1(xk))
2

N0
+ (f(xk)− f̃(xk))

2 + (f̃(xk)− Ef̂1(xk))
2

≤ E(f̂1(xk))
2

N0
+
‖f‖21
n2s

+ (f̃(xk)− Ef̂1(xk))
2

≤ CEs4 log4 n|F (ξ1)|2

N0θ4

(
1 + θ2 |〈ξ1,xk〉|2

s2 log2 n

)
+
‖f‖21
n2s

+ (f̃(xk)− Ef̂1(xk))
2

≤ CEs4 log4 n|F (ξ1)|2

N0θ4

(
1 + θ2 |〈ξ1,xk〉|2

s2 log2 n

)
+
‖f‖21
n2s

+ C
s3‖f‖21 log3 n

θ4ns

=
Cs4 log4 n

N0θ4

(
E|F (ξ1)|2 + θ2E|F (ξ1)|2 |〈ξ1,xk〉|

2

s2 log2 n

)
+
‖f‖21
n2s

+ C
s3‖f‖21 log3 n

θ4ns

≤ Cs4 log4 n

N0θ4

(
‖f‖22 +

‖f‖21
ns

+ θ2E|F (ξ1)|2 |〈ξ1,xk〉|
2

s2 log2 n

)
+
‖f‖21
n2s

+ C
s3‖f‖21 log3 n

θ4ns
. (56)

The first step is the bias-variance decomposition of the squared error. In the third
step we have used item 3 of Lemma 3. In the fourth step we have used the fact that
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ReLU
(
θ 〈ξ,xk〉2s logn − T

)
≤ 1 + θ |〈ξ,xk〉|2s logn almost surely and have absorbed this into the constant

C. In the fifth step we have used Lemma 5.
We will now bound E|〈ξ1, xk〉|2|F (ξ1)|2 to obtain the stated result. By Gaussian con-

centration, we have for some universal constant c > 0 and every t ≥ 0 that

P (|〈ξ1, xk〉| ≥ σt) ≤ 2e−ct
2
.

Consider the event At = {|〈ξ1, xk〉| ≤ σt} for some t > 0. Decomposing based on At gives

E|〈ξ1, xk〉|2|F (ξ1)|2 = E|〈ξ1, xk〉|2|F (ξ1)|21(At) + E|〈ξ1, xk〉|2|F (ξ1)|21(Act)

≤ Eσ2t2|F (ξ1)|21(At) + E|〈ξ1, xk〉|2|F (ξ1)|21(Act)

≤ Eσ2t2|F (ξ1)|2 + E|〈ξ1, xk〉|2|F (ξ1)|21(Act)

≤ σ2t2E|F (ξ1)|2 + ‖f‖21E|〈ξ1, xk〉|21(Act)

≤ σ2t2E|F (ξ1)|2 + ‖f‖21
√

E|〈ξ1, xk〉|4
√
P(Act)

≤ σ2t2
(
‖f‖22 +

‖f‖21
ns

)
+ C‖f‖21σ2e−ct

2
(57)

In the second step we have used the fact that |〈ξ1, xk〉| ≤ σt whenever 1(At) = 1. In the
third step we have used the fact that |1(At)| ≤ 1. In the fourth step we have used item 1 of
Lemma 3. In the fifth step we have used the Cauchy-Schwarz inequality. In the sixth step
we have used item 2 of Lemma 3 to bound E|F (ξ1)|2 and the fact that for Gaussian random
variables E|〈ξ1, xk〉|4 ≤ Cσ4 for some universal constant C. We have also used the Gaussian
concentration inequality to conclude that P(Act) ≤ 2e−ct

2
for some universal constant c and

redefined and absorbed universal constants where necessary. We take t =
√

2s logn
c where c

is the constant in the exponent of Equation (57) and σ =
√

2s logn
θ to get

E|〈ξ1, xk〉|2|F (ξ1)|2 ≤ Cs2 log2 n

θ2

(
‖f‖22 +

‖f‖21
ns

)
. (58)

Using Equation (56) along with Equation (58) gives

E(f(xj)− f̂(xj))
2 ≤ Cs4 log4 n

θ4N0

(
‖f‖22 +

‖f‖21
ns

)
+
‖f‖21
n2s

+ C
s3‖f‖21 log3 n

θ4ns
.

Clearly, ‖f‖21 ≤ n‖f‖22. Plugging this into the equation above completes the proof. �

E.4. Proof of Lemma 18

We first prove the following estimates before delving into the proof of Lemma 18.

Lemma 33 The following holds almost surely:∫
dx|ĝj(x;R)| ≤

{
βg,kr(1 + w0 − T )2vol(B2

q−1(2R)) when ωj 6= 0

βg,k|1 + w0 − T |vol(B2
q (2R)) otherwise ,

(59)
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where B2
q−1(2R) is seen as a subset of Rq−1 and vol denotes the Lebesgue measure of the

set. Whenever Tj ≤ 1 + w0,

sup
t∈R
|S∆k(t;Tj)| ≤ 1 + w0 − Tj .

