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Abstract. Hardware implementation of neuromorphic computing can
significantly improve performance and energy efficiency of machine learn-
ing tasks implemented with spiking neural networks (SNNs), making
these hardware platforms particularly suitable for embedded systems and
other energy-constrained environments. We observe that the long bit-
lines and wordlines in a crossbar of the hardware create significant cur-
rent variations when propagating spikes through its synaptic elements,
which are typically designed with non-volatile memory (NVM). Such
current variations create a thermal gradient within each crossbar of the
hardware, depending on the machine learning workload and the mapping
of neurons and synapses of the workload to these crossbars. This thermal
gradient becomes significant at scaled technology nodes and it increases
the leakage power in the hardware leading to an increase in the energy
consumption. We propose a novel technique to map neurons and synapses
of SNN-based machine learning workloads to neuromorphic hardware.
We make two novel contributions. First, we formulate a detailed thermal
model for a crossbar in a neuromorphic hardware incorporating work-
load dependency, where the temperature of each NVM-based synaptic
cell is computed considering the thermal contributions from its neigh-
boring cells. Second, we incorporate this thermal model in the mapping
of neurons and synapses of SNN-based workloads using a hill-climbing
heuristic. The objective is to reduce the thermal gradient in crossbars.
We evaluate our neuron and synapse mapping technique using 10 ma-
chine learning workloads for a state-of-the-art neuromorphic hardware.
We demonstrate an average 11.4K reduction in the average temperature
of each crossbar in the hardware, leading to a 52% reduction in the leak-
age power consumption (11% lower total energy consumption) compared
to a performance-oriented SNN mapping technique.

Keywords: Neuromorphic computing � Spiking Neural Network � Non-
Volatile Memory (NVM) � Phase-Change Memory (PCM) � Temperature
� Leakage power consumption � Crossbar.

1 Introduction

Spiking Neural Networks (SNNs) are machine learning models designed with
spike-based computations and bio-inspired learning algorithms [37]. Neurons
communicate information using spikes via synapses. SNNs are used to imple-
ment both supervised and unsupervised machine learning approaches. Our focus
is on supervised approaches, where a machine learning model is first trained
using training data, and then deployed for inference with in-field data.
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Neuromorphic hardware such as TrueNorth [24], Loihi [23], and DYNAP-
SE [39] can significantly improve the energy efficiency of SNNs, thanks to their
event-driven computations, efficient implementations of biological neurons us-
ing CMOS and FinFET technologies, and the use of Non-Volatile Memory
(NVM) such as Phase-Change Memory (PCM) [10,50,46,48,49], Oxide-base Re-
sistive RAM (OxRRAM) [38], and Spin-Transfer Torque Magnetic or Spin-Orbit-
Torque RAM (STT- and SoT-MRAM) [41] for high density synaptic storage.
Therefore, neuromorphic hardware can be used to implement machine learning
tasks on power-constrained environments such as embedded systems, and sensor
and edge devices of the Internet-of-Things (IoT) [27].

A neuromorphic hardware is implemented as a tile-based architecture [11]
with a shared interconnect in the form of Networks-on-Chip (NoC) or Segmented
Bus [9] (see Figure 1a). A tile in a neuromorphic hardware is designed as a cross-
bar, which is an organization of top electrodes (wordlines) and bottom electrodes
(bitlines), with NVM-based synaptic elements at their intersections (Figure 1b).
A synaptic element is connected to a bitline and a wordline using an access tran-
sistor (Figure 1c). Within a crossbar, the pre-synaptic neurons are mapped on
the wordlines, while the post-synpatic neurons are mapped along the bitlines.
An n × n crossbar has n pre-synaptic neurons, n post-synaptic neurons, and n2

NVM cells. A pre-synaptic neuron’s spike voltage from a wordline is multiplied
with the conductance of the NVM to generate a current. Currents from multi-
ple wordlines are integrated on a bitline, implementing forward propagation of
neuron excitation. This is illustrated in Figure 1b.

Fig. 1. (a) Tile-based neuromorphic hardware. (b) A crossbar of a neuromorphic tile.
(c) An NVM-based synaptic cell consisting of an access transistor and an NVM.

