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Abstract

We present new differentially private algorithms for learning a large-margin halfspace. In contrast
to previous algorithms, which are based on either differentially private simulations of the statistical
query model or on private convex optimization, the sample complexity of our algorithms depends
only on the margin of the data, and not on the dimension. We complement our results with a lower
bound, showing that the dependence of our upper bounds on the margin is optimal.
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1. Introduction

In a classification problem, we are given labeled examples from some unknown distribution, and
the goal is to learn a classifier that accurately labels future examples from the same distribution. In
many applications, each of these examples represents the highly sensitive privacy information of
some individual. Although the goal of classification is to learn about the distribution, and not about
the examples per se, many natural learning algorithms have the unfortunate side effect of revealing
all or part of some of the labeled examples. For example, support vector machines represent the
learned classifier as a set of support vectors, which are just labeled examples from the input!

The now-standard approach for ensuring privacy in machine learning is differential privacy
(DP) (Dwork et al., 2006), which, informally, requires that no individual labeled example in the
input significantly influences the learned classifier. Starting with some of the earliest work in differ-
ential privacy (Blum et al., 2005; Kasiviswanathan et al., 2008), there is a large body of literature
showing that nearly every classification problem can be solved with differential privacy, albeit with
large overheads in both sample complexity and running time. It is thus central to understand for
which problems these overheads can be eliminated, and for which they are inherent.

In this paper we study the classical problem of learning a large-margin halfspace. That is, the
examples are unit vectors x € R? labeled with y € {1}, and we assume that y = sign({w, x))
for some unknown unit vector w € R¢. Further, no example falls too close to the boundary of the
halfspace, meaning that y - (w,x) > ~, where  is called the margin. Any algorithm (private or
non-private) for learning halfspaces over arbitrary distributions requires sample complexity growing
polynomially in the dimension d. When d is large, assuming a large margin enables learning the
halfspace with sample complexity independent of d.

Many results in differential privacy either explicitly or implicitly give private algorithms for
learning a large-margin halfspace (see the related work for a detailed discussion). Blum et al.
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Table 1: Sample complexity and running time bounds for our algorithms.

Sample Complexity Running Time Privacy
Theorem 6 %172 poly(d, %) (,9)
Theorem 11 %172 20(1/7%) . poly(d, %) (€,0)

(2005) gave a differentially private implementation of the classical Perceptron algorithm for learn-
ing a large-margin halfspace, however their implementation requires sample complexity poly(d),
which is precisely what the large-margin assumption is meant to avoid. A distinct line of work,
beginning with Chaudhuri et al. (2011), studies differentially private algorithms for empirical loss
minimization problems. Although learning a large-margin halfspace can be achieved via minimiz-
ing the hinge loss, generic algorithms for differentially private loss minimization inherently require
poly(d) samples (Bun et al., 2014; Bassily et al., 2014).

1.1. Results

In this work we give two new differentially private algorithms for learning a large-margin halfspace.
The key feature of our algorithms is that the sample complexity depends only on the margin, the
desired accuracy of the learner, and the desired level of privacy, and not on the dimension. More
precisely, our sample complexity is (ignoring constants and logarithmic factors) 1/aey? where «
is the desired error and ¢ is the desired privacy. In contrast, without privacy the sample complexity
is roughly 1/ay2, so our sample complexity is comparable to that of non-private algorithms except
when € is very small.

Our first algorithm runs in polynomial time in all the parameters and satisfies the standard notion
of (g,0)-DP. Our second algorithm’s running time grows exponentially in the inverse-margin 1/-,
but the algorithm satisfies the very strong special case of (¢, 0)-DP (so-called pure DP). Our results
are described in more detail in Table 1. For simplicity, each of the bounds in Table 1 suppresses
polylogarithmic factors of «, 3, ¢, 6, 7.

