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Abstract

Restricted Boltzmann Machines (RBMs) are a common family of undirected graph-
ical models with latent variables. An RBM is described by a bipartite graph, with
all observed variables in one layer and all latent variables in the other. We consider
the task of learning an RBM given samples generated according to it. The best
algorithms for this task currently have time complexity Õ(n2) for ferromagnetic
RBMs (i.e., with attractive potentials) but Õ(nd) for general RBMs, where n is the
number of observed variables and d is the maximum degree of a latent variable. Let
the MRF neighborhood of an observed variable be its neighborhood in the Markov
Random Field of the marginal distribution of the observed variables. In this paper,
we give an algorithm for learning general RBMs with time complexity Õ(n2s+1),
where s is the maximum number of latent variables connected to the MRF neigh-
borhood of an observed variable. This is an improvement when s < log2(d− 1),
which corresponds to RBMs with sparse latent variables. Furthermore, we give
a version of this learning algorithm that recovers a model with small prediction
error and whose sample complexity is independent of the minimum potential in the
Markov Random Field of the observed variables. This is of interest because the
sample complexity of current algorithms scales with the inverse of the minimum
potential, which cannot be controlled in terms of natural properties of the RBM.

1 Introduction

1.1 Background

Undirected graphical models, also known as Markov Random Fields (MRFs), are probabilistic models
in which a set of random variables is described with the help of an undirected graph, such that the
graph structure corresponds to the dependence relations between the variables. Under mild conditions,
the distribution of the random variables is determined by potentials associated with each clique of the
graph [11].

The joint distribution of any set of random variables can be represented as an MRF on a complete
graph. However, MRFs become useful when the graph has nontrivial structure, such as bounded
degree or bounded clique size. In such cases, learning and inference can often be carried out with
greater efficiency. Since many phenomena of practical interest can be modelled as MRFs (e.g.,
magnetism [5], images [18], gene interactions and protein interactions [25, 8]), it is of great interest
to understand the complexity, both statistical and computational, of algorithmic tasks in these models.

The expressive power of graphical models is significantly strengthened by the presence of latent
variables, i.e., variables that are not observed in samples generated according to the model. However,
algorithmic tasks are typically more difficult in models with latent variables. Results on learning
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models with latent variables include [19] for hidden Markov models, [7] for tree graphical models,
[6] for Gaussian graphical models, and [1] for locally tree-like graphical models with correlation
decay.

In this paper we focus on the task of learning Restricted Boltzmann Machines (RBMs) [23, 9, 12],
which are a family of undirected graphical models with latent variables. The graph of an RBM is
bipartite, with all observed variables in one layer and all latent variables in the other. This encodes
the fact that the variables in one layer are jointly independent conditioned on the variables in the
other layer. In practice, RBMs are used to model a set of observed features as being influenced
by some unobserved and independent factors; this corresponds to the observed variables and the
latent variables, respectively. RBMs are useful in common factor analysis tasks such as collaborative
filtering [21] and topic modelling [13], as well as in applications in domains as varied as speech
recognition [14], healthcare [27], and quantum mechanics [20].

In formalizing the learning problem, a challenge is that there are infinitely many RBMs that induce
the same marginal distribution of the observed variables. To sidestep this non-identifiability issue,
the literature on learning RBMs focuses on learning the marginal distribution itself. This marginal
distribution is, clearly, an MRF. Call the order of an MRF the size of the largest clique that has
a potential. Then, more specifically, it is known that the marginal distribution of the observed
variables is an MRF of order at most d, where d is the maximum degree of a latent variable in the
RBM. Hence, one way to learn an RBM is to simply apply algorithms for learning MRFs. The best
current algorithms for learning MRFs have time complexity Õ(nr), where r is the order of the MRF
[10, 16, 24]. Applying these algorithms to learning RBMs therefore results in time complexity Õ(nd).
We note that these time complexities hide the factors that do not depend on n.

This paper is motivated by the following basic question:

In what settings is it possible to learn RBMs with time complexity substantially better than Õ(nd)?

Reducing the runtime of learning arbitrary MRFs of order r to below nΩ(r) is unlikely, because
learning such MRFs subsumes learning noisy parity over r bits [2], and it is widely believed that
learning r-parities with noise (LPN) requires time nΩ(r) [15]. For ferromagnetic RBMs, i.e., RBMs
with non-negative interactions, [4] gave an algorithm with time complexity Õ(n2). In the converse
direction, [4] gave a general reduction from learning MRFs of order r to learning (non-ferromagnetic)
RBMs with maximum degree of a latent variable r.

