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Abstract

We develop a corrective mechanism for neural network approximation: the total avail-
able non-linear units are divided into multiple groups and the first group approx-
imates the function under consideration, the second approximates the error in ap-
proximation produced by the first group and corrects it, the third group approxi-
mates the error produced by the first and second groups together and so on. This
technique yields several new representation and learning results for neural networks:
1. Two-layer neural networks in the random features regime (RF) can memorize arbi-
trary labels for n arbitrary points in R? with O(a%) RelLUs, where 6 is the minimum
distance between two different points. This bound can be shown to be optimal in n

up to logarithmic factors.

2. Two-layer neural networks with ReLUs and smoothed ReLUs can represent functions
with an error of at most e with O(C/(a, d)e=/(*+1)) units for a € NU {0} when the
function has O(ad) bounded derivatives. In certain cases d can be replaced with
effective dimension ¢ < d. Our results indicate that neural networks with only a
single nonlinear layer are surprisingly powerful with regards to representation, and
show that in contrast to what is suggested in recent work, depth is not needed in
order to represent highly smooth functions.

3. Gradient Descent on the recombination weights of a two-layer random features net-
work with ReLUs and smoothed RelLUs can learn low degree polynomials up to
squared error € with subpoly(1/€) units. Even though deep networks can approx-
imate these polynomials with polylog(1/e) units, existing learning bounds for this
problem require poly(1/e) units. To the best of our knowledge, our results give the
first sub-polynomial learning guarantees for this problem.

1. Introduction

Neural networks have been shown to be very powerful in various classification and regression
tasks Goodfellow et al. (2016). A lot of the properties of multi-layer networks remain
unexplained rigorously, despite their success in practice. In this paper we focus on three
core questions regarding the capabilities of neural networks: representation, memorization,
and learning low degree polynomials.
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Representation. Neural networks are universal approximators for continuous functions
over compact sets and hence, when trained appropriately can solve a variety of machine
learning problems Cybenko (1989); Hornik et al. (1989); Funahashi (1989); Lu et al. (2017);
Hanin and Sellke (2017). A long line of work, starting with Barron (1993), provides bounds
on the number of activation functions required for two-layer neural networks to achieve a
given error when the function being approximated satisfies certain smoothness conditions
Klusowski and Barron (2018); Ma et al. (2019); Liang and Srikant (2016); Safran and Shamir
(2017); Yarotsky (2017); Li et al. (2019). The papers Barron (1993) and Klusowski and
Barron (2018) use a law of large numbers based argument using random neural networks
(see Section 1.1) to achieve a squared error of 1/N using N neurons, whereas other works
including Liang and Srikant (2016); Safran and Shamir (2017); Yarotsky (2017); Li et al.
(2019) carry out a Taylor series approximation for the target function by implementing
additions and multiplications using deep networks. These assume more smoothness (higher
number of bounded derivatives) of f and give faster than 1/N rates for the squared error.

Deep neural networks are practically observed to be better approximators than shallow
two-layer networks. Depth separation results construct functions that are easily and effi-
ciently approximated by deep networks but cannot be approximated by shallower networks
unless their width is very large (see Safran and Shamir (2017); Daniely (2017a); Delalleau
and Bengio (2011); Telgarsky (2016) and references therein). While the results in Liang
and Srikant (2016); Safran and Shamir (2017); Yarotsky (2017); Li et al. (2019) consider
deep architectures to achieve faster representation results for a class of smooth functions,
it remained unclear whether or not the class of functions they consider can be similarly
represented by shallow networks. Recent work Bresler and Nagaraj (2020) gives sharp rep-
resentation results for arbitrary depth networks which show that deeper networks are better
at representing less smooth functions.

In this work, we show similar representation results to those achieved in Yarotsky (2017)
using deep networks, but for a two-layer neural network. Crucial to our approach is a careful
choice of activation functions which are the same as RelLU activation functions outside of
a small neighborhood of zero and they are smoother near zero. We note that the Sobolev
space assumption for the target function in Yarotsky (2017) is essentially the same as
our assumption of fast enough decay in their Fourier transform (see Section 3) due to
the relationship between smoothness of a function and the decay of its Fourier transform.
The experiments in Zheng et al. (2015) and Elfwing et al. (2018) suggest that considering
smoothed activation functions in some layers along with ReLU in some others can in fact
give measurably better results in various problems. Theoretical results in Li et al. (2019)
show that smooth functions can be more efficiently represented using rectified power units
(RePU), which are smoother than ReLU.

Despite the guarantees given by representation results, in practice finding the opti-
mal parameters for a neural network for a given problem involves large-scale non-convex
optimization, which is in general very hard. Therefore, stating representation results in
conjunction with training guarantees is important, and as described next, we do so in the
context of the memorization and learning low-degree polynomials.

Memorization. Neural networks have the property that they can memorize (or interpo-
late) random labels quite easily Zhang et al. (2016); Belkin et al. (2018). In practice, neural
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networks are trained using SGD and a long line of papers aims to understand memorization
in over-parametrized networks via the study of SGD/GD (see Du et al. (2019); Allen-Zhu
et al. (2018); Jacot et al. (2018) and references therein). A recent line of work studies
the problem of memorization of arbitrary labels on n arbitrary data points and provides
polynomial guarantees (polynomial in n) for the number of non-linear units required (see
Zou et al. (2018); Zou and Gu (2019); Oymak and Soltanolkotabi (2019); Song and Yang
(2019); Ji and Telgarsky (2019); Panigrahi et al. (2019) and references therein). These
polynomials often have high degree (O(n?") in Allen-Zhu et al. (2018) and O(n®) as in Du
et al. (2019)). Oymak and Soltanolkotabi (2019) and Song and Yang (2019) improve this to
O(n?) under stronger assumptions on the data. Moreover, the bounds in Du et al. (2019),
Oymak and Soltanolkotabi (2019) and Song and Yang (2019) contain data and possibly
dimension dependent condition number factors. Panigrahi et al. (2019) obtains intelligible
bounds for such condition number factors for various kinds of activation functions, but do
not improve upon the O(n®) upper bound. Ji and Telgarsky (2019); Chen et al. (2019) show
a polylogarithmic bound on the number of non-linear units required for memorization, but
only under the condition of NTK separability.

We consider the problem of memorization of arbitrary labels via gradient descent for
arbitrary d dimensional data points under the assumption that any two of these points are
separated by a Euclidean distance of at least §. Under the distance condition which we
use here, the results of Ji and Telgarsky (2019) still require O(n'2/6*) non-linear units.
Our results obtain a dependence of O(n/#*) for two-layer ReLU networks. This is optimal
in n up to log factors. A similar bound is shown in Kawaguchi and Huang (2019), but
with additional polynomial dependence on the dimension. Under additional distributional
assumptions on the data, Daniely (2019) shows the optimal bound of O(n/d) whenever n
is polynomially large in d. Subsequent to the present paper’s appearance on arXiv, Bubeck
et al. (2020) used a similar iterative corrective procedure as proposed in this paper to
address the question of memorizing n points with the smallest possible total weight rather
than number of units. Our memorization results also achieve the optimal dependence for
weight in terms of number of points n, with a better dependence on the error ¢ and with
fewer assumptions on the data, but a worse dependence on the dimension d.

Learning Low Degree Polynomials. An important toy problem studied in the neural
networks literature is that of learning degree ¢ polynomials with d variables via SGD/GD
when ¢ < d. This problem was first considered in Andoni et al. (2014), and they showed
that a two-layer neural network can be trained via Gradient Descent to achieve an error of
at most ¢ whenever the number of non-linear units is €(d??/e?) and Yehudai and Shamir
(2019) gives a bound of Q(d4” /e*) using the random features model. All the currently known
results for learning polynomials with SGD/GD require Q (d*?poly(1/¢)) non-linear units.
There are several representation theorems for low-degree polynomials with deep net-
works where the depth depends on the error € (see Liang and Srikant (2016); Safran and
Shamir (2017); Yarotsky (2017)) by systematically implementing addition and multiplica-
tion. They require a total of O(d?polylog(1/e¢)) non-linear units. However, there are no
training guarantees for these deep networks via any algorithm. We show that a two-layer
neural network with O(subpoly(1/€)) activation functions trained via GD/SGD suffices. In

1
particular, the number of non-linear units we require is O(C(a, q)d*e a+1) for arbitrary
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a € NU {0}, which is subpolynomial in € when we take a — oo slowly enough as € — 0. To
the best of our knowledge, these are the first subpolynomial bounds for learning low-degree
polynomials via neural networks trained with SGD.

1.1. The Corrective Mechanism

We now describe the main theoretical tool developed in this work. Let a, N € N. With
aN non-linear units in total, under appropriate smoothness conditions on the function
f :R? — R being approximated, we describe a way to achieve a squared error of O(1/N%).
The same basic methodology is used, with suitable modifications, to prove all of our results.

For any activation function o, the construction given in Barron (1993) obtains O(1/N)
error guarantees for a two-layer network by picking ©1,...,0y i.i.d. from an appropriate
distribution such that Eo(x;01) ~ f(x) for every x in some bounded domain. Then, the
empirical sum f0)(z) := + SN o(x;©;) achieves an error of the form C]%/N as shown by
a simple variance computation, where C is a norm on the Fourier transform of f. Since the
Fourier transform is a linear operator, it turns out that the error (or remainder function)
f — f®(z) has a Fourier norm on the order of C t/V/N, which is much smaller than that
of f. We let the next N activation functions approximate this error function with f @) 50
that f M 4+ f (2) achieves an error of at most % We continue this argument inductively to
obtain rates of 1/N®. We note that to carry out this argument, we need stronger conditions
on f than the ones used in Barron (1993) (see Section 3). We next briefly describe some of
the technical challenges and general proof strategy.

Overview of Proof Strategy. The main representation results are given in Theorems 8
and 9 in Section 3. We briefly describe our proof strategy:

1. The Fourier transform of the ReLU function is not well-behaved, due to its non-
differentiability at 0. We construct an appropriate class of smoothed ReLU functions
SReLU, which is the same as ReLU except in a small neighborhood around the origin,
by convolving ReLU with a specific probability density. This is done in Section A.

2. Cosine functions are represented as a convolution of SReLU functions in Theorem 11.

3. We prove a two-layer approximation theorem for f under a Fourier norm condition
using SRelLU activation functions. This is done in Theorems 13 and 16.

4. In Theorem 7 we extend the error function f*m := f — f (1) to all of R* and show
that its Fourier norm is smaller by a factor of 1/v/N than that of f. Since activation
functions used to construct f (1) are one-dimensional and their Fourier transforms are
generalized functions, we will use the “mollification” trick from Fourier analysis to
extend them to be d dimensional functions with continuous Fourier transforms.

5. We use the next set of non-linear units to represent the error f™ and continue
recursively until the rate of - is achieved. Since the remainder function becomes less
smooth after each approximation step, we can only continue this procedure while the
remainder is smooth enough to be effectively approximated by the class of activation
functions considered. This depends on the smoothness of the original function f.

(Roughly, an increased number of bounded derivatives of f allows taking larger a.)
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The guarantees we obtain above contain dimension dependent factors which can be quite
large. By considering functions with low-dimensional structure — that is, d dimensional
functions whose effective dimension is ¢ < d as described below, the dimension dependent
factor can be improved to depend only on ¢ and not on d.

1.2. Functions with Low-Dimensional Structure

Let d € Nand d > ¢. We build a function f : R¢ — R from real valued functions f; : R7 — R
fori =1,...,m as follows. Let B; C R? be finite sets such that |B;| = ¢ and for all u,v € B;,
(u,v) = 0y,p. We fix an ordering for the elements of each set B;. For ease of notation, for
every x € R%, define (z, B;) € RY to be the vector whose elements are ({z,v)),ep,. Define
f:RY 5 R as Lo
f(z) = EZfi(@’BD). (1)
i=1
This is a rich class of functions that is dense over the set of C.(R%) equipped with the L2
norm. This can be seen in various ways, including via universal approximation theorems
for neural networks. Such low dimensional structure is often assumed to avoid overfitting

in statistics and machine learning — for instance, linear regression in which case m = ¢ = 1.

Low-Degree Polynomials. Low-degree polynomials are a special case of functions in the
form of (1). For each V' : [d] — {0} U [d] such that 3 .5 V(j) < ¢ denote by py : R?Y — R
the corresponding monomial given by py(xz) = Hjev x;-/(j ). We note that each py can
depend on at most ¢ coordinates, and a standard dot and dash argument shows that the
number of distinct V are (qurd). We consider the class of polynomials of € R? with degree

at most ¢, where ¢ < d, which are of the form
fle)=>" Jvpy(z) (2)
\%

for arbitrary Jyy € R. Our results in Theorem 10 show how to approximate f(x) for
x € [0,1]? under some given probability measure over this set.

1.3. Preliminaries and Notation

In this paper d always denotes the dimension of some space like R%, which we take as the
space of features of our data. We also consider R? where ¢ < d and functions over them,
especially when considering functions over R? with a ¢ dimensional structure as defined just
above. B2(r) for r > 0 denotes the Euclidean ball {z € RY : |[z[2 < r}. In this paper, we
consider approximating a function f over some bounded set B3(r) or Bg(r). Therefore, we
are free to extend f outside this. The standard ¢2 Euclidean norm is denoted by || - ||.