The main technique in both of our algorithms is to use random projections to reduce the di-
mensionality of the space to ~ 1/42. After projection, we can learn using either a differentially
private algorithm for minimizing hinge loss or by using the exponential mechanism over a net of
possible halfspaces. We note that using either of these techniques on its own, without the projection,
would fail to find an accurate classifier without poly(d) samples. We also note that one could apply
a random projection and then run the algorithm of Blum et al. (2005), which would have sample
complexity on the order of 1/ae~y?, which would be suboptimal.

We also prove a lower bound showing that any (&, 0)-differentially private algorithm for learning
a large-margin halfspace (with constant classification error) requires £2(1/e7?) samples (unless d =
0(1/~?)). This lower bound is presented in Theorem 12.

1.2. Related Work

Blum et al. (2005) gave a differentially private implementation of the classical Perceptron algo-
rithm, based on a general differentially private simulation of algorithms in the statistical queries
model (Kearns, 1993). Their algorithm can be improved using more recent statistical queries al-
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gorithms by Feldman et al. (2017), but this approach still requires poly(d) samples. The founda-
tional work of Kasiviswanathan et al. (2008) studied differentially private PAC learning, and gave
a generic private PAC learner, but they did not consider margin-based learning guarantees. In a re-
cent work, Beimel et al. (2019) give a private learner for halfspaces over an arbitrary finite domain,
significantly improving the dependence on the domain size by reducing the problem to the one of
privately locating an approximate center point. They prove that their algorithm requires poly(d)
samples and that this technique can not yield a better bound, but again they do not consider the
large-margin assumption.

An alternative approach is to leverage algorithms for differentially private convex optimizing to
identify a halfspace minimizing the hinge loss. Differentially private convex optimization is now
the subject of a large body of literature that is too large to survey here. Notably, Bassily et al. (2014)
gave nearly optimal algorithms for private convex optimization in the relevant setting, and showed
that such algorithms necessarily require poly(d) samples. Jain and Thakurta (2014) gave nearly
dimension-free results for minimizing generalized linear models, which could be used for learning
a large-margin halfspace. However the sample complexity obtained by using these results would be
1/a%2+2, which is again significantly worse than ours.

Blum et al. (2008) gave an algorithm for the related query release problem for large-margin
halfspaces—they construct a differentially private algorithm that outputs a data structure such that
one can input a halfspace such that if the data has large margin with respect to that halfspace, then
the structure outputs an estimate of how many points are labeled positively. One could use such
a data structure to learn a large-margin halfspace, however, their algorithm has sample complexity
poly(d), and the resulting learning algorithm would also not be computationally efficient.

Random projections have proven to be a very useful tool in learning theory in applications that
assume some kind of separability (Vempala, 2004; Blum, 2006)). Similar to our work, there have
also been applications of random projections in differential privacy. One example is the above
query release algorithm from Blum et al. (2008), which is conceptually similar to our pure differ-
entially private algorithm. In a very different setting, Blocki et al. (2013) demonstrated that certain
random projection matrices automatically preserve privacy, however there is no technical relation-
ship between their results and ours. Kenthapadi et al. (2012) also used the Johnson-Lindenstrauss
transform to achieve better utility and computational efficiency for privately estimating distances
between users, but again there is no technical relationship between their results and ours.

2. Preliminaries

2.1. Learning Halfspaces

We consider a distribution D over X x {1}, where ¥ C R?. We denote by B4(r) the ball in R?
with center 0 and radius r with respect to the euclidean norm || - ||2, and B$(1) = BS. We assume
that all examples are normalized so that X = Bg. This assumption is without loss of generality.
Since we can normalize each point in the input dataset, this operation would not affect privacy: any
two neighboring datasets, as defined in the next section, would remain neighbors. As for utility,
the (normalized) margin, as defined in this section, would also remained unchanged. Furthermore,
if we consider 7 to be the non-normalized margin and assume X C BY(R) for some known R,
we can still run the algorithm with the scaled margin +/R, increasing the sample complexity to
O(R?/ae?).
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A linear threshold function is defined as fy o(x) = sign((w,x) + 6), where x, w € R? and
6 € R. We assume without loss of generality that § = 0 so fy(x) = sign((w,x)).! We call a
vector w a hypothesis. The error of a threshold function defined by hypothesis w on distribution D
is