Proof When Tj > 1 + w0, the bound above holds trivially since ĝj = 0. Now assume
Tj ≤ 1+w0. We first note that

∫∞
−∞ |∆(t/r;Tj)|dt = r(1+w0−Tj)2 and supt∈R |∆(t/r;Tj)| =

1 + w0 − Tj . Since S∆ = λα0
k,w0
∗ ∆ and λα0

k,w0
is a probability density function, we apply

Jensen’s inequality to conclude the following inequalities:

1. ∫ ∞
−∞
|S∆k(t/r;Tj)|dt ≤ r(1 + w0 − Tj)2 ,

2.
sup
t∈R
|S∆k(t;Tj)| ≤ 1 + w0 − Tj .

To prove the inequality on the L1 norm of ĝj , we first consider the case ωj = 0. We conclude
the corresponding bound by noting that θj ∈ {−1, 1} (recall θj from the definition of ĝj),

0 ≤ γ(‖x‖
2

R2 ) ≤ 1 and γ(‖x‖
2

R2 ) = 0 when x /∈ B2
q (2R) and supt∈R |S∆k(t;Tj)| ≤ 1 + w0 − Tj .

Now consider the case ωj 6= 0 and Tj ≤ 1 + w0. Clearly, γ⊥ωj is a function of only the
component of x perpendicular to ωj . Therefore, we decompose the Lebesgue measure dx
over Rq into the product measure dxωj × dx⊥ωj where dxωj is the lebesgue measure over

span(ωj) and dx⊥ωj is the Lebesgue measure over the space perpendicular to ωj , which is

isomorphic to Rq−1. The following bound holds:

‖ĝj‖1 ≤ βg,k
∫
|S∆k(xωj/r;Tj)|dxωj

∫
γ⊥ωj (x)dx⊥ωj .

We conclude the result using the fact that 0 ≤ γ⊥ωj (x) ≤ 1, and it vanishes outside B2
q−1(2R)

and the fact that
∫∞
−∞ |S∆k(t/r;Tj)|dt ≤ r(1 + w0 − Tj)2 as shown above.

Proof of Lemma 18

1. Follows from Lemma 17 and the preceding discussion.

2. From definition, it is clear that ĝj( · ;R) has compact support almost surely. Therefore
ĝj( · ;R) ∈ L1(Rq) almost surely. To show that g( · ;R) ∈ L1(Rq), it is sufficient to show
that ĝj(x;R) is integrable with respect to the measure µl × νg,k × dx where dx denotes the
Lebesgue measure over Rq. First consider the case ωj 6= 0:∫

|ĝj(x;R)|µl(dTj)× νg,k(dωj)× dx =

∫ (∫
|ĝj(x;R)|dx

)
µl(dTj)× νg,k(dωj)

≤
∫
βg,kr(1 + w0 − Tj)2vol(B2

q−1(2R))µl(dTj)× νg,k(dωj)

<∞ .

We have used Fubini’s theorem for positive functions in the first step, Lemma 33 in the
second step and we have used the fact that E|Tj |2 <∞ in the third step. This shows that
g( · ;R) ∈ L1(Rq). The case ωj = 0 follows similarly.
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3. The case Tj > 1 + w0 is trivial. The case ωj = 0 and Tj ≤ 1 + w0 is simple to prove
from the definitions. We now consider the case ωj 6= 0, Tj ≤ 1 + w0 and q > 1. The q = 1
case is similar to the one below, but we set γ⊥ωj (x) = 1 all along. We first note that ωj ⊥ x⊥ωj
and that γ⊥ωj (x) is a function of x⊥ωj only. Therefore, we decompose the Lebesgue measure

dx over Rd into the product measure dxωj ×dx⊥ωj , where dxωj is the Lebesgue measure over

span(ωj) and dx⊥ωj is the Lebesgue measure over the space perpendicular to ωj , which is

isomorphic to Rq−1:

Ĝj(ξ;R) = βg,kθj

∫
γ⊥ωj (x)S∆k

(
xωj
r , Tj

)
ei〈x,ξ〉dxωj × dx⊥ωj

= βg,kθj

∫
γ⊥ωj (x)e

i〈x⊥ωj ,ξ
⊥
ωj
〉
S∆k

(
xωj
r , Tj

)
eixωj ξωj dxωj × dx⊥ωj

= βg,kθj

∫
γ⊥ωj (x)e

i〈x⊥ωj ,ξ
⊥
ωj
〉
dx⊥ωj

∫
S∆k

(
xωj
r , Tj

)
eixωj ξωj dxωj . (60)

In the third step, we have used the fact that γ⊥ωj depends only on x⊥ωj and that S∆
(
xωj
r , Tj

)
depends only on xωj . Now, we consider S∆k and its Fourier transform. For ease of notation,
we replace xωj by just t ∈ R. Let 1 + w0 ≥ T ∈ R. Consider the function

∆(t;T ) := ReLU(t− T )− 2ReLU(t− 1− w0) + ReLU(t− 2− 2w0 + T ) .