We let capitals denote Fourier transforms. For example the Fourier transform of ¢ :
RY — R, g € LY(RY) is denoted by G(w) = [z, 9(z)e!“*)dz . Following the discussion
in Barron (1993), we scale G to % to get the ‘Fourier distribution’ of g. Whenever
G € L'(RY), the Fourier inversion formula implies that for all z € RY,

o@) = [ e, 3)
Ra
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Following Barron (1993), we also consider complex signed measures (instead of functions
over R?) as “Fourier distributions” corresponding to g as long as Equation (3) holds for every

(025:;21 dw is understood to be integration with
respect to this signed measure. This broadens the class of functions g that fall within the
scope of our results. We denote the Schwartz space over R? by S(R?). This space is closed

under Fourier and inverse Fourier transforms. Finally, for real = let ReLU(z) = max(0, x).

x. In this case the formal integration against

1.4. Random Features Model and Training

The random features model was first studied in Rahimi and Recht (2008b,a, 2009) as an
alternative to kernel methods. The representation results in Barron (1993); Klusowski and
Barron (2018); Sun et al. (2018); Bailey et al. (2019); Ji et al. (2019) and in this work
use random features. In order to approximate a target function f : R — R we consider
functions of the form f(z;v) = Zjvzl vjo((wj, ) — T;) . Here we have denoted (v;) € R
in the RHS collectively by v in the LHS, and w; € R? and T; € R are random variables.
We optimize over v, keeping w;’s and T)’s fixed to find the best approximator for f. More
specifically, we want to solve the following loss minimization problem for some probability
distribution ¢ over R%:
v =g int [ (@)~ faiv)*Claa). (@
veRN
The problem above reduces to a least squares linear regression problem which can be
easily and efficiently solved via gradient descent since this is an instance of a smooth convex
optimization problem. By Theorem 3.3 in Bubeck et al. (2015), constant step-size gradient
descent (GD) has an excess squared error O(1/T) compared to the optimal parameter
v* after T steps. In this paper, whenever we prove a learning result, we first show that
with high probability over the randomness in wj, T}, there exists a v such that the loss
in approximating f via f (-;vp) is at most €/2. Then, running GD for the objective in
Equation (4) for T = Q(1/e) steps, we obtain v such that [ (f(z) — f(w;vT))QC(dw) <e.
Since this paper mainly concerns the complexity in terms of the number of activation
functions, we omit the details about time complexity of GD in our results, but it is under-
stood throughout to be O(1/€). The random features model is considered a good model for
networks with a large number of activation functions since during training with SGD, the
weights w; and T; do not change appreciably compared to the initial random value. Such
a consideration has been used in the literature to obtain learning guarantees via SGD for
large neural networks Andoni et al. (2014); Daniely (2017b); Du et al. (2019).

1.5. Organization

The paper is organized as follows. In Section 2, we illustrate the corrective mechanism by
developing our results on memorization by two-layer ReLU networks via SGD to conclude
Theorem 1. We then proceed to state our main results on function representation and
learning polynomials in Section 3. We give the construction of the smoothed ReLU activation
functions in Section A and state an integral representation for cosine functions in terms of
these activation functions. The proof of the main technical result of the paper, Theorem 7,
is in Section B. Sections C through F contain many of the proofs.
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2. Memorization

We first present our results on memorization, as they are the least technical yet suf-
fice to illustrate the corrective mechanism. Suppose we are given n labeled examples
(x1,91), - - -, (Tn,Yn) where each data point x; € R? has label y; € [0,1]. In memoriza-
tion (also known as interpolation), the goal is to construct a neural network which can be
trained via SGD and which outputs f(z;) = 9 ~ y; when the input is z;, for every i € [n].
The basic question is: how many neurons are needed?

Theorem 1 Suppose T1,...,2, € RY are such that ||z;|| < 1 and mingg ||z — ]| >
6. For each i = 1,...,n let y; € [0,1] be an arbitrary label for z;.  Let (wj,Tj)
for j = , N be dmwn i.i.d.  from the distribution N (0, 0 I;) x Unif[—2,2], where

oy = 1/\/00 x logn x logmax(1/60,2) for some large enough constant Cy. Let C be
a sufficiently large wuniversal constant and let ¢,6 € (0,1) be arbitrary. If N >
Cn 10g4(max(1/9 2))log" n log 52, then with probability at least 1 — § there exist ai,...,any € R
such that the function fReLV .= Z;VZI a;jRelLU ((z,w;) — Tj) satisfies

n

ST (flaw) — R (@) <e.

k=1

Moreover, if we consider only ai, . ..,an as the free parameters and keep the weights (w;, T;)
fixed, SGD/GD obtains the optimum because the objective is a convex function.

Remark 2 In the initial version of this paper, there was an extra factor of d* in the guar-
antees given above. Based on reviewer comments, we have removed this dependence using
a more refined analysis.

In the remainder of this section we will prove Theorem 1. We will first show a Fourier-
analytic representation. However, instead of using the regular Fourier transform, only in
this section, we use the discrete Fourier Transform. For a function f : {z1,...,z,} — R,
define F : R — R

n

F() = fla;)em)

j=1
The proof now proceeds in five steps.

Step 1: Approximation via Fourier transform. Let & ~ N(0,0%1;) for 0 > 0 to be

specified momentarily and consider f :A{x1, ...,z — R defined as
~ . d2
flax) = EF €)™ = flax) + ) flap)Be @5 = fag) + D flaj)e =,
J#k J#k
where dj;, = |lz; — xi||2 and we have used the fact that the Gaussian & ~ N(0,021,)

has characteristic function E[e~"t8)] = exp(—302||t||?). Note that when o is large enough
compared to 1/6, we have f (zx) =~ f(xr), so in what follows we will aim to approximate f.
We will take o = #~1/2slogn for some s > 1 to be fixed later.

We now record some properties of the random variable F'(£). Let ||f||, denote the
standard Euclidean ¥ norm when f is viewed as a n-dimensional vector (f(z1),..., f(zn)).
The proof of the following lemma is given in Section E.



A CORRECTIVE VIEW OF NEURAL NETWORKS: REPRESENTATION, MEMORIZATION AND LEARNING

Lemma 3 Let £ ~ N(0,0%1;) where o = \/2slogn /0. We have:
1. |[F(&)] < |Ifll1 almost surely,
2. EIF©) < 13 +1/1F/n°, and
3. | f(wx) = Fla)] < | fll/ns.

Step 2: Replacing sinusoids by ReLU. We first state a lemma which allows us to
represent sinusoids in terms of ReLU and Step functions. The proof is given in Section C.
Lemma 4 Let T ~ Unif[—2,2]. There exist C3°(R) functions n(-;«,), (where o and ¢
are the parameters which define n) such that suppcg 0(T; o, )| < 1 and for every t € [—1,1]
and for some absolute constant C, we have

cos(at + 1) = EC(1 + o*)n(T; a, )ReLU(t — T)

Consider the event A = {[(¢, zx)| > 28{# for some k € [n]}. By Gaussian concentration,
we have P(A) < 2/n°~ 1. Write F(€) = |F(£)|e **© for some ¢ : R? — R. In Lemma 4
we take o = 251%, t = (&, zx)/a, and P = ¢(&) to conclude that if T ~ Unif[—2,2] and
independent of £, then on the event A€

cos (€, 2} + 6(8)) = ErC(1+ 222 (T; 0, g)ReLU (65221 — )

Here Er denotes the expectation only over the random variable 7', C' is a universal constant
and 7 is as given by Lemma 4. We have used the fact that Bleze) o [—1,1] since the event

- 2slogn
A€ holds. Now, by definition of f, we have

flay) = BF(&)e &™) = E[F(&)[e” 16 = B|F(&)] cos ((¢,za) + $(£)) -
The last two equations lead to the following lemma, with details given in Section E.

Lemma 5 For some absolute constant C1, we have

2slogn 02ns/2

F(wx) = CEIF(©)](1 + 22 )n(T; 0, v)ReLU (05521 T)‘ < 22 log 0 5

Step 3: Empirical estimate. Let Ny € N. We draw (§, 7)) for I € {1,..., No} i.i.d.
from the distribution NV(0,0%14) x Unif[—2,2]. We construct the following estimator for f,
which is in turn an estimator for f:

filw) = CIP(@)] (1 + ) n(Tis @, 6(6)ReL U (055222 — 7}

" < /
From Equation (5), we conclude that Ef;(zx) = f(xx)+O (%) and we construct

the empirical estimate

1 Qo
T) = No;fz(ﬂf% (6)
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4]
Lemma 6 For some universal constant C and L := Cw,

A L Cs3log’n
E(f(zj) - f(a;)” < E+W2§ 113

In particular, letting s = C1+Cslog (max(1/6,2)) for some constants Cy,Ca and No = 2nelL
yields

1113
en

E(f(z;) — f(z)))” <

The proof, given in Section E, follows from an application of Gaussian concentration.

(7)

Step 4: Iterative correction. We define f° : {x1,...,2;} — R by f(z;) := y; where
y; € [0,1] are the desired labels for z;. In the procedure above, we replace f with f° and
obtain the estimator fo as per Equation (6). We now define the remainder function frem! :
{x1,...,2,} — R as the error obtained by the approximation: f™!(z;) := fO(zs)— fO(ap).
Summing the bound in Equation 7 over j € [n] yields

rem,12 ”fOH%
B fremfg < AL (8)

We define higher order remainders fe™* for I > 2 inductively as follows. Suppose we
have f*™!~1 We replace f in the procedure above with f™!~1 to obtain the estimator
f rem,l—~1 a5 given in Equation (6), independent of all the previous estimators. We define the
remainder freml = fremi-1 frem =1 Repeating the argument leading to Equation (8),
with the given choice of s and Ny we conclude that: E[|f™!||2 < e~!||f0||2. Take N = INp.
Unrolling the recursion above, we note that f™(z) is fO(z) — f'(z), where f!(x) is of the

form
ZaJReLU (2 -1) . 9)

This is the output of a two-layer network with [N RelLU units. We recall that (&;,7}) are
iid. N(0,0%I;) x Unif[—2,2] which agrees with the choice of weights in Theorem 1. The
remainder f"™!(z) can be seen as the error of approximating f° using Nyl := N random
activation functions as given in Equation (9). By assumption, the labels f°(z;) € [0,1], so
19113 < n. This gives us an error bound on the L? loss Ex(f°) := Z?Zl(fo(xj) —f(l)(xj))Z:

EEN(fO) < e 'n.

Step 5: Markov’s inequality. Denoting by En(f°) = e~'n the RHS of the bound just
above, Markov’s inequality implies that for any ¢ € (0, 1)

P(en(f) = B2) <. (10)

Now the choice I > log n+log $+log L gives N(f ) <e -l < %eilog ) < € and plugging into
Equation (10) shows that when s,/ and N are chosen as above, we have P(Ex(f°) >€) <4
as claimed in Theorem 1.
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3. Representation via the Corrective Mechanism

We now turn to the representation problem. Given a function g : R? — R, the goal is to
construct a neural network whose output g is close to g. The arguments resemble those
given in the previous section on memorization, but the details are more technically involved.

The approximation guarantees of our theorems depend on certain Fourier norms. These
can be thought of as measures of the complexity of the function g to be approximated. Let
g : R? — R be the function we are trying to approximate over the domain Bg(r) and let

(GQET“)?, be the ‘Fourier distribution’ of g : R? — R as defined in Equation (3). We take its

magnitude-phase decomposition to be: G(w) = |G(w)|e~™®). For each integer s > 0 we
define the Fourier norm

1
(s) .
cl o

/ GW)| - |w]*dw.
Ra

We will assume that Cgs) <oofors=0,1,...,L for some L € N.

Because having small Fourier norm can be thought of as a smoothness property, smoothed
ReLU functions can be efficiently used for the task of approximating such functions. In Sec-
tion A we define a sequence of smoothed ReLU functions SReLU; for integers & > 0, of
increasing smoothness. These are obtained from the ReLU by convolving with an appropri-
ate function. The use of smoothed RelLU functions is crucial in order that the remainder
following approximation is itself sufficiently smooth, which then allows the approximation
procedure to be iterated. We start with the basic approximation theorem, which has an
approximation guarantee as well as a smoothness guarantee on the remainder.

Theorem 7 Let k > max(1, q;—g). Let g : R? — R be such that C}S%H), C’éo) < 0o. Then,
given any probability measure ¢ over Bg(r) there exists a two-layer SReLUy network, with
N non-linear units, whose output is §(z) such that the following hold simultaneously:

1.
r (0) (2k+2)\ 2
[ 6@ - sy < SIC s il

2. There exists a function g"™ : R? — R such that:

(a) For every x € Bg(r), g™ (z) = g(x) — g(x).
(b) Its Fourier transform G™™ € LY(R?) N C(RY).
(c) For every s < 3—;'1 + 2k, C’;fe)m < Ci(s,m,q, k:)(CéO) + Cgk“)/\/ﬁ.

We will use this theorem to give a faster approximation rate of ﬁ for g, where
a € NU{0}. We then extend this to functions of the from given in Equation (1). The
main conclusion of the following theorem is that the approximating network achieves an
error of at most € with N = O(C (a)e_ﬁ) activation functions. If the theorem below holds
for every a € N U {0}, we note that if we take a — oo slowly enough as ¢ — 0, we get
subpolynomial dependence on e.

10
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Theorem 8 Fiz g€ N and for each b € NU {0} let

b[ 1] if ¢ # 3 (mod 4)
ky = b <1+q ) e (11)
i +1 if ¢ =3 (mod 4).
. RY : (0) (2ka+2)
Suppose g : R? — R has bounded Fourier norms Cy~’ < oo and Cj < oo for some

a € {0}UN. Then, for any probability measure { over Bg(r), there ewists a two-layer neural
network with random weights and N activation functions consisting of a mizture of SReLUy,
units for b € {0,1,...,a} with output g : R? — R such that

1. For every x € Bg(r), Eg(x) = g(z).

2.
X 2
c© +C§2ka+2))

E / (9(x) - §(2))*¢(dz) < Colgyra) o)

The expectation here is with respect to the randomness in the weights of the neural network.
Moreover, writing § in the form §(x) = Z;VZI rjSReLUyjy({wj, x) — Tj), the k; and w
satisfy Z;Vﬂ k5] < Cilg,7,a)(CY + Cgk““) and ||wj| < L almost surely.

Proof The main idea of the proof is to use Theorem 7 repeatedly. We will first use
~ N/(a + 1) SRelLUy, units to approximate g by §(®). This gives a squared error of the
order O(1/N). We then consider the error term g — §(°) and approximate this error term
using another ~ N/(a + 1) SRelLUy, , units and try to offset the first error to obtain
a squared error guarantee of 1/N?2, and repeat this procedure until we obtain the stated
guarantees. We reduce the smoothness parameter k in every iteration as error terms become
progressively less smooth. A complete proof is provided in Section F. |

Now we prove the version of Theorem 8 for functions of the form in Equation (1). The
main advantage of Theorem 9 is that the bounds do not depend on the dimension d, only
on the effective dimension ¢ < d.

Theorem 9 Consider the low-dimensional function defined in Equation (1). Assume that
2
aup (O + €Y < s
/L. T 1
Then, for any probability measure ¢ over Bg(r), there exists a one non-linear layer neural

network with ReLU and SReLUy, units for k < k, with N neurons with output f : R* — R
such that

[ (@) = F@))otdo) < Coarra,) 4

Proof We use N/m neurons to approximate each of the component functions f; just like
in Theorem 8, and then average the outputs. The full proof is in Section F. |

We will now develop our results on learning low-degree polynomials. The results are
based on Theorem 32 which is similar to Theorem 9, but with a stronger bounded sup
norm type assumption on the Fourier transform instead. This has the advantage that we
can sample the weights independent of the target function g and k to construct our network.
The proofs are developed in Section D, which is roughly similar to Section B.