In other words, the problem of learning RBMs is just as challenging as for MRFs, and therefore
learning general RBMs cannot be done in time less than nΩ(d) without violating conjectures about
LPN.

The reduction in [4] from learning order r MRFs to learning RBMs uses an exponential in r number
of latent variables to represent each neighborhood of the MRF. Thus, there is hope that RBMs
with sparse latent variables are in fact easier to learn than general MRFs. The results of this paper
demonstrate that this is indeed the case.

1.2 Contributions

Let the MRF neighborhood of an observed variable be its neighborhood in the MRF of the marginal
distribution of the observed variables. Let s be the maximum number of latent variables connected
to the MRF neighborhood of an observed variable. We give an algorithm with time complexity
Õ(n2s+1) that recovers with high probability the MRF neighborhoods of all observed variables. This
represents an improvement over current algorithms when s < log2(d− 1).

The reduction in time complexity is made possible by the following key structural result: if the mutual
information I(Xu;XI |XS) is large for some observed variable Xu and some subsets of observed
variables XI and XS , then there exists a subset I ′ of I with |I ′| ≤ 2s such that I(Xu;XI′ |XS) is
also large. This result holds because of the special structure of the RBM, in which, with few latent
variables connected to the neighborhood of any observed variable, not too many of the low-order
potentials of the induced MRF can be cancelled.

Our algorithm is an extension of the algorithm of [10] for learning MRFs. To find the neighborhood of
a variableXu, their algorithm iteratively searches over all subsets of variablesXI with |I| ≤ d−1 for
one with large mutual information I(Xu;XI |XS), which is then added to the current set of neighbors
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Figure 1: Class of RBMs withmk+k observed variables, m latent variables, d = 2k, and s = 4. The
X variables represent observed variables, the Y variables represent latent variables, and the edges
represent non-zero interactions between variables. The “· · · ” hides variables that have consecutive
indices. The variables hidden by “· · · ” have the same connections as the variables at the extremes of
their respective dots.

XS . Our structural result implies that it is sufficient to search over subsets XI with |I| ≤ 2s, which
reduces the time complexity from Õ(nd) to Õ(n2s+1).

For our algorithm to be advantageous, it is necessary that s < log2(d− 1). Note that s is implicitly
also an upper bound on the maximum degree of an observed variable in the RBM. Figure 1 shows an
example of a class of RBMs for which our assumptions are satisfied. In this example, s can be made
arbitrarily smaller than d, n, and the number of latent variables.

The sample complexity of our algorithm is the same as that of [10], with some additional factors
due to working with subsets of size at most 2s. We extended [10] instead of one of [16, 24], which
have better sample complexities, because our main goal was to improve the time complexity, and
we found [10] the most amenable to extensions in this direction. The sample complexity necessarily
depends on the width (defined in Section 2) and the minimum absolute-value non-zero potential of
the MRF of the observed variables [22]. In the Appendix F, we show that our sample complexity
actually depends on a slightly weaker notion of MRF width than that used in current papers. This
modified MRF width has a more natural correspondence with properties of the RBM.

The algorithm we described only recovers the structure of the MRF of the observed variables, and
not its potentials. However, recovering the potentials is easy after the structure is known: e.g., see
Section 6.2 in [4].

The second contribution of this paper is an algorithm for learning RBMs with time complexity
Õ(n2s+1) whose sample complexity does not depend on the minimum potential of the MRF of the
observed variables. The algorithm is not guaranteed to recover the correct MRF neighborhoods, but
is guaranteed to recover a model with small prediction error (a distinction analogous to that between
support recovery and prediction error in regression). This result is of interest because all current
algorithms depend on the minimum potential, which can be degenerate even when the RBM itself has
non-degenerate interactions. Learning graphical models in order to make predictions was considered
before in [3] for trees.

In more detail, we first give a structure learning algorithm that recovers the MRF neighborhoods
corresponding to large potentials. Second, we give a regression algorithm that estimates the potentials
corresponding to these MRF neighborhoods. Lastly, we quantify the error of the resulting model for
predicting the value of an observed variable given the other observed variables. Overall, we achieve
prediction error ε with a sample complexity that scales exponentially with ε−1, and that otherwise
has dependencies comparable to our main algorithm.

