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Abstract

We study the problem of least squares linear regression where the datapoints are
dependent and are sampled from a Markov chain. We establish sharp information
theoretic minimax lower bounds for this problem in terms of Ty,;x, the mixing
time of the underlying Markov chain, under different noise settings. Our results
establish that in general, optimization with Markovian data is strictly harder than
optimization with independent data and a trivial algorithm (SGD-DD) that works
with only one in every O (7mix) samples, which are approximately independent, is
minimax optimal. In fact, it is strictly better than the popular Stochastic Gradient
Descent (SGD) method with constant step-size which is otherwise minimax optimal
in the regression with independent data setting.

Beyond a worst case analysis, we investigate whether structured datasets seen in
practice such as Gaussian auto-regressive dynamics can admit more efficient opti-
mization schemes. Surprisingly, even in this specific and natural setting, Stochastic
Gradient Descent (SGD) with constant step-size is still no better than SGD-DD. In-
stead, we propose an algorithm based on experience replay—a popular reinforcement
learning technique—that achieves a significantly better error rate. Our improved
rate serves as one of the first results where an algorithm outperforms SGD-DD on
an interesting Markov chain and also provides one of the first theoretical analyses
to support the use of experience replay in practice.

1 Introduction

Typical machine learning algorithms and their analyses crucially require the training data to be
sampled independently and identically (i.i.d.). However, real-world datapoints collected can be
highly dependent on each other. One model for capturing data dependencies which is popular in
many applications such as Reinforcement Learning (RL) is to assume that the data is generated
by a Markov process. While it is intuitive that the state of the art optimization algorithms with
provable guarantees for iid data will not converge as quickly or as efficiently for dependent data, a
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solid theoretical foundation that rigorously quantifies tight fundamental limits and upper bounds on
popular algorithms in the non-asymptotic regime is sorely lacking. Moreover, popular schemes to
break temporal correlations in the input datapoints that have been shown to work well in practice,
such as experience replay, are also wholly lacking in theoretical analysis. Through the classical
problem of linear least squares regression, we first present fundamental limits for Markovian data,
followed by an in-depth study of the performance of Stochastic Gradient Descent and variants (ie
with experience replay). Our work is comprehensive in its treatment of this important problem and
in particular, we offer the first theoretical analysis for experience replay in a structured Markovian
setting, an idea that is widely adopted in practice for modern deep RL.

There exists a rich literature in statistics, optimization and control that studies learn-
ing/modeling/optimization with Markovian data [1, 2, 3]. However, most of the existing analyses
work only in the infinite data regime, ie [4]. [S] provides non-asymptotic analysis of the Mirror
Descent method for Markovian data and [6] provides a similar analysis for TD(\) (Temporal Dif-
ference) algorithms which are widely used in RL. However, the provided guarantees are in general
suboptimal and seem to at best match the simple data drop technique where most of the data points
are dropped. [7] considers constant step size TD(\) algorithm but their guarantees suffer from a
constant bias. [8] establishes a finite-time bound for Q-learning with linear function approximation
and constant step size under a restricted sampling distribution. In parallel to our work, [9] considers
an accelerated gradient descent algorithm for general optimization problems and establish that for
decaying step sizes the rates in the Markovian case incur an additional logarithmic factor of the
mixing time compared to the iid case.

Stochastic Gradient Descent (SGD) is the modern workhorse of large scale optimization and often
used with dependent data, but our understanding of its performance is also weak. Most of the results,
ie [2] are asymptotic and do not hold for finite number of samples. Works like [10, 11] do provide
stronger results but can handle only weak dependence among observations rather than the general
Markovian structure. The work which is closest to our setting is [S] which presents non-asymptotic
analyses for uniformly Lipschitz convex optimization to obtain minimax optimal rates of the order
G/ ™= using decreasing step-sizes. The loss function for linear regression does not satisfy these
assumptions. In contrast, we obtain rates of the order ™2 in the general agnostic noise case and
under the assumption of independent noise, we are able to remove the i, factor. In fact, in general,
the existing rates are no better than those obtained by a trivial SGD-Data Drop (SGD-DD) algorithm
which reduces the problem approximately to the i.i.d. setting by processing only one sample from
each batch of 7,,ix training points. These results suggest that optimization with Markov chain data is a
strictly harder problem than the i.i.d. data setting, and also SGD might not be the "correct" algorithm
for this problem. We refer to [1, 6] for similar analyses of the related TD learning algorithm widely
used in reinforcement learning.