We investigate the internal architecture of a crossbar and observe that the
bitlines and wordlines of a crossbar consist of parasitic elements, which consist
of capacitance and resistance of the metal interconnect as shown in Figure 2.
These parasitic elements create variation in current propagating along different
paths in the crossbar. The figure illustrates the shortest and the longest current
paths in a crossbar, where the length of a path is measured in terms of the num-
ber of parasitic components that are present on the path. Current differences
create variation in access speed of the different synaptic elements in the cross-
bar [26,55,51]. A conservative design practice is to use a common spike voltage to
obtain the required access speed of the synaptic element on the longest current
path.

We argue that this conservative approach creates current differences in a
crossbar, leading to a wide thermal gradient. Figure 3 illustrates the current and
thermal variations in a 128x128 PCM crossbar at 65nm technology node. Access-
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reducing the leakage power (which we demonstrate in this work) will lead to a
significant reduction of the total energy consumption.

Our goal is to minimize the leakage power consumption. We achieve this
goal by lowering the average temperature of each crossbar using the proposed
mapping technique. To this end, we make the following two key contributions.

– Contribution 1: We propose a new comprehensive thermal model of a
crossbar designed with phase-change memory (PCM). Our model incorpo-
rates 1) workload dependency, i.e., the temperature obtained in processing
spike trains from a given SNN-based machine learning workload, and 2)
spatial thermal dependencies, i.e., the temperature contributions from the
neighboring cells based on their synaptic excitation in the workload.

– Contribution 2:We propose a novel neuron and synapse mapping approach
incorporating the thermal model using a hill climbing heuristic. The objec-
tive of the heuristic is to allocate the neurons and synapses of an SNN to
the crossbars of the hardware such that the maximum average temperature
of all crossbars is minimized, which lowers its leakage power consumption.

We evaluate the proposed technique with 10 machine learning applications
from three most commonly-used neural network topology – convolution neural
network (CNN), multilayer perceptron (MLP), and recurrent neural network
(RNN). Evaluation for DYNAP-SE [39], a state-of-the-art neuromorphic hard-
ware demonstrates the reduction of temperature, leading to a significant reduc-
tion in the leakage current.

2 Workload-dependant Thermal Model of Crossbars

In this section, we develop a workload-dependent thermal model of crossbars in
a neuromorphic hardware, considering PCM-based synaptic elements. We start
by reviewing the internals of a PCM device. The proposed thermal model can be
generalized to other NVMs such as OxRRAM and SOT-/STT-MRAM exploiting
their specific structures.

Figure 4(a) illustrates how a chalcogenide semiconductor alloy is used to
build a PCM cell. The amorphous phase (logic ‘0’) in this alloy has higher
resistance than the crystalline phase (logic ‘1’). Ge2Sb2Te5 (GST) is the most
commonly used alloy for PCM [54] due to its high amorphous-to-crystalline
resistance ratio, fast switching between phases, and high endurance. However,
other chalcogenide alloys are also explored due to their better data retention
properties [40]. Phase changes in a PCM cell are induced by injecting current
into the resistor-chalcogenide junction and heating the chalcogenide alloy.

Figure 4 (b) shows the different current profiles needed to program and read
in a PCM device. To RESET a PCM cell, a high power pulse of short duration is
applied and quickly terminated. This first raises the temperature of the chalco-
genide alloy to 650◦C, above its melting point. The melted alloy subsequently
cools extremely quickly, locking into an amorphous phase. To SET a PCM cell,
the chalcogenide alloy is heated above its crystallization temperature, but below
its melting point for a sufficient amount of time. Finally, to read the content
(i.e., know the phase) of a PCM cell, a small electrical pulse is applied that is
sufficiently low so as not to induce phase change in the PCM cell. We focus on
PCM read for the inference of supervised machine learning approaches
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The temperature of a single PCM cell is computed using Joule heating, Wj

and heat dissipation, Wd which is given by the following equation [35],

TPCM =

∫
Wj −Wd

C × V
dt (1)

where C and V are heat capacity of GST and volume of the active region of the
cell respectively. The heat generation in the PCM cell is given by,

Wj = I2PCM ×RPCM (2)

where IPCM is the current through the PCM cell and RPCM is the effective
resistance of the cell. We use RPCM = 10KΩ in the low resistance (SET) state
and 200KΩ in the high resistance (RESET) state. A part of this generated
heat is dissipated to the surrounding and this heat dissipation is given by the
Equation [34],