1.3 Overview of structural result

We present now the intuition and techniques behind our structural result. Theorem 1 states an informal
version of this result.

Theorem 1 (Informal version of Theorem 4). Fix observed variable u and subsets of observed
variables I and S, such that all three are disjoint. Suppose that I is a subset of the MRF neighborhood
of u and that |I| ≤ d− 1. Then there exists a subset I ′ ⊆ I with |I ′| ≤ 2s such that

νu,I′|S ≥ Cs,d · νu,I|S

3



where Cs,d > 0 depends on s and d, and where νu,I′,S and νu,I|S are proxies of I(Xu, XI′ |XS) and
I(Xu, XI |XS), respectively.

The formal definition of ν is in Section 2. For the purposes of this section, one can think of it as
interchangeable with the mutual information. Furthermore, this section only discusses how to obtain a
point-wise version of the bound, νu,I′|S(xu, xI′ |xS) ≥ C ′s,d ·νu,I|S(xu, xI |xS), evaluated at specific
xu, xI , and xS . It is not too difficult to extend this result to νu,I′|S ≥ Cs,d · νu,I|S .

In general, estimating the MRF neighborhood of an observed variable is hard because the low-order
information between the observed variables can vanish. In that case, to obtain any information
about the distribution, it is necessary to work with high-order interactions of the observed variables.
Typically, this translates into large running times.

Theorem 1 shows that if there is some high-order νu,I|S that is non-vanishing, then there is also some
νu,I′|S with |I ′| ≤ 2s that is non-vanishing. That is, the order up to which all the information can
vanish is less than 2s. Or, in other words, RBMs in which all information up to a large order vanishes
are complex and require many latent variables.

To prove this result, we need to relate the mutual information in the MRF neighborhood of an observed
variable to the number of latent variables connected to it. This is challenging because the latent
variables have a non-linear effect on the distribution of the observed variables. This non-linearity
makes it difficult to characterize what is “lost” when the number of latent variables is small.

The first main step of our proof is Lemma 7, which expresses νu,I|S(xu, xI |xS) as a sum over 2s

terms, representing the configurations of the latent variables connected to I . Each term of the sum is
a product over the observed variables in I . This expression is convenient because it makes explicit the
contribution of the latent variables to νu,I|S(xu, xI |xS). The proof of the lemma is an “interchange
of sums”, going from sums over configurations of observed variables to sums over configurations of
latent variables.

The second main step is Lemma 8, which shows that for a sum over m terms of products over
n terms, it is possible to reduce the number of terms in the products to m, while decreasing the
original expression by at most a factor of C ′m,n, for some C ′m,n > 0 depending on n and m.
Combined with Lemma 7, this result implies the existence of a subset I ′ with |I ′| ≤ 2s such that
νu,I′|S(xu, xI′ |xS) ≥ C ′s,d · νu,I|S(xu, xI |xS).

2 Preliminaries and notation

We start with some general notation: [n] is the set {1, ..., n}; 1{A} is 1 if the statement A is true and
0 otherwise;

(
n
k

)
is the binomial coefficient n!

k!(n−k)! ; σ(x) is the sigmoid function σ(x) = 1
1+e−x .

Definition 2. A Markov Random Field2 of order r is a distribution over random variables X ∈
{−1, 1}n with probability mass function

P(X = x) ∝ exp(f(x))

where f is a polynomial of order r in the entries of x.

Because x ∈ {−1, 1}n, it follows that f is a multilinear polynomial, so it can be represented as

f(x) =
∑
S⊆[n]

f̂(S)χS(x)

where χS(x) =
∏
i∈S xi. The term f̂(S) is called the Fourier coefficient corresponding to S, and it

represents the potential associated with the clique {Xi}i∈S in the MRF. There is an edge between
Xi and Xj in the MRF if and only if there exists some S ⊆ [n] such that i, j ∈ S and f̂(S) 6= 0.
Some other relevant notation for MRFs is: let D be the maximum degree of a variable; let α be the
minimum absolute-value non-zero Fourier coefficient; let γ be the width:

γ := max
u∈[n]

∑
S⊆[n]
u∈S

|f̂(S)|.