11



A CORRECTIVE VIEW OF NEURAL NETWORKS: REPRESENTATION, MEMORIZATION AND LEARNING

Let the probability measure y; over R be defined by py(dt) o % for I € N. Given

a,m, N € NU{0} such that ﬁ € N and the orthonormal sets B; be as used in Equa-

tion (1), consider the following sampling procedure:
1. Partition [N] C N into m disjoint sets, each with N/(m(a + 1)) elements.

2. Fori € [m], be{0,...,a}, j € [;ig), we draw wf; ), ~ Unif (S**(%)) and T; ;) ~

; independently for some | > max(q + 3, 3a + 3).

We now specialize to the low degree polynomials defined in Equation (2). Define the
following orthonormal set associated with each V' in the summation:

BV:{e]V(J)#O}UBV7

where e; are the standard basis vectors in R? and By C {ei,...,eq} is chosen such that
|By| = q. Consider the sampling procedure given above with the bases By . Since the bases
By are known explicitly, this sampling can be done without knowledge of the polynomial.
We have the following theorem about learning low-degree polynomials, proved in Section F.

Theorem 10 Letm = (q+d), r = /q and let J be the m-dimensional vector whose entries
are Jy. Let a € NU{0}, 6 € (0,1) and €, R. > 0 be arbitrary. Let N be chosen such that
and N/(a+ 1)m € N. Let ¢ be any probability measure over [0,1]%. Generate the weights
(w2j7b,ﬂ,j,b) according to the sampling procedure described above. Construct the two-layer

neural network with N activation functions
N

. m a m(a+l) O
flx;v) = ZZ Z Ui,j,bSReLka << Z’]T’b’ ) —Ti,j,b> . (12)

i=1b=0 j=1

Here we have denoted the vector comprising of v; j by v. Let v* € arg infveB?\,(Rc) J(f(z)—
f(x;v))2¢(dz). Let be NU{0}, b < a. There exists a constant C(a,q,1) such that if

571/(b+1)HJH2 m2—1/(b+1) g\ —-
N 2 Oy (U ()

R2 €

c

then with probability at least 1 — 6,

[ @) - dv)ac< e

Moreover, we can obtain the coefficients v;‘jb using GD over the outer layer only since this
18 a convex optimization problem.
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Appendix A. Smoothed ReLU functions and Integral Representations

In this section we introduce the necessary technical results and constructions for function
approximation by smoothed ReLU units SReLUj, as used in Theorems 7 and 8. In The-
orem 11 we show that cosine functions can be represented in terms of SReLU; functions
similar to Step 2 in Section 2. This will later be used along with the Fourier inversion
formula to represent the target function g in terms of the activation functions SReLUy. We
note that this idea is taken from Barron (1993) and Klusowski and Barron (2018). All of
the results stated here are proved in Section C.

A.1. Smoothing the ReLU

Consider the triangle function

1-— 1t for [t]| <1
Ay = Ll forli = (13)
0 otherwise .

Clearly, A is a symmetric, bounded and continuous probability density over R. Denoting
the Fourier transform of A by A, one can verify the standard fact that A(§) = Si?; /(25)/22).

We also consider k-fold convolution of A with itself: Let A; := XA and N1 := Ay % A
for I > 1. For each k > 1 the function Ay has support [—k, k], it is a symmetric, bounded

2k
and continuous probability density over R, and its Fourier transform is Ag(§) = %

For arbitrary wg > 0, we define Ay, (t) = wio)\k(%), which can also be verified to be a
symmetric, continuous probability density over R with support [—wg,wo|, and its Fourier
transform is given by Ay, (&) = Ak(g%)

We now “cosine regularize” A so that its Fourier transform is non-zero everywhere.
This transformation is for purely technical reasons and is useful in the proof of Theorem 11

stated below. Let ap > 0 and wo < min(g7, %) and define

)\gguo (t) := cos(aot) A, (t)//oo cos(aoT) Mg, (T)dT . (14)

w

think of ag and wy as fixed (say wg = 0.5 and 020 I-). We define the smoothed RelLU

The constraints given on ag and wg ensure that A" , (1) = 0 for every t. We will henceforth
— 16
functions

SReLUy, := ReLU * A?%,  for all k > 1

and hide the dependence on wy, . Clearly, SReLUy is an increasing, positive function and
SReLUg(t) = ReLU(t) whenever t ¢ (—wq,wp). We follow the convention that for k = 0,
SReLUj, = ReLU. In particular, SReLU(t) = 0 whenever ¢ < —wy. We give an illustration
of these functions in Figure 1. The higher the value of k, the smoother the function is at 0.
In the sequel, whenever we say “smoothed by filter )\gf’wo 7 we mean convolution with the
function /\gf’wo.

Theorem 11 (Cosine Representation Theorem) Consider the probability measure
_ ey dl

over R given by (dT) = {247 (here ¢y, is the normalizing constant). Let a,1) € R be

16
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(a) ReLU (b) SReLU;

Figure 1: Nlustrating ReLU and SRelLU activation functions.

given. There exists a continuous function k : R — R depending on «, 0,1, k,wy and ag such
that ||k|lso < C(k,1) (14 |o|***2) and for every t € [—1,1]

o0

cos(at + 1) = / Kk(T)SReLUg(t — T)py (dT) .

—00

Remark 12 We note that the upperbound on k gets worse as the smoothness parameter k
gets larger. This is due to the fact that smoother activation functions find it harder to track
fast oscillations in cos(at + 1) as « gets larger.

Appendix B. Proof of Theorem 7: Unbiased Estimator for the Function
and its Fourier transform

Through the following steps, we describe the proof of Theorem 7, which was in turn used
to prove Theorem 8.

Step 1: Representing g in terms of SReLU;, Consdier the setup in section 3 and assume
C§2k+2) Céo)

follows that

< 00. From Fourier inversion formula, using the fact that g is real-valued, it

o) = [ cosna) + v )

We combine Theorem 11 and Equation (15) to show the following integral representation
for g. The proof is given in Section C.

(15)

Theorem 13 Let u; be the probability measure defined by its density p;(dt) o % for a

L2k 2w 2 |G|

giwen | € N. Define the probability distribution vy by vy (dw) = OO 22 (3T

For every x € BC(12)(7’)

9(x) = By.k //n(T;r,w)SReLUk (i‘ﬁoﬁ — T) i X Vg (dT X dw) , (16)

where |n(T;r,w)| < 1 almost surely with respect to measure p x vy and n(T;r,w) = 0
whenever T' > 1+ wo and By := (Céo) + r2k+2C§2k+2))C(k, 0)
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Remark 14 The case w = 0 might appear ambiguous in the integral representations above.
But following our discussion preceding Theorem 13, we use the convention that <|°|“m> =0
whenever w = 0. We check that even the constant function can be represented as an integral

in Theorem 11 by setting o = 0.

Remark 15 The probability measure v,y depends on the function g and can be complicated.
Therefore, when training a neural network, it is not possible to sample from it since g is
unknown. We only use the existence of this measure to prove representation theorems as
found in the literature (see Barron (1993), Klusowski and Barron (2018)). To give the
training results, we will impose more conditions on G and show that we can get similar
representation theorems when a known, fived measure vo is used instead of vy . This is
done in Section D.

We start by converting Theorem 6, the integral representation of g in terms of SReL Uy
units, into a statement about existence of a good approximating network g.

Step 2: Empirical estimate. Let 1 X vy, n and 3, be as given by Theorem 13. For
Jj€{l,...,N}, draw (T}, w;) to be i.i.d. from the distribution p; x vy . Let 0% for j € [N]
be i.i.d. Unif[—1,1] and independent of everything else. We define

0 =1 (05 < n(Tj;r,wy)) — 1 (0] > n(Ty;7,wy))

and observe that 6; € {—1,1} almost surely and E [0;|T},w;] = n(T};7,w;). That is, it is an
unbiased estimator for 7(7};r, w;) and independent of other 6 for j # j'.
Now define the estimate g;(z) based on a single SReLUy, unit

z)

G;(x) = By0;SReL Uy (4

j 5
7lw;

- T]) 1(T; < 1+ wo) (17)

where we have made the dependence of §; on T},w; implicit. We also define the empirical
estimator

1 N
§(@) =+ D13
j=1

Note that ¢ is the output of a two-layer neural network with one SReLUj layer and one
linear layer.

Theorem 16 Consider the probability measure y; with density p(dt) o< dt/(1 + ) and
let Tj ~ w for 1> 2 (so that E|Tj|> < 00). Then

1. For every x € Bg(r), g(x) = Eg;(x).

g9,

cp?,
N -

2. For every x € Bg(r), E(g(z) — g(z))? <

3. There is a constant C depending on l such that for any probability distribution  over
By (r)
q )

C
E [ (9(o) - gla))"o(do) < 2%
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Therefore there exists a configuration a choice of (T}, w;j,8;) such that

) C
[ (ata) — 5" ¢an) < =25

Proof The first item follows from Theorem 13. For the second item, let x € Bg(r). Since
gj(x) is an unbiased estimator for g(z) as shown in Item 1, we conclude that :

E(g(x) - )" = 1 [E@(0) ~ (9(0))?] < $E(55(x))’

Now |gj(x)| < Bg (1 + |Tj| + wo). Squaring and taking expectations on both sides yields
the result, using that E|Tj|> < oo since [ > 2. For Item 3, we use Fubini’s theorem and

Item 2 to conclude that )

~ 2 C g,k
E [ (gle) - glo)¢(dw) < — 2.
The desired bound holds in expectation, so it must also hold for some configuration. |

Note that in Theorem 16, the RHS of the error upper bounds depend on the Fourier
norm ngs). As explained in Section 1.1, in order to apply the corrective mechanism we need
to consider g"™™(x) = g(x) — g(x) for x € Bg(r) and show that, roughly, the corresponding
5)

. o . : . : . :
Fourier norm C; em < Cﬁ. Since Fourier transform is a linear mapping, an unbiased

estimator for g (i.e, §) should be such that the Fourier transform of § (i.e, G(€)) is an
unbiased estimator for G(§) for every £ € R?. There are several technical roadblocks to this
argument:

1. g(z) is only an unbiased estimator when z € Bz (r).

2. gj(x) is a ‘one dimensional function’ - that is it depends only on (w;, z). This makes
its Fourier transform contain tempered distributions like dirac delta and we cannot
apply a variance computation to show that the Fourier transform contracts by 1/v/N.

3. gj(x), even along the direction (wj,x) is not well behaved since SReLUg(-) is not
compactly supported. Therefore this is not an L' function and hence its Fourier
transform isn’t very well behaved.

We resolve the issues above by considering the fact that we only care about the values
of g (and §) in Bg (r) and hence we are free to modify g (and §) outside this domain. Along
these lines, we modify g to g(-; R) and g; to g;( -; R). Ultimately, we will show the existence
of g™ : R? — R such that g™ (z) = g(z) — g(x) whenever x € Bg(r) and such that its
Fourier transform is ‘well behaved enough’ to carry out the corrective mechanism describe
above and in Section 1.1. As a first step towards modification, we resolve item 3 first above
by replacing SReLU;, by smoothed triangles SAj as defined below. This compactifies g;
along the direction wj.
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Step 3: Replacing SReLU by smoothed triangles. In the notations used below, we
hide the dependence on r,wg, ap and [ for the sake of clarity. Consider the statement of
Theorem 13 for every x € B2 (r):

) = By / / (T, w)SReL U}, ( o) _ T) 1 (dT) g i (dw) . (18)

For t € R, let
SAy (t;T) := SReLUy (t — T') — 2SReL Uy (t — 1 — wp) + SReLUy (t =2 — 2wo + T)

and
A(t;T) :=ReLU(t —T) —2ReLU (t =1 —wp) + ReLU (t =2 —2wo + T') .
Note that A = SAg. Clearly, when 7' < 1 +wg and z € Bg(r), we have

sReLUk(W> - T> - SAk(W@,T) ,

[l [l

and n(T;r,w) = 0 whenever T" > 1 + wy. Therefore, we can replace SReLU;, with SAj in
Equation (18). When T' < 1 4+ wq, A(-;T) : R — R gives a triangle graph as can be easily
verified and hence is compactly supported. Its Fourier transform is an L' function. SA
is obtained by convolving A with the filter /\531;0- We refer to Figure 2 for an illustration.
Lemma 17 below follows from the preceding discussion.

(a) A (b) SA;

Figure 2: Ilustrating A and SA; activation functions.

Lemma 17 For every x € 32 (r),

= Bk // (T;7,w)SA (<” ﬁ, >,ul(dT)ug,k(dw).

Consider the technical issues listed before Step 3. We resolved item 3 in Step 3 above. In
Step 4 below, will resolve item 2 by modifying g; by first replacing SReLU;, with SAj as in
Step 3 to ‘compactify’ it along the direction w; and then ‘mollify’ it along the perpendicular
directions by multiplying it with a function which is 1 in Bg(r) and vanishes outside a
compact set to obtain g;(-; R). To resolve item 1, we define g(z; R) to be the expectation
of gj(z; R) for every x. As a consequence we have show that for £ € RY, the fourier
transform of §;(-; R), given by Gj(é" ; R) is an unbiased estimator for G(&; R) which is the
Forier transfrom of ¢(-; R).
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Step 4: Truncation and modification Let v € S(R) be the function defined in Sec-
tion 1.3 - such that v(t) > 0 for every ¢t € R, ~(t) = 0 when [¢| > 2 and (t) = 1
for every t € [~1,1]. Let R > r and ¢ > 1. For every x € R? and w # 0, we define

HJ}” - <UJ,$>2 .
Vi (z) =y @) when ¢ > 1. We use the convention that when w = 0,

W(w,xﬂ := 0 as stated in Remark 14. When ¢ = 1, we let 7} (z) := 1 for every z. Let
[ > 2. Draw (T}, w;) i.i.d. from the distribution yy x v} and let the random variable §; be
as in Equation (17). Define g;(-;R) : R? — R:

0 when T; > 1 + wy

x 2

§(m; R) = { Byx0;SAy (0, T) (L=
Byk0iS Dk ( e TJ) ’Yij x) otherwise.

rlleos 2

othwerwise when w; =0 (19)

We also define g(-; R) : R? — R by
g(z; R) =Eg;(x; R) . (20)

The expectation on the RHS exists for every x whenever [ > 2 because then Er.,, |T| <
oo. We note that g(x; R) and g;(z; R) are both implicitly dependent on k,l, ap, wp. Let
G,(&; R) be the Fourier transform of j;(z; R) and let G(&; R) be the Fourier transform of
g(x; R). Even though we allowed the Fourier distribution G/(27)% to be singular entities
like 0 measures, we will see that for our extension, we show below that the G(&; R) is
a LY(R?) N C(RY) function. This allows us to construct estimators for G(-;R). In the
lemma below we construct an unbiased estimator for g(-; R), whose Fourier transform is
an unbiased estimator for G(-; R).