Wd = −k
∑

ΔT (3)

where ΔT represents the temperature dispersion around the active region and
expressed as,

ΔT =
∂TPCM

∂x
+

∂TPCM

∂y
+

∂TPCM

∂z
(4)

For simplicity we assume that the heat is mainly dispersed along the thickness
of the cell and the temperature outside the dispersion region is close to the tem-
perature surrounding the cell. Therefore, Equation 3 can be written as [31], [53],

Wd =
kV

l2
(TPCM − Tsurrounding) (5)

where l is the thickness of the GST material and k is the thermal conductivity.
Substitution of Equations 2 and 5 in Equation 1 yields,

dTPCM

dt
=

Wj −Wd

C × V
(6)

Solving this ODE gives,

TPCM =
I2PCMRPCM l2

kV
− C1exp

(
− kt

l2C

)
+ Tsurrounding (7)

Initially the PCM cell’s temperature is assumed to be the same as its surrounding
temperature. This boundary condition is used to determine the constant C1.
Finally the cell temperature is modeled as,

TPCM =
I2PCMRPCM l2

kV
−
[
1− exp

(
− kt

l2C

)]
+ Tsurrounding (8)

The surrounding temperature Tsurrounding is computed as

Tsurrounding = Tamb +
∑
j

k · TPCMj/Dj (9)
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where Dj is the thermal distance of the PCM cell from its neighboring cell
j, TPCMj is the temperature of the neighboring cell, and Tamb is the ambient
temperature of the neuromorphic hardware.

Equations 8 and 9 combine the following effects — 1) temporal thermal effect
of accessing a PCM cell in a machine learning workload, 2) the spatial thermal
contributions from the neighboring cell based on their activation.

Finally, we use the PCM temperature TPCM to compute the leakage current
through the access transistor of the PCM cell using Equation 10, where the
fitting parameters A and η, and the nominal parameters Inominal and Tnominal

are obtained using [36,42,21,19,18,3,15].

Ileakage ≈ A · Inominal (TPCM − Tnominal)
η (10)

3 Proposed Neuron and Synapse Mapping Technique

Figure 6 shows an overview of the proposed neuron and synapse mapping ap-
proach. A machine learning application is first simulated using PyCARL [2], a
framework for simulating SNN-based applications. PyCARL internally uses the
CARLsim [13] simulator to extract the precise spike times on every synaptic
element in the SNN for representative training data. These spike times, together
with the neuron and synapse information constitute the SNN workload for the
machine learning application.

Fig. 6. Overview of the proposed technique.

Next, the SNN workload is clustered using a greedy clustering approach,
roughly based on the Kernighan-Lin Graph Partitioning algorithm of SpiNe-
Map [29]. Each cluster is a collection of pre- and post-synaptic neurons, synapses
connecting these neurons, and the spike times on these synapses. From the map-
ping perspective, each cluster maps to a crossbar in the hardware, while the
inter-cluster communication channels are mapped on the shared interconnect of
the hardware. Therefore, the clustering technique ensures that the neurons and
synapses of a cluster can fit onto the resources of the crossbar. PyCARL clusters
an SNN to minimize the inter-cluster communication. This reduces the spike
congestion on the shared interconnect which improves application latency.

The final step in our approach is the cluster mapping to the hardware. To
describe this step, let G(C, S) be the machine learning workload with set C of
clusters and a set S of connections between the clusters. The workload is to
be executed on the hardware H(T , L) with a set T of tiles (each tile has one
crossbar) and a set L of links between the tiles. The mapping of the application
G to the hardware H, M = {mx,y} is defined as

mx,y =

{
1 if cluster cx ∈ C is mapped to tile ty ∈ T

0 otherwise
(11)
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Algorithm 1: Generate neuron and synapse mapping M to minimize the
average temperature of crossbars.