To gain a more complete understanding of the fundamental problem of optimization with Markovian
data, our work addresses the following two key questions. Q1: what are the fundamental limits for
learning with Markovian data and how does the performance of SGD compare. Q2: can we design
algorithms with better error rates than the trivial SGD-DD method that throws out most of the data.

We investigate these questions for the classical problem of linear least squares regression. We
establish algorithm independent information theoretic lower bounds which show that the minimax
error rates are necessarily worse by a factor of 7,,;x compared to the i.i.d. case and surprisingly, these
lower bounds are achieved by the SGD-DD method. We also show that SGD is not minimax optimal
when observations come with independent noise, and that SGD may suffer from constant bias when
the noise correlates with the data.

To study Q2, we restrict ourselves to a simple Gaussian Autoregressive (AR) Markov Chain which
is popularly used for modeling time series data [12]. Surprisingly, even for this restricted Markov
chain, SGD does not perform better than the SGD-DD method in terms of dependence on the mixing
time. However, we show that a method similar to experience replay [13, 14, 15], that is popular
in reinforcement learning, achieves significant improvement over SGD for this problem. To the
best of our knowledge, this represents the first rigorous analysis of the experience replay technique,
supporting it’s practical usage. Furthermore, for a non-trivial Markov chain, this represents first
improvement over performance of SGD-DD.

We elaborate more on our problem setup and contributions in the next section.
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Table 1: See Section 2 for a description of the three settings considered in this paper. We suppress universal
constants and log factors in the expressions above. For linear regression with i.i.d. data, tail-averaged SGD
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respectively. In contrast, even the minimax rates in the general agnostic Markov chain setting are 7mix-factor
worse, and tail-averaged SGD with constant-step size is not able to achieve these rates as well. We modify and
analyze variants of SGD (i.e., SGD-DD and Parallel SGD) that achieve close to minimax error rates. Finally,
for the Gaussian Autoregressive Markov chain, SGD still achieves a trivial bias error rate while our proposed
experience replay based SGD-ER method can decay the bias significantly faster.

1.1 Notation and Markov Chain Preliminaries

In this work, || - || denotes the standard ¢? norm over R?. Given any random variable X, we use D(X)
to denote the distribution of X. TV (u, v) denotes the total variation distance between the measures
w and v. Sometimes, we abuse notation and use TV (X, Y") as shorthand for TV (D(X), D(Y)). We
let KL(p||v) denote the KL divergence between measures p and v. Consider a time invariant Markov
chain MC with state space 2 C R? and transition matrix/kernel P. We assume throughout that MC
is ergodic with stationary distribution 7. For z € €, by P*(z,-) we mean D(X,;;1|X; = x), where
X1,Xo,..., X411 ~ MC.

For a given Markov chain MC with transition kernel P we consider the following standard measure
of distance from stationarity at time ¢,

dmix(t) ‘= sup TV(Pt(I', ')a 77) .
€N
We note that all irreducible aperiodic finite state Markov chains are ergodic and exponentially mixing
i.e, dpix(t) < Ce™* for some C,c > 0. For a finite state ergodic Markov chain MC, the mixing
time is defined as
Tmix = Inf{t : dpmix(t) < 1/4}.

We note the standard result that d,,ix(¢) is a decreasing function of ¢ and whenever ¢ = I7,,;x for
some | € N, we have

umise (ITmixe) < 27" (1)
See Chapter 4 in [17] for further details.