Let Iy g be the Fourier transform of 7(||z|>/R?). We conclude from spherical symmetry
of the function v(||z||?/R?) that 'y r(€) is a function of ||£|| only. When convenient, we
will abuse notation and replace I'g r(£§) by I'q r(||€]]). We note some useful identities in
Lemma 18 and give its proof in Section E.

Lemma 18 Let p; be the probability measure defined in Theorem 11. Let | > 2 so that
IETNMT2 < 0.

1. For every x € B}(r),
g(z; R) = g(x) and g;(z; R) = g;(x),
where gj(x) is as defined in (17).
2. g;(+; R) € LY(R?) almost surely and g(-; R) € L*(RY)

3. For every &,w € RY such that w # 0 we define &, = ﬁo’j}' € R and & = ﬁ‘gll‘;})
For any fived value of T; and w;:
0 Zf’T] > 14wy
R Bg. k0T ¢ r(IIE])SAL(0;T;) when T; <1+ wp and wj =0
Gi(&R) = i(l+wo)rew;
it : BokbiTq-1,r Hf ”)AZ%O(@J) 7;; 81n2((1 + wy — T){wjr/Q)
J
otherwise
(21)
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Here we stick to the convention that RHS is <|‘|U¢jﬁ> = 0 when wj = 0 and when q =1,
we let T'y_1 g(-) = 1. We recall that Agowo is the Fourier transform of the filter )\zowo.

A~

4. Gj(+;R) € LY(RY) almost surely, G(-; R) € L*(R?) and for every £ € RY,

G(&R) =EG;(&R).

Step 5: Controlling Fourier norm of remainder term. As per Theorem 16, g(x) is
approximated by % Ejvzl gj(x) up to a squared error of the order % and % Zjvzl gj(x) is
the output of a two-layer SReLU;, network with N non-linear activation functions. We will
now consider the remainder term: g(z) — + Eévzl gj(z). Since we are only interested in
T € Bg (r), we can define the following version of the remainder term using the truncated
functions g(z; R) and g;(z; R):

1 N

9" (@) = g(@; R) - > g(w; R).
j=1

rem(

We will now show that the expected ‘Fourier norm’ of ¢"™(x) is smaller by an order of ﬁ

We note that g™ is a ‘random function’ such that Eg™™(x) = 0 for every x. Let G™™ be
the Fourier transform of g™™.

Lemma 19 Recall the probability measure p; from Theorem 11. Let | = 3 so that
Erey, T4 < 00 and let R=r. For s € {0} UN, consider

cln = /R el -l @)l

Whenever k > max(1, q;—?’) and s < 32;‘1 + 2k, we have that

0 2k+2
Ec(fe)m < C(Cfg ) + Cé(i i ))
g - \/N ’

where C' is a constant depending only on s,r,q and k.

We give the proof in Section E. It is based on Item 4 in Lemma 18, which ensures that
|G™™| is of the order LN in expectation. The technical part of the proof involves controlling
the integral with respect to the Lebesgue measure using a polar decomposition.

We now combine the results above to complete the proof of Theorem 7. The proof
applies Markov’s inequality to the results in Theorem 16 and Lemma 19. Let g and g™ be
defined randomly as in the discussion above. By Markov’s inequality:

1. There is a constant C” such that with probability at least 3/4,

o (o + Y’
[(9ta) = s@)etao) < N
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2. There is a constant C] such that with probability at least 3/4,

0
oo, < CHC” + O
g - \/N

By the union bound, with probability at least 1/2 both the inequalities above hold, and
hence these must hold for some configuration.

Appendix C. Integral Representations for Cosine Functions

The objective of this section is to prove Theorem 11.
The Lemmas 20 and 21 below establish important properties of the the filter )\z(;vo and
will be used extensively in the sequel. Their proofs are given in Section C.

Lemma 20 X (t) as defined in Equation (14) is a symmetric, continuous probability
density over R which is supported over [—wg,wq|. Its Fourier transform Agguo is such that
1> A% (&) >0 for every &.

,Wo

Proof The first part of the Lemma follows directly from the definition. Let

Cop = / cos(agT) A, (T)dT > 0.

—00

For the second part, we observe that

A2, (€) = oo [ (ke ) o n, ((mgoimo)]

2C,,
sin2k ((€+g]2)wo> sin2* ((E—g}g)m>
= +
2C0, ((§+a0)wo)2k ((éfao)wo)%
2k 2k

We observe that this vanishes only when both sin?* ( %) and sin?" ( %) vanish.

This can happen only if ag = % for some [ € Z. Since by assumption we have 0 < agp < %,
this condition cannot hold, which implies the result. |

Lemma 21 Let ag and wq be fixed. Then, there exist constants Cy, C1 > 0 depending only
on ag and wy and Cy depending only on ag,wg and k such that for every & € R,

Co Cy
<AL () < - 22
Cy + max(( £ 1)2k, (o% +1)2k) ~ k,wo (€) = 1+ &2k (22)

ao

For every i € N, denoting the i times differentiation operator by DO,

’D(i) [%H < C(i, k, wo, ) (1+\§\2’“) .

For every £ € R and i € N there is a constant Cy (i, k, wp, ag) such that

i) A @ Cl(i)k7w07a0)
|D( )Akgvo(g)‘ — 1+ §2kz
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Proof Let 0 < 7. Define n(z) := Si?ji(;;;e) + Si?;i(f);ke). We will use the following claim.

Claim 1 Let 0 € [0,%]. Then for every x € R, either sin® (z + 0) > sin?*(0) or sin® (z —
6) > sin?*(4).

Proof of claim: It is sufficient to show this for x € [0,7) because of periodicity. If
z <m—20 then, # < x+60 < — 0. Therefore, sin?(z + 0) > sin®*(). If 2 > 7 — 26 then

T —0>x—0>n1—30>0. Therefore, sin?(x — 0) > sin?*(0). [
Clearly,
sin?* (24-6) sin?* (z—0)
?7(1.) = sin?® (z4+0)4(x+0)2k - sin?* (z—0)4(x—0)2k
) < sin?*(9) sin?*(9) )
> min ,
sin?*(0) + (x — 0)2% " sin?*(0) + (2 + 0)2k
sin?*(0)

- sin%(ﬁ) + max((z — )%, (z 4 6)2F) ) (23)

In the second step we have used Claim 1. We note that when 6 = =872, Az‘owo &) = %017(52%)

1
cos(a0T) Ak, wq (T)dT

where ¢g = [l > 1. From equation (23), we conclude that

A0 (6)> & sin®*(2g70) /(2g¢°)*
kool®) 2 % o (g (g max((S — D (5 + )%
1 Sln2kz(a(2)1]:0 )/( a%’ltgvo )2k:

> . 24
7 2 5in (o) /(24 % + max(( — D (& + D) 2y

In the second step we have used the fact that co > 1. Now, using Taylor’s theorem, we

conclude that when 0 <z < 7, Slgx > 1 — Z-. Therefore,
. . 2%k 2k
Jim sin™(2 2z"°>/<*ag;:o> =1

Using this, we conclude that we can bound sin%(%) /(29%0)%k away from 0, uniformly
for all k. Using this in the Equation (24), we conclude the first part of the lemma. Now,
we will consider the derivatives. We first show the following claim:

Claim 2 Let f € C*®(R) such that f(x) # 0 for every x € R. Then, for anyi > 1 D(i)(%)

is a linear combination of the functions of the form # IT-; DU (f), where 1 < r < 1,
n €N, and >"_yny = i. The coefficients in the linear combination do not depend on f.

Proof of claim: We show this using induction with base case D(l)]lc = —L DM f which
satisfies the hypothesis. Suppose the hypothesis is true for D(l) Then D(”l) 7 is a linear
combination of functions of the form D) (W IT-, D(”l)(f)), where 1 < r <i,rm €N,
and >, n; = i. Now,

p (fr1+1 HD(nz)<f)> - _;;211)(1)(1") HD(m)(f)
=1

Z D(”lo'H) H D(nl)

lo=1 1£lo

fr+1
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This is a linear combination with the required property for ¢ + 1. Therefore, we conclude
the claim. |

We now show another estimate necessary for the proof:

Claim 3 For every i € N and some constant C(i,k,wp,9) > 0 depending only on
iaka’wO,aOz
C(’L',k,’UJ0,0éO)

(i) %0
O (R

2k
Proof of claim: Let g(§) = Sm@# Since Ay, is a linear combination of the scaled
and shifted version of g, the same bounds hold for Ag‘fwo up to constants depending on

k,wo, o and i. Clearly, g € C®(R). Therefore, |D®(g)(¢)| < C(i) whenever |£] < 1. Now
assume that |¢| > 1. It is easy to show that D(#)(g) is a linear combination of the functions
of the form g;",ff)r, where ¢,(§) is a bounded trigonometric function, and r € {0,1,...,i}.
Therefore, |D®(g)(€)] < %é@ < % whenever [¢| > 1. Combining this with the case
|€| < 1, we conclude the result. [

From Claim 2, it is sufficient to upper bound terms of the form \ﬁ [1j—, D™ (f)],
where 1 <r <4, n € N, and >3, m =i for f = A, . From the bound in Equation (22)
on AZ‘%UO and bounds on the derivatives in Claim 3, we have

ffﬂ TT D) ()|(€) < Clk, w0, a0)(1 + €5
=1

From this we conclude the upper bound on the derivatives. The proof of upper bound on
Ay, is similar to the proof of Claim 3 and the bounds on D(i)A(I:(L;O follows from Claim 3.
This completes the proof of Lemma 21. |

Let C2°(R) denote the set of infinitely differentiable, compactly supported real valued
functions. Let p be any symmetric continuous probability density supported over [—wyq, wy).
Define

SReLU(t) = / " ReLU(t — T)p(T)dT . (25)

—00

We also define the convolution operator P : C°(R) — C°(R) by

Polt) = [ " gt — Typ(T)ar,

and let Z denote the identity operator over C°(R).
Lemma 22 Let h € C°(R) function such that supp(h) C [a,b] for some a,b € R. Then

1. For any t € [a,b],
h(t) = / B/(T)ReLU(t — T)dT .
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2. Let SReLU be as defined in Equation (25). For every n € N,

h(t) = /OO W'(T) [(Z —P)"™] ReLU(t — T')dT
+ zn: /Oo K'(T) [(T — P)'SReLU] (t — T)dT .
i=0 Y~

Proof

1. Since h is infinitely differentiable and supported over [a, b], supp(h”) C [a, b]. Therefore,
the integral in question reduces to:

b t
/ W' (T)ReLU(t — T)dT = / W(T)(t — T)dT .
The proof follows from integration by parts and using the fact that h'(a) = h(a) =

2. Since h” is compactly supported, it is sufficient to show that

> [(Z—P)'SReLU] + [(Z — P)"*'] ReLU = Rel U.
=0

Since SReLU = P (ReLU), this reduces to showing that

zn: (Z-P)]P+(EZ-P)"" =T,
=0

which can be verified via a straightforward induction argument. |

Lemma 23 Let h be as defined in Lemma 22. Let P, the Fourier transform of density p be
such that P(§) € R for every & and 1 > P(&) > 0 for almost all £ (w.r.t lebesgue measure
over R). Then for every t € [a,b] the following limit holds uniformly.

lim K'(T) (T —P)""'ReLU] (t — T)dT = 0.

And for every t € [a,b] the following holds uniformly:

= lim Z/ [(Z — P)'h"] (T")SReLU(t — T)dT

n—oo
Proof Fix ¢ € [a,b]. By a simple application of Fubini’s theorem, the fact that h” has

compact support and that p(-) is compactly supported, it is easy to show the following
“self-adjointness” of the operator P. For any continuous f: R — R:

/ h R'(T)[Pf) (t — T)dT = / h [PR") (T) f(t — T)dT . (26)
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From Equation (26) it follows that
/ " WT) [(Z — PYReLU] (¢ — T)dT = / " 1T = PY" W(T) (T — P)ReLU] (t — T)dT .

From the definition of the ReLU and the fact that p is symmetric and of compact
support, it is clear that [(Z —P)]ReLU is a continuous function with compact support.
| [(Z — P)] ReLU||2 < oo where || - || is the standard L? norm of functions w.r.t Lebesgue
measure. Hence, by the Cauchy-Schwarz inequality,

‘ / h K'(T) [(Z — P)""'ReLU] (¢ — T)dT‘

‘/ (T — PR (T )[(I—P)ReLU(t—T)]dT‘

< [(Z = P)ReLU]|o[|(Z — P)"1" |2
< CIEZ—=P)"h"|2, (27)

where C'is independent of n. To prove the lemma, it is sufficient to show that lim,_, ||(Z—
P)*h"||3 = 0. We do this using Parseval’s theorem. Let H®) be the Fourier transform of
h”. We note that H® € L? since h € S(R). By the duality of convolution-multiplication
with respect to Fourier transform, we conclude that the Fourier transform of (Z — P)™h" is
(1— P)*H®. By Plancherel’s theorem,

I(Z = P)"n"|l2 = (1—=P)"H2. (28)

rll

Since 0 < P(¢) < 1 almost everywhere we conclude that lim, .o (1 — P)"H®) =0
almost everywhere. Since |(1 — P)"H®| < |[H®)| almost everywhere and H® ¢ L2, we
conclude by dominated convergence theorem that

1
. . npi . — . o nrr(2)) —
nhm (Z—P)"R"||2 —mnhm |(1—P)"H*¥| =0.

Equation (27) along with item 2 of Lemma 22, this implies that for every ¢ € [a, b], the
following uniform convergence holds:

— lim Z/ R'(T) [(Z — P)'SReLU] (t — T)dT .

n—o0

Using Equation (26) along with the equation above, we get

n—o0

= lim Z/ [(Z —P)'h"] (T)SReLU(t — T)dT .

In Lemma 24 below, we will show that when we choose the operator P carefully, the

sum hi? = S o(Z — P)'h" converges a.e. and in L? to a Schwartz function h : R — R.
The proof is based on standard techniques from Fourier analysis. Let D™ denote the n-fold
differentiation operator over R and we take D@ to be the identity operator.
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Lemma 24 Let the filter p and its Fourier transform P be such that
1. They obey all the conditions in Lemma 23
2. 1 € C*(R)
3. |DD(P)|lse < C; for some constant C;.

