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This study investigates the properties of the brain electrical activity from different recording
regions and physiological states for seizure detection. Neurophysiologists will find the work
useful in the timely and accurate detection of epileptic seizures of their patients. We
explored the best way to detect meaningful patterns from an epileptic Electroencephalo-
gram (EEG). Signals used in this work are 23.6 s segments of 100 single channel surface EEG
recordings collected with the sampling rate of 173.61 Hz. The recorded signals are from five
healthy volunteers with eyes closed and eyes open, and intracranial EEG recordings from five
epilepsy patients during the seizure-free interval as well as epileptic seizures. Feature
engineering was done using; i) feature extraction of each EEG wave in time, frequency
and time-frequency domains via Butterworth filter, Fourier Transform and Wavelet Trans-
form respectively and, ii) feature selection with T-test, and Sequential Forward Floating
Selection (SFFS). SVM and KNN learning algorithms were applied to classify preprocessed
EEG signal. Performance comparison was based on Accuracy, Sensitivity and Specificity. Our

experiments showed that SVM has a slight edge over KNN.
© 2020 Published by Elsevier B.V. on behalf of Nalecz Institute of Biocybernetics and
Biomedical Engineering of the Polish Academy of Sciences.

1. Introduction . . o
or dendrites of other neurons and receive or transmit impulses
to them. The main type of communication between billions of
Human brain serves as the most important part of the central neurons in the human brain is dendritic communication.

nervous system. It composes of billions of cells that are mostly
neurons. Each neuron is made up of axons, dendrites, and
cellular bodies. They react to the stimulus and transmit
information in long paths to other neurons and organs such as
muscles and gland cells [1]. Dendrites are connected to axons

Therefore, the brain is a very complicated interconnected
network of neurons. These neurons are stimulated at any
moment and produce electric fields [2]

The time-varying electrical currents produced by neurons
at the cell membrane surface are from two types of neuronal
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activities: a) rapid depolarization of neuronal membranes
which depends on the voltage of sodium and potassium ions
and results in the Action Potential (AP) [3]. b) Slower changes of
membrane potential due to the synaptic activity and the
function of several neurotransmitter systems [4]. AP is a rapid
change, 1-2 milliseconds, in the membrane potential, which
changes the intracellular potential from negative to positive
and returns rapidly to the intracellular resting potential. It has
smaller field potential distribution (less penetration in the
extracellular environment) and is less sustained (about 1
millisecond compared to post-synaptic potentials extending
from 15 to more than 200 milliseconds) [3,5]. Post-synaptic
potential spreads out to the skull surface and can be measured.

To measure the brain activity, we can use a non-invasive
method of putting electrodes on the scalp through a device
called Electroencephalogram (EEG).EEG signal are mainly
produced by the measurable potential of post-synaptic pyra-
midal cells, which are parallel to each other and perpendicular
to the skull's surface. It creates an extracellular cortical dipolar
layer [5,6]. Therefore, the electrodes on the skull represent the
time and place of the post-synaptic potential of the cortical
neurons. It also includes slow and simultaneous potential
changes in the large cortical regions (Fig. 1) [7,8].

EEG signal are useful in identifying many clinical problems
such as schizophrenia, Alzheimer, insomnia, sleep disorders,
seizure disorders, brain tumors and infections of the central
nervous system. Besides being non-invasive and having
exquisite temporal resolution, this technique provides low
cost and needs no extreme safety restrictions [5]. Using EEG
signal, it is evident that epileptic seizures usually start
spontaneously. They result from sudden electrical discharge
of part of the brain cells and therefore cause temporary
agitation of the brain. Sometimes seizures might go disre-
garded or may be confused with other brain disorders such as a
meningitis or stroke which can also cause the same symptoms.

Study shows that approximately, 10% of people experience
at least one seizure in their lifetime [10]. Precise analysis of
epileptic in the electroencephalograph (EEG) signal can reveal
valuable facts about this prevalent brain disorder [11]. Since
EEG signal is very complex, it therefore requires the analysis of
several factors. Manual visual inspection of EEG signal has
been found useful in identifying patterns. However, this
approach requires high level of technical and analytical skills
with several signal-processing techniques [12]. Therefore, in
the recent times, automating epileptic seizure detection has
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Fig. 1 - Diagram of neurons firing during EEG [9].
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gained attention among researchers.

Digital recording, saving and analyzes of EEG signal have
become possible by the advancement of technology during the
past few decades. This digitized data can be given to an
automated seizure detection system in order to detect seizures
found in the EEG data [13]. EEG Signal analysis includes three
main steps: preprocessing, feature extraction (plus feature
selection), and classification. Preprocessing stage is mainly
about signal acquisition, noise removal, averaging, threshold-
ing, signal enhancement, etc. After this stage, the markers are
processed using suitable feature extraction methodologies to
find the most informative features. With the help of feature
selection module, which is at an optional stage, we can reduce
the vector size. Therefore, the foremost related features
needed for discrimination are found. Classification module
is the final step. It tests the feature vector and finds the best
way to classify the attributes based on the hidden pattern that
govern them and therefore their algorithmic model [14].

In this study, we explored machine learning approach in
the diagnoses and detection of epileptic seizure. Doing this, we
used K-nearest neighbors (KNN) and Support Vector Machine
(SVM) classification systems. We analyzed the EEG signal in
the time and frequency domains and extracted the features of
each EEG wave. After comparing the efficiency of each feature
individually, we combined the features together and chose the
best and most significant features using two different
techniques: T-test and Sequential Forward Floating Selection
(SFES). The best selected features were then fed into SVM and
KNN classifiers and the results of our models were evaluated
using k- fold cross-validation methodology.

The remaining parts of the paper is organized as follows;
Section 2 is the review of related research work on the
recording EEG data. We give a brief description of the datasetin
section 3. The proposed methodology is in section 4. Section 5
is the experimental result showing the effectiveness of our
method. Finally, we conclude this paper in Section 6 with the
implication of the study in section 7.

2. Literature review

Typically, an EEG test is recorded in a rest position (open/
closed eyes) or during a specific task, such as listening, reading,
watching, or calculating something [15]. Then, the computer-
ized analysis of the EEG signal investigates several factors
including: signal frequency distribution, EEG signal ampli-
tudes, spatial coordinates of specific phenomena occurrence,
morphology of the waveform, waveform for similar regions of
the brain, symmetry between the brain hemispheres (voltage
symmetry, frequency symmetry), the occurrence model of the
waveform (random, sequential, continuous) and reactivity
(change in the individual's state and subsequent changes in an
EEG parameter). Afterwards, the most important step is
comparing the calculated components for the subject with
the normative database. First, artifacts should be correctly
removed, and the used normal data should be consistent with
the subject's age, gender and conditions. Then the results
achieved for the subject under study is compared with the
normal Z-scores [16].
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Several studies have been done on the classification of EEG
signal. Different researchers have applied variety of methods
to analyze EEG records for research and clinical applications
and reported their results. These studies used different
techniques and achieved reasonable classification accuracies
for the same dataset that we have used in our work. This
dataset was produced by Andrzezak et al. [17] and downloaded
from epileptologie-bonn webpage [18].

Among different studies, Oweis et al. used Hilbert-Huang
Transform to extract the EEG signal frequency features and
94% accuracy was determined through the Empirical Mode
Decomposition (EMD) classification method. Their results also
showed 92% sensitivity and 96% specificity. EMD is a well-
known method that performs time-frequency analysis on data
with non-linear or non-stationary nature such as EEG signal.
[19]. Sharma et al. did discrimination between different classes
of the same EEG data through Least-squares support vector
machine (LS-SVM). They achieved a maximum accuracy of
100% for the classification of healthy versus epileptic patients
[20].