2This definition holds if each assignment of the random variables has positive probability, which is satisfied
by the models considered in this paper.
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Definition 3. A Restricted Boltzmann Machine is a distribution over observed random variables
X ∈ {−1, 1}n and latent random variables Y ∈ {−1, 1}m with probability mass function

P(X = x, Y = y) ∝ exp
(
xTJy + hTx+ gT y

)
where J ∈ Rn×m is an interaction (or weight) matrix, h ∈ Rn is an external field (or bias) on the
observed variables, and g ∈ Rm is an external field (or bias) on the latent variables.

There exists an edge between Xi and Yj in the RBM if and only if Ji,j 6= 0. The resulting graph is
bipartite, and all the variables in one layer are conditionally jointly independent given the variables in
the other layer. Some other relevant notation for RBMs is: let d be the maximum degree of a latent
variable; let α∗ be the minimum absolute-value non-zero interaction; let β∗ be the width:

β∗ := max

max
i∈[n]

m∑
j=1

|Ji,j |+ |hi|, max
j∈[m]

n∑
i=1

|Ji,j |+ |gj |

 .

In the notation above, we say that an RBM is (α∗, β∗)-consistent. Typically, to ensure that the
RBM is non-degenerate, it is required for α∗ not to be too small and for β∗ not to be too large;
otherwise, interactions can become undetectable or deterministic, respectively, both of which lead to
non-identifiability [22].

In an RBM, it is known that there is a lower bound of σ(−2β∗) and an upper bound of σ(2β∗) on
any probability of the form

P(Xu = xu|E) or P(Yu = yu|E)

where E is any event that involves the other variables in the RBM. It is also known that the marginal
distribution of the observed variables is given by (e.g., see Lemma 4.3 in [4]):

P(X = x) ∝ exp(f(x)) = exp

 m∑
j=1

ρ(Jj · x+ gj) + hTx


where Jj is the j-th column of J and ρ(x) = log(ex + e−x). From this, it can be shown that the
marginal distribution is an MRF of order at most d.

We now define s, the maximum number of latent variables connected to the MRF neighborhood of an
observed variable:

s := max
u∈[n]

m∑
j=1

1{∃i ∈ [n] \ {u} and S ⊆ [n] s.t. u, i ∈ S and f̂(S) 6= 0 and Ji,j 6= 0}.

The MRF neighborhood of an observed variable is a subset of the two-hop neighborhood of the
observed variable in the RBM; typically the two neighborhoods are identical. Therefore, an upper
bound on s is obtained as the maximum number of latent variables connected to the two-hop
neighborhood of an observed variable in the RBM.

Finally, we define a proxy to the conditional mutual information, which is used extensively in our
analysis. For random variables Xu ∈ {−1, 1}, XI ∈ {−1, 1}|I|, and XS ∈ {−1, 1}|S|, let

νu,I|S := ER,G [EXS
[|P(Xu = R,XI = G|XS)− P(Xu = R|XS)P(XI = G|XS)|]]

where R and G come from uniform distributions over {−1, 1} and {−1, 1}|I|, respectively. This
quantity forms a lower bound on the conditional mutual information (e.g., see Lemma 2.5 in [10]):√

1

2
I(Xu;XI |XS) ≥ νu,I|S .

We also define an empirical version of this proxy, with the probabilities and the expectation over XS

replaced by their averages from samples:

ν̂u,I|S := ER,G
[
ÊXS

[∣∣∣P̂(Xu = R,XI = G|XS)− P̂(Xu = R|XS)P̂(XI = G|XS)
∣∣∣]] .
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3 Learning Restricted Boltzmann Machines with sparse latent variables

To find the MRF neighborhood of an observed variable u (i.e., observed variableXu; we use the index
and the variable interchangeably when no confusion is possible), our algorithm takes the following
steps, similar to those of the algorithm of [10]:

1. Fix parameters s, τ ′, L. Fix observed variable u. Set S := ∅.
2. While |S| ≤ L and there exists a set of observed variables I ⊆ [n] \ {u} \ S of size at most

2s such that ν̂u,I|S > τ ′, set S := S ∪ I .

3. For each i ∈ S, if ν̂u,i|S\{i} < τ ′, remove i from S.

4. Return set S as an estimate of the neighborhood of u.

We use

L = 8/(τ ′)2, τ ′ =
1

(4d)2s

(
1

d

)2s(2s+1)

τ, and τ =
1

2

4α2(e−2γ)d+D−1

d4d2d+1
(
D
d−1

)
γe2γ

,

where τ is exactly as in [10] when adapted to the RBM setting. In the above, d is a property of the
RBM, and D, α, and γ are properties of the MRF of the observed variables.