2 Problem Formulation and Main Results

Let X1 - X5 — .-+ — X7 be samples from an irreducible Markov chain MC with each X; €
Q C R? Let (u,) for x € Q be any set of probability measures over R indexed by elements of
(alternately p(,) :  x B(R) — [0, 1] is a Markov kernel where B(R) is the set of Borel measurable
sets of R). Associated with the Markov chain (X;)7_; is the sequence of observations (Y;)1_,
over the same probability space such that Y; ~ px,. Clearly, Y; is conditionally independent of
(Xs)s¢ given Xy. Given samples (X1,Y7), -+, (X7, Y7), our goal is to estimate a parameter w*
that minimizes the out-of-sample loss, which is the expected loss on a new sample (X,Y") where X



is drawn independently from the stationary distribution 7 of MC and Y ~ px:

w* = arg I%}in ﬁ]wc(w) ; where ﬁ]v[c(w) = EXNW |:(XT’LU — Y)ﬂ . (2)

Define A := Ex.XXT. Let || X¢| < 1 almost surely and A = Ex, . XXT = %I for some
finite ‘condition number’ £ > 1, implying unique minimizer w*. Also, let v < oo be such that
E [|Y|?|X; = x] < v forevery X; € Q2. We define the ‘noise’ or ‘error’ to be ny(X;,Y;) :=V; —
(X, w*) and by abusing notation, we denote n; := Y; — (X;, w*). We also let 0% := Ex, [nf]

2.1 Problem Settings
Our main results are in the context of the following problem settings:

e Agnostic setting: In this setting, the vectors X; are stationary (distributed according to 7) and
come from a finite state space  C R¢. We do not make any additional assumptions on the
noise. This class of noise is the most general and includes heteroscedastic noise models where the
variance of noise n; depends on X;.

o Independent noise setting: In addition to our assumptions in the agnostic setting, in this setting,
we assume that n,(X) is an independent and identically distributed zero mean random variable
with variance o2 for all X € . This noise model is necessarily homoscedastic i.e, the variance of
noise n; does not depend on X;.

o Experience Replay for the Gaussian Autoregressive Chain: In this setting, we fix a parameter
¢ and consider the non-stationary Markov chain X, that evolves as X; = v1 — €2 X, 1 + €g,
where gy ~ ﬁ.f\/’ (0, T) is sampled independently for different ¢. The observations Y; are given by

(X, w*) + & for some fixed w*, and &; is an independent mean 0 variance o2 random variable.

2.2 Main Results

We are particularly interested in understanding the limits (both upper and lower bounds) of SGD
type algorithms, with constant step sizes, for solving (2). These algorithms are, by far, the most
widely used methods in practice for two reasons: 1) these methods are memory efficient, and 2)
constant step size allows decreasing the error rapidly in the beginning stages and is crucial for good
convergence. In general, the error achieved by any SGD type procedure can be decomposed as a sum

of two terms: bias and variance where the bias part depends on step size o and ||w; — w*||* and the
variance depends on o2, where w; is the starting iterate of the SGD procedure. Thus,

ELaro (i) - Larc(w”) = L3 (lwr — 'l T) + L3 (7). @)

The bias term arises because the algorithm starts at w; and needs to travel a distance of ||w; — w
to the optimum. The variance term arises because the gradients are stochastic and even if we initialize
the algorithm at w*, the stochastic gradients are nonzero.

|

We provide a brief summary of our contributions below; See Table 1 for a comprehensive overview:

e For general least squares regression with Markovian data, we give information theoretic minimax
lower bounds under different noise settings that show that any algorithm will suffer from slower
convergence rates (by a factor of 7,,;x) compared to the i.i.d. setting (Section 3). We then show via
algorithms like SGD-DD and parallel SGD that the lower bounds are tight.

e We study lower bounds for SGD specifically and show that SGD converges at a suboptimal rate in
the independent noise setting and that SGD with with constant step size and averaging might not
even converge to the optimal solution in the agnostic noise setting. (Section 4).

e For Gaussian Autoregressive (AR) dynamics, we show that SGD with experience replay can
achieve significantly faster convergence rate (by a factor of |/Tmix) compared to vanilla SGD. This
is one of the first analyses of experience replay that validates its effectiveness in practice. (Section
5). Simulations confirm our analysis and indicates that our derived rates are tight.

3 Information Theoretic Minimax Lower Bounds for Bias and Variance

We consider the class Q of all Markov chain linear regression problems (), as described in Section 2,
where the following conditions hold:



1. The optimal parameter has norm ||w*|| < 1.

2. Markov chain MC is such that 7,5 < 79 € N.

3. The condition number x < Kg.

4. Noise sequence from a noise model A/ (ex: independent noise, noiseless, agnostic etc.)

We want to lower bound the minimax excess risk:

L(Q) = AngfeAslelg]E (Lo (ALG (Dg(T)))] — Lo(ws), 4)
where for a given Q € Q, L is the loss function with optimizer wa, and the class of algorithms
A= {ALG : (R? x R)T — R?} which take as input the data D (T) := {(X;,Y;) : 1 <t < T}
and output an estimate ALG(Dq (7)) for wg.