4. For every n € NU {0} there exists a constant C,, > 0 such that ]D”%| < Cp(1+
£2mm) for some m(n) € N

Let h be the inverse Fourier transform of %2), where H® is the Fourier transform of h".
Then:

1. h € S(R)
2. (1+ |T\3)h%2) (T) = (1 +|TP)h(T) as n — oo uniformly for all T € R

3. For every t € [a,b], h admits the integral representation

h(t) = /OO h(T)SReLU(t — T)dT .

—0o0
Furthermore, the filter p = X5, (defined in Equation (14)) satisfies the above conditions.

Proof Since h" € S(R), we conclude that H? € S(R) because Fourier transform maps
Schwartz functions to Schwartz functions. It is easy to show from definitions that # €

S(R). By definition h := F~! (H;f)) (where F~! denotes the inverse Fourier transform).

Therefore, h € S(R). We will first show that h?) (T) — h(T) uniformly for every T € R.
By definition of h? e S(R), it is clear that h? e C>*(R) € S(R) and hence its Fourier

transform H.” € S(R). Since Hg)({) =3, (1=P(&)) H(E). Since 0 < P(§) <1 for
every £ € R by hypothesis, we conclude that o (&) — %£(¢) and |H7(L2) )] §‘g(£)‘ for

every £ € R. Therefore, 'H,(LQ) &) — g(f)‘ <2 € LY(R). From the Fourier inversion

2

formula, the following holds for every T € R:

) | @
BP(T) ~ H(T)| = - /RelfT (i(é) - Hé”(&)) dﬁ‘
(2)
<5 [[F© - mo)fa.

By the dominated convergence theorem, the integral in the last step converges to 0 as

n — 0o and we conclude that A\ (T) — h(T) uniformly for every T. To show the uniform

convergence of T3h7(12) (T) — T3h(T), we use the duality between multiplication by a poly-

nomial and differentiation under Fourier transform. The Fourier transform of T3h512) (T) is
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iD® P (¢) and that of T3h(T) is iD(3)¥. We proceed just like above. We need to show
that D®) H7(12) &) — D(3)¥ for every £ and that D(?’)H,(f) (€) is dominated by a L! function
uniformly for every n. It is clear that aP? &) — @({) = —%H@) (£). Differen-

tiating both sides thrice and applying the product rule, we conclude that D(i)Hle) &) —
D(i)#(f) for every ¢ and for every i < 3. Consider D) [%H@) (f)], we get a
finite linear combination of the functions of the form

_ P)n—l—l—l 3

T ]' a
w P ) (1) [[o*r) (29)

for some ¢y, 7,1, a,bs, k € NU {0}, all of them independent of n and such that [,r,bs,a < 3
and cg < 4. To show domination above from a L' function, it is sufficient to show that each
of terms of the form described in Equation (29). Now, by assumption, ||[D®s)(P)|ls < C
for some constant C'. P%(g) < C(1 + |€)>™9)* (where m(0) is as given in the conditions
of the lemma and ¢y < 4 as given above) and DWH®) ¢ S(R). It is therefore sufficient
to show that n"(1 — P)"*~! is dominated by a fixed polynomial in |£| for every n large

enough. Indeed, for n > 3, we have

n" (1= PE)" " <n"(1- P(&)"?
< pre~PEOM-2)
< €2nr€fP(£)n
< e?supa’e PO

x>0

62741"672

Pey
<O+ PO

Here we have used the fact that r < 3. Therefore, the remainder term for each n is uniformly
dominated by a product of a polynomial of £ and a Schwartz function. Therefore, we

conclude that the sequence Hff) is dominated by a L' function and from the discussion
above conclude that (1+ |T|3)h%2) (T) — (14 |T]3)h(T) uniformly for every T € R. To show
the final result, we apply Lemma 23 for ¢t € [a, b] to obtain

h(t) = /OO A2 (TYSReLU(t — T)dT + 0,(1),

where 0,,(1) tends to 0 uniformly for all ¢ € [a, b]. Plugging in this expression for h(t) yields

‘h(t) _ /Oo h(T)SReLU(t — T)dT' :’ /_OO (h®(T) — W(T))SReLU(t — T)dT| + on(1)

—00
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which we upper bound by

< /OO |h{2(T) — h(T)|SReLU(t — T)dT + 0,(1)

= [ ) ) T+ o)

 SReLU(t — T)

T+ | TP dT + o, (1)

< 1+ R )~ Bl [
Now using the fact that |[SReLU(s)| = ffﬁo ReLU(s — 7)p(7)dr < |s| + wy for every s € R,
the above is bounded as

<11+ [0 [AD (1) = h()| o / i EA T PN

TP
= /(1 + [n[*)|2Z (7) — ()|l C + 0n(1)
— 0.

It is simple to verify that Agowo satisfies all the conditions of the lemma using the results
from Lemma 21. |

We will now specialize to the filter defined in Section A and set p := )\22120 as defined in
Equation (14) for some k € NU{0}. We denote the activation function obtained as SReLUy,
in keeping with the notation defined in Section A. A well known result from analysis shows
the existence of a “bump function” v € C°(R) C S(R) such that y(t) = 1 when |t| < 1,
~v(t) = 0 when |t| > 2 and (t) > 0 for every t € R. Let I" be the Fourier transform of ~.
Henceforth, we let h(t) = ~(¢) cos(at 4+ ¢) for some a,9 € R. Clearly h € C°(R). It is
clear that for t € [—1, 1], h(t) = cos(at + ). Therefore, from Lemma 24, we conclude that
there exists h € S(R) such that for every t € [—1,1],

cos(at + 1) = /R F(T)SReLUy(t — T)dT . (30)

In the following discussion, we will estimate about how ‘large’ h is in terms of a. Let
H denote the Fourier transform of h. A simple calculation shows that:

1.

H(E) = 5 [VT(E+0) + e *T(E ~ a) (31)

) (e) = _& [ (e
HO() = =% [¥T(¢ + ) + e T(E — a)] (32)

Lemma 25 Let h(t) = (t) cos(at +) and h be the corresponding limiting function given
by Lemma 24. Then for all T € R and | € N, we have

[(1+ Tzl)i_l(T)\ < C(k, g, wo, 1) (1 4+ ]a!2k+2) )
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Proof Let H be the Fourier transform of h. By the inversion formula we have that for
every T

_ 1 [ _
) <5 [ IO, (3)
—00
By Lemma 24, it is clear that H(¢) = /@?)(é)). Using Lemma 21, there exists a constant
k,wq

C(k, g, wp) such that:

_ (2
i (e)| =| L) \

AT ()
< Ok, a0, wo) (1 + |¢ )¢ (|r<s o)+ T+ a>|>

< C(k, a0, w0)(1 + \srz’f”)(rr(s o)+ |r<§+a>\)

1 1
< O(k, ag, wo) (1 + [€]*2) (1 e —aphH T €+ a‘2k+4> : (34)
We have absorbed universal constants and constants depending only on £ into
C(k, ag,wp) throughout. In the second step we have used the fact that €2 < 1 + |¢[2F+2
for every £ € R and used the expressions for H®)(¢) given in Equation (32). In the last
step, we have used the fact that since I' € S(R), there exists a constant C} such that
INGIIES H\gﬁ for every ¢ € R. Using Equations (33) and (34) along with an elementary

application of Jensen’s inequality to the function x — \x]%”, we have
[R(D)] < C(k, a0,w0) (1+[af+2) . (35)

To bound |T?h(T)|, we consider the derivatives of its Fourier transform. Clearly, the
Fourier transform of T%h(T) is (—1)! D@V H (). Therefore, for all T, we have from the
inversion formula that

27 1/ Seng
1) < 5 [ 1D R

T 2070, (9)
rule here results in a sum of the form

Now, D@D H (&) = DY ( S (€T (& + ) + e ™WD(¢ — a)]). Using the product

D@V (¢)

1 1 ; —i
=3 X N (D) <D(b)A°‘0(g)) [ DT (e +0) + e DOT(E ~ a)
a,b,ceZt k,wo
a+b+c=21

for some positive integers Ny .. We consider each term separately.

Using Lemma 21, we conclude for every a, b in the summation,

o 1
‘D( )e2p®) -

- 2k+2
Ak,wo(f) ‘ < C(l7 k7a07w0)(1 + |£| ) :
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Now, DT € S(R) for every c. Therefore we can find a constant Cj, such that ‘D(C)F(f)} <

H—I&C\Yﬁ' Therefore, using similar integration as the previous case, we conclude that:
I T?'R(T)| < C(1, k, ag, wo) (1 + |af*7F2) (36)
Combining equations (36) and (35) we conclude the result. [ |

We will now give the proof of Theorem 11 and Lemma 4:
Proof of Theorem 11: From Lemma 24 and Equation (30) we conclude that for every
e[-1,1}:

cos(at + 1) = /oo h(T)SReLUy(t — T)dT . (37)

—00

For some h € S(R). From Lemma 25 we conclude that
1L+ T*HA(T) [l < C(k, wo, a0, (1 + |a*72).

Taking x(T') := ME(T ) in Equation (37), we conclude the result. [

Cu

Proof of Lemma 4: The proof follows from an application of Lemma 22 with
h(t) = ~(t) cos(at + ). [

Proof of Theorem 13: From Equation (15) and the definition of v,

OO | k2 k) .
9(x) :/ 1+ 72k 42| 2642 cos (THWHTHMH + P (w )) Vg .k (dw) .

{w,z)
7l

equation above. When z € Bg( r), Cauchy-Schwarz inequality implies that {w, T IT [—1,1].

We follow the convention that

= 0 when w = 0 without loss of meaning in the

In Theorem 11, we take a = r||w|| and ¥ = 1(w) to conclude that there exists a continuous
function k(T r,w) such that for every = € B2(r)

(T;r,w
0 2k+2 ~(2k 2 {wa)
g(@) = (O + 1220+ //1+r2’“+2ll ||2k+25ReLUk< T (AT )y ()

where ‘ﬁ%} < C(k,1) a.s. In order to make the notation more compact we define
1 k(T;r,w) (T <14 wp)

T, =
n(T;r,w) Clh D) 14 r2ke2|2h+2

and By, := (ngo) + r2k+2C§2k+2))C(k‘, l) (we hide the dependence on [).

The theorem follows from the discussion above when, in the definition of 7, the extra
factor of 1(T' < 1+ wy) is removed. However, we note that when x € Bg(r), i‘ﬁﬁ <1 and
it follows that when T > 1 + wy,

) > J—
Ll 1) = 0.

Therefore, we can include the factor of 1(7" < 1+ wp) without altering the equality. |

SReL Uy (
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Appendix D. Neural Network Approximation with Function
Independent Sampling

We consider a similar setup as in Section 3. Let g : RY — R be such that g € L'(RY) and
its Fourier transform G € L!(R9) N C(RY). We define the following norms for G:

G(w)|

S = L+ ot : 38
O = sup ol (1+ ) G (38)
We assume that Sg(,l) < oo forl =0,1,...,L for some L to be chosen later. We consider

the spherically symmetric probability measure vy over R? defined by its Randon-Nikodym

. . . dw . ..
derivative: vy(dw) = CQW’ where Cj is the normalizing constant.

Remark 26 We note that G has to be a function and not a generalized function/measure

(like dirac delta) for the norms Sél) to make sense. Unlike vy, vy depends neither on g nor
on k. We intend to draw the weights w; ~ vg. Clearly wj # 0 almost surely. We therefore
skip the corner cases for w;j =0 as considered in Section B.

We let 1 be as defined in Theorem 11. We again consider Equation (15). Assume
S§k+2, Sy < co. Suppose z € B3 (r)

|G(w)]

)

w w||att

— /cos((w,x> + Y(w)) |(G25T)31’ (1+ ”Cq‘ )I/o(dw)

Ry JCCTETESeBle
Cq(2m)1/C(k,1)

o) = [ cos((.a) + ()

n(T;r,w)SReLUy (&ﬁji — T> i (dT ) v (dw)

Here we have used Theorem 11 in the third step where || < 1 almost surely. For the sake
of clarity, we will abuse notation and redefine
|G+ [lw] ) (A + 252 lw|22+2)

n(T;r,w) <
(S + 12k+2.53542) (2m)a

n(Tsr,w).

By similar considerations as in Theorem 13, we can replace n(T';r,w) with n(T;r,w)1(T <
1 4+ wp). Clearly || < 1 almost surely even under this redefinition. We will take Bi g =

%’3”(52 + r2k+233k+2). We conclude that for every z € Bi(r)

(w,z)
rlel

For j € {1,...,N}, draw (Tj,w;) to be iid. from the distribution 1y x vo. Let 6 for
j € [N] be i.i.d. Unif[—1,1] and independent of everything else. We define

o) = 51 [ n(Tir.)SReLUy ( - T) (AT (d). (39)

0; =1 (9? < 7](Tj;7’,wj)) -1 (H;L > 77(Tj?r7wj)) :
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Clearly, §; € {—1,1} almost surely and E [0;|T},w;] = n(Tj;r,w;). That is, it is an
unbiased estimator for 7(7);r,w;) and independent of other 6;; for j # j'. Define the
estimator

(40)

A 0 when T > 1+ wy
gj (33') = B;kejSRel—Uk (<w.7'7x> _ Tj) otherwise .

r{le;
Recall the definition of SAy, in the discussion preceding Lemma 17. We give a similar lemma
below. The proof is the same as the proof of Lemma 17.

Lemma 27 For every x € BZ(r),

o@) = 85 [ [ nTinwsan (42.7) mDm(d).

Recall v € S(R) , 7%, R and T'y g as used in Section B. We define g(z; R) and g;(x; R)
similarly. Draw (7},w;) i.i.d. from the distribution p; x vy. Let

A . 0 when T; > 1+ wy
gj(z; R) = ﬁ;kejSAk ((wj,:v> T‘) %J)—j () otherwise.

rlles; |77

(41)

Define for x € R¢
g(z; R) =Eg;(z; R) .

The definition makes sense when | > 2 in gy since E|Tj| < co. We note that g(z; R) is
implicitly dependent on k, I, ag, wg. Let Gj(f ; R) be the Fourier transform of g;(x; R) and
let G(&; R) be the Fourier transform of g(z; R). In the Lemma below we show that through
the truncation modification above, we can construct an unbiased estimator for both g such
that the estimator’s derivatives are unbiased estimators for the respective derivatives of
g. We give a result similar to Lemma 18 below. The discussion diverges from that in
Section B henceforth. Let b = (by,...,b,) such that b1,...,b, € NU{0}. By 9" we denote
the differential operator where we differentiate partially with respect to i-th co-ordinate b;
times. We define |b| = >"7 , b;.