With high probability, Step 2 is guaranteed to add to S all the MRF neighbors of u, and Step 3 is
guaranteed to prune from S any non-neighbors of u. Therefore, with high probability, in Step 4 S
is exactly the MRF neighborhood of u. In the original algorithm of [10], the guarantees of Step 2
were based on this result: if S does not contain the entire neighborhood of u, then νu,I|S ≥ 2τ for
some set I of size at most d− 1. As a consequence, Step 2 entailed a search over size d− 1 sets. The
analogous result in our setting is given in Theorem 5, which guarantees the existence of a set I of
size at most 2s, thus reducing the search to sets of this size. This theorem follows immediately from
Theorem 4, the key structural result of our paper.
Theorem 4. Fix observed variable u and subsets of observed variables I and S, such that all three
are disjoint. Suppose that I is a subset of the MRF neighborhood of u and that |I| ≤ d− 1. Then
there exists a subset I ′ ⊆ I with |I ′| ≤ 2s such that

νu,I′|S ≥
1

(4d)2s

(
1

d

)2s(2s+1)

νu,I|S .

Using the result in Theorem 4, we now state and prove Theorem 5.
Theorem 5. Fix an observed variable u and a subset of observed variables S, such that the two are
disjoint. Suppose that S does not contain the entire MRF neighborhood of u. Then there exists some
subset I of the MRF neighborhood of u with |I| ≤ 2s such that

νu,I|S ≥
1

(4d)2s

(
1

d

)2s(2s+1)
4α2(e−2γ)d+D−1

d4d2d+1
(
D
d−1

)
γe2γ

= 2τ ′.

Proof. By Theorem 4.6 in [10], we have that there exists some subset I of neighbors of u with
|I| ≤ d− 1 such that

νu,I|S ≥
4α2(e−2γ)d+D−1

d4d2d+1
(
D
d−1

)
γe2γ

= 2τ.

Then, by Theorem 4, we have that there exists some subset I ′ ⊆ I with |I ′| ≤ 2s such that

νu,I′|S ≥
1

(4d)2s

(
1

d

)2s(2s+1)

2τ =
1

(4d)2s

(
1

d

)2s(2s+1)
4α2(e−2γ)d+D−1

d4d2d+1
(
D
d−1

)
γe2γ

= 2τ ′.

Theorem 6 states the guarantees of our algorithm. The analysis is very similar to that in [10], and is
deferred to the Appendix B. Then, Section 4 sketches the proof of Theorem 4.
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Theorem 6. Fix ω > 0. Suppose we are given M samples from an RBM, where

M ≥ 60 · 22L

(τ ′)2(e−2γ)2L
(log(1/ω) + log(L+ 2s + 1) + (L+ 2s + 1) log(2n) + log 2) .

Then with probability at least 1−ω, our algorithm, when run from each observed variable u, recovers
the correct neighborhood of u. Each run of the algorithm takes O(MLn2s+1) time.

4 Proof sketch of structural result

The proofs of the lemmas in this section can be found in the Appendix A. Consider the mutual
information proxy when the values of Xu, XI , and XS are fixed:

νu,I|S(xu, xI |xS)

= |P(Xu = xu, XI = xI |XS = xS)− P(Xu = xu|XS = xS)P(XI = xI |XS = xS)| .

We first establish a version of Theorem 4 for νu,I|S(xu, xI |xS), and then generalize it to νu,I|S .

In Lemma 7, we express νu,I|S(xu, xI |xS) as a sum over configurations of latent variables U
connected to observed variables in I . Note that |U | ≤ s, so the summation is over at most 2s terms.

Lemma 7. Fix observed variable u and subsets of observed variables I and S, such that all three
are disjoint. Suppose that I is a subset of the MRF neighborhood of u. Then

νu,I|S(xu, xI |xS) =

∣∣∣∣∣∣
∑

qU∈{−1,1}|U|

 ∑
q∼U∈{−1,1}m−|U|

f̄(q, xu, xS)

∏
i∈I

σ(2xi(J
(i) · q + hi))

∣∣∣∣∣∣
for some function f̄ , where U is the set of latent variables connected to observed variables in I , J (i)

is the i-th row of J , and the entries of q∼U in the expression J (i) · q are arbitrary.