3.1 General Minimax Lower Bound for Bias Decay

Theorem 1 gives the most general minimax lower bound which holds for any algorithm, in any kind
of noise setting. In particular, this gives a bound on the ‘bias’ term in the bias-variance decomposition
of SGD algorithm’s excess loss (3) by letting noise variance o2 — 0.

Theorem 1. In the definition of Q, we let N be any noise model. Then, for any mixing time 1o and

T
condition number ko > 2, we have: L(Q) > “i—gl (1 — T(S;ﬂ) , where C'is a universal constant.
See Appendix C.1 for a complete proof. Note that the bias decay rate is a Tnix factor worse than that
in the i.i.d. data setting [18]. Furthermore, our result holds for any noise model, and for all settings
of key parameters kg and 7¢. This implies that unless the Markov chain itself has specific structure,
one cannot hope to design an algorithm with better bias decay rate than the trivial SGD-DD method.
Section 5 describes a class of Markov chains for which improved rates are indeed possible.

3.2 A Tight Minimax Lower Bound for Agnostic Noise Setting

We now present a minimax lower bound in the agnostic setting (Section 2.1). The bound analyzes the
variance term D’Qaria“c"' (02). Again, we incur an additional, unavoidable 7,,ix factor compared to the
setting with i.i.d. samples (Table 1).

Theorem 2. For the class of problems Q with noise model N of agnostic noise and for the class
of algorithms A defined above, we have L(Q) > ¢; %Qd, where T' is the number of observed data
points such that T > cpd?T90? and ¢y, co are universal constants.

Furthermore, SGD-DD achieves above mentioned rates up to logarithmic factors (Theorem 8).

This result combined with Theorem 1, implies that for general MC in agnostic noise setting, both
the bias and the variance terms suffer from an additional 7y factor. Our proof shows existence of
two different MCs whose evolution till time 7" can be coupled with high probability and hence they
give the same sequence of data. But, since the chains are different and the noise is agnostic, the
corresponding optimum parameters w* are different. See Appendix C.2 for a detailed proof.

Algorithm 1 SGD-DD

Require: T € N, (X1,Y}),..., (X7, Yr) € R x R, step size a > 0, initial point w; € R, drop
number K < T
for tin range [1, T/ K] do
Set

Wil — wy — aXyk (<wt,XtK> - YtK) . )

end for

. T/K+1
return o + 25 /K

s=T/2K+2 Ws -

3.3 A Tight Minimax Lower Bound for Independent Noise Setting

We now discuss the variance lower and upper bound for the general Markov Chain based linear
regression when the noise is independent (Section 2.1).



Theorem 3. For the class of problems Q with noise model N of independent noise and for the class

of algorithms A defined above, we have L(Q) > d%z. This bound is tight up to logarithmic factors
since ‘Parallel SGD’ achieves the rates established above. (Theorem 9, Section A.2)

Note that the lower bound follows directly from the classical iid samples case (Theorem 1 in
[19]) apply. For upper bound, we propose and study a Parallel SGD method discussed in detail
in Appendix D.4.2. Interestingly, SGD with constant step size, which is minimax optimal for i.i.d
samples with independent noise, is not minimax optimal when the samples are Markovian. We
establish this fact and others in the next section in our study of SGD.

Algorithm 2 Parallel SGD

Require: 7 € N, (X,Y7),..., (X7, Yr) € R x R, step size o > 0, parallelization number
K < T, initial points w{” € R?for1 < i < K.
for ¢ in range [1, 7/ K] do
for i in range [1, K] do

Setwl?)) « w” —aXy 1yits (<X(t—1)K+i; wiy - Y;')

end for

end for .
N2
return < £ .0, >

T/K )
t=T/2K+1 Wt

4 Sub-Optimality of SGD

In previous section, we presented information theoretic limits on the error rates of any method when
applied to the general Markovian data, and presented algorithms that achieve these rates. However,
in practice, SGD is the most commonly used method for learning problems. So, in this section,
we specifically analyze the performance of constant step size SGD on Markovian data. Somewhat
surprisingly, SGD shows a sub-optimal rates for both independent and agnostic noise settings.