It is simple to check that the Fourier transform of ∆(t/r;T ) is 4ei(1+w0)ξr

ξ2r
sin2((1 + w0 −

T )ξr/2). S∆(x/r, T ) is obtained from ∆(x/r;T ) by convolving it with λα0
k,w0

. Therefore,
from the convolution theorem we conclude that the Fourier transform of S∆(x/r;T ) is
4ei(1+w0)ξr

ξ2r
sin2((1 + w0 − T )ξr/2)Λα0

k,w0
(ξ).

Now, γ⊥ωj (x) is a function of x⊥ωj only. Therefore, we can see this as a function with

domain Rq−1. In Equation (60), we conclude that the first integral, involving γ⊥ωj infact
gives its Fourier transform over Γq−1,R. Using these results in Equation (60), we obtain

Ĝj(ξ;R) = βg,kθjΓq−1,R(‖ξ⊥ωj‖)Λ
α0
k,w0

(ξωj )

[
4ei(1+w0)rξωj

ξ2
ωjr

sin2((1 + w0 − T )ξωjr/2)

]
.

4. The fact that Ĝj ∈ L1(Rq) follows from item 3. The fact that G(ξ;R) = EĜj(ξ,R)
follows from Fubini’s theorem after checking that |ĝj | is integrable with respect to the
product measure µl× νg,k× dx (where dx denotes the Lebesgue measure over Rq) as shown
in the proof of item 2. Similar to the proof of item 2, we will conclude that G(ξ;R) ∈ L1(Rq)
by showing that |Ĝj(ξ;R)| is integrable with respect to the measure µl×νg,k×dξ. In the cases

Tj > 1+w0, |Ĝj( · ;R)| = 0. When Tj ≤ 1+w0 and ωj = 0, we know that Γq,R(‖ξ‖) ∈ S(Rq)
and therefore an L1 function. Using the fact that |S∆(0;Tj)| ≤ 1+w0−Tj , we conclude that
in this case:

∫
Rq |Ĝj(ξ;R)|dξ ≤ βg,k‖Γq,R‖1(1+w0−Tj). Now consider the case Tj ≤ 1+w0

and ωj 6= 0. We first note an inequality which follows from elementary considerations for
every a > 0 and ξ ∈ R:

sin2(aξ)

ξ2
≤ min

(
a2,

1

ξ2

)
. (61)
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By Lemma 21,

|Λα0
k,w0

(ξωj )| ≤
C(k, ω0, α0)

1 + ξ2k
ωj

. (62)

Using Equations (61) and (62), along with the expression for Ĝj( · ;R) in item 3, we have

|Ĝj(ξ;R)| ≤ βg,kΓq−1,R(‖ξ⊥ωj‖)
C(k, ω0, α0)

1 + ξ2k
ωj

min

(
r(1 + w0 − Tj)2,

1

rξ2
ωj

)
.

Integrating this over Rq, we get

‖Ĝj( · ;R)‖1 ≤ C(k, ω0, α0, r)βg,k‖Γq−1,R‖1|1 + w0 − Tj | .

Here we have abused notation to denote by ‖Γq−1,R‖1 the L1 norm of Γq−1,R when seen as
a function over Rq−1.

Combining the various cases, we conclude that Ĝj( · ;R) is integrable with respect to
the measure µl × νg,k × dx if E|1 + w0 − Tj | < ∞. This is true since we have chosen l ≥ 2
in the statement of the lemma. �

E.5. Proof of Lemma 19

We first state the following useful lemma before delving into the proof of Lemma 19.

Lemma 34 Let Z be uniformly distributed on the sphere Sq−1 for q ≥ 2 and let ρ > 0 and
a, b ∈ R+ be such that b > q−1

2 . Let Z1 denote the component of Z along the direction of
the standard basis vector e1. Then∫

Sq−1

1

1 + ρ2aZ2a
1

1

1 + (1− Z2
1 )bρ2b

pθ(dZ) ≤ C(q, a, b)

[
1

1 + ρ2b
+

ρ−q+1

1 + ρ2a

]
.