Input: G,H
Output: M

1 for i in MaxIter do
2 Minit = allocate clusters to crossbars randomly;
3 Tinit = CalculateAvgTemperature(Minit);
4 do
5 for cx ∈ C do
6 for ty ∈ T do

7 My = Minit

∣∣mx,z =

{
1 if z = y
0 otherwise

/* Move cx to tile ty and

generate the new mapping My. */
8 Ty = CalculateAvgTemperature(My);
9 end

10 xidx = argmin {Ty

∣∣y ∈ 1, 2, · · · , |T |}/* Find the index of the

mapping with the minimum temperature. */
11 if Ty < Tmin then

12 Tmin = Ty and Mmin = My/* Update the mapping if the

average temperature reduces. */
13 end
14 end
15 while Tmin < Tinit;
16 end
17 Return Minit

Algorithm 1 provides the pseudo-code of the hill-climbing based average tem-
perature minimization algorithm. The algorithm takes the clustered application
G and the neuromorphic hardware H as input. The algorithm returns the map-
ping of G to H, which minimizes the average temperature of the crossbars. The
algorithm is iterated for MaxIter iterations (outer loop lines 1-16). For each
iteration of the outer loop, the algorithm generates a random allocation of the
clusters to the tiles (line 2) and calculate the average temperature (line 3). The
routine CalculateAvgTemperature calculates the temperature of each crossbar
for a mapping M using the iterative approach of Figure 5b, specifically utilizing
Equations 8 & 9, and return the maximum average temperature of all crossbars
in the neuromorphic hardware.

At each iteration of the Algorithm 1, a cluster is moved to one of the tiles
(line 7), computing the average temperature of this new mapping (line 8). The
one mapping that leads to reduction of the average temperature is retained as
the new mapping (lines 10-13) and the process is repeated for the next cluster
(5-14). Once every cluster is analyzed, the iteration is repeated (lines 4-15) to
check if the clusters can be remapped again to reduce the average temperature.
The user-defined parameter MaxIter governs the convergence of the algorithm.

Algorithm Complexity: The complexity of Algorithm 1 is calculated as
follows. Let the inner loop (lines 4-15) be executed ζ times on average. At each
of these iterations, the algorithm performs |C| × |T | operations. Therefore, the
complexity of Algorithm 1 is O(MaxIter × ζ × |C| × |T |).
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4 Evaluation

4.1 Evaluated Applications

We evaluated 10 machine learning applications that are representative of three
most commonly used neural network classes — convolutional neural network
(CNN), multi-layer perceptron (MLP), and recurrent neural network (RNN).
Table 1 summarizes the topology, the number of neurons and synapses of these
applications, and their baseline accuracy.

Table 1. Applications used to evaluate the proposed technique.

Class Applications Synapses Neurons Topology Accuracy

CNN

LeNet [33] 282,936 20,602 CNN 85.1%
AlexNet [30] 38,730,222 230,443 CNN 90.7%
VGG16 [43] 99,080,704 554,059 CNN 69.8 %

HeartClass [4,16] 1,049,249 153,730 CNN 63.7%

MLP

DigitRecogMLP 79,400 884 FeedForward (784, 100, 10) 91.6%
EdgeDet [13] 114,057 6,120 FeedForward (4096, 1024, 1024, 1024) 100%

ImgSmooth [13] 9,025 4,096 FeedForward (4096, 1024) 100%

RNN

HeartEstm [14] 66,406 166 Recurrent Reservoir 100%
VisualPursuit [28] 163,880 205 Recurrent Reservoir 47.3%
R-DigitRecog [25] 11,442 567 Recurrent Reservoir 83.6%

4.2 Hardware Models

We model the DYNAP-SE neuromorphic hardware [39] with the following con-
figurations.

– A tiled array of 4 tiles, each with a 128x128 crossbar. There are 65,536
memristors per crossbar.

– Spikes are digitized and communicated between cores through a mesh routing
network using the Address Event Representation (AER) protocol.

– Each synaptic element is a PCM-based memristor.

Table 2 reports the hardware parameters of DYNAP-SE.

Table 2. Major simulation parameters extracted from [39].
Neuron technology 32nm FD-SOI

Synapse technology PCM

Supply voltage 1.0V

Energy per spike 50pJ at 30Hz spike frequency

Energy per routing 147pJ

Switch bandwidth 1.8G. Events/s

4.3 Evaluated Techniques

We evaluate the following two approaches.

– SpiNeMap [6]: This is a performance-oriented approach to map SNN-based
applications to neuromorphic hardware. This approach first generates clus-
ters of neurons and synapses, where each cluster can fit on to the resources of
a tile in the hardware. Then, it uses an optimization algorithm to place these
clusters to the hardware, maximizing performance of the machine learning
application on the hardware. Temperature gradients are not incorporated in
the mapping process.
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