Acharya and his colleagues applied a deep convolutional
neural network (CNN) composed of 13 layers to analyze the
EEG data. They achieved total accuracy of 88.67%, specificity
of 90% and sensitivity of 95% to characterize people as
normal, preictal and seizure groups [21]. Another group who
worked on the same dataset were Guha and his co-workers.
They proposed a Deep Neural Network (DNN) system,
composed of five hidden layers, to detect epileptic seizure
and compared that with traditional classifiers such as
multilayer perceptron (MLP) and k-nearest neighbor (K-
NN). Their results showed 80% accuracy, 80% sensitivity and
64% precision in predicting epileptic seizure with DNN which
was higher than KNN and MLP performance (76% and 78%
accuracy respectively) [22].

For automated diagnosis of epilepsy, Patidar et al. used
tunable-Q wavelet transform (TQWT) method and decom-
posed EEG signal to several sub-bands. Then they extracted
Kraskov entropy as the main and only characteristic to obtain
the value of non-linearity in the EEG signal. Next, they applied
Least Square Support Vector Machine (LS-SVM) to classify
seizure versus seizure-free signal and got 97.75% of accuracy,
97% sensitivity and 99% specificity [23].

To distinguish between ictal and non-ictal EEG signal,
Zahra et al. employed Multivariate Empirical Mode Decompo-
sition (MEMD) algorithm [24]. This technique is an extension of
EMD method which was used by Oweis et al. and explained
earlier [19]. After selecting necessary features in the time-
frequency domain they used neural networks and achieved
overall 87.2% accuracy [24].

In another work, Bhattacharyya et al. extracted entropy
from different EEG signal frequency sub-bands. In order to do
so, they firstly decomposed EEG signal with Q-tunable wavelet
transform method. Then used K-Nearest Neighbors (K-NN) to
extract entropies from various sub-bands of interest. Finally,
they fed the extracted features to the SVM machine and got
accuracies in the range of 98%-100% for classification of
different categories, e.g. normal versus epileptic subjects,
seizure versus seizure free signal, etc. [25]

Richhariya et al. employed universum support vector
machine (USVM) to detect epileptic signals and differentiate

them from normal brain signals in healthy people. The
method they used takes the advantage of removing outliers
and their effect on the generation of universum data. Also, to
gain less computational cost compared to traditional SVMs,
they applied universum twin support vector machine (UTSVM)
strategy. Among different classes their results showed highest
accuracy of 99% for classification of healthy and epileptic EEG
signals and higher generalization performance compared to
traditional SVM and its different derivatives such as USVM,
Twin SVM (TWSVM) and UTSVM [26].

Kaya used Minimum Redundancy Maximum Relevance
(mRMR) feature selection method to reduce the size of
extracted features and keep the most relevant attributes.
Then fed the selected features to the fine and weighted K-
Nearest Neighbors (k-NN) models and achieved 98.78 %, 98.56
%, respectively [27].

The dataset [18] for this work was preprocessed and
cleaned of artifacts. It is remarkably popular among research-
ers of different disciplines such as: neuroscience, biomedical
sciences, medicine, computer science and other fields. A quick
look at literature, shows lots of works on the same data, each
with advantages and disadvantages. In this wok, we aim to
distinguish between healthy and epileptic patients, with the
highest possible accuracy, using two popular machine
learning techniques, namely, SVM and KNN in three time,
frequency and time-frequency domains simultaneously.
Extracting same statistical features from five brain waves in
all three different domains, keeps data exhaustive while
providing an equal analytical condition to compare the
performance of the classifiers.

3. Dataset description

The dataset we used to study the epileptic seizures was
produced by Andrzezak et al. at university of Bonn [17]. it is
publicly available at [18]. This data contains EEG signal of five
healthy participants as well as five patients who were
diagnosed with epilepsy. Two resting situations of eyes open
and eyes closed were used to record the brain EEG signal for
healthy subjects. The standard 10-20 scheme was used to
place the electrodes on the subjects' scalp and the signal
recorded continuously. The dataset consists of 5 folders (A-E)
and each folder is made of 100 single channel EEG segments
which was recorded at the sampling rate of 173.61 Hz and
band-pass filter setting of 0.53—40 Hz.

Although the original recorded dataset was a multi-
channel continuous data, only some segments of this dataset
were taken. Artifacts from breathing, eye movement, muscle
activity, etc. Folders A, B, C, D and E were created. Folders A
and B contained information of the healthy participants in
eyes-open and eyes-closed situation respectively, while C, D
and E represent the EEG signal of the epileptic patients. More
specifically, folder C and D are the EEG signal during the
seizure free intervals of the patients who had complete
seizure control after the epileptogenic zone resection. The
recorded signal in set C were from epileptogenic zone and
signal in set D were recorded from the same region in the
opposite brain hemisphere. Set E is the only one which
contains signal during the seizure activity [17,18]. Fig. 3 shows
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one sample EEG signal from each subset A, B, C, D and E
respectively.

4. Methodology

The amplitude of the brain waves recorded at the skull surface
is very weak (about 0-100 microvolts with a frequency of about
0.5-100 Hz). The brain waves can be classified according to
their frequencies into the following five categories: Delta
(0.1-4 Hz), Theta (4—8 Hz), Alpha (8—12 Hz), Beta (12—30 Hz)
and Gamma (30—100 Hz) [5,28]. In pattern recognition, we
usually reduce the vector size to a set of selected features,
rather than the main signal which may take a huge space or be
dependent on external conditions. As a result, we kept the
most important and relevant features and removed the
redundant attributes [29,30]. The architectural diagram of
the proposed model is shown in Fig. 2.

Features were extracted based on the following statistical
characteristics; mean, variance, skewness and kurtosis, in the
time, frequency and time-frequency domains [31]. The
mathematical formulations of mean, variance, skewness
and kurtosis are shown in Eq. (1-4):

Mean : E(x) :% zn:xi (2)
i-1

Variance : Var(x) = - i I Z(Xi ~ E(x))? @
x —E(x) ’
( Var(x))} 2
4
x —E(x) @)
Var(x)

In above equations, mean, E(x), indicates the average of n
data points, variance, Var (x), shows how this data is dispersed
around the mean, skewness, S(x), measures the expected
value, E, of symmetry or asymmetry of the distribution
function and kurtosis, K(x), measures the expected value, E,

Skewness : S(x) = E

Kurtosis : K(x) = E

= Data preparation "
EEgas\;gnal (filtered, transformed, F?grigxg?g;on
decomposed) % e
Feature
vectors
Feature Selection
> (t-test & SFFS) Diverse or
Composite
I features
Features
Classification —> Classes
(SVM, KNN)

Fig. 2 - Architectual structure of the Proposed EEG signal
classifiers.

for the height or the degree of peakedness of a data
distribution [32].

Then, features were selected according to the following
objectives: a) attributes should be a good representative of
each signal, b) the extracted attribute must have different
values in different classes and, c) the attribute must not be
sensitive to the external conditions (e.g., noise, size, angle, etc.)
[33].