Proof From standard results, it is clear that Z1 is distributed over [−1, 1] with the density

function ψq(x) := Cq(1 − x2)
q−3

2 . Here Cq is the normalizing constant. Therefore, the
integral in the statement of the lemma becomes∫ 1

−1

ψq(x)

1 + ρ2ax2a

dx

1 + (1− x2)bρ2b
= 2

∫ 1

0

ψq(x)

1 + ρ2ax2a

dx

1 + (1− x2)bρ2b

= 2

∫ 1/2

0

ψq(x)

1 + ρ2ax2a

dx

1 + (1− x2)bρ2b
+ 2

∫ 1

1/2

ψq(x)

1 + ρ2ax2a

dx

1 + (1− x2)bρ2b

≤ 2

1 + 2−2bρ2b

∫ 1/2

0
ψq(x)dx+

∫ 1

1/2

ψq(x)

1 + ρ2a2−2a

dx

1 + (1− x2)bρ2b

≤ C(q, b)

1 + ρ2b
+
C(q, a)

1 + ρ2a

∫ 1

1/2

(1− x2)
q−3

2

1 + (1− x2)bρ2b
dx .

In the integral from 1/2 to 1, 2x ≥ 1. Therefore, from the equation above,∫ 1

−1

ψq(x)

1 + ρ2ax2a

dx

1 + (1− x2)bρ2b
≤ C(q, b)

1 + ρ2b
+
C(q, a)

1 + ρ2a

∫ 1

1/2

(1− x2)
q−3

2

1 + (1− x2)bρ2b
2xdx .
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We now make the change of variable t = (1− x2)ρ2, yielding

∫ 1

−1

ψq(x)

1 + ρ2ax2a

dx

1 + (1− x2)bρ2b
≤ C(q, b)

1 + ρ2b
+
C(q, a)ρ−q+1

1 + ρ2a

∫ 3ρ2

4

0

t
q−3

2

1 + tb
dt

≤ C(q, b)

1 + ρ2b
+
C(q, a)ρ−q+1

1 + ρ2a

∫ ∞
0

t
q−3

2

1 + tb
dt .

The integral on the RHS is finite if b > q−1
2 for every q ≥ 2. Using this fact in the equation

above, we conclude the statement of the lemma.

Proof (of Lemma 19) To begin, Fubini’s theorem for positive functions and Jensen’s
inequality imply that

EC(s)
grem = E

∫
Rq
‖ξ‖s|Grem(ξ)|dξ

=

∫
Rq
‖ξ‖sE|Grem(ξ)|dξ

≤
∫
Rq
‖ξ‖s

√
E|Grem(ξ)|2dξ . (63)

By linearity of Fourier transform, we have Grem(ξ) = G(ξ;R)− 1
N

∑N
i=1 Ĝj(ξ;R). By item

4 of Lemma 18, we know that for every ξ ∈ Rq,

E|Grem(ξ)|2 =
1

N

[
E
∣∣Ĝj(ξ;R)

∣∣2 − |G(ξ;R)|2
]
≤ 1

N

[
E
∣∣Ĝj(ξ;R)

∣∣2] .
Using this in Equation (63), we have that

EC(s)
grem ≤

1√
N

∫
Rq
‖ξ‖s

√
E|Ĝj(ξ;R)|2dξ . (64)

We use the polar decomposition of Rq. Let pθ be the uniform probability measure on
Sq−1, the sphere embedded in Rq. Continuing Equation (64),

EC(s)
grem ≤

1√
N

∫
Rq
‖ξ‖s

√
E|Ĝj(ξ;R)|2dξ

=
C(q)√
N

∫ ∞
ρ=0

∫
Sq−1

ρs+q−1
√
E|Ĝj(ρZ;R)|2pθ(dZ)dρ

≤ C(q)√
N

∫ ∞
ρ=0

ρs+q−1

√∫
Sq−1

E|Ĝj(ρZ;R)|2pθ(dZ)dρ

=
C(q)√
N

∫ ∞
ρ=0

ρs+q−1

√
E
∫
Sq−1

|Ĝj(ρZ;R)|2pθ(dZ)dρ . (65)

The third step above follows from Jensen’s inequality applied to the probability measure
pθ. We first consider the case q ≥ 2. We will now upper bound

∫
Sq−1 |Ĝj(ρZ;R)|2pθ(dZ) as

a function of ρ. We note the following inequalities:
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1. Now, by definition of the Schwartz space, for every integer n, there exists a constant
C(n, q,R) such that for every ξ ∈ Rd

|Γq−1,R(ξ⊥ω )| ≤ C(n, q,R)

1 + ‖ξ⊥ω ‖n
.

2. From Lemma 21, we have

|Λα0
k,w0

(ξω)| ≤ C2

1 + ξ2k
ω

.

3. Similar to item 1, we have for every ξ ∈ Rq:

|Γq,R(ξ)| ≤ C(n, q,R)

1 + ‖ξ‖n
.