Algorithm 3 SGD with tail-averaging

Require: 7 € N, samples (X1,Y1),...,(X7,Yr) € R x R, step size o > 0, initial point
wy € R¢,
for t in range [1, T'] do
Set Wiyl < W — Oé(XtXJ’LUt — Xtht) .
end for -
return W < g Do 72 41 W -

SGD with Constant Step Size is Asymptotically Biased in the Agnostic Noise Setting It is well
known that when data is iid, the expected iterate of Algorithm 3, E [w;] converges to w* as t — oo in
any noise setting. However, this does not necessarily hold when the data is Markovian. When the
noise in each observation n;(X) depends on X, SGD with constant step size may yield iterates that
are biased estimators of the parameter w* even as ¢ — oco. In this case, even tail-averaging such as in
Algorithm 3, cannot resolve this issue. See Appendix D.1 for the detailed proof.

Theorem 4. There exists a finite Markov chain MC with Tmix, & < C Xo ~ 7(MC) and X, —

Xy — -+ = Xp ~ MC, SGD (Algorithm 3) run with any constant step size o > 0 leads to a
constant bias, i.e., for every t large enough,

[E[w:] = w™[| > ca,

where wy is the t-th step iterate of the SGD algorithm. (Where c,C' > 0 are universal constants.)

SGD in the Independent Noise Setting is not Minimax Optimal (Appendix D.2) Let SGD,, be
the SGD algorithm with step size « and tail averaging (Algorithm 3). For X; — ... — X7 ~ MC,
we denote the output of SGD,, corresponding to the data Dy(T') := (X3, Y;)Z_; by SGD,,(Do(T)).
We let wy to be the optimal parameter corresponding to the regression problem. We have the following
lower bound.



Theorem 5. For every 1g9,d € N, there exists a finite state Markov Chain, MCy and associated

independent noise observation model (see Section 2.1) with points in R, mixing time at most 7o and
’ 2
wiic, I < 1, such that: ELyic, (SGDo(Do(T))) — Lyc, (wg) = (1 —or(1)) car0od ywhere ¢/

is a universal constant and or (1) — 0 exponentially in T and o® = En? is the noise variance.

The above result shows that while SGD with constant step size and tail averaging is minimax optimal
in the independent data setting, it’s variance rate is 7o factor sub-optimal in the setting of Markovian
data and independent noise. It is also 7 factor worse compared to the rate established in Theorem 3.

S Experience Replay for Gaussian Autoregressive (AR) Dynamics

Previous two sections indicate that for worst case Markov chains, SGD-DD, despite wasting most of
the samples, might be the best algorithm for Markovian data. This naturally seems quite pessimistic,
as in practice, approaches like experience replay are popular [20]. In this section, we attempt to
reconcile this gap by considering a restricted but practical Markov Chain (Gaussian AR chain) that is
used routinely for time-series modeling [12] and intuitively seems quite related to the type of samples
we can expect in reinforcement learning (RL) problems. Interestingly, even for this specific chain, we
show that SGD’s rates are no better than the SGD-DD method. On the other hand, an experience
replay based SGD method (Algorithm 4) is able to give significantly faster rates, thus supporting it’s
usage in practice. More details and proofs are found in Section E.

Suppose our sample vectors X € R? are generated from a Markov chain (MC) with the following

dynamics:
X1 =G, Xepn = V1= EXy + €G- (6)
where e is fixed and known, and each G is independently sampled from %]\/ (0,14). Each observa-

tionY; = X ZT w* + &;, where the noise &; is independently drawn with mean 0 and variance o2. That
is, every new sample in this MC is a random perturbation from a fixed distribution of the previous
sample, which is intuitively similar to the sample generation process in RL.

The mixing time of this Markov chain is 7;x = © (}2 log(d)) (Lemma 19, Section E.1). Also, the
covariance matrix of the stationary distribution is éId, so the condition number of this chain is K = d.