4.1. Feature extraction

In this work, we investigated three different domains of Time,
Frequency and Wavelet (time-frequency). Fig. 4 shows the
feature extraction process of this work. The figure shows the
raw EEG signal was pre-processed in time domain (TD),
frequency domain (FD) and time-frequency domains (TFD)
using Butterworth filter, Fourier Transform and wavelet
transform, respectively. Different waves of Delta, Theta,
Alpha, Beta and Gamma defined with their range of frequen-
cies were used in each domain to extract relevant features.
Statistical features of mean, variance, skewness and kurtosis
was extracted from each brain band. Thus, four features were
extracted from each brain wave band and twenty features
were extracted in total in each domain. Since, the whole
process was performed in all three TD, FD and TFD we ended
up with 60 features used for classification. Prior to classifica-
tion, feature selection was performed to increase system
performance. Feature selection strategy used in this study is
explained in section IV.2 in detail.

4.1.1. Time-Domain (TD)

To extract the four statistical features of mean, variance,
skewness and kurtosis, we designed the third order Butter-
worth bandpass filter and applied that on the entire EEG
dataset. The applied filter relates the output signal to the input
signal, as shown in the following equations:

N N
y(n) = Zaix(n -1+ Zb;‘)’(n )] (5)
i=0 =1

The z-transfer function of the used filter is as follows:

N aiz
H(z) = 2i=0%Z ©)
1+ ijlbjz J

where x(n) is the input signal, y(n) is the output signal, N is the
filter's order and q; and b; are the filter's coefficients [34,35].

To apply the designed filter, we used five brain waves with
frequency ranges, Delta (0.4—4 Hz), Theta (4—8 Hz), Alpha
(8—12 Hz), Beta (12—30 Hz), Gamma (30—70 Hz), as Low Pass
and High Pass cutoff frequencies. As a result, twenty statistical
features were extracted from each single channel EEG segment
for each of the five different categories (A, B, C, D, E) that we
had (Fig. 4).

4.1.2. Frequency-Domain (FD)
We continued our investigation by analyzing the signal in the
frequency domains. To extract the required features in this
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domain, we used the same five brain waves to specify the
frequency bands. A Fourier transformation of the raw EEG
signal from time domain to the frequency domain was done.
Since the transformed EEG signal is to be divided into the
frequency sub-bands of Delta, Theta, Alpha, Beta, Gamma,
we created a loop in our code with the number of frequency
bands, and in each repetition, we created a new EEG signal
and separated the frequency band information in the
frequency domain. The statistical properties were then
extracted from the amplitude of the frequency coefficients
this time (Fig. 4).

According to the Fourier theory, any periodic signal can be
decomposed into infinities sum of harmonically related
sinusoids and written as the following equation [36,37]:

f(x)=ao+ i[anCos(an) + bpSin(nwx)) 7)

n=1

As shown in Eq. (7), = 2n f is the angular frequency in
which, f is the frequency of the signal and a,, a, b, are
constants called the coefficients of the series.

The Fourier coefficients contain the amplitude and phase of
the high order harmonics [36,37]. To extract the statistical
features in the frequency domain, we used the amplitude of
these harmonics. These coefficients are symmetric in fre-
quency domain. This is due to the fact that any time domain
input function for Fourier transform, can be an even e(x), odd o
(x) or sum of an even and an odd function f(x) = e(x) + o(x).

Since an even function is symmetric with respect to y axis,
the integral of its positive and the negative halves is:
+o00 0
/ e(x)dx =2 / e(x)dx. Similarly, the integrals of the positive
—0 0
and negative sides cancel out each other in odd functions,
because the symmetry is an inversion at the origin,
+00
/O x)dx = 0. On the other hand, the Fourier transform of

any function can be written as follows:

2= [ e wax o)

where f(x) denotes the signal in time domain and the F(q)
denotes the signal in frequency domain.

In general, the Fourier transform input and output
functions are complex functions. Therefore, for a complex
function: f(x) = re(x) + im(x), the Fourier transform integral
is broken into four components:

400 +00

F(q) = /re(x)Cos(qx)dx -1 /re(x)Sin(qx)dx
+1i /im(x)Cos(qx)dx —i / im(x)Sin(qx)dx ()

where: e 1% = Cos (qx) — iSin(qx)
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Fig. 5 - T-test result; including features' H-value and P-value
scores.

The Fourier transform will be symmetric just as the even-
odd symmetry does, if either the imaginary or the real part of
the input function is zero. As a result, it is not required to
calculate all the Fourier coefficients while half of them are zero
[36,38]. Due to this symmetric property, we just used half of the
Fourier transform coefficients in our code to extract the
desired features which leads to saving effort and computing
power (Fig. 5).

4.1.3. Time-Frequency Domain (TFD) (wavelet transform)
One of the drawbacks of Fourier transforms is that it cannot
follow instantaneous changes in the signal. To solve this
problem, infinite sinusoidal waves or Short-time Fourier
transform (STFT) are alternatives. However, this approach is
not practically possible due to finite computer memory and
frequency resolution limitations [39]. Therefore, wavelet
transform (WT) is a better option. It is a method which
deconstructs the continuous signal into mini waves (wavelets)
that are limited in time and frequency. In other words, wavelet
transform has mother-wavelets with variety of frequencies,
which makes it possible to follow even the slightest changes in
the signal [20,40,41].

To obtain the frequency bands of each wave through the
wavelet transform, we used the method explained in [41].
According to the exploited method, the sampling frequency of
the EEG signal was changed from 173.61 to 120 Hz initially.
Then, a fourth-level discrete wavelet transform was applied to
break the EEG into its sub-band components. After this fourth-
level decomposition and computing the coefficients of each
sub-band, the EEG signal was broken into five frequency levels,
which are approximated as delta, theta, alpha, beta, and
gamma and the desired statistical features were extracted
from the calculated wavelet coefficients.

There are different types of wavelets which differ from each
other in terms of shape, smoothness, compactness, etc.
Among these various wavelet bases, the Daubechies group
is known as an efficient filter and implemented due to its
orthogonal properties [41]. For wavelet decomposition of EEG
signal in this work, we employed Daubechies order-6 (DB6)
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wavelet as the basis. A discrete signal can be represented with
the following equation in I (2),

1 . 1 & .
f[n]:mkZqu[}o;k]‘i’jo_k[n]+ﬁZ;W¢[}7k]‘1’j‘k[n} ©)

J=o

Where f[n], @;,, [n], ¥ [n] are discrete functions defined in M

n=-oco

points totally and I? (z)= { fln]| Z | fi])? < oo}. Also, due to

the orthogonal property of @;

jox M and ¥jx [n], the wavelet
coefficients can be simply obtained through the inner product
rule [39]. As a result, the wavelet coefficients which are known

as approximation and details are as follows:

Wolj, k] = %M S finl;, kln]

Wy j, k) = Tlm S Finwselnl (5> o) (10)

The approximation and detail coefficients are the two
output coefficients of wavelet transform and represent the
output of the low pass filter and high pass filter respectively
[39]. The statistical features were calculated from these
coefficients.

4.2, Feature selection

Extracting attributes is a complex process because some of the
extracted features may not be relevant. Therefore, we
prioritized the importance of obtaining all necessary and
sufficient features for building an efficient classifier. In view of
this, we used two criteria to choose our attributes. The first
criterion is looking at a single feature and evaluatingitin order
to seeifitis a good representation of the signal and the pattern
behind them. The second criterion looks at each feature along
with other attributes to find the combination of those ones
that have the best performance beside each other [29,30,33].
Using this approach, we argue that redundancy is eliminated,
thereby improving the fitness and performance of the
proposed classifier.