errp = Pr X = Pr [sign({w,x = Pr -(w,x) <0].
(F)= Pr [fel0 #0]= Pr [sign((wx) #3]= Pr [y (w.x) <)
As in the PAC (probably approximately correct) learning model, introduced by Valiant (1984), the
goal is to find a hypothesis w such that errp (fw) < « with probability 1 — /3, for given parameters
« and 5. We assume that there exists a hypothesis with zero error, that is, there exists a w* € Bg
such that y - (w*, x) > 0 V(x,y). More specifically, we assume that w* maximizes the margin

[(w*, %)

xed [|w*la - [Ix[l2”

which is assumed to be known in advance. Equivalently, v < | cos(w*, x)| Vx, where the right hand
side is the distance of a scaled point x from the halfspace (w*,x) = 0.

Our goal is to design algorithms which, given enough data points drawn from a distribution
D over a linearly separable set with margin -, return a hypothesis which has error at most a with
respect to the distribution, with probability 1 — 3. More formally, we aim to design an («, 3, )-PAC
learner with low sample complexity.

Definition 1 (o, 3,7)-PAC learner) Let D be a distribution over B3 x {41} such that there exists
w* € BY for which Prx y)~py{W*,x) > 7] = 1. We call such a distribution D a distribution with
margin . An algorithm A is an («, ,7)-PAC learner for halfspaces in R? with margin v and
sample complexity n if, given a sample set S ~ D™ from any distribution D with margin =y, it
outputs a classifier A(S) = W € BY such that, with probability at least 1 — f3,

Pr =sign({W,x))| > 1 —q.
Pl = sign((%, )]

2.2. Differential Privacy

We design algorithms which draw a sample set .S and output a hypothesis w € R?. In addition to
finding a good hypothesis, our algorithms must satisfy differential privacy (DP) guarantees. Differ-
ential privacy is a property that a randomized algorithm satisfies if its output distribution does not
change significantly under the change of a single data point.

More formally, let S, S’ € 8™ be two data sets of the same size. We say that .S, S’ are neighbors,
denoted as S ~ ', if they differ in at most one data point.

Definition 2 (Differential Privacy, Dwork et al. (2006)) A randomized algorithm A : S — O is
(e, ¢)-differentially private if for all neighboring data sets S, S’ and all measurable O C O,

Pr[A(S) € O] < exp(e) Pr[A(S") € O] + 6.

Algorithm A is (e, 0)-differentially private if it satisfies the definition for 6 = 0.

1. If mx = minkex ||x||2 is known, we can run the algorithm with the modified points & = [x,1] € R%!, margin
5 =~ -min{1,mx}/(2 + 2|6|), and hypothesis space {[w, ] : w € BZ}.
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3. An Efficient Private Algorithm

Both the algorithm of this and the next section draw a sample set S ~ D" and perform dimension
reduction from a d-dimensional to an m-dimensional space, which allows them to run in the reduced
space for the remainder of the execution.

Algorithm 1: A, 5. 5(5)

1: Choose a random matrix A € R™*% where m = O(%), By = af3?/64n, and

A= +1/y/m  w.p.1/2
Y =1/y/m wp.1/2.
2: Define S < {(Ax/|Ax|2,vy) | (x,y) € S}.

3: Define the hypothesis set C < B3".
4: Define the égg -Lipschitz loss function ¢ : C x (BS* x {£1}) — R as

fowi () = 1y (wox) < S L+ (G2 = o0 ),

5: Let w < F(Sa, 4, (£,6),C) and return w ' A.

Algorithm F is any differentially private empirical risk minimization algorithm. We can instan-
tiate it with the noisy stochastic gradient descent algorithm of Bassily et al. (2014) so that it has the
following guarantee. The full algorithm is presented in Appendix A for completeness.