From the proof of item 4 of Lemma 18, we have

|Ĝj(ξ)| ≤

βg,k|Γq,R(ξ)||1 + w0 − Tj | when ωj = 0

C(k)βg,k|Γq−1,R(ξ⊥ω )|Λα0
k,w0

(ξ)||min

(
r(1 + w0 − Tj)2, 1

rξ2ωj

)
when ωj 6= 0 .

(66)

We use the inequality min(a2, 1
x2

) ≤ 1+a2

1+x2
along with the inequalities above to show that

for every ξ ∈ Rq

|Ĝj(ξ)| ≤


Cβg,k

1+‖ξ‖n |1 + w0 − Tj | when ωj = 0
Cβg,k

1+‖ξ⊥ω ‖n
1+(1+w0−T )2

1+ξ2k+2
ωj

when ωj 6= 0 ,
(67)

where C depends on k, q, n,R and r. Therefore

∫
Sq−1

|Ĝj(ρZ;R)|2pθ(dZ) ≤


Cβ2

g,k(1+w0−Tj)2

1+ρ2n
when ωj = 0

Cβ2
g,k(1 + (1 + w0 − Tj)4)

∫
Sq−1

pθ(dZ)

1+ρ4k+4Z4k+4
ωj

1
1+(1−Z2

ωj
)nρ2n

when ωj 6= 0 .

(68)
Using the rotational invariance of pθ, we invoke Lemma 34 and conclude that when n > q−1

2

∫
Sq−1

|Ĝj(ρZ;R)|2pθ(dZ) ≤


Cβ2

g,k(1+w0−Tj)2

1+ρ2n
when ωj = 0

Cβ2
g,k

(
1 + (1 + w0 − Tj)4

) [
1

1+ρ2n
+ ρ−q+1

1+ρ4k+4

]
when ωj 6= 0 .

(69)

Since n can be arbitrarily large (and this only changes the multiplicative constant), we
can pick n = 2k + 2 + q − 1. Now taking expectation with respect to T and noting that
when l ≥ 3, ET 4 <∞, we have that

E
∫
Sq−1

|Ĝj(ρZ;R)|2pθ(dZ) ≤ Cβ2
g,k

[
ρ−q+1

1 + ρ4k+4

]
. (70)
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Consider the case q = 1: it is easy to show from the techniques above that the same
bound as in Equation (70) holds. Plugging this into Equation (65), we conclude that

EC(s)
grem ≤

Cβg,k√
N

∫ ∞
0

dρ
ρs+

q−1
2

1 + ρ2k+2
.

Now, it is clear that the integral on the RHS is finite when s < 3−q
2 +2k. Using the definition

of βg,k we conclude the result.

E.6. Proof of Lemma 28

The first 2 items are similar as in the proof of Lemma 18. We will show items 3 and 4
below.

3. In Equation (41), γ⊥ωj (x) is infinitely differentiable. Therefore, to show that ĝj( · ;R) ∈
C2k(Rq), it is sufficient to show that S∆k

(
〈ωj ,x〉
r‖ωj‖ , Tj

)
is 2k times continuously differentiable.

This reduces to showing that t → S∆k(t, T ) ∈ C2k(R) for T ≤ 1 + w0. (We only need to
worry about the case Tj ≤ 1 +w0 because otherwise ĝj(x;R) = 0 identically). Consider the
Fourier transform of S∆k(t, T ):

S∆F
k (υ) =

4ei(1+w0)υ

υ2
sin2((1 + w0 − T )υ/2)Λα0

k,w0
(υ) .

Using the upper bounds on Λα0
k,w0

(υ) in Lemma 21, υ2kS∆F
k (υ) is a L1 function with respect

to Lebesgue measure. By duality between multiplication by υ of the Fourier transform
and differentiation of the function, we conclude that S∆k(t, T ) is 2k times continuously
differentiable and and hence that ĝj(x;R) ∈ C2k(Rq) almost surely. Further, for every
l ≤ 2k, we have

D(l)S∆k(t;T ) =
1

2π

∫
(−i)l(υ)lS∆F

k (υ)e−iυtdυ .

Therefore,

sup
t∈R
|D(l)S∆k(t;T )| ≤ 1

2π

∫
|υ|l|S∆F

k (υ)|dυ

≤
∫ ∞
−∞

B0
k min

(
(1 + w0 − T )2,

1

υ2

)
|υ|l

1 + |υ|2k
dυ

≤ B0
k|1 + w0 − T | ≤ B0

k(1 + |T |) , (71)

where B0
k < ∞ is a constant depending only on α0, w0 and k. We have absorbed con-

stants involving α0, w0 and k into other constants throughout and used the inequality
sin2(υ(1+w0−T )/2)

υ2
≤ min

(
(1 + w0 − T )2, 1

υ2

)
and the upper bound on Λα0

k,w0
(υ) in Lemma 21.