Lemma 28 Let R>r and > 2 (where | determines the measure ) so that Ep.,,|T|? <
oo. We also assume that By} < oo.

1. For every x € BX(r),
9(z; R) = g(x)
9j(x; R) = g;(x).
Where gj(x) is as defined in Equation (40).

2. For every &, w; € RY such that wj # 0 we define &, = £w) c R gnd EL=¢— wigw)

[[wll [l

We have, for any fized value of T} and w;:

0 lij > 14wy
i(1+wo)réw, . o (1+wo—T)Ew;T
4e J sin( —————
850,001 r(IEL DAL, () =)
]

(42)

Gi(&R) =
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When ¢ = 1, we let T'y_1 r(-) = 1 identically. We recall that Agowo is the Fourier
transform of the filter A5,

3. The functions gj(z; R) € C?*(RY) a.s. and for every b € (NU{0})? such that |b| <
2k, almost surely the following holds:

Pg;(-; R) € L*(RY) a.s
For some constant By, and for every x € RY, we have:

0°9; (3 R)| < 65 Br(1+ 1)1 (T < —| &2

)1l )| < 2R)

Where By, is a constant which depends on q,r,k and R but not on g, T; or w;.

4. g(x; R) € C*(RY9). For every b € (NU{0})? such that |b| < 2k. Then dPg(-;R) €
LY(RY) and for every x € RY,

0°g(x; R) = E9*g,(a; R). (43)
Some parts of the proof are similar to the proof of Lemma 18. Items 3 and 4 use the

duality between multiplication by polynomials and differentiation under Fourier transform.
We define the remainder function similarly as in Section B.

1 N
rem (1) := g(x; R) — N Zgj(m; R). (44)
j=1

g

Clearly g™™(z) = g(z) — % Z;V:1 gj(x) whenever x € Bg(r). Let G™™ be its Fourier
transform. Lemma 28 implies that g™™(z) is continuous and L'. Therefore, it is clear that
G"™ is continuous. The following lemma is the sup type norm variant of Lemma 19.

Lemma 29 Letl > 2+ q so that Ep.,,T? < co. Assume Bsk < o00. Fors € {0} UN,
consider

s Grem
syt += sup 1+ gl #+ el e
£eRr (2m)

Assume 2k > g+ 1 and s < 2k — g — 1. We have:

1.
o(sy” + 55

VN

Where C is a constant depending only on l,s,r,q and k.

(s)
ESgrem S

2. Sggfe)m < C(SéO) + Sng) (% Zévzl 1+ \lez) almost surely.

Remark 30 Instead of the s < 2k — q — 1 above, a more delicate proof would only require
s <2k —(q+1)/2. We will prove the weaker version for the sake of clarity.

35



A CORRECTIVE VIEW OF NEURAL NETWORKS: REPRESENTATION, MEMORIZATION AND LEARNING

Proof We first consider the expectation bound in item 1. We begin by giving a bound on
E [gq [0°g™™ (z; R)|dz when |b| < 2k:

E/ |8bg'em(:c;R)|d:c§/ VEIdbgrem (a; R) e
Re Ra

1
< E|9P§; (z; R)|2dx . 45
< 75 | VE ) (15)

Here we have used the fact that §;(z; R) are i.i.d. unbiased estimators for g(z; R). Using
the bound in item 3 of Lemma 28, we conclude that

E|0P§;(z; R)|? < (5;k3k)2E [<1 + |71 (T] <—| {w,x ‘ +2+ 3w0> ]1(ijjH <2R)

rllwsll
(46)
It is clear from integrating tails that
w C(l
IE[(I—HT] )1 ( 5 < -] 4 H\+2+3w0) ] g%.
1+ (wj“?)
7l
Using this in Equation (46) and absorbing the constant C(I,wp) into By gives
b (||, | < 2R)
E[0 gj(ﬂf;R)| (ng k) ) (47)
1+| izt
7l
Let
(||, | < 2R)
T(wj, ) = — @
e
T UJJ

Clearly, |7(wj, )| < 1 almost surely for every = and 7(wj, x) is non-zero only when ij} I <
2R. Consider the following conditions on z:

1. ||z]| > 3R.
2. |lak || < 2R
It is clear that under these conditions, we have the following;:

5II$H

= JlalP(1 4/9>sua:u?<1—%>

= ||z||? - 4R? <[ |2,

”wJ”

Therefore, for some universal constant ¢ > 0,
L(|[=| > 3R)

7(wj,z) < 1([lz]| < 3R) + e
1+ <C xT )

(48)

36



A CORRECTIVE VIEW OF NEURAL NETWORKS: REPRESENTATION, MEMORIZATION AND LEARNING

Plugging Equation (47) into Equation (45) gives

|8b rem(aj R |dl‘ < /qu/ w],

and now using Equation (48), we obtain

55 By 12| > 3F)
b rem T
/ 979" (: R) - VN /Rq L(flell < 3R) + 1+ (c||z||>2’5d

B85 By /°° - 1(p > 3R)
= Cop?™  [1(p <3R) + —"—"2dp
/N =0 q 1+ (%)2l*3

The integral on the right is smaller than some constant C(q,l, R,r) if [l > g+ 2. Absorbing
this constant into Bj too we have that

Ra

Py By B
rem R .
y \ (z; R) \/N

By item 4 of Lemma 28, 9®¢g"™ is a continuous L' function for |b| < 2k. We conclude
by the Fourier duality of multiplication and differentiation that

(49)

q

Grem H \b| N ab rem( )ei(ﬁ,x)dx ) (50)

Consider any integer k > u > 0. Now, from Equation (50),

||£H2uGrem Z CbZ‘bl 8b rem( )ei<§,w>dx
b:[b|<2u R

for some constants C}, depending only on u and b. Therefore, we have

E sup [[¢]*|G™M ()< ) |Cb|E/ 809" (z)|dx
§ER b:|b|<2u Re
S
< BguBr .
- VN
In the second step we have used Equation (49). We have absorbed the constants |Cp|
into By. It is clear that taking By large enough, we can make it depend only on k and

not on u. Suppose 2k > g+ 1. Welet 0 < s < 2k —q— 1. For any t > 0 we have that
(141t <21 —|—t2k). This follows from the fact that if ¢; > ¢g > 0, we have t© < ¢ +1.

(51)

ESgn = ESgP IE[1° (1 + 119G (£)]
< EStglp 2(1+ [I€]1*M) |G (€))

< Pl
- VN
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Here we have absorbed more constants into Bj,. From this we conclude the statement of
the lemma in item 1. We now consider the almost sure bound in item 2. Clearly,

GO < |G(E R) + Z\G (& R)|

We will first bound supgepq 1G5 (& R)JI€]1°(1 + [|€]|9tY). Integrating the bound in item 3
of Lemma 28, we conclude that the following holds almost surely whenever |b| < 2k:

/ 0%, (x, R)|dx < BiBS,(1+ Ty%)

Using similar considerations as in Equation (51), we conclude that whenever 0 < u < k,
almost surely:

sup [1€]1*|G;(&; R)| < BifByx(1+ T3
£€RY
Since G(§; R) = Eéj (&; R), taking an expectation of the equation above yields that

sup [|€]**|G(&; R)| < BiByk -
£€Re

Combining the results above proves item 2. |

For b € NU {0}, define
ky = b[9E37. (52)

Henceforth, we fix R = r for the sake of clarity. We proceed with the corrective mechanism
similar to the one in Theorem 8. Suppose for some a € NU{0} we have Séo) +S§2k§+2) < 0
Suppose a = 0. Then, it is clear that there exists a ReLU network with 1 non-linear layer
and N non-linear units which achieves a squared error of the order % Now consider a > 1.
Define g™ to be the remainder for g as defined in equation (44) with & = kY and N

replaced with N/(a + 1). Now, by Lemma 29,

2k5 +2
s +2 SO +S a
E<S(re)m0+s(rem01 )> SBa%

We recursively obtain g™™/ by replacing g in Equation (44) with g"™J/~! the estimators
g; by outputs of SReLU, s units which estimate ¢g"*™/~! and with N replaced with N/(a+
a—j

1). Continuing this way, we deduce that

rem rem

0 2k +2
Sg + 5S¢

(0) (2
E (Sgrem,afl + Sgrem,a71> S Ba Na‘/2

rem,a—1

Now, g can be estimated by a N/(a + 1) unit ReLU network with squared error
of the order 5. We note that g™~ (z) is equal to g(z) minus the output of smoothed

RelLUs. This 1mphes the following theorem.
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Theorem 31

There exists a random neural network with one non-linear layer and N non-linear acti-
vations of type ReLU and SReLUkbs for b < a such that for any probability distribution ¢ on

Bg(r), we have
0 q2kg+2y2
~ 2 (Sg + Sg )
E [ (go) - 9(a)*C(de) < Bu 00
Here the non-linear activation functions SReLUy are of the form SReLUg( <“T” Tj)) for

J € [N] such that (” H’ Tj) are drawn i.i.d. from probability measure Unif (S~ 1) X 1y where
w18 the probability measure defined in Theorem 11 with | > g+ 2.

Consider functions of the form defined in Equation (1). Let v; be the uniform distribution

over the sphere embedded in X; := span(B;). Clearly, X; is isomorphic to RY. Let N/(a +

1)m be an integer. We can find a random neural network, according to Theorem 31 with
N/m neurons such that Ef;(z) = fi(z) and

+1
Na+1

E/(f¢(<Bmx>) _fi(x)) ¢(dz) < B, (Sf +52k +2)

To consider functions of the form given by Equation (1) to obtain Theorem 32 we need
to modify Theorem 31 a bit since z € R? instead of RY in this case. It is clear that this can
be mitigated if we choose the weights according w; such that w; ~ Unif(S;) where S; is the
sphere embedded in span(B;).

Theorem 32 Let f: R? — R be a function of the form given by Equation (1). We assume
S 2
that (SJO% + Sika +2> =: M; for some M; < oo and define L =", M;. Let the probability

measure py over R be defined by py(dt) o
procedure:

1+t21 for 1 € N. Consider the following sampling

1. Partition [N] C N into m disjoint sets, each with N/(m(a+ 1)) elements.

2. Foriem], be{0,...,a}, j€ [%], we draw w ~ Unif (S3pan(Ba)) and T; j;, ~
wy independently for some | > max(q + 3,3a + 3).

Let ¢ be any probability distribution over R such that (¢(dx), B;) is supported over B3 (r).
There exist random k1, ...,kN € R, depending only on w; jp, T; jp such that for

m a m(a+1)
SY3 Y SRl (o) (53

i=1b=0 j=1
where ki jp = K(;_ 4By WE have:
1. - a—1
E/(f - f) C(dl‘) S B(laq7r7a)LNa+1 ’
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2. Whenever 6 € (0,1) and € > 0 are given, then with probability at least 1 — 9,

/ (f — P%(dz) <.

1 a—1

whenever N = Q) <( )att ma+1>. Here Q( ) hides factors depending on l,q,r and a

3. With probability at least 1 — 9, for any b € N such that b < a,

Z 2 l,q,r,a)5—1/(b+1) (1 m (b+1))1/(b+1)
< ,7— 1 Z A |
ki = L l

i=1

Proof As in the proof of Theorem 9, we dedicate N/m activation functions to approximate
each of the functions f; with neural network output ﬁ using the procedure in the proof of
Theorem 31. We then approximate f(z) := = Y™, fi((B;,z)) by = >, fi(x). We choose
rj as described in the discussion preceding the statement of Theorem 31.

1. The proof is similar to the proof of Theorem 9.
2. The proof follows from a direct application of Markov’s inequality on item 1.

k2. Consider

3. Consider the random variable K := E 1 K-

b+1
]EKb+1 _ Nb+1 l al 2
- N Z kj

N
b 2b+2
<NPED k3 (54)
j=1
We have applied Jensen’s inequality in the second step. We will control Eni(bﬂ). Let
kj be the coefficient of the activation function approximating f;. By the preceding the

theorem statement, item 2 in Lemma 29 and the definition of g; given Equation 40, which
N

gives the k; corresponding to wj, T}, it is clear that |k;| =< BamV Z(aH 1+ |72
where T7 are chosen i.i.d. from p; and =< denotes stochastic domlnatlon Here the extra
factor of N /m in the denominator is due to the fact that when we construct the estimator

~

9(z) == 37 Z 1 gj(x) - there is a division by N’. Therefore,

N 2(b+1)
2(b+1) 5 r(b+1) 2(p+1) [ mlatD
B M; m
]E|I€j|2(b+1) <E a Ni(b_i_l) Z (1 + |TS/|2)
s=1

2(b+1)

Bg(bH)Mi(bH) (a + )m 2
N20+1) (g 4 1)206+1) Z L+ T4
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Now by Jensen’s inequality and the fact that E(1+|T7]?)2(+Y) < oo by our choice | > 3a+3,
the above is

2(b+1)M(b+1)

< B+ [T

B 04D

N2(b+1)
- Bg(b+1)M(b+1)

N (55)

| /\

C(l,a)

In the last step we absorbed factors not depending on m or N into B,. Using Equation (55)

in Equation (54), we have
m 2(b+1)M(b+1)

b+1
EK = Z Nb+1m )

where we have used that fact that there are exactly N/m coefficients x; which corresponding
to the activation functions which approximate f; for any i € [m]. By an application of
Markov’s inequality, for any ¢ > 0,

EKb-i—l

Setting the RHS above to § completes the proof. |

Appendix E. Proofs of Lemmas
E.1. Proof of Lemma 3

The first item follows from the definition of F' and the triangle inequality. For the second
item, observe that |F(€)[* = Y0 f(2)%+ 2,44 f(x;) f (1) 6% —2K) . Taking expectation
on both sides, we obtain

||f||1

202

EIFEP < IfB+ 171 exp (-52) < 1713+

The third item follows directly from the definition of f and the choice of o. |
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E.2. Proof of Lemma 5

flax) = EF(§)e &) = BIF(¢)]e O ~HEm) = B|F(€)] cos ((€, 21) — ¢(£))
= E|F(¢)] cos (&, zx) — ¢(€))1(A)

+ CEIF(§)|(1 + 2 (T 0, 4)ReLU (05522 — T) 149

= O(I|fI\P(A)) — CEIF(€)](1 + “23E2)n(T; o, v)ReLU (655251 — T)1(4)

2slogn

2slogn
= O(fIIP(A)) + O (ML (€ ) [1(4))

(14
)
+ CE|F(€)|(1 + 220920 ) (T; o, ) ReLu(e (Ean) )
)
+ CE|F(§ )I(l+w) (T;oz,d))ReLU(e (€, _T)

2slogn
$3/2 1log3/2
= O(| fIP(A)) + O 22U /Ry )

5% log? n T
+ CEF(€)|(1+ 532 )(T; o, y)ReLU (055285 — )

83/2 03/271 5202TL T
— O(SULI=n ) 4 CEIF()|(1+ 532 (T 0, )ReLU (03528 — 7).