Theorem 3 (Bassily et al. (2014)) Let sample set D, L-Lipschitz loss function ¢, differential pri-
vacy parameters (e, 6), and convex hypothesis space C with diameter ||C||2. There exists (,9)-
differentially private algorithm F, such that with probability 1 — [3/4, its returned hypothesis W
satisfies

N N A [ P 11
‘C(WvD) - WEIE'HQI]%Q“’L ﬁ(va) - f : pOlylog n, B7 g ) (1)

where L(w; D) =3 yep (W3 (X, y)) is the total loss of a hypothesis w on the data set D.

For the following proofs, we denote x4 := ”fﬁ for any x € BY. It holds that x4 € By
and the modified sample set can be also written as S4 = {(x4,v) | (x,y) € S}. The lemma that
follows guarantees that the transformation of a point x — Ax, with high probability, only changes
its euclidean norm by a small multiplicative factor.

Lemma 4 (Distributional Johnson-Lindenstrauss Lemma, Achlioptas (2003)) Ler A € R™*d

1 p. 1/2
O ana 4,5 = i;ﬁ wp 1§2. Then, for
—1/v/m  wp.

every x € R, it holds that Pr 4 [ ||| Ax[|3 — || x[3] < 5/x113] > 1 — Bz

be a random matrix such that m —

Since the transform leaves the norm of a point x almost unchanged, one would expect that the
corresponding transformed and normalized hypothesis w¥ := Aw*/||Aw*||2 would still have a
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large enough margin with respect to the corresponding point x 4. The following lemma defines the
probability that a point x belongs in the set of points G4, which are “good” for a fixed matrix A, in
the sense that their norm remains almost unchanged and the margin of their corresponding points
x4 from w’ is close to the original.

Lemma 5 For every given matrix A, let G4 C X x {£1} be the set of data points (x,y) that
satisfy the following two statements:

(i) |1 Ax13 = lIx[13] < 3lIx[I3 and
(ii) wh = ﬁ has margin at least 96v/100 on (x4,y), i.e. y - (W, x4) > 96/100.

It holds that Pr(x ) .p[(X,y) € Ga] > 1 — 4.

For the proof of Lemma 5, we express an inner product as (w*,x) = || x + w*||3 — 1| x — w*||3
and use the guarantee of Lemma 4 on vectors x,w*,x — w*,x + w*. By union bound, with
probability 1 — 431, x4 has margin 96/100 with respect to w’. The proof of Lemma 5 follows
by four applications of Lemma 4 and is in Appendix A.

In the following, we provide the privacy and sample complexity guarantees of our algorithm.

Theorem 6 (Sample complexity) Algorithm A, ¢ 5~ is an (o, 3,7)-learner with sample com-
plexity

Proof [Proof of Theorem 6] The first step of the algorithm is to sample matrix A uniformly at

random from U = {:l:l/\/rTL}de. By Lemma 5, E{ Pr [(x,y) ¢ QA]} < 4f;1. By Markov’s
A

()~
inequality,

(x,9)~ x,y)~D

Prl Pr [(xy)¢ Gl 25'] sg[( Pr [(x.9) ¢QAJ]/ﬁ's4ﬂJL/5’.

2

We set 5/ = a3/4n. Then, substituting 37, = %, we get that with probability at least 1 — /4,

Pr [(x,y)€Gal>1-4. )
(xy)~D
Therefore, with probability 1 — /4, the sampled matrix A satisfies inequality (2): a point
(x,y) ~ D is in G4 with probability at least 1 — 3. By union bound, S C G4, with probability
1 —np > 1— /4. For the rest of the proof, we condition on the following, occurring with
probability 1 — 3/2:

1. ( P)r D[(x, y) € Ga] > 1 — [ holds for A and
X,y )~

2. S C Ga, that is, w’ has margin at least 96/100 on S4.

aey? a’Brd e

probability 1 — B /4, it holds that 3. 37, s 1{y-(W,xa) < 5} < .