T-test technique was implemented to find statistically
significant information [19]. This method is a scalar method
and looks only at one feature at a time and investigates the
null and alternative hypotheses. Our null hypothesis assumes
there is no statistically significant relationship between a
given feature and the population. Therefore, removing that
particular feature doesn't affect the model's performance. On
the other hand, the alternative hypothesis, emphasizes on the
feature's importance and states that there is a statistically
significant difference between the given feature and the
population. The test for each property produces two param-
eters, H-value and P-value. If the feature's mean value has a
considerable difference in two classes, the alternative hypoth-
esis is valid. This indicates that the feature is important and
should be kept. On the other hand, if the mean values don't
show a remarkable difference in two classes, the null
hypothesis is true and the H-value is set to zero in MatLab

code which means that the attribute is not meaningful at all
and should be deleted. To compute H-value following equation
is used:

k
H= N(;iil) ;ni(Ri —R) (12)
k
where n; is the ith sample of k populations, N = Zni is the
largest sample observation rank, R; is the sum of thé ranks in
the ith sample, R; = % denotes each sample mean and R = X1
represents the overall mean. If the difference between sample
mean and overall mean (R; — R) is large, the null hypothesis is
rejected. More specifically, null hypothesis can be rejected on
significance level «, when:

H> X%—a,k—l (12)

where x2__, , is (1 — a)-quantile or the critical point of the chi-
square distribution with k — 1 populations. Chi-square distri-
bution is a popular method with different statistical applica-
tions. In this case, chi-square distribution evaluates if the
variables are truly independent of each other. If so, we can
say two samples come from different populations and have
meaningful differences [42,43].

The P-value is then used to rank the remained attributes in
terms of their significance; the smaller the P-value, the better
the rating will be. P-value is typically calculated by writing
codes in MatLab, spreadsheet programs or statistical software.
However, the computation procedure is the same and follow
similar steps. In order to calculate the P-value, we firstly
determine Z-score through following formula:

X—pu
/i
where x is the sample mean, p is the population mean, o is
standard deviation and n is the sample size. Z-score calculates
the number of standard deviations from the mean for partic-
ular data points. Having Z-score, we can find the probability (P-
value) by which the null hypothesis is rejected. If the P-value is
less than significance value or alpha («), the feature makes a
statistical difference and is important [42,43] The P-value
threshold («) in this work was considered as 0.05. Fig. 5 shows
the H-value and P-value scores of all sixty features that went
through T-test process in our work. As seen in the plot, all
those features that are statistically significant (« < 0.05), have
been kept by T-test and the corresponding H-value score of 1
has been given to them. To make it clearer, we have highlight-
ed the 4th feature which has a P-value of 0.0002 and H-value

score of 1.

Z= (13)

According to the T-test results, 22 of the extracted features
are statistically significant and can be used for the purpose of
classification. More information about the T-test, P-value and
H-value can be found here [44].

In series with T-test, for selecting the proper features is
Sequential Forward Floating Selection (SFFS) which is a vector
method and chooses the best features through a repetitive
process [44]. When we are dealing with numerous datapoints,
SFFS is a time-consuming method. Therefore, we used T-test
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initially to remove the non-statistically significant attributes
to accelerate the SFFS process. This technique selects the best
feature in the first iteration, then looks for another feature that
has the best performance along with the previous one and this
process continues until the end.

SFFS is in the family of sequential feature selection
methods and is used to reduce the initial d-dimensional
featurespace: Y = {y,,¥,,¥s, ---, Y4} to a k-dimensional feature
subspace: X = {xj|j=1,2,3, ...,k xj € Y} where k < d. Ulti-
mately, the program will choose the k best combination of
features that will increase classification performance. Follow-
ingis an intuitive representation of how SFFS algorithm selects
features incrementally to increase performance:

1.Xo = {0}k = (0)

2. xy = argmax f(x, +x); where (xe Y — Xg)
if f(Xe+k)> f(Xe)

Xk4+1=2Xe+x:

k++

Go to step 3

3. x_ = argmax f(x; — X); where (x € X,)
if f(xe+x)> f(x)

Kpy1 = X — X

X

Go to step 2

The algorithm initially starts with an empty set so that the
size of subset, k, is zero. Step 2 is called inclusion step and adds
a new feature, x*, to the subset X, if it increases the
performance of the model significantly. Effectiveness of new
features to make a better model from the subset is evaluated
by the criterion function (f). Inversely, step 3is called exclusion
step, and removes a feature, x~ from subset X;, if its removal
makes a better model from the subset and thus increases
performance. Steps 2 and 3 are repeated until k equals the
number of desired features d and the loop is terminated [45,46].

SFFS graph (Fig. 6) shows that with combination of only five
features we can achieve a 100 % representation of the dataset.
This implies that these are the necessary and sufficient
features representing the dataset for the fitness of the
proposed model. As shown in the graph, the performance
with this combination is maximum, and the low number of
these features reduced the dimensionality of the dataset. The
graph also demonstrates that after 11 features, the classifier
performance drops to 50% accuracy with additional features.
In other words, using extra features leads to system deficiency
and reduces performance significantly.

4.3.  Classification

We divided our dataset into two for training and testing the
learning algorithm through a technique called classification.
There are different types of classifiers for categorizing
information [47]. In this experiment, we used K-nearest
neighbors (KNN) and Support Vector Machine (SVM) learning
algorithms to demonstrate the effectiveness of our proposed
classification approach. For the KNN, k value was set to three
and then the distance between each test sample with all

100

95

Q0

85

Accuracy(%)
&

(0] 5 10 15 20 25
Number of selected Features

Fig. 6 - Feature selection graph determined by SFFS method.

training data was calculated through the Euclidean distance
function [48]. With the SVM classifier, we found the best line,
hyper plane, which has the longest distance from the nearest
data points in both classes [48]. The results of features
classification will be explained later in section V.

4.4. Performance evaluation

In order to evaluate the result of our analysis and to find out
how well the model can generalize; we did evaluation of
classifier performances with 5-fold cross validation and
assessed its efficiency by calculating accuracy and confusion
matrixes [30]. K-fold cross validation method has the advan-
tage of using all instances in a dataset for either training or
testing, where each instance is employed for validation exactly
once [17,18]. Cross validation reduces overfitting.

5. Result and discussion

Datasets were loaded into the MatLab 2018 programming
environment and the code was written to convert the file from.
txt to. mat format in order to save data as matrixes. The
dataset went through optimal feature extraction before
feeding signal into classifiers. We used third order Butterworth
bypass filter and applied that on all EEG datasets. We defined
low pass and high pass cutoff frequencies based on the brain
Delta, Theta, Alpha, Beta and Gamma waves. After this, we
used the produced filtered datasets to extract four statistical
features from each segment of EEG in the time domain. Since
we considered each of the five brain frequency bands, twenty
features were totally acquired for each single channel recorded
EEG sample. Thus, we reduced our huge sample size, to only 20
important features for each segment of our dataset in the time
domain.

Then we extracted the EEG waveform information in the
frequency domain through Fourier transform which is EEG
signal transmission from time domain to frequency domain.
Since the frequency coefficients are symmetric in the
frequency domain, we therefore employed half of these
coefficients. The frequency coefficients are different; we
extracted the statistical characteristic from the amplitude of
these frequency coefficients. Again, we derived 20 important
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Table 1 - Classification results by KNN using time-domain properties.