We can in fact improve this bound further because of the fact that S∆(t;T ) is sup-
ported between [T − w0, 2 + 3w0 − T ]. Therefore, |D(l)S∆k(t;T )| is non zero only when
t ∈ [T − w0, 2 + 3w0 − T ]. That is when T − w0 ≤ t ≤ 2 + 3w0 − T . These inequalities
along with the assumption that T ≤ 1 + w0 imply that |D(l)S∆k(t;T )| is non-zero only
when T ≤ −|t|+ 2 + 3w0. Therefore, from Equation (71), we conclude:
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|D(l)S∆k(t;T )| ≤ B0
k(1 + |T |)1(T ≤ −|t|+ 2 + 3w0) . (72)

Consider the element wise partial order ≤ on (N ∪ {0})q where a ≤ b iff ai ≤ bi for i ∈ [q].
By the chain rule, we conclude that ∂bĝj(x;R) is a finite linear combination of terms of the
form

βSg,kθj∂
a
(
S∆k

(
〈ωj ,x〉
r‖ωj‖ , Tj

))
∂b−aγ⊥ωj (x) , (73)

for every a ≤ b such that the coefficients depend only on a and b. Now,

βSg,kθj∂
a
(
S∆k

(
〈ωj ,x〉
r‖ωj‖ , Tj

))
= βSg,kθj

∏q
s=1〈ωj , es〉as
r|a|‖ωj‖|a|

D|a|S∆k

(
〈ωj ,x〉
r‖ωj‖ , Tj

)
. (74)

From Equation (72), the quantity above is nonzero only when |xωj | ≤ 2r + 3rw0 − rTj .
γω⊥(x) is a C∞ function which vanishes when ‖xω⊥‖ ≥ 2R, we conclude that ∂b−aγ⊥ωj (x)

also vanishes when ‖xω⊥‖ ≥ 2R. Therefore, we conclude that ∂bĝj(x) is continuous and
compactly supported almost surely and hence in L1(Rq).

Now for the bound on ∂bĝj(x), we proceed as above by noting that this is a linear
combination of the terms of the form given in Equation (73) for a ≤ b. Now, ∂b−aγ⊥ωj (x)
is bounded uniformly by a constant Hk for every x and a where Hk doesn’t depend on ωj .
The function ∂b−aγ⊥ωj (x) vanishes when ‖x⊥ωj‖ ≥ 2R. From Equations (72) and (74) we get
that ∣∣∣∣βSg,kθj∂a (S∆k

(
〈ωj ,x〉
r‖ωj‖ , Tj

))∣∣∣∣ ≤ βSg,kBk(1 + |Tj |)1(rTj ≤ −|xωj |+ 2r + 3w0r) .

Here Bk depends on α0, q, r, k,R and w0 but not on g, Tj or ωj . Therefore, we obtain the
desired bound (where we have absorbed all the constants into Bk, redefining as necessary):

|∂bĝj(x;R)| ≤ βSg,kBk(1 + |Tj |)1(rTj ≤ −|xωj |+ 2r + 3w0r)1(‖x⊥ωj‖ ≤ 2R) . (75)

4. The proof follows through an induction over |b| and use of item 3. We will show this
for one differentiation here but the argument can be extended to 2k times differentiation.

By standard results in probability theory, ∂g(x;R)
∂x1

exists and equal to E∂ĝj(x;R)
∂x1

if
∂ĝj(x;R)
∂x1

exists and for every x, |∂ĝj(x;R)
∂x1

| ≤ Z for some integrable random variable Z. From item 3,

we conclude that
∂ĝj(x;R)
∂x1

exists and take Z = βSg,kBk(1 + |Tj |) where βSg,kBk are constants

as used in the statement of item 3. This shows that ∂g(x;R)
∂x1

= E∂ĝj(x;R)
∂x1

. We show that it

is continuous by using dominated convergence theorem after noting the fact that
∂ĝj(x;R)
∂x1

is

continuous and dominated by Z = βSg,kBk(1 + |Tj |), which is integrable.

To show that ∂bg(x;R) ∈ L1(Rq), it is sufficient to show that ∂bĝj(x;R) is integrable
with respect to the measure µl × ν0 × dx where dx denotes the Lebesgue measure over Rq.
From Fubini’s theorem for positive functions, we conclude that∫

|∂bĝj(x;R)|µl(dTj)× ν0(dωj)× dx =

∫
µl(dTj)× ν0(dωj)

∫
|∂bĝj(x;R)|dx .

Integrating Equation (75) over Rq, we conclude that
∫
|∂bĝj(x;R)|dx ≤ C(1 + |Tj |2) for

some non-random constant C. Since E|Tj |2 < ∞ by assumption in the statement of the
lemma, we conclude that ∂bĝj( · ;R) is integrable with respect to µl×ν0×dx which implies
the desired result. �
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Appendix F. Proof of Main Theorems

F.1. Proof of Theorem 8

We now prove Theorem 8. For the case a = 0, we can obtain this error using a ReLU

network as shown in Theorem 16. By Equation (17), |κj | ≤ βg,0 ≤ 1
NC1

(
C0
g +C

(2)
g

)
almost

surely and the bound on
∑N

j=1 |κj | follows. Now we let a ≥ 1. For the sake of clarity, we

will assume that N
a+1 is an integer.