Claim6.1 Ifn = -1, . polylog(l 111 %), then for the hypothesis W returned by F, with

6
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Proof [Proof of Claim 6.1] Since w? has margin at least 96/100 for all points in .S, it holds
that mirclﬁ(w; Sa) < L(wh;S4) = 0. Substituting [|C|l2 = 2, L = 100/86v, and m =
we

O(log(n/ap)/~*) into (1), dividing by n, and simplifying the expression, we get that with proba-

bility at least 1 — /3/4,
1 1 11
= - polyl —=,= - 3
ne? poyog(n,a,ﬁ,(S) (€))

1 A-
ﬁﬁ(w, SA)

By calculations, it also holds that:

1., . 1 . 96y 9% y-(W,x4)
ZL(W Sa) = — 134 DT (2 YW, XA)
RLwSa) =00 ) {y (W:x4) < 100} <86 86,100
(x4,y)€ESA
1 . Y
> = : Ny
(x4,y)€SA

By the latter and inequality (3), it follows that with probability at least 1 — 3/4,

1 . A 111
w2 ﬂ{y'<W7XA><m}—w'pdybg(”’a’ﬁ’a)'

(xa,y)€ESA &7

For the stated n, with probability 1 — &, it holds that 2 > 1{y- (W,x4) < £} < 2. This
(x4,9)€ES5
completes the proof of the claim. |

Claim 6.2 [fn = ﬁ . polylog(é, %, %, é, %), then with probability 1 — [3/2, the error of the

returned classifier W' A on distribution D is ( P)r D[y (WwTA,x) <0 <a.
x?y ~

Proof [Proof of Claim 6.2] Let D 4 denote the probability distribution with domain B3 x {£1},
from which a sample (x4,y) € Sa is drawn. Let us also denote by D)g, distribution D restricted
on G4. In our conditioned probability space, S4 ~ D', where the probability density function of
D 4 would be defined as

Pr xp=x Ny=y]= r =x'Ny=1|.

(xA,y)~DA[ ] (xy)~Dig , [ | Ax][2
Let H ={h:{xa| (x,y) € Ga} = {£1} s.t. h(x) = sign((w,x)) for some w € B3} be a con-
cept class of threshold functions in B5*. We will use the following generalization bound.

Lemma 7 (Anthony and Bartlett (2009)) Let H be a set of {+1}-valued functions defined on a
set X and P is a probability distribution on Z = X x {+1}. Forn € (0,1), ¢ > 0, and n € N¥,

Pr,pn[3h € H : errp(h) > (1+ Oetrs(h) + 1] < Ally(2n) exp(—%), where eir,(h) is

the empirical error of h on the sample set z and 11y (-) the growth function of H.
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Setting n = /4 and ¢ = 1, we get that:

1 o an
s, ahEH:eerA<h>>2‘n( Z)IES H{h(xa) # v} + 5 | < 4Tlx(@n)exp(- 57 ).
XAY A

By Theorems 3.4 and 3.7 of Anthony and Bartlett (2009), we get that VCdim(H) = m + 1 and

I3(2n) < (2n)™*141. Substituting m = O (log(1/a3)/+?) and for n = a%ypolylog(é, %, %),
4113 (2n) exp(—an/32) < /4. Therefore, with probability at least 1 — 3/4,

(0}

1 “4)

errp, (fa) < 2% S 1{y (Woxa) <0} +

(xa,9)€SA

By Claim6.1,1 > 1I{y-(W,x4) <0} <1 > 1{y- (%,x4) < 75} < & holds

(x4,9)€Sa (x4,9)€Sa
with probability 1 — 5/4,if n = ;15 ~polylog(é, 1,11 %) Therefore, by inequality (4), if n =
7 -polylog (£, 5. 5,1, 1), then with probability at least 1~ 3/2, errp,, (fi) < 2-§ +§ = 4.