Total Sensivity Specificity Confusion Class 2 Class 1 Classes

classification Matrix Classification Classification

Accuracy Accuracy Accuracy

99.5 % 99% 100% 100 0 100% 99% A-E
199

98.5% 97% 100% 100 0 100% 97% B-E
397

98.5% 98% 99% 291 99% 98% C-E
298

96.5% 97% 96% 96 4 96% 97% D-E
397

97.2% 98.5% 92.2% 3928 98% 94% ABCD-E
6 94

96% 96% 96% 192 8 96% 96% AB-CD
8 192

featuresin the frequency domain considering all brain range of

frequencies. To analyze the signal' time and frequency

properties simultaneously, we also applied the wavelet

transform on the EEG data and derived the features from e A-E: Healthy people (eyes-open) vs.

the wavelet coefficients. The extracted features in all three (during seizure activity)

domains are mean, variance, skewness and kurtosis. B-E: Healthy people (eyes-closed) vs. Epileptic patients
Extracted features were then tested through the feature (during seizure activity)

performed as follows:

Epileptic patients

selection methods that were explained earlier. Fig. 5 shows the
result of the feature selection. According to the derived graph,
with the first five features combination (mean, variance,
skewness and kurtosis belong to time domain-delta band and
mean belongs to the time domain-theta band) the system
performance is maximum.

Classification results as well as their performances are
shown in Table 1-6. Table 1-2 represent SVM and KNN
classification accuracy, specificity, sensitivity and confusion
matrix results in the time-domain, tables 3-4 summarize the
performance of our used classifiers in the frequency-domain
and tables 5-6 demonstrate the classification results of the
time-frequency domain using wavelet transform.

Each table is composed of seven columns. We have
considered variety of different cases to classify the features
extracted from each dataset. The first column of tables
represents each group for which the classification was

e C-E: Seizure-controlled patients (signal of epileptogenic
zone) vs. Epileptic patients (during seizure activity)

e D-E: Seizure-controlled patients (signal of opposite brain
hemisphere) vs. Patients (during seizure activity)

e ABCD-E: All Healthy and seizure-controlled people vs.
Epileptic patients (during seizure activity)

e AB-CD: Healthy people vs. Seizure controlled epileptic
patients.

The next two columns of each table show the classification
accuracy of the first and second classes individually, forth
column shows the result of confusion matrix calculated for
each classification problem and the last three columns show
specificity, sensitivity and total classification accuracy respec-
tively.

In the time-domain, the highest accuracy of 99.5% was
derived by both the KNN and SVM classifiers for A & E datasets

Table 2 - Classification results by SVM using time-domain properties.

Total Sensivity Specificity Confusion Class 2 Class 1 Classes

classification Matrix Classification Classification

Accuracy Accuracy Accuracy

99.5 % 99% 100% 100 0 100% 99% A-E
199

98.5% 97% 100% 100 0 100% 97% B-E
397

95.5% 95% 96% 96 4 96% 95% C-E
595

96.5% 95.2% 98% 98 2 98% 95% D-E
595

98% 98.7% 95% 3955 98.75% 95% ABCD-E
595

96.75% 98% 95.6% 1919 95.5% 98% AB-CD

4 196
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Table 3 - KNN Result using Frequency-domain properties.

Total Sensivity Specificity Confusion Class 2 Class 1 Classes

classification Matrix Classification Classification

Accuracy Accuracy Accuracy

99 % 98% 100% 100 0 98% 100% A-E
298

98% 96.1% 100% 100 0 96% 100% B-E
4 96

97.5% 95.2% 100% 100 0 95.2% 100% C-E
595

93.5% 94% 93.1% 937 94% 93% D-E
6 94

97% 98% 93% 3937 98% 93% ABCD-E
892

88.25% 90% 86.6% 172 28 90% 86.6% AB-CD
19 181

Table 4 - SVM Result using Frequency- domain properties.

Total Sensivity Specificity Confusion Class 2 Class 1 Classes
classification Matrix Classification Classification
Accuracy Accuracy Accuracy
100% 100% 100% 100 0 100% 100% A-E
0 100
100% 100% 100% 100 0 100% 100% B-E
0 100
100% 100% 100% 100 0 100% 100% C-E
0 100
100% 100% 100% 100 0 100% 100% D-E
0 100
100% 100% 100% 400 0 100% 100% ABCD-E
0 100
95% 95.4% 94.5% 189 11 95.4% 94.5% AB-CD
9191

Table 5 - Classification results by KNN using Time-Frequency features combination (wavelet transform).

Total Sensivity Specificity Confusion Class 2 Class 1 Classes

classification Matrix Classification Classification

Accuracy Accuracy Accuracy

99.5 % 99% 100% 100 0 100% 99% A-E
199

99% 98% 100% 100 0 100% 98% B-E
298

97% 95.2% 99% 991 97% 95% C-E
595

93.5% 94% 93% 937 94% 93% D-E
6 94

97.2% 98.2% 93% 3937 98.25% 93% ABCD-E
793

89% 87.5% 90.6% 182 18 91% 87% AB-CD
26 174

Combination of time and frequency properties or using

which are related to the healthy people, eyes closed, and
epilepsy patients during the seizure activity intervals respec-
tively. The performance of classifiers in the frequency domain,
confirmed the previous results. The efficiency of KNN classifier
for discrimination of the same classes (A & E) is 99% while SVM
shows highest accuracy of 100% for almost all different tested
categories (Tables 1-4).

wavelet transform on the signal, gives almost the same
result. According to the numbers achieved in the time-
frequency domain the highest accuracy is again related to
SVM classifier for A&E (healthy-eyes-closed and epileptic-
seizure activity) and D&E (epileptic-seizure-free and epilep-
tic-seizure activity) classes. Tables 7 shows the highest
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Table 6 - Classification results by SVM using Time-Frequency features combination (wavelet transform).

Total Sensivity Specificity Confusion Class 2 Class 1 Classes

classification Matrix Classification Classification

Accuracy Accuracy Accuracy

100% 100% 100% 100 0 100% 100% A-E
0 100

99.5% 99% 100% 100 0 100% 99% B-E
199

98.5% 100% 97.1% 97 3 97% 100% C-E
0 100

100% 100% 100% 100 0 100% 100% D-E
0 100

99.8% 100% 99% 3991 99.75% 100% ABCD-E
0 100

96% 96% 96% 192 8 96% 96% AB-CD
8 192

accuracy of each classifier in TD, FD and WT using A and E

Table 7 - Highest classification accuracy of each classifier

at Time-domain, Frequency-domain, and time-frequency
(wavelet transform) combination domain.

Classifier Maximum Accuracy (%)
TD FD W
SVM 99.5 100 100
KNN 99.5 99 99.5
datasets.

Table 8 - Comparison with State-of-the-Art.

Study Highest determined results (%)
Method  Accuracy Sensitivity Specificity
Acharya CNN 88.67 95 90
et al. [21]

Guha DNN 80 80 N/A

et al. [22]

Patidar LS-SVM 97.75 97 99

et al. [23]

Martis Decision 95.33 98 97

et al. [50] Tree

Present work SVM 100 100 100

Present work KNN 99.5 99 100
6. Conclusion

In this study we have designed, developed and evaluated an
epileptic seizure predictive model. We used the available EEG
dataset in [25] recorded for the group of five healthy
participants in two eyes-closed and eyes-open situations as
well as five epilepsy patients during seizure free and epileptic
seizure intervals. Each dataset is composed of 100 EEG
segments recorded by the sampling rate of 173.61 Hertz and
totally 4097 data-points. In order to reduce the size of datasets,
we extracted four statistical features of mean, standard
deviation, skewness and kurtosis in the time, frequency and
time-frequency domains.