Steps three through five are justified by Item 1 of Lemma 3 to bound |F'(£)|, the fact that
ReLU(z) < |z| and Item 1 of Lemma 3, and an application of the Cauchy-Schwarz inequality

to show that E|[(&, 2x)|1(A) < /P(A)VE|(E, z) 2 < oy/P(A). [ ]

E.3. Proof of Lemma 6

We begin with a chain of inequalities, justified right afterward:

E(fi(ex)? — (Bfi(a))

E(f(@) — Fa)? = N F(Flaw) ~ BAG)? + (F) - F)?
_(]E,))Hf( 0 = F)? + (F@) — Ef(n)?
B W () 5, e
No
. CESA‘lo]g\;:glF(ffl)’ (1+62Le90t) ’Lﬁj (Flan) — Efy ()2
- CES”OZ%[O;!F &)l (1+92|§11fgkn> N HfH1 +083Hf0”2fg3"
= O (e + oEIFC >\2's§ﬁ’§§n) P LI oot
Ol (17 U | gy ),mgllgn) It g

The first step is the bias-variance decomposition of the squared error. In the third
step we have used item 3 of Lemma 3. In the fourth step we have used the fact that
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RelLU <0 2<§i§’“>n T) <1+ 9\<§ xk>| almost surely and have absorbed this into the constant

C. In the fifth step we have used Lemma 5.
We will now bound E|(£1, z)|?|F(€1)]? to obtain the stated result. By Gaussian con-
centration, we have for some universal constant ¢ > 0 and every ¢t > 0 that

P ({1, xx)| > ot) < 267
Consider the event A; = {[(1,x)| < ot} for some ¢ > 0. Decomposing based on A; gives

E|(€1, ) [2[F(€0)[> = E[€1, @) 21 F(€0)PL(AL) + E|(Er, a) 2| F(€1)21(AS)
< Eo”|F(Q)1(Ar) + El(&, o) [P F (€0 1(AF)
< Bo?|F(&1)[? + E|(€1, a) [P F (1)1 (AS)
(&)
(&)

< P E|F(&)]” + I FIRENSL, 20) P1(AF)

< E|F(ED 2 + | f12VE| (€1, z) 14/ P(Af)

2,2 ”f”2 2 2 —ct?
<o’ (I + =51 ) + Clfllio%e (57)

In the second step we have used the fact that |(1,xx)| < ot whenever 1(A;) = 1. In the
third step we have used the fact that [1(A;)| < 1. In the fourth step we have used item 1 of
Lemma 3. In the fifth step we have used the Cauchy-Schwarz inequality. In the sixth step
we have used item 2 of Lemma 3 to bound E|F(&;)|? and the fact that for Gaussian random
variables E| (&1, 71)[* < Co* for some universal constant C'. We have also used the Gaussian
concentration inequality to conclude that P(A§) < 2¢=" for some universal constant ¢ and

redefined and absorbed universal constants where necessary. We take ¢t = 4/ 251# where ¢

is the constant in the exponent of Equation (57) and o = ¥ 2Sl°gn to get
Cs?log*n ||f||
E[(&1, 2x)|*[F (&) < e (Hsz ) (58)

Using Equation (56) along with Equation (58) gives

R 2 2 311 £112 1003
B(f(es) ~ flo))? < 080 (g LI 4 WL, WMo,

Clearly, || f||? < n||f]|3- Plugging this into the equation above completes the proof. [

E.4. Proof of Lemma 18

We first prove the following estimates before delving into the proof of Lemma 18.
Lemma 33 The following holds almost surely:
2 2 .
/da:|§}j(x; R)| < Bgrr(1+wo —T) Volng_l(QR)) when w.] #0
Bg,k|1 +wo — T|vol(B(2R)) otherwise
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where Bg_l(QR) is seen as a subset of RI™1 and vol denotes the Lebesque measure of the
set. Whenever T; < 1+ wo,

sup [SA(ET)] < 14w — T

teR

Proof When T; > 1+ wp, the bound above holds trivially since g; = 0. Now assume
Tj < 14wo. We first note that [ [A(t/r; T})|dt = r(14+wo—T;)* and sup,cg |A(t/r; T;)| =
14+ wo — T}. Since SA = /\z‘f’wo * A and )\Z"OU)O is a probability density function, we apply
Jensen’s inequality to conclude the following inequalities:

1.
ISttty < r(1 4w - T

—0o0

sup [SAL(t;T5)| < 14+ wo —Tj.
teR

To prove the inequality on the L' norm of g;j, we first consider the case w; = 0. We conclude
the corresponding bound by noting that 6; € {—1,1} (recall 6; from the definition of g;),
0< 7(“2—!2) <1 and 7(”2—‘2‘2) =0 when x ¢ Bg(QR) and supcg [SAR (L T5)| < 1+ wo — Tj.
Now consider the case w; # 0 and T; < 1 + wg. Clearly, ’yj;j is a function of only the
component of z perpendicular to w;. Therefore, we decompose the Lebesgue measure dx
over R? into the product measure dmwj X dmj;j where dij is the lebesgue measure over

span(w;) and dxi;j is the Lebesgue measure over the space perpendicular to w;, which is

isomorphic to R?~!. The following bound holds:

1951 < B [ 1880, iy, [ o (o).

We conclude the result using the fact that 0 < fyjj (z) <1, and it vanishes outside B?_;(2R)
and the fact that [%_|SAg(t/r; T;)|dt < (14 wo — Tj)* as shown above. |

Proof of Lemma 18
1. Follows from Lemma 17 and the preceding discussion.

2. From definition, it is clear that g;(-; R) has compact support almost surely. Therefore
g;(-;R) € LY(R?) almost surely. To show that g(-;R) € L'(RY), it is sufficient to show
that g;(x; R) is integrable with respect to the measure i X v4;, X do where dx denotes the
Lebesgue measure over R?. First consider the case w; # 0:

[ 135 BTy  vyatdy) x do = [ ( / |@j<x;R>|dx) i (dTy) % v (deoy)

< / By (1 + wo — Tj)>vol(B2_, (2R))u(dT}) X vy i(dw;)
< 0.

We have used Fubini’s theorem for positive functions in the first step, Lemma 33 in the
second step and we have used the fact that E|7};|? < oo in the third step. This shows that
g(+; R) € L'(RY). The case w; = 0 follows similarly.
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3. The case Tj > 1 + wy is trivial. The case w; = 0 and T} < 1 + wy is simple to prove
from the definitions. We now consider the case w; # 0, T; <1+ wp and ¢ > 1. The ¢ =1
case is similar to the one below, but we set 'yj;j (z) =1 all along. We first note that w; L wj;j

and that %f]_ (x) is a function of xij only. Therefore, we decompose the Lebesgue measure
dz over R? into the product measure dzy; X dq:ij, where dz,,; is the Lebesgue measure over
span(w;) and dxjj is the Lebesgue measure over the space perpendicular to w;, which is
isomorphic to R4~

Gj(ﬁ;R) = By.10; /’yj (x)SAg (x%ﬂ}) ei<x’5>dij X da:ij

69 k;0 /,yw 7§w >SAk ( 1’17) eil'wjf“’j d,:ij X d:L‘i]
= ﬁg,kej //-ywj (CE) 759.1 /SA $w i lxw gw] d$w . (60)
In the third step, we have used the fact that %J depends only on x5 and that SA ( )

depends only on ;. Now, we consider SAy and its Fourier transform. For ease of notatlon,
we replace z,,; by just ¢ € R. Let 1 +wo > T € R. Consider the function

A(t;T) := ReLU(t — T') — 2ReLU(t — 1 — wg) + ReLU(t — 2 — 2w + T') .

4et(1+wg)ér

It is simple to check that the Fourier transform of A(t/r;T) is s g, —sin n?((1 + wo —
T)¢ér/2). SA(z/r,T) is obtained from A(z/r;T) by convolving it with A9 . Therefore,
from the convolution theorem we conclude that the Fourier transform of SA(x/r T) is
i(14wg)ér i
100 G2((1 4wy — T)Er/2)AL, (€).
Now, ’yjj (z) is a function of :cjj only. Therefore, we can see this as a function with

domain R?9~!. In Equation (60), we conclude that the first integral, involving ')d;], infact
gives its Fourier transform over I';_; r. Using these results in Equation (60), we obtain

461'(1—1—11)0 )rgwj

&r

J

Gi(& R) = ByabiTq-1.r(IE5 NALS,, () sin®((1+ wo — T)éw,7/2)

4. The fact that G; € L'(RY) follows from item 3. The fact that G(&; R) = EG;(€, R)
follows from Fubini’s theorem after checking that |g;| is integrable with respect to the
product measure py X vy 1, x dx (where dx denotes the Lebesgue measure over R?) as shown
in the proof of item 2. Similar to the proof of item 2, we will conclude that G(&; R) € L' (RY)
by showing that \é (&; R)| is integrable with respect to the measure iy x v, ,, xd€. In the cases
Ty > 1+wo, |G;(-; R)| = 0. When T; < 14wyp and w; = 0, we know that T, r(||€]|) € S(RY)
and therefore an L1 function. Using the fact that [SA(0;T})| < 14w —1T}, we conclude that
in this case: [g, |Gj(§; R)|d¢ < By kl|Tq,rll1(14+wo—T}). Now consider the case T; < 1+wyq
and w; # 0. We first note an inequality which follows from elementary considerations for

every a > 0 and £ € R:
;2
sin (at) < min <a2, 1) . (61)
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By Lemma 21,
C(kv wo, Oé())

|A2?wo (5“’]” < 14+ Eo%lj

(62)

Using Equations (61) and (62), along with the expression for G]( -3 R) in item 3, we have

~ C(k,w0,0éo) . 2 1
(& R)| < Byplg == 1 ~T)?% — | -
G R < Boaloms (13 1) =g min (r< tu =Ty

Integrating this over RY, we get

IG5 (3 Bl < Ckswos 0,180 D1,

|11+ wo = Tj] .

Here we have abused notation to denote by [|[Ty—1 g1 the L! norm of T';_1 g when seen as
a function over R4~1,

Combining the various cases, we conclude that G]( -3 R) is integrable with respect to
the measure yy x vy, % do if E|1 +wy — T}j| < co. This is true since we have chosen [ > 2
in the statement of the lemma. |

E.5. Proof of Lemma 19

We first state the following useful lemma before delving into the proof of Lemma 19.

Lemma 34 Let Z be uniformly distributed on the sphere ST=% for ¢ > 2 and let p > 0 and
a,b € R™ be such that b > %. Let Z1 denote the component of Z along the direction of
the standard basis vector e;. Then

1 +p2b 1 _|_p2a

1 1
dz) < C b
/Sql 1+ p2z2a1+(1— Z%)bp%pe( ) < C(g,a,b) [

Proof From standard results, it is clear that Z; is distributed over [—1, 1] with the density

q=3
function ,(z) := Cy(1 — 2%)" 2 . Here C, is the normalizing constant. Therefore, the
integral in the statement of the lemma becomes

/1 1/’(1(55) dx —9 /1 wq(l’) dx
1 14+ p2al‘2“ 1+ (1 _ x2)bp2b 0 1+ p2a$2a 14+ (1 _ $2)bp2b

_, /1/2 by(z) dz o /1 Py() dz
0 1+ p2a$2a 14+ (1 _ $2)bp2b 1/2 1+ p2ax2a 1+ (1 _ .1,‘2)bp2b
2 1/2 ! Vg(x) dx

< d
-1+ 2—2bp2b 0 w‘I(x) T + /1/2 1 +p2a2—2a 1+ (1 _ x2)bp2b

Cla.b) | Cla,0) / (-a7
—1_|_p2b 1_|_p2a 1/21+(1—$2)bp2b ’

In the integral from 1/2 to 1, 2z > 1. Therefore, from the equation above,
3

q—9
2
] 2xdx .

/1 Qj)q(:n) dzx < C(q,b) n C(q,a) /1 (1 —x2)
1

_1 1—|—p2ax2a1—|—(1—$2)b,02b — 1+p2b 1+p2a /2 1+(1 _x2 bp2b
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We now make the change of variable t = (1 — 2%)p?, yielding

2 g3
b (@) do _Clab) | Clga)p ™t 5 12 Ll
2a .2a _ 2)b,2b — % T %a t
1 14 pPag2a ]l + (1 —22)b 1+p 1+p R
q—3
_ Cla,b) | Clga)p~ ™! /OO i
*1+p2b 1+p2a 0 1+tb '

The integral on the RHS is finite if b > 4~ L for every ¢ > 2. Using this fact in the equation
above, we conclude the statement of the lemma. |

Proof (of Lemma 19) To begin, Fubini’s theorem for positive functions and Jensen’s
inequality imply that

ECGh = / leliflGem(©)ldg
- [ lerEic ol
< /R el VEIG=m(@)Pde (63)

By linearity of Fourier transform, we have G"™™(§) = G(&; R) — % Zfil @j (&; R). By item
4 of Lemma 18, we know that for every & € R,

1 A 1 N
ElG=m ()] = + [EIGs(& RII* — 166 RP] < - [EIG & R)P]
Using this in Equation (63), we have that
2
ECYh < / el /EIG; (& R)Pde (64)

We use the polar decomposition of R?. Let py be the uniform probability measure on
S%71, the sphere embedded in RY. Continuing Equation (64),

) o L s JRIG (6 B2
BCfh < = [ el"BIG (& R)Pae

S N R N AT

Clg) [ o .
< ﬂ B ps+‘1 1\//  EIG;(0Z; R)PPps(dZ)dp

f(ﬁ pa 1\/ /S Gi(pZ: B)po(dZ)dp (65)

The third step above follows from Jensen’s inequality applied to the probability measure
po- We first consider the case ¢ > 2. We will now upper bound [, |G;(pZ; R)|*pg(dZ) as
a function of p. We note the following inequalities:
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1. Now, by definition of the Schwartz space, for every integer n, there exists a constant
C(n,q, R) such that for every ¢ € R?

