
1

Reliability-Performance Trade-offs
in Neuromorphic Computing

Twisha Titirsha and Anup Das
Electrical and Computer Engineering Drexel University, Philadelphia, PA, USA

Email: {tt624,anup.das}@drexel.edu

Abstract—Neuromorphic architectures built with Non-Volatile
Memory (NVM) can significantly improve the energy efficiency of
machine learning tasks designed with Spiking Neural Networks
(SNNs). A major source of voltage drop in a crossbar of these
architectures are the parasitic components on the crossbar’s
bitlines and wordlines, which are deliberately made longer to
achieve lower cost-per-bit. We observe that the parasitic voltage
drops create a significant asymmetry in programming speed and
reliability of NVM cells in a crossbar. Specifically, NVM cells that
are on shorter current paths are faster to program but have lower
endurance than those on longer current paths, and vice versa.
This asymmetry in neuromorphic architectures create reliability-
performance trade-offs, which can be exploited efficiently using
SNN mapping techniques. In this work, we demonstrate such
trade-offs using a previously-proposed SNN mapping technique
with 10 workloads from contemporary machine learning tasks
for a state-of-the art neuromoorphic hardware.

Index Terms—Neuromorphic Computing, Non-Volatile Mem-
ory (NVM), Phase-Change Memory (PCM), Endurance

I. INTRODUCTION

Spiking Neural Networks (SNNs) are emerging machine
learning models with spike-based computation and bio-inspired
learning algorithms. Event-driven neuromorphic hardware such
as TrueNorth [1], Loihi [2], and DYNAP-SE [3] implements
biological neurons and synapses to execute SNN-based machine
learning tasks in an energy-efficient manner. This makes neu-
romorphic hardware suitable for energy-constrained platforms
such as the embedded systems [4] and edge devices of the
Internet-of-Things (IoTs) [5].

A neuromorphic hardware is implemented as a tile-based
architecture, the tiles are interconnected using a shared intercon-
nect such as the Network-on-Chip (NoC) [6] and Segmented
Bus [7]. Each tile consists of a crossbar, which can implement
a fixed number of neurons and synapses. A crossbar in a
neuromorphic hardware is an n×n organization, with n bitlines
(columns) and n worklines (rows). A silicon neuron is mapped
along each wordline of a crossbar, while a synaptic cell is
placed at the cross-section of each bitline and wordline using
an access device such as a transistor or a diode [8].

Recently, Non-Volatile Memory (NVM) such as Phase-
Change Memory (PCM), Oxide-based Resistive RAM (OxR-
RAM), and and Spin-Transfer Torque Magnetic or Spin-Orbit-
Torque RAM (STT- and SoT-MRAM) are used as synaptic cells
to increase integration density and reduce energy consumption
of crossbars in neuromorphic hardware [9]–[11].

A major source of voltage drops in a crossbar are the parasitic
resistance and capacitance on its bitlines and wordlines, which

are deliberately made longer to achieve lower cost-per-bit. In
fact, for a PCM-based crossbar, each neuron is approximately
18x the size of a PCM cell [12]. To amortize this large size,
systems designers implement larger crossbars, e.g., 128× 128

for DYNAP-SE and 256 × 256 for TrueNorth. For such large
crossbar sizes, the current on the longest path in a crossbar
becomes significantly lower than the current on its shortest
path for the same spike voltage generated from a neuron and
the same conductance programmed on the enabled synaptic
cell in these paths.1

Current asymmetry leads to a difference in performance
and reliability of NVM cells. Higher current through an NVM
cell can lead to faster programming of the cell. This means
that NVM cells on shorter current paths are faster to access
and program. However, NVMs also have limited endurance,
ranging from 105 (for Flash) to 1010 (for OxRRAM), with PCM
somewhere in between (≈ 107). An NVM cell’s endurance is
strongly dependent on the programming current. We build
the case for PCM, where the conductance change is induced
by Joule heating of the chalcogenide material in the cell.
The endurance of the material depends on the self-heating
temperature, which is dependent on the programming current.
Therefore, the NVM cells on shorter current paths have higher
self-heating temperature, and therefore lower endurances.

In recent years, many approaches are proposed to map SNNs
to neuromorphic hardware. This includes the performance-
oriented SNN mapping technique of [13], [14], the dataflow-
based mapping technique of [15], [16], the energy-aware
mapping technique of [17]–[19], the circuit aging-aware map-
ping technique of [20]–[23], and the run-time SNN mapping
technique of [24]. Unfortunately, none of these approaches
exploit the reliability and performance trade-offs of NVM
cells in neuromorphic computing. In this paper, we take
one such mapping approach – SpiNeMap, and show the
significant variations in endurance and speed during its mapping
explorations.

The remainder of this paper is organized as follows. We
provide a background of PCM and neuromorphic architectures
in Section II. Next, we formulate the endurance-access speed
trade-offs for a single PCM cell and integrate such trade-
offs at the crossbar-level in Section III. Next, we discuss the
mapping exploration of SpiNeMap in Section IV. We present
our evaluation in Section V and conclusion in Section VI.

1The length of a current path in a crossbar is measured in terms of the
number of parasitic components that are encountered on the path.
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