T-test and SFFS, were applied in series to select and
determine all necessary and sufficient features to build a

reliable classifier. The selected features were fed into the SVM
and KNN classifiers and the results showed the highest
accuracy of 100% and 99.5% respectively. The results were
tested by k-fold cross validation technique. By this method we
divided the whole dataset into k subsets. Each subset used k
times for training and exactly once for testing the classifiers
performance. Consequently, our results show good agreement
with the previous studies done on the same dataset.

As explained in section II, many researchers have analyzed
EEG signal using different approaches and achieved wide
range of accuracies, 76%-100%, to characterize A to E classes [
18-26]. For the same classes that we have also considered and
analyzed in this work, Bhattacharyya et al. [25] got accuracies
between 98-100%, using tunable-Q wavelet transform (TQWT)
feature extraction method. Just like this study, they employed
SVM classifier and their result is in a good agreement with
ours. However, their proposed model is Quality factor (Q)
based, application specific and works better for the high
frequency scale of the signal. In other words, in order to attain
high performance, the optimal selection of Q and redundancy
parameter (R) is required and needs to be defined precisely
after multiple trials [20]. Providing the same level of accuracy,
this work takes advantage of both SVM and KNN classifiers and
is not application specific limited. The feature engineering
approach in the study doesn't depend on the Quality factor (Q).
Furthermore, our work has the capability of robust perfor-
mance when run on both high and low frequency biological
signal.

Also, result from [20] is in strong agreement with our results
using the Least-squares support vector machine and fractal
dimension of the EEG signal. However, the experiment went
through the analytic time frequency flexible wavelet trans-
form (ATFFWT) preprocessing stage. The authors argued that
it was necessary in order to accurately detect transient
intervals. As shown in our experimental result, we arrived
at the same accuracy of result without adding an extra
preprocessing stage of ATFFWT, thereby saving computational
space and time. Furthermore, compared with the proposed
model, the previous work was validated only with one learning
algorithm, namely, LS-SVM. In contrast the dependability and
consistency of the experimental result of the proposed model
was validated using two learning algorithms, namely, KNN
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and SVM. We demonstrated that both KNN and SVM produced
competitive results.

The accuracy, specificity and sensitivity performance of
both SVM and KNN classifiers confirms the validity of the
feature engineering methodology of feature extractions at
TD, FD and TFD domains with feature selections using T-test
and SFFS of our work. With the highest performance of the
SVM classifier's 100% accuracy, sensitivity and specificity
and KNN classifier's 99.5%, 99% and 100% accuracy, sensitiv-
ity and specificity respectively, our approach showed that 5
features are necessary and sufficient to build a reliable
model. Thus, the proposed model is less complicated,
reduced training time and efficient. This is in contrast with
ReliefF selection method in [49] that required 15 features for
achieving optimal classification result with KNN and SVM.
Table 8 shows the highest classification accuracy, sensitivity
and specificity of the present work. Comparison was made
with state-of-the-art. As discussed in section II and seen in
Table 8, our results are in good agreement with previous
studies and in some cases superior to them in terms of
performance.

In view of the above, we argue that the proposed model is
reliable and efficient in the detection of epileptic seizures
using EEG signal. Furthermore, it is flexible and can be
modified easily for different range of frequencies. This
advantage makes our approach suitable for other biological
data analysis such as: electromyogram (EMG), respiratory and
electrocardiogram (ECG) signal.

Implication of the study

In this study we:

1 Designed, developed and evaluated an epileptic seizure
classifier

2 EEG signal was pre-processed in time domain (TD),
frequency domain (FD) and time-frequency domains (TFD)
using Butterworth filter, Fourier Transform and wavelet
transform respectively.

3 Different waves of Delta, Theta, Alpha, Beta and Gamma
defined with their range of frequencies were used in each
domain to extract relevant features.

4 Statistical features of mean, variance, skewness and kurto-
sis was extracted from each brain band.

5 Combination of T-test and SFFS was used for feature
selection and redundancy elimination.

6 SVM and KNN were used as classifiers.

The result of our experiment suggests the following:

1 The feature engineering methodology of feature extractions
at TD, FD and TFD domains with feature selections using T-
test and SFFS is an effective strategy in building a classifier
using EEG signal for epileptic seizure detection.

2 Classification accuracy of 100% and 99.5% is achievable
using SVM and KNN classifiers respectively for epileptic
seizure detection.

Since both classifiers (SVM and KNN) detected the epileptic
seizures correctly, therefore, either of them is a reliable
epileptic seizure classifier.

Authors statement

We have made all necessary corrections to the paper as
recommended by the reviewers. Timothy Oladunni and
Marzieh Savadkoohi.

Conflict of interest

None.

Acknowledgments

This work was supported by the University of the District of
Columbia, National Science Foundation grants #1533479,
#1654474, #2032345 and the Department of Defense Award #
WO911NF1810475.

REFERENCES

[1] Pannese E. Neurocytology: fine structure of neurons, nerve
processes, and neuroglial cells: 2nd fully revised and
updated edition. Springer International Publishing; 2015.
http://dx.doi.org/10.1007/978-3-319-06856-5

Lent R, Azevedo FAC, Andrade-Moraes CH, Pinto AVO. How
many neurons do you have? Some dogmas of quantitative
neuroscience under revision. Eur J Neurosci 2012;35:1-9.
http://dx.doi.org/10.1111/j.1460-9568.2011.07923.x

Abbott LF, DePasquale B, Memmesheimer RM. Building
functional networks of spiking model neurons. Nat
Neurosci 2016;19:350-5.

http://dx.doi.org/10.1038/nn.4241

Michel CM, Murray MM. Towards the utilization of EEG as a
brain imaging tool. Neuroimage 2012;61:371-85.
http://dx.doi.org/10.1016/j.neuroimage.2011.12.039
Sharanreddy M, Kulkarni PK. Automated EEG signal
analysis for identification of epilepsy seizures and brain
tumour. ] Med Eng Technol 2013;37:511-9.
http://dx.doi.org/10.3109/03091902.2013.837530

Spruston N. Pyramidal neurons: dendritic structure and
synaptic integration. Nat Rev Neurosci 2008;9:206-21.
http://dx.doi.org/10.1038/nrn2286

Uldry L., Ferrez P.W., Millan ]J.D.R. (PDF) Feature Selection
Methods on Distributed Linear Inverse Solutions for a Non-
Invasive Brain-Machine Interface n.d. https://www.
researchgate.net/publication/41387051_Feature_
Selection_Methods_on_Distributed_Linear_Inverse_
Solutions_for_a_Non-Invasive_Brain-Machine_ Interface
(accessed February 2, 2020).

Adjamian P. The application of electro- and magneto-
encephalography in tinnitus research-methods and
interpretations. Front Neurol 2014;5.
http://dx.doi.org/10.3389/fneur.2014.00228

[2

3

4

[5

[6

[7

8



http://dx.doi.org/10.1007/978-3-319-06856-5
http://dx.doi.org/10.1007/978-3-319-06856-5
http://dx.doi.org/10.1111/j.1460-9568.2011.07923.x
http://dx.doi.org/10.1111/j.1460-9568.2011.07923.x
http://dx.doi.org/10.1038/nn.4241
http://dx.doi.org/10.1038/nn.4241
http://dx.doi.org/10.1016/j.neuroimage.2011.12.039
http://dx.doi.org/10.1016/j.neuroimage.2011.12.039
http://dx.doi.org/10.3109/03091902.2013.837530
http://dx.doi.org/10.3109/03091902.2013.837530
http://dx.doi.org/10.1038/nrn2286
http://dx.doi.org/10.1038/nrn2286
http://dx.doi.org/10.3389/fneur.2014.00228
http://dx.doi.org/10.3389/fneur.2014.00228

1340

BIOCYBERNETICS AND BIOMEDICAL ENGINEERING 40 (2020) 1328-1341

9]

(10]

(11]

(12]

(23]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

Strobbe G. Advanced forward models for EEG source
imaging; 2014.