Lemma 8 gives a generic non-cancellation result for expressions of the form
∣∣∣∑m

i=1 ai
∏n
j=1 xi,j

∣∣∣.
Then, Lemma 9 applies this result to the form of νu,I|S(xu, xI |xS) in Lemma 7, and guarantees the
existence of a subset I ′ ⊆ I with |I ′| ≤ 2s such that νu,I′|S(xu, xI′ |xS) is within a bounded factor
of νu,I|S(xu, xI |xS).

Lemma 8. Let x1,1, ..., xm,n ∈ [−1, 1], with n > m. Then, for any a ∈ Rm, there exists a subset
S ⊆ [n] with |S| ≤ m such that∣∣∣∣∣∣

m∑
i=1

ai
∏
j∈S

xi,j

∣∣∣∣∣∣ ≥ 1

4m

(
1

n

)m(m+1)
∣∣∣∣∣∣
m∑
i=1

ai

n∏
j=1

xi,j

∣∣∣∣∣∣ .
We remark that, in this general form, Lemma 8 is optimal in the size of the subset that it guarantees not
to be cancelled. That is, there are examples with

∑m
i=1 ai

∏n
j=1 xi,j 6= 0 but

∑m
i=1 ai

∏
j∈S xi,j = 0

for all subsets S ⊆ [n] with |S| ≤ m− 1. See the Appendix A for a more detailed discussion.

Lemma 9. Fix observed variable u and subsets of observed variables I and S, such that all three
are disjoint. Suppose that I is a subset of the MRF neighborhood of u. Fix any assignments xu, xI ,
and xS . Then there exists a subset I ′ ⊆ I with |I ′| ≤ 2s such that

νu,I′|S(xu, xI′ |xS) ≥ 1

42s

(
1

|I|

)2s(2s+1)

νu,I|S(xu, xI |xS)

where xI′ agrees with xI .

Finally, Lemma 10 extends the result about νu,I|S(xu, xI |xS) to a result about νu,I|S . The difficulty
lies in the fact that the subset I ′ guaranateed to exist in Lemma 9 may be different for different
configurations (xu, xI , xS). Nevertheless, the number of subsets I ′ with |I ′| ≤ 2s is smaller than the
number of configurations (xu, xI , xS), so we obtain a viable bound via the pigeonhole principle.
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Figure 2: RBM with α → 0 as ε → 0 and α∗ = 1, β∗ = 2 when 0 ≤ ε ≤ 2. The X variables
represent observed variables, the Y variables represent latent variables, and the edges represent
non-zero interactions between variables. All external field terms are zero.

Lemma 10. Fix observed variable u and subsets of observed variables I and S, such that all three
are disjoint. Suppose that I is a subset of the MRF neighborhood of u. Then there exists a subset
I ′ ⊆ I with |I ′| ≤ 2s such that

νu,I′|S ≥
1

(4|I|)2s

(
1

|I|

)2s(2s+1)

νu,I|S .

This result completes the proof of Theorem 4.

5 Making good predictions independently of the minimum potential

Figure 2 shows an RBM for which α can be arbitrarily small, while α∗ = 1 and β∗ = 2. That is, the
induced MRF can be degenerate, while the RBM itself has interactions that are far from degenerate.
This is problematic: the sample complexity of our algorithm, which scales with the inverse of α,
can be arbitrarily large, even for seemingly well-behaved RBMs. In particular, we note that α is an
opaque property of the RBM, and it is a priori unclear how small it is.

We emphasize that this scaling with the inverse of α is necessary information-theoretically [22]. All
current algorithms for learning MRFs and RBMs have this dependency, and it is impossible to remove
it while still guaranteeing the recovery of the structure of the model.

Instead, in this section we give an algorithm that learns an RBM with small prediction error, inde-
pendently of α. We necessarily lose the guarantee on structure recovery, but we guarantee accurate
prediction even for RBMs in which α is arbitrarily degenerate. The algorithm is composed of a
structure learning step that recovers the MRF neighborhoods corresponding to large potentials, and a
regression step that estimates the values of these potentials.

5.1 Structure learning algorithm

The structure learning algorithm is guaranteed to recover the MRF neighborhoods corresponding to
potentials that are at least ζ in absolute value. The guarantees of the algorithm are stated in Theorem
11, which is proved in the Appendix D.

The main differences between this algorithm and the one in Section 3 are: first, the thresholds for
ν̂u,I|S are defined in terms of ζ instead of α, and second, the threshold for ν̂u,I|S in the additive step
(Step 2) is smaller than that used in the pruning step (Step 3), in order to guarantee the pruning of all
non-neighbors. The algorithm is described in detail in the Appendix C.