5.1 Lower Bound for SGD with Constant Step Size

We first establish a lower bound on the rate of bias decay for SGD with constant step size for this
problem, which will help demonstrate that experience replay is effective in making SGD iterations
more efficient.

Theorem 6 (Lower Bound for SGD with constant step size for Gaussian AR Chain). £(w"!8%) >
Q (exp (%}fwv lwo — w* Hz) Recall that k = d for MC in (6)

The proof for this lemma involves carefully tracking the norm of the error at each iteration ||w; — w*||.
We show that the expected norm of the error contracts by a factor of at most % in each iteration,
therefore, we require 7' = Q(E%) samples and iterations to get a J-approximate wy. Note that the

number of samples required here is Q(e%) =Q l'f)gz‘d’a ). See Section E.4 for a detailed proof.

5.2 SGD with Experience Replay

We propose that the following interpretation of experience replay applied to SGD, which improves
the dependence on 7,ix on the rate of error decay.

Suppose we have a continuous stream of samples X1, Xo, ... X7 from the Markov Chain. We split
the T" samples into % separate buffers of size S in a sequential manner, ie X, ... Xg belong to the
first buffer. Let S = B + u, where B is orders of magnitude larger than u. From within each buffer,
we drop the first u samples. Then starting from the first buffer, we perform B steps of SGD, where for
each iteration, we sample uniformly at random from within the [u, B 4 u]samples in the first buffer.
Then perform the next B steps of SGD by uniformly drawing samples from within the [u, B + u]
samples in the second buffer. We will choose u so that the buffers are are approximately i.i.d..



We run SGD this way for the ﬁrst 55 buffers to ensure that the bias of each iterate is small. Then

for the last & 25 buffers, we perform SGD in the same way, but we tail average over the last iterate
produced using each buffer to give our final estimate w. We formally write Algorithm 4.

Algorithm 4 SGD with Experience Replay (SGD-ER)

Require: (X1,Y7),...(X7,Yr) € R? sampled using (6), n: learning rate
w~ N(0,1), B 7’u<_max(2 log 300000mdB 2 |, gsooooom o® ), S B+u
for each buffer j € [0, L — 1] do

Buffer; = [X(S,j+1)7 ey X(S-j+S)]
for iterate in range[1, B] do

w=w—nYsjti — (Xsj+i, w))Xg;j+: Where Rt [u, S]

end for
Store w; < w
end for
5
return 2 > w; (i.e. average over last 7/2S buffers)
j=T/25+1

Theorem 7 (SGD with Experience Replay for Gaussian AR Chain). Forany e < 0.21, if B > %7
and d = Q(B* log(l)) with probability at least 1 — [3, Algorithm 4 returns w such that E[L(w)] <

0 (exp (:17\/2%() |lwo — *||2> +0 (%) + L(w*). Recall that k = d for MC in (6).

Proof. E[L(w)] = E(L(wP®)) +E(L(w"a)) + L(w*). We give proof sketches for E(L£(wP2)) <

w
- 2 .
@) (eXp (%\/id)) [|lwo w*||2) and E(L(w"")) < O (% VT") Formal proofs are given in

the appendix. O

Proof Sketch for Bias Decay (Proof in Section E.2): Since the samples within the same buffer and
across buffers are highly dependent, our algorithm drops the first 4 samples from each batch. This
ensures that across buffers the sampled points are approximately independent. This allows us to break
down the problem into analyzing the progress made by one buffer, which we can then multiply 7'/.S
times to get the overall bias bound. Lemma 21 formalizes this idea and upper bounds the expected
contraction after every B samples from a buffer j, by the expected contraction of a parallel process
where the first vector in this buffer was sampled i.i.d. from N (0, 31).