Fort GG, Ferri FF. Ferri's clinical advisor 2019: 5 books in 1.
1st ed. Elsevier; 2018.

Adeli H, Zhou Z, Dadmehr N. Analysis of EEG records in an
epileptic patient using wavelet transform. ] Neurosci
Methods 2003;123:69-87.
http://dx.doi.org/10.1016/S0165-0270(02)00340-0

Polat K, Glines S. Classification of epileptiform EEG using a
hybrid system based on decision tree classifier and fast
Fourier transform. Appl Math Comput 2007;187:1017-26.
http://dx.doi.org/10.1016/j.amc.2006.09.022

Srinivasan V, Eswaran C, Sriraam AN. Artificial neural
network based epileptic detection using time-domain and
frequency-domain features. ] Med Syst 2005;29:647-60.
http://dx.doi.org/10.1007/s10916-005-6133-1

Ubeyli ED, Gliler I. Features extracted by eigenvector
methods for detecting variability of EEG signals. Pattern
Recognit Lett 2007;28:592-603.
http://dx.doi.org/10.1016/j.patrec.2006.10.004

Bell MA, Cuevas K. Using EEG to study cognitive development:
issues and practices. ] Cogn Dev 2012;13:281-94.
http://dx.doi.org/10.1080/15248372.2012.691143

Thatcher RW, Biver CJ, North DM. Z score EEG biofeedback:
technical foundations; 2004.

Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P,
Elger CE. Indications of nonlinear deterministic and finite-
dimensional structures in time series of brain electrical
activity: dependence on recording region and brain state.
Physical Review E - Statistical Physics Plasmas Fluids and
Related Interdisciplinary Topics 2001;64:8.
http://dx.doi.org/10.1103/PhysReVE.64.061907

Epileptologie Bonn / Forschung / AG Lehnertz / EEG Data
Download n.d. http://epileptologie-bonn.de/cms/front_
content.php?idcat=193&lang=3 (accessed February 3, 2020).
Oweis RJ, Abdulhay EW. Seizure classification in EEG signals
utilizing Hilbert-Huang transform. Biomed Eng Online
2011;10:38.

http://dx.doi.org/10.1186/1475-925X-10-38

Sharma M, Pachori RB, Rajendra Acharya U. A new
approach to characterize epileptic seizures using analytic
time-frequency flexible wavelet transform and fractal
dimension. Pattern Recognit Lett 2017;94:172-9.
http://dx.doi.org/10.1016/j.patrec.2017.03.023

Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep
convolutional neural network for the automated detection and
diagnosis of seizure using EEG signals. Comput Biol Med 2018.
http://dx.doi.org/10.1016/j.compbiomed.2017.09.017

Guha A, Ghosh S, Roy A. Chatterjee S Epileptic seizure
recognition using deep neural network Advances in
intelligent systems and computing, vol. 937. Springer
Verlag; 2020. p. 21-8.
http://dx.doi.org/10.1007/978-981-13-7403-6_3

Patidar S, Panigrahi T. Detection of epileptic seizure using
Kraskov entropy applied on tunable-Q wavelet transform of
EEG signals. Biomed Signal Process Control 2017.
http://dx.doi.org/10.1016/j.bspc.2017.01.001

Zahra A, Kanwal N, ur Rehman N, Ehsan S, McDonald-Maier
KD. Seizure detection from EEG signals using multivariate
empirical mode decomposition. Comput Biol Med 2017.
http://dx.doi.org/10.1016/j.compbiomed.2017.07.010
Bhattacharyya A, Pachori R, Upadhyay A, Acharya U.
Tunable-q wavelet transform based multiscale entropy
measure for automated classification of epileptic EEG
signals. Appl Sci 2017;7:385.
http://dx.doi.org/10.3390/app7040385

Richhariya B, Tanveer M. EEG signal classification using
universum support vector machine. Expert Syst Appl 2018.
http://dx.doi.org/10.1016/j.eswa.2018.03.053

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]
(40]

(41]

(42]

(43]

[44

(45]

Kaya D. The mRMR-CNN based influential support decision
system approach to classify EEG signals. Measurement 2020.
http://dx.doi.org/10.1016/j.measurement.2020.107602
Roohi-Azizi M, Azimi L, Heysieattalab S, Aamidfar M.
Changes of the brain's bioelectrical activity in cognition,
consciousness, and some mental disorders. Med ] Islam
Repub Iran 2017;31:307-12.
http://dx.doi.org/10.14196/mjiri.31.53

Al-Fahoum AS, Al-Fraihat AA. Methods of EEG signal
features extraction using linear analysis in frequency and
time-frequency domains. ISRN Neurosci 2014;2014:1-7.
http://dx.doi.org/10.1155/2014/730218

Amin HU, Mumtaz W, Subhani AR, Saad MNM, Malik AS.
Classification of EEG signals based on pattern recognition
approach. Front Comput Neurosci 2017;11.
http://dx.doi.org/10.3389/fncom.2017.00103

Saini M, Chhikara R. Performance evaluation of DCT and
DWT features for blind image steganalysis using neural
networks. Int ] Comput Appl 2015;114:20-3.
http://dx.doi.org/10.5120/19974-1868

Westfall PH. Kurtosis as Peakedness, 1905-2014. R.I.P. Am
Stat 2014;68:191-5.
http://dx.doi.org/10.1080/00031305.2014.917055

Garrett D, Peterson DA, Anderson CW, Thaut MH.
Comparison of linear, nonlinear, and feature selection
methods for EEG signal classification. Ieee Trans Neural
Syst Rehabil Eng 2003;11.
http://dx.doi.org/10.1109/TNSRE.2003.814441

Sloss AN, Dominic Symes, Wright C. ARM system
developer's guide : designing and optimizing system
software. Elsevier/ Morgan Kaufman; 2004.

Tan L, JiangJ. Infinite impulse response filter design. Digital
Signal Processing, Elsevier; 2019. p. 315-419.
http://dx.doi.org/10.1016/b978-0-12-815071-9.00008-7
Signals and Systems/Fourier Series - Wikibooks, open
books for an open world n.d. https://en.wikibooks.org/wiki/
Signals_and_Systems/Fourier_Series (accessed February 3,
2020).

Weisstein EW. Fourier Series — from Wolfram MathWorld
n.d. http://mathworld.wolfram.com/FourierSeries.html
(accessed February 3, 2020).

Winter R. Symmetry: even, odd, real, imaginary functions ::
Advanced Techniques : Rudi Winter's web space n.d. http://
users.aber.ac.uk/ruw/teach/340/ft_symmetry.php (accessed
February 3, 2020).