Item 2 of Theorem 7 implies that there exists a two-layer SReLUka network with N/(a+1)
activation functions with output ĝ0(x) and there exists a remainder function grem,0 : Rq → R
such that for every x ∈ B2

q (r), we have grem,0(x) = g(x)− ĝ(0)(x) and

C
(0)
grem,0

+ C
(2ka−1+2)
grem,0

≤ C
(
C

(0)
g + C

(2ka+2)
g

)
√
N

.

Supposing that ĝ(0)(x) =
∑N/(a+1)

j=1 κajSReLUka(〈ωaj , x〉 − T aj ), by similar considerations

as the a = 0 case we conclude that
∑N/a

j=1 |κaj | ≤ C1

(
C

(0)
g + C(2ka+2)

)
almost surely. The

fact that ‖ωaj ‖ ≤ 1/r follows from Equation (17), which is used to construct the estimators
in Theorem 7.

Invoking Theorem 7 again, we conclude that we can approximate grem,0 by ĝ(1), which is
the output two-layer SReLUka−1 network with N

a+1 non-linear activation functions and there

exists grem,1 : Rq → R such that grem,1(x) = grem,0(x)− ĝ(1)(x) and

C
(2ka−2+2)
grem,1

+ C
(0)
grem,1

≤ C
C

(0)
grem,0

+ C
(2ka−1+2)
grem,0√
N

≤ C
(
C

(0)
g + C

(2ka+2)
g

)
N

.

Continuing similarly, for 1 ≤ b ≤ a − 1 we obtain ĝ(b) which is the output of some
SReLUka−b units with N

a+1 neurons and remainders grem,b : Rq → R such that for every

x ∈ B2
q (r), we have grem,b(x) = grem,b−1(x)− ĝ(b)(x) and

C
(2ka−b−1+2)

grem,b
+ C

(0)

grem,b
≤ C

(
C

(0)
g + C

(2ka+2)
g

)
N

b+1
2

.

Now, writing ĝ(b)(x) =
∑N/(a+1)

j=1 κa−bj SReLUka−b(〈ω
a−b
j , x〉 − T a−bj ), we conclude that

‖ωa−bj ‖ ≤ 1/r and

N/(a+1)∑
j=1

|κa−bj | ≤ C1

(
C

(0)
g + C

(2ka+2)
g

)
N b/2

.

In particular, we have grem,a−1 such that C
(2)
grem,a−1 + C

(0)
grem,a−1 ≤ C(C

(0)
g + C2ka+2

g )/(N
a
2 ).

Therefore, by Theorem 16, there exists a random ReLU network with N/(a+ 1) neurons
which approximates grem,a−1 with output ĝ(a) such that:

51



A Corrective View of Neural Networks:Representation, Memorization and Learning

1.

E
∫ (

grem,a−1(x)− ĝ(a)(x)
)2
ζ(dx) ≤ C

(
C

(2)
grem,a−1 + C

(0)
grem,a−1

)2

N

≤ C
(
C

(0)
g + C2ka+2

g

)2
Na+1

.

2.
grem,a−1 − Eĝ(a)

j (x) = 0 ,

where ĝ
(a)
j is the j-th component of ĝ(a).

3. Assuming ĝ(a)(x) =
∑N/(a+1)

j=1 κ0
jReLU(〈ω0

j , x〉 − T 0
j ), it is clear that ‖ω0

j ‖ ≤ 1/r:

N/(a+1)∑
j=1

|κ0
j | ≤ C1

C
(0)
g + C

(2ka+2)
g

Na/2
.

We note that we have chosen the SReLUkb units in a non-random fashion through Theo-
rem 7 whereas we have chosen the last N

a+1 ReLU units randomly using Theorem 16. There-
fore, the expectation above is only with respect to the randomness of the ReLU units. It is
clear that grem,a−1(x)−ĝ(a)(x) = g(x)−

(∑a
b=0 ĝ

(b)(x)
)

whenever x ∈ B2
q (r) and

∑a
b=0 ĝ

(b)(x)
is the output of a two-layer network with N non-linear units containing ReLU and SReLUk
units for k ∈ {k1, . . . , ka}. We conclude items 1 and 2 in the statement of the lemma. The

sum of the absolute values of the coefficients is
∑a

b=0

∑N/(a+1)
j=1 |κbj | ≤ C1(C

(0)
g + C

(2ka+2)
g )

as is clear from the discussion above. �

F.2. Proof of Theorem 9

We first note that whenever x ∈ B2
d(r), 〈x,Bi〉 ∈ B2

q (r). We assume that N/(a+ 1)m is
an integer. In Theorem 8, we take g = fi and replace N with N/m. We pick the weights
ωi inside the SReLUk and ReLU units to be in span(Bi) instead of Rq and the replace the
distribution ζ(dx) by ζ(〈dx,Bi〉), which is the measure induced by ζ over span(Bi). We
conclude that there exists a random neural network NNi with 1 nonlinear layer whose output
is f̂i(x) such that:

1. For every x ∈ B2
q (r),

Ef̂i(x) = fi(〈x,Bi〉)

2.