Theorem 11. Fix ω > 0. Suppose we are given M samples from an RBM, where M is as in Theorem
6 if α were equal to

α =
ζ√

3 · 2D/2+2s ·D2s−1(2s+2)
.

Then with probability at least 1− ω, our algorithm, when run starting from each observed variable
u, recovers a subset of the MRF neighbors of u, such that all neighbors which are connected to u
through a Fourier coefficient of absolute value at least ζ are included in the subset. Each run of the
algorithm takes O(MLn2s+1) time.
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5.2 Regression algorithm

Note that

P(Xu = 1|X[n]\{u} = x[n]\{u}) = σ

2
∑

S⊆[n]\{u}

f̂(S ∪ {u})χS(x)

 .

Therefore, following the approach of [26], we can frame the recovery of the Fourier coefficients as a
regression task. Let n(u) be the set of MRF neighbors of u recovered by the algorithm in Section 5.1.
Note that |n(u)| ≤ D. Let z ∈ {−1, 1}2|n(u)|

, w ∈ R2|n(u)|
, and y ∈ {−1, 1}, with zS = χS(X),

wS = 2f̂(S ∪ {u}), and y = Xu, for all subsets S ⊆ n(u). Then, if n(u) were equal to the true set
of MRF neighbors, we could rewrite the conditional probability statement above as

P(y = 1|z) = σ(w · z), with ||w||1 ≤ 2γ.

Then, finding an estimate ŵ would amount to a constrained regression problem. In our setting, we
solve the same problem, and we show that the resulting estimate has small prediction error. We
estimate ŵ as follows:

ŵ ∈ argmin
w∈R|n(u)|

1

M

M∑
i=1

l(y(i)(w · z(i))) s.t. ||w||1 ≤ 2γ,

where we assume we have access to M i.i.d. samples (z, y), and where l : R→ R is the loss function

l(y(w · z)) = ln(1 + e−y(w·z)) =

{
− lnσ(w · z), if y = 1

− ln(1− σ(w · z)), if y = −1
.

The objective above is convex, and the problem is solvable in time Õ((2D)4) by the l1-regularized
logistic regression method described in [17]. Then, Theorem 12 gives theoretical guarantees for the
prediction error achieved by this regression algorithm. The proof is deferred to the Appendix D.
Theorem 12. Fix δ > 0 and ε > 0. Suppose that we are given neighborhoods n(u) satisfying the
guarantees of Theorem 11 for each observed variable u. Suppose that we are given M samples from
the RBM, and that we have

M = Ω
(
γ2 ln(8 · n · 2D/δ)/ε2

)
, ζ ≤

√
ε

Dd
√

1 + e2γ
.

Let zu and ŵu be the features and the estimate of the weights when the regression algorithm is run at
observed variable u. Then, with probability at least 1− δ, for all variables u,

E
[(
P(Xu = 1|X\u)− σ (ŵu · zu)

)2] ≤ ε.
The sample complexity of the combination of structure learning and regression is given by the sum of
the sample complexities of the two algorithms. When δ is constant, the number of samples required by
regression is absorbed by the number of samples required by strucutre learning. For structure learning,
plugging in the upper bound on ζ required by Theorem 12, we get that the sample complexity is
exponential in ε−1. Note that the factors Dd and

√
1 + e2γ in the upper bound on ζ, as well as the

factors that appear in Theorem 11 from the relative scaling of α and ζ, do not influence the sample
complexity much, because factors of similar order already appear in the sample complexity of the
structure learning algorithm. Overall, for constant δ and constant ε, the combined sample complexity
is comparable to that of the algorithm in Section 3, without the α dependency.

Broader impact

This work does not present any foreseeable societal consequence.

Funding disclosure

G.B. was supported in part by MIT-IBM Watson AI Lab and NSF CAREER award CCF-1940205.

9



References
[1] Animashree Anandkumar, Ragupathyraj Valluvan, et al. Learning loopy graphical models with

latent variables: Efficient methods and guarantees. The Annals of Statistics, 41(2):401–435,
2013.

[2] Guy Bresler, David Gamarnik, and Devavrat Shah. Structure learning of antiferromagnetic Ising
models. In Advances in Neural Information Processing Systems, pages 2852–2860, 2014.