Chun-lin L. A tutorial of the wavelet transform; 2010.
Subasi A. EEG signal classification using wavelet feature
extraction and a mixture of expert model. Expert Syst Appl
2007;32:1084-93.
http://dx.doi.org/10.1016/j.eswa.2006.02.005

Hsu KC, Yu SN. Detection of seizures in EEG using subband
nonlinear parameters and genetic algorithm. Comput Biol
Med 2010;40:823-30.
http://dx.doi.org/10.1016/j.compbiomed.2010.08.005
Krzywinski M, Altman N. Significance, P values and t-tests.
Nat Methods 2013;10:1041-2.
http://dx.doi.org/10.1038/nmeth.2698

Ostertagovd E, Ostertag O, Kovéc J. Methodology and
application of the Kruskal-Wallis test. Appl Mech Mater
2014;611:115-20.
http://dx.doi.org/10.4028/www.scientific.net/AMM.611.115
Baker MC, Kerr AS, Hames E, Akrofi K. An SFFS technique
for EEG feature classification to identify sub-groups.
Proceedings - IEEE symposium on Computer-Based Medical
Systems; 2012.
http://dx.doi.org/10.1109/CBMS.2012.6266361

Peng Y, Wu Z, Jiang]. A novel feature selection approach for
biomedical data classification. ] Biomed Inform 2010.
http://dx.doi.org/10.1016/.jbi.2009.07.008



http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0045
http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0045
http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0050
http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0050
http://dx.doi.org/10.1016/S0165-0270(02)00340-0
http://dx.doi.org/10.1016/S0165-0270(02)00340-0
http://dx.doi.org/10.1016/j.amc.2006.09.022
http://dx.doi.org/10.1016/j.amc.2006.09.022
http://dx.doi.org/10.1007/s10916-005-6133-1
http://dx.doi.org/10.1007/s10916-005-6133-1
http://dx.doi.org/10.1016/j.patrec.2006.10.004
http://dx.doi.org/10.1016/j.patrec.2006.10.004
http://dx.doi.org/10.1080/15248372.2012.691143
http://dx.doi.org/10.1080/15248372.2012.691143
http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0080
http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0080
http://dx.doi.org/10.1103/PhysRevE.64.061907
http://dx.doi.org/10.1103/PhysRevE.64.061907
http://dx.doi.org/10.1186/1475-925X-10-38
http://dx.doi.org/10.1186/1475-925X-10-38
http://dx.doi.org/10.1016/j.patrec.2017.03.023
http://dx.doi.org/10.1016/j.patrec.2017.03.023
http://dx.doi.org/10.1016/j.compbiomed.2017.09.017
http://dx.doi.org/10.1016/j.compbiomed.2017.09.017
http://dx.doi.org/10.1007/978-981-13-7403-6_3
http://dx.doi.org/10.1007/978-981-13-7403-6_3
http://dx.doi.org/10.1016/j.bspc.2017.01.001
http://dx.doi.org/10.1016/j.bspc.2017.01.001
http://dx.doi.org/10.1016/j.compbiomed.2017.07.010
http://dx.doi.org/10.1016/j.compbiomed.2017.07.010
http://dx.doi.org/10.3390/app7040385
http://dx.doi.org/10.3390/app7040385
http://dx.doi.org/10.1016/j.eswa.2018.03.053
http://dx.doi.org/10.1016/j.eswa.2018.03.053
http://dx.doi.org/10.1016/j.measurement.2020.107602
http://dx.doi.org/10.1016/j.measurement.2020.107602
http://dx.doi.org/10.14196/mjiri.31.53
http://dx.doi.org/10.14196/mjiri.31.53
http://dx.doi.org/10.1155/2014/730218
http://dx.doi.org/10.1155/2014/730218
http://dx.doi.org/10.3389/fncom.2017.00103
http://dx.doi.org/10.3389/fncom.2017.00103
http://dx.doi.org/10.5120/19974-1868
http://dx.doi.org/10.5120/19974-1868
http://dx.doi.org/10.1080/00031305.2014.917055
http://dx.doi.org/10.1080/00031305.2014.917055
http://dx.doi.org/10.1109/TNSRE.2003.814441
http://dx.doi.org/10.1109/TNSRE.2003.814441
http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0170
http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0170
http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0170
http://dx.doi.org/10.1016/b978-0-12-815071-9.00008-7
http://dx.doi.org/10.1016/b978-0-12-815071-9.00008-7
http://refhub.elsevier.com/S0208-5216(20)30085-1/sbref0195
http://dx.doi.org/10.1016/j.eswa.2006.02.005
http://dx.doi.org/10.1016/j.eswa.2006.02.005
http://dx.doi.org/10.1016/j.compbiomed.2010.08.005
http://dx.doi.org/10.1016/j.compbiomed.2010.08.005
http://dx.doi.org/10.1038/nmeth.2698
http://dx.doi.org/10.1038/nmeth.2698
http://dx.doi.org/10.4028/www.scientific.net/AMM.611.115
http://dx.doi.org/10.4028/www.scientific.net/AMM.611.115
http://dx.doi.org/10.1109/CBMS.2012.6266361
http://dx.doi.org/10.1109/CBMS.2012.6266361
http://dx.doi.org/10.1016/j.jbi.2009.07.008
http://dx.doi.org/10.1016/j.jbi.2009.07.008

BIOCYBERNETICS AND BIOMEDICAL ENGINEERING 40 (2020) 1328-1341 1341

[46]

(47]

48]

Sequential Feature Selector - mlxtend n.d. http://rasbt.
github.io/mlxtend/user_guide/feature_selection/
SequentialFeatureSelector/#sequential-feature-selector
(accessed February 20, 2020).

Hu L-Y, Huang M-W, Ke S-W, Tsai C-F. The distance
function effect on k-nearest neighbor classification for
medical datasets. SpringerPlus 2016;5:1304.
http://dx.doi.org/10.1186/540064-016-2941-7

Zhang T, Chen W. LMD based features for the automatic
seizure detection of EEG signals using SVM. leee Trans
Neural Syst Rehabil Eng 2017;25:1100-8.
http://dx.doi.org/10.1109/TNSRE.2016.2611601

[49]

[50]

Hernéandez DE, Trujillo L, Z-Flores E, Villanueva OM, Romo-
Fewell O. Detecting epilepsy in EEG signals using time,
frequency and time-frequency domain features. Studies in
Systems Decision and Control 2018;143:167-82.
http://dx.doi.org/10.1007/978-3-319-74060-7_9

Martis RJ, Acharya UR, Tan JH, Petznick A, Yanti R, Chua CK,
et al. Application of empirical mode decomposition (EMD)
for automated detection of epilepsy using EEG signals. Int ]
Neural Syst 2012;22.
http://dx.doi.org/10.1142/S012906571250027X



http://dx.doi.org/10.1186/s40064-016-2941-7
http://dx.doi.org/10.1186/s40064-016-2941-7
http://dx.doi.org/10.1109/TNSRE.2016.2611601
http://dx.doi.org/10.1109/TNSRE.2016.2611601
http://dx.doi.org/10.1007/978-3-319-74060-7_9
http://dx.doi.org/10.1007/978-3-319-74060-7_9
http://dx.doi.org/10.1142/S012906571250027X
http://dx.doi.org/10.1142/S012906571250027X

	A machine learning approach to epileptic seizure prediction using Electroencephalogram (EEG) Signal
	1 Introduction
	2 Literature review
	3 Dataset description
	4 Methodology
	4.1 Feature extraction
	4.1.1 Time-Domain (TD)
	4.1.2 Frequency-Domain (FD)
	4.1.3 Time-Frequency Domain (TFD) (wavelet transform)

	4.2 Feature selection
	4.3 Classification
	4.4 Performance evaluation

	5 Result and discussion
	6 Conclusion
	Implication of the study
	Authors statement
	Conflict of interest
	Acknowledgments