E
∫ (

fi(〈x,Bi〉)− f̂i(x)
)2
ζ(dx) ≤ C0

Mma+1

Na+1
.

We construct the random neural networks NNi independently for i ∈ [m]. We juxta-
pose these m neural networks and average their outputs to obtain the estimator f̂(x) :=
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1
m

∑m
i=1 f̂i(x). Now

E
∫ ( 1

m

m∑
i=1

fi(〈x,Bi〉)− f̂i(x)
)2
ζ(dx)

=
1

m2

∑
i,j∈[m]

E
∫ (

fi(〈x,Bi〉)− f̂i(x)
)(

fj(〈x,Bi〉)− f̂j(x)
)
ζ(dx)

=
1

m2

∑
i,j∈[m]

∫
E
(
fi(〈x,Bi〉)− f̂i(x)

)(
fj(〈x,Bi〉)− f̂j(x)

)
ζ(dx)

=
1

m2

∑
i∈[m]

∫
E
(
fi(〈x,Bi〉)− f̂i(x)

)2
ζ(dx)

≤ C0
maM

Na+1
. (76)

In the fourth step we have used the fact that f̂j(x) and f̂i(x) are independent when i 6= j.
Because the above bound holds in expectation, it must hold for some configuration. �

F.3. Proof of Theorem 10

Consider the low dimensional polynomial defined in Equation (2). Define the following
orthonormal set associated with each V in the summation:

1. BV = {ej : V (j) 6= 0} where ej are the standard basis vectors in Rd, if |{ej : V (j) 6=
0}| = q.

2. Otherwise, let w = q − |{ej : V (j) 6= 0}|. Otherwise, draw distinct ej1 , . . . , ejw /∈
{ej : V (j) 6= 0} from some arbitrary fixed procedure and define BV = {ej : V (j) 6=
0} ∪ {ej1 , . . . , ejw}. This ensures that |BV | = q.

Clearly, pV can be seen as a function over span(BV ) which is isomorphic to Rq. Since
we are only interested in x ∈ [0, 1]d, it follows that 〈x,BV 〉 ∈ [0, 1]q ⊆ B2

q (
√
q). We can

also modify pV (x) to pV (x)γ
(
‖〈BV , x〉‖2/q

)
where γ ∈ S(R) is the bump function defined

in Section B such that γ(t) = 1 for t ∈ [−1, 1], γ ≥ 0 and γ(t) = 0 for |t| ≥ 2. Therefore,
pV (x)γ

(
‖〈BV , x〉‖2/q

)
, when seen as a function over span(BV ), is itself a Schwartz function

and it is equal to pV (x) whenever 〈x,BV 〉 ∈ B2
q (
√
q). Without any loss, we replace pV (x)

with pV (x)γ
(
‖〈BV , x〉‖2/q

)
in Equation (2). We note that the low degree polynomials

defined above are an instance of the low dimensional function defined in Equation (1), but
without the factor of m. In Theorem 32, we will just multiply throughout by a factor m
- for both f and the estimator f̂ . The only change which occurs in the guarantees is that
the error is multiplied by m2 and the co-efficients κj in the statement of the theorem are

multiplied by m. In this case, we take m =
(
q+d
q

)
. Fix an a ∈ N∪{0} and take N ≥ (a+1)m

such that N/(a+ 1)m ∈ N. Consider the Fourier norm of pV when seen as a function over
span(BV ). Clearly pV is a Schwartz function and the Fourier norm defined in Equation (38)
exists and is finite for every l = 2kSa + 2 (l is as used in Equation (38)). Therefore, we set

H := supV (S0
pV

+ S
(2kSa+2)
pV )2 < ∞. It is clear that H depends only on q and a. Now, the

corresponding squared Fourier norms for JV pV , denoted by MV satisfies MV ≤ HJ2
V (where
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MV is the analogue of Mi as defined in Theorem 32). Consider the sampling procedure given
in Theorem 32: since the bases BV (the analogues of Bi in the statement of the theorem)
are known explicitly, this sampling can be done without the knowledge of the polynomial.
Now, by a direct application of Theorem 32, we conclude the statement of Theorem 10. �
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