C(n,q, R)
Ty 1r(&5) < ——2— .
ot nl& = T ez
2. From Lemma 21, we have
Co
A (€] < T e
3. Similar to item 1, we have for every £ € RY:
C(n,q, R)
Tyr()) < d )
From the proof of item 4 of Lemma 18, we have
R Byk|Lq,r(E)|1 + wo — Tj| when w; =0
G ()] < .
! C (k)BT g1, (€5) AR, () min { r(1+wo — T5)%, 7~ ) when w; #0.
J
(66)
We use the inequality min(a?, m%) < }i;z along with the inequalities above to show that

for every £ € RY
o < | TR w0~ Tl whenw; =0
GO £ Chyn  1+0+wo—T)2
’ T 7 (1+£§§+2 = whenw; #0,

(67)

where C depends on k, ¢, n, R and r. Therefore

CﬁQ (1+’LU07T')2
— 2k —— when w; =0

1+p2n
A dzZ
/S\q—l ‘G](pZ7 R)|2p9(dZ) S Clﬁg,k‘(]‘ + (]' + Wo — 1—17)4) fSQ*l 1+pf:4('4ZéI;+4 1+(1,Zlaj)np2n
when w; # 0.

Using the rotational invariance of py, we invoke Lemma 34 and conclude that when n > %4

062 14+wo—T} 2
OBy (A4wo—T;5)” when w; = 0

1+p2n
~ 2 —g+1
| G0z ROpa2) < § 02 (1 (1t~ D)) [t + 2] (09
when w; # 0.

Since n can be arbitrarily large (and this only changes the multiplicative constant), we
can pick n = 2k + 2 + ¢ — 1. Now taking expectation with respect to 7" and noting that
when [ > 3, ET* < oo, we have that

P ] (70)

A . 2 2
E/Sql |G (pZ; R)|"pe(dZ) < CBg [1+P4k+4
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Consider the case ¢ = 1: it is easy to show from the techniques above that the same
bound as in Equation (70) holds. Plugging this into Equation (65), we conclude that

s—l—Ll
EC(, < ok [T, P77
\ﬁ 1+ p2kt2
Now, it is clear that the integral on the RHS is finite when s <3 251 4-2k. Using the definition
of B4 we conclude the result. |

E.6. Proof of Lemma 28

The first 2 items are similar as in the proof of Lemma 18. We will show items 3 and 4
below.

3. In Equation (41), 'yjj (x) is infinitely differentiable. Therefore, to show that g;(-; R) €

C?F(R9), it is sufficient to show that SA, (<°ﬁj ’xﬁ , T ) is 2k times continuously differentiable.

This reduces to showing that ¢t — SA(t,T) € C?*(R) for T' < 1 + wg. (We only need to
worry about the case T < 1+ wq because otherwise g;(x; R) = 0 identically). Consider the
Fourier transform of SA(¢,T):

4ei(1+w0)v

— sin((1+wo — T)v/2)ARS, (V).

SAL(v) =

Using the upper bounds on AP (v) in Lemma 21, v*SAF (v) is a L' function with respect
to Lebesgue measure. By duality between multiplication by v of the Fourier transform
and differentiation of the function, we conclude that SAg(¢,T) is 2k times continuously
differentiable and and hence that §;(z; R) € C?¥(RY) almost surely. Further, for every
[ < 2k, we have

DOSAL(E: T) = 2i / (=) (0)'SAF ()t dy
Y

Therefore,

1
sup |DUSA(ET) < 5 [ follsaf(v)lde

teR
00 1 |U|l
0. 2
S/_ooBk,mm <(1+wg—T) ,U2> 71—|-|U|2k v

<BJl+wy—T| < B(1+|T)), (71)

where B,g < o0 is a constant depending only on «g,wy and k. We have absorbed con-
stants involving «g,wg and k into other constants throughout and used the inequality
sin? (v (Hwo D2 < win (14 wo —T)3, 2) and the upper bound on A9 (v) in Lemma 21.
We can in fact improve this bound further because of the fact that SA(t;T) is sup-
ported between [T — wq,2 4 3wy — T]. Therefore, |[DWSA(t;T)| is non zero only when
t € [T —wy,2+ 3wy —T]. That is when T'— wy < t < 2+ 3wy — T. These inequalities
along with the assumption that 7' < 1 + wg imply that [DSA(¢;T)| is non-zero only
when T' < —|t| + 2 + 3wyp. Therefore, from Equation (71), we conclude:
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IDUSAL(t:;T)| < BY(1+|TNU(T < —|t| + 2 + 3wp) . (72)

Consider the element wise partial order < on (NU {0})? where a < b iff a; < b; for i € [q].
By the chain rule, we conclude that 9Pg;(z; R) is a finite linear combination of terms of the
form

3540, (S (522,13 ) ) 824 (o), (73)
for every a < b such that the coefficients depend only on a and b. Now,
a (wj,x) S Hs 1<w]7€8> EY (wj,x)
Bratsd® (8% (51 T5) ) = Bty ST (tm)

From Equation (72), the quantity above is nonzero only when |z,,| < 2r + 3rwo — rTj.
Yol (x) is a C*° function which vanishes when ||z .|| > 2R, we conclude that 8b_avjj (x)

also vanishes when |z,.| > 2R. Therefore, we conclude that OPg;(x) is continuous and
compactly supported almost surely and hence in L!(RY).

Now for the bound on 8b§j (z), we proceed as above by noting that this is a linear
combination of the terms of the form given in Equation (73) for a < b. Now, 0b_a7j;j (z)
is bounded uniformly by a constant Hj, for every = and a where Hj doesn’t depend on w;.
The function 8b_a7‘f;j (x) vanishes when ||$j;] || > 2R. From Equations (72) and (74) we get
that

o (SAk (jfﬁi; YT, ))’ < BS Bu(1 + [Ty L(rT; < |, | + 2r + 3uwor).
Here By, depends on «y, ¢, 7, k, R and wy but not on g, T; or w;. Therefore, we obtain the
desired bound (where we have absorbed all the constants into By, redefining as necessary):

10°9(2; R)| < BoxBr(L + TNy < —2w,| + 2 + 3wor)L(||lag; | < 2R). (75)

4. The proof follows through an induction over |b| and use of item 3. We will show this

for one differentiation here but the argument can be extended to 2k times differentiation.

6g(x R) . 9g; (w;R) 0g; (w;R)
o, exists and equal to E jaz if Jazl

By standard results in probability theory,

exists and for every =z, |M\ < Z for some integrable random variable Z. From item 3,

we conclude that %ﬁm exists and take Z = ngBk(l + |T}|) where ﬂ;kBk are constants

as used in the statement of item 3. This shows that 8g{§§;1R) = ]Ea%(fjm. We show that it
is continuous by using dominated convergence theorem after noting the fact that %;?R) is
continuous and dominated by Z = B‘; wBr(1+ |T}j|), which is integrable.

To show that 9Pg(z; R) € L*(R), it is sufficient to show that OPg;(z; R) is integrable
with respect to the measure p; X vy X dr where dx denotes the Lebesgue measure over RY.
From Fubini’s theorem for positive functions, we conclude that

/yabgj(x;R)m,(de) % vo(da;) x dx — /M(de) « uo(dwj)/\abgj(x;zz)\dx.

Integrating Equation (75) over R?, we conclude that [ |9P§;(x; R)|dz < C(1+ |T}|?) for
some non-random constant C. Since E|T}|> < oo by assumption in the statement of the
lemma, we conclude that abgj( -3 R) is integrable with respect to p; X 1o x dz which implies
the desired result. |
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Appendix F. Proof of Main Theorems
F.1. Proof of Theorem 8

We now prove Theorem 8. For the case a = 0, we can obtain this error using a RelLU
network as shown in Theorem 16. By Equation (17), |k;| < Bg0 < +Ch (C)+ C’f)) almost

surely and the bound on Zjvzl |kj| follows. Now we let @ > 1. For the sake of clarity, we

. N .
will assume that ;77 is an integer.

Item 2 of Theorem 7 implies that there exists a two-layer SReLUy, network with N/(a+1)
activation functions with output ¢°(z) and there exists a remainder function g™ : RY — R

such that for every x € BZ(r), we have ¢"™0(z) = g(x) — 39 (z) and

(" + C8+)
VN '

Supposing that §(0)(z) = Z;V:/YZH) K§SReLUy, ({w],x) — T}'), by similar considerations

as the a = 0 case we conclude that Z;V:/f k3] < Ch (C’éo) + Cka*2)) almost surely. The
fact that [[w§|| < 1/r follows from Equation (17), which is used to construct the estimators
in Theorem 7.

Invoking Theorem 7 again, we conclude that we can approximate ¢"*™? by (1), which is

the output two-layer SReLUy, , network with ai—&-l non-linear activation functions and there
exists g"™! : R? — R such that g™™!(z) = ¢g"*™°(z) — ¢V (z) and

Clho + Clmi® < ¢

(0) (2ka—1+2) 0 2kq+2
Cgrem,O + Ogrem,O ! < C (Cé ) + C‘é * ))
VN - N

Continuing similarly, for 1 < b < a — 1 we obtain §® which is the output of some

SRelLUy, , units with a]—l\-fl neurons and remainders g™ : RY — R such that for every

x € Bg(r), we have g™ (x) = g*™v=1(z) — 5 (z) and

rem,1

Crm ™+ ol <C

C(O) + C(Qka+2)
RS NPClL s R
2
Now, writing () (z) = Zj:qaﬂ) /@?*bSReLUka_b«w?*b,x) - Tf*b), we conclude that
Hw?_bH <1/r and
(Cg(o) +C§2ka+2)>
Nb/2

N/(a+1)
> omsa
=1

In particular, we have g™~ such that C’;i),w_l + C’;(,)e),w_l < C(C’éo) + Cgka+2)/(N%).
Therefore, by Theorem 16, there exists a random RelLU network with N/(a + 1) neurons
which approximates ¢"™% ! with output §(*) such that:
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1.
2
i +C%0)
2 rem,a—1 rem,a—1
rem,a—1 _ ~(a) < (g ’ g™
E / (g™ (@) ~ 99 (@) ¢(dw) < C ~
0 2
_ (e gy
- Na+l
2.

grem,a—l _ Egj(@) (x> — 07

where gj(“) is the j-th component of §(®).

3. Assuming §(%(z) = Z?Z}a“) m?ReLU((w?,x) - T]Q), it is clear that ||W?H <1/r:

N/(a+1) (0) (2ka+2)
O R A
= J Na/2

We note that we have chosen the SReLUy, units in a non-random fashion through Theo-
rem 7 whereas we have chosen the last a—ﬂ\rfl ReLU units randomly using Theorem 16. There-
fore, the expectation above is only with respect to the randomness of the ReLU units. It is
clear that g™~ (z)— ¢\ (z) = g(z)— (Xj_ ¢ (z)) whenever z € B2(r)and Y i (z)
is the output of a two-layer network with N non-linear units containing ReLU and SRelL Uy

units for k € {k1,...,k,}. We conclude items 1 and 2 in the statement of the lemma. The
sum of the absolute values of the coefficients is >, Z;V:/EGH) \/f?\ < Cl(Céo) + C’é%“w))

as is clear from the discussion above. [ |

F.2. Proof of Theorem 9

We first note that whenever z € B3(r), (z,B;) € BZ(r). We assume that N/(a+ 1)m is
an integer. In Theorem 8, we take g = f; and replace N with N/m. We pick the weights
w; inside the SReLUy and ReLU units to be in span(B;) instead of R? and the replace the
distribution ((dz) by (({dz, B;)), which is the measure induced by ( over span(B;). We
conclude that there exists a random neural network NN; with 1 nonlinear layer whose output
is f;(x) such that:

1. For every x € B}(r),
Efi(z) = fil(z, By)

Mmt!

B [ (e, B) - @) ¢(do) < Co T

We construct the random neural networks NN; independently for i € [m]. We juxta-
pose these m neural networks and average their outputs to obtain the estimator f(z) :=
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LS fi(x). Now
B [ (530 A B - i) "l

=3 2 B [ (Al B) ~ Fi@) (e B) - Fi(@) ¢(da)
i,j€[m]
1

=3 2 [E (At B - Fi@) (H(le.B) - (@) ¢(d)
]

[\

m i,j€lm

= 5% B (5B - i) clan
i€[m]
m M

< Coyart -

(76)
In the fourth step we have used the fact that fj (z) and ﬁ(az) are independent when i # j.
Because the above bound holds in expectation, it must hold for some configuration. |

F.3. Proof of Theorem 10

Consider the low dimensional polynomial defined in Equation (2). Define the following
orthonormal set associated with each V in the summation:

1. By = {e; : V(j) # 0} where e; are the standard basis vectors in R, if [{e; : V(j) #
0} = ¢

2. Otherwise, let w = ¢ — [{e; : V(j) # 0}|. Otherwise, draw distinct e;,,...,e;, ¢
{e; : V(j) # 0} from some arbitrary fixed procedure and define By = {e; : V(j) #
0} U{ej,,...,ej,}. This ensures that |By| = q.

Clearly, py can be seen as a function over span(By ) which is isomorphic to R?. Since
we are only interested in x € [0,1]%, it follows that (z, By) € [0,1]9 C B2(\/q). We can
also modify py () to pv(z)y (|[(Bv,z)||*/q) where v € S(R) is the bump function defined
in Section B such that v(t) = 1 for ¢ € [-1,1], v > 0 and ~(t) = 0 for [{| > 2. Therefore,
pv(z)y ([[(Bv,z)||*/q), when seen as a function over span(By ), is itself a Schwartz function
and it is equal to py(z) whenever (z, By) € Bz(y/q). Without any loss, we replace py (x)
with py (z)y (|[(Bv,2)[?/q) in Equation (2). We note that the low degree polynomials
defined above are an instance of the low dimensional function defined in Equation (1), but
without the factor of m. In Theorem 32, we will just multiply throughout by a factor m
- for both f and the estimator f . The only change which occurs in the guarantees is that
the error is multiplied by m? and the co-efficients k; in the statement of the theorem are
multiplied by m. In this case, we take m = (qj;d). Fix an a € NU{0} and take N > (a+1)m
such that N/(a 4+ 1)m € N. Consider the Fourier norm of py when seen as a function over
span(By ). Clearly py is a Schwartz function and the Fourier norm defined in Equation (38)
exists and is finite for every I = 2k2 + 2 (I is as used in Equation (38)). Therefore, we set

S
H = supV(SgV + S;(,f,k“ Jr2))2 < 00. It is clear that H depends only on ¢ and a. Now, the
corresponding squared Fourier norms for Jy py, denoted by My, satisfies My < H J‘Q/ (where
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My is the analogue of M; as defined in Theorem 32). Consider the sampling procedure given
in Theorem 32: since the bases By (the analogues of B; in the statement of the theorem)
are known explicitly, this sampling can be done without the knowledge of the polynomial.
Now, by a direct application of Theorem 32, we conclude the statement of Theorem 10. H
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