The rest of the proof involves solving for expected rate of error decay when taking B steps of SGD

S
using samples generated from a single buffer in this parallel process. We write H := % XX T
j=u+1
where X; are the vectors in the sampling pool. Lemma 22 establishes that the error in the direction of

an eigenvector v, with associated eigenvalue A(v) > % in H contracts by a factor of % after B rounds

of SGD, while smaller eigenvalues in H in the worst case do not contract. By spherical symmetry of
eigenvectors, as long as the fraction of eigenvalues > % is at least %, and since we draw B samples
—T log(d) )

from each buffer, we see that the loss decays at a rate of exp(=2<) = exp(— N

So, the key technical argument is to establish that L)—B; of the eigenvalues of H are larger than or equal
to %, the overall proof structure is as follows. The non-zero eigenvalues of H correspond directly

to the non-zero eigenvalues of the gram matrix M = %X T X, where the columns of X are each
X;. We show that the Gram matrix can be written as C' + E, where C'is a circulent matrix and £
is a small perturbation which can be effectively bounded when d is large, i.e., d = O(B*). Using
standard results about eigenvalues of C' along with Weyl’s inequality [21] to handle perturbation F,
we get a bound on the number of large-enough eigenvalues of H. The formal proof is in Section E.2.

Proof Sketch for Variance Decay (Proof in Section E.3)

To analyze the variance, we start with wg®" = w*, and based on the SGD update dynamics, consider
the expected covariance matrix E[(w"® — w*)(w"® — w*)T], where w"®" is the tail-averaged value
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Figure 1: Gaussian AR Chain: error incurred by various methods

of the last iterate from every buffer, for the last % buffers. We show that for each iterate in the

average, the covariance matrix E[(w} —w*)(w}® —w*)T] < 302, Next, we analyze the cross terms
E[(wy® —w*)(wy* —w*)"], which is approximately equal to (I—H )/ ~"E[(w}* —w*) (w}*" —w*)T],
when j > ¢ are buffer indices. This approximation is based on perfectly iid buffers, which we later
correct by explicitly quantifying the worst case difference in the expected contraction of our SGD
process and a parallel SGD process that does use perfectly iid buffers, (see Lemma 20). We use our
earlier analysis of the eigenvalues of H to arrive at our final rate.

Simulations. We also conducted experiments on data generated using Gaussian AR MC (6). We set
(d,o,€) = (10, 1e — 3,0.01) and choose the buffer size B = 1/¢2. We report results averaged over
100 runs. Figure 1a compare the estimation error achieved by SGD, SGD-DD, and the proposed SGD-
ER method. Note that, as expected by our theorems, the decay regime starts at d/7pix for SGD-ER
and d7y,ix for SGD which is similar to rate of SGD-DD. After about 50, 000 samples, SGD-ER’s bias
term becomes smaller than the variance term, hence we observe a straight line post that point. Also,
according to Theorem 7 the variance at final point should be about 202d?/(eT') ~ 2e — 9, which
matches the empirically observed error. We present results for higher dimensions in the appendix.

We also run the experiment with parameter values (d, o, ¢) = (100, le — 3,0.01) and buffer size
B = 1/€2. We report results averaged over 20 runs. Figure 1b compares the estimation error achieved
by SGD, SGD-DD, and the proposed SGD-ER method. We obtain results which are similar to the
d = 10 case.

6 Conclusion

In this paper, we obtain the fundamental limits of performance/minimax rates that are achievable in
linear least squares regression problem with Markov chain data. Furthermore, we discuss algorithms
that achieve these rates (SGD-DD and Parallel SGD). In the general agnostic noise setting, we show
that any algorithm suffers by a factor of 7,,;x in both bias and variance, compared to the i.i.d. setting.
In the independent noise setting, the minimax rate for variance can be improved to match that of
the i.i.d. setting but standard SGD method with constant step size still suffers from a worse rate.
Finally, we study a version of the popular technique ‘experience replay’ used widely for RL in the
noiseless Gaussian AR setting and show that it achieves a significant improvement over the vanilla
SGD with constant step size. Overall, our results suggest that instead of considering the general class
of optimization problems with arbitrary Markov chain data (where things cannot be improved by
much), it may be useful to identify and focus on important special cases of Markovian data, where
novel algorithms with nontrivial improvements might be possible.



Broader Impact

We build foundational theoretical groundwork for the fundamental problem of optimization with
Markovian data. We think that our work sheds light on the possibilities and impossibilities in this
space. For practitioners, our focus on the popular SGD algorithm provides them with a rigorously
justified understanding of what SGD can achieve and for specially structured chains, experience
replay with SGD can be provably helpful (though not in the general case). We also think that the
proof techniques in this paper could impact future research in this space and beyond.
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