[3] Guy Bresler and Mina Karzand. Learning a tree-structured Ising model in order to make
predictions. Annals of Statistics, 48(2):713–737, 2020.

[4] Guy Bresler, Frederic Koehler, and Ankur Moitra. Learning restricted Boltzmann machines
via influence maximization. In Proceedings of the 51st Annual ACM SIGACT Symposium on
Theory of Computing, pages 828–839. ACM, 2019.

[5] Stephen G Brush. History of the Lenz-Ising model. Reviews of modern physics, 39(4):883,
1967.

[6] Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. Latent variable graphical model
selection via convex optimization. In 2010 48th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 1610–1613. IEEE, 2010.

[7] Myung Jin Choi, Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky. Learning
latent tree graphical models. Journal of Machine Learning Research, 12(May):1771–1812,
2011.

[8] Minghua Deng, Kui Zhang, Shipra Mehta, Ting Chen, and Fengzhu Sun. Prediction of
protein function using protein-protein interaction data. In Proceedings. IEEE Computer Society
Bioinformatics Conference, pages 197–206. IEEE, 2002.

[9] Yoav Freund and David Haussler. Unsupervised learning of distributions on binary vectors using
two layer networks. In Advances in neural information processing systems, pages 912–919,
1992.

[10] Linus Hamilton, Frederic Koehler, and Ankur Moitra. Information theoretic properties of
Markov random fields, and their algorithmic applications. In Advances in Neural Information
Processing Systems, pages 2463–2472, 2017.

[11] John M Hammersley and Peter Clifford. Markov fields on finite graphs and lattices. Unpublished
manuscript, 46, 1971.

[12] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

[13] Geoffrey E Hinton and Russ R Salakhutdinov. Replicated softmax: an undirected topic model.
In Advances in neural information processing systems, pages 1607–1614, 2009.

[14] Navdeep Jaitly and Geoffrey Hinton. Learning a better representation of speech soundwaves
using restricted Boltzmann machines. In 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5884–5887. IEEE, 2011.

[15] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983–1006, 1998.

[16] Adam Klivans and Raghu Meka. Learning graphical models using multiplicative weights.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
343–354. IEEE, 2017.

[17] Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale
`1-regularized logistic regression. Journal of Machine learning research, 8(Jul):1519–1555,
2007.

[18] Stan Z Li. Markov random field modeling in computer vision. Springer Science & Business
Media, 2012.

10



[19] Elchanan Mossel and Sébastien Roch. Learning nonsingular phylogenies and hidden Markov
models. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 366–375, 2005.

[20] Yusuke Nomura, Andrew S Darmawan, Youhei Yamaji, and Masatoshi Imada. Restricted
Boltzmann machine learning for solving strongly correlated quantum systems. Physical Review
B, 96(20):205152, 2017.

[21] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted Boltzmann machines
for collaborative filtering. In Proceedings of the 24th international conference on Machine
learning, pages 791–798. ACM, 2007.

[22] Narayana P Santhanam and Martin J Wainwright. Information-theoretic limits of selecting
binary graphical models in high dimensions. IEEE Transactions on Information Theory,
58(7):4117–4134, 2012.

[23] Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory.
Technical report, Colorado Univ at Boulder Dept of Computer Science, 1986.

[24] Marc Vuffray, Sidhant Misra, and Andrey Y Lokhov. Efficient learning of discrete graphical
models. arXiv preprint arXiv:1902.00600, 2019.

[25] Zhi Wei and Hongzhe Li. A Markov random field model for network-based analysis of genomic
data. Bioinformatics, 23(12):1537–1544, 2007.

[26] Shanshan Wu, Sujay Sanghavi, and Alexandros G Dimakis. Sparse logistic regression learns all
discrete pairwise graphical models. In Advances in Neural Information Processing Systems,
pages 8069–8079, 2019.

[27] Yan Yan, Xinbing Qin, Yige Wu, Nannan Zhang, Jianping Fan, and Lei Wang. A restricted
Boltzmann machine based two-lead electrocardiography classification. In 2015 IEEE 12th
international conference on wearable and implantable body sensor networks (BSN), pages 1–9.
IEEE, 2015.

11


	Introduction
	Background
	Contributions
	Overview of structural result

	Preliminaries and notation
	Learning Restricted Boltzmann Machines with sparse latent variables
	Proof sketch of structural result
	Making good predictions independently of the minimum potential
	Structure learning algorithm
	Regression algorithm