Equivalently, with probability at least 1 — /3/2,

3a
PI‘ . WTA7 X)) < 0 = PI‘ . V’\‘,’ X < 0 — err " S .
(,y)~Dig 4 by > ] (xa,y)~Da - Al ) Da (fw) 4

Since, by Condition 1., Pr D[(x, y) ¢ Ga] < B’ < ¢, it follows that with probability 1 — /2,

X,Y)~

Pr [y-(vAvTA7X><O] < Pr [y-(WTA,X> <0-1-p)+1-8

(xvy)ND (xvy)NDK]A
3o a0«
<—-(1-p5 '< —+—-<a.
] (1-p)+p < T TS
This completes the proof of the claim. |

Accounting for the probability that we are not in the conditioned space, we conclude that if n =
L. polylog(é, % i1 %) then with probability 1 — 5/2 — 5/2 = 1 — 3, errp(fq74) < o

aey?

This completes the proof of the theorem. |

Theorem 8 (Privacy guarantee) Algorithm A, g, s~ is (€,0)-differentially private.

Proof [Proof of Theorem 8] Differential privacy is closed under post-processing Dwork et al. (2006).
So it suffices to show that an algorithm A that is the same as Ao g.e.5~ €xcept that it returns w
instead of W' A, is (&, §)-DP.

Let data sets S ~ S’ such that § = S"\ {(x’,y')}U{(x,9)}. Let U = {1 //m}™ . If we fix
amatrix A € U, then S and S’ correspond to F’s inputs S4 and Sy = Sa\ {(x/s, ")} U{(x4,9)},
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respectively. Recall from Theorem 3, that F is (&, §)-DP. For any measurable set R C R™,

PriN(S) € Rl = ) Pr[A] - Pr[F(Sa) € R | A]

AeU

< ) Pr[A] - (exp(e) Pr[F(S4) € R| A + ) (by Theorem 3)
AeU

=exp(e) Y Pr[A]-Pr[F(S)) € R| A]+6 ) Pr[4]

AeU AeU
= exp(e) Pr[N(S') € R] + 6.

Therefore, NV is (g, 0)-DP, and so is Aq g.c,6,- |

4. A Pure Differentially Private Algorithm

As previously, algorithm A, g - takes as input a sample set S ~ D™ and performs dimension
reduction. In this reduced space, it defines a net of hypotheses and uses the Exponential Mecha-
nism (McSherry and Talwar, 2007) to choose a good hypothesis with respect to the sample set. The
Exponential Mechanism is a well-known algorithm, which serves as a building block for many dif-
ferentially private algorithms. It is used in cases where we need to choose the optimal output with
respect to some utility function on the data set.

Lemma 9 (The Exponential Mechanism, McSherry and Talwar (2007)) Let data set S € S",
range O, and utility function u : 8™ x O — R. The Exponential Mechanism Mpg(S,u, Q) se-

lects and outputs an element o € O with probability proportional to exp(s'gg’f)), where Au =

max max |u(S,0) —u(S’,0)|. The Exponential Mechanism is (£, 0)-differentially private and with
€

probability at least 1 — 6,

2Au 0|
— < — — .
\r;le%cu(s,o) u(MEg(S,u,0))] < 5 1n< 5 )

In the following we provide the sample complexity and privacy guarantees of our algorithm.

Theorem 10 (Privacy guarantee) Algorithm A, g~ is (€, 0)-differentially private.

Theorem 11 (Sample Complexity) Algorithm A, .~ is an («, B,)-learner with sample com-

plexity
< 111 1)
"Be’y
The proofs of Theorems 10 and 11 are similar to those of the previous section, except for the

bound on the empirical loss of the learned classifier. We prove this part here, while full proof is in
Appendix B.

Claim 11.1 Ifn = %7 polylog(a, 30z L 7) then with probability 1 — /4, for hypothesis W

returned by the Exponential Mechanism it holds that * - Z( ]l{y W, x4) < } <9

XA,Y)ESA

9
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Algorithm 2: A, 5. ,(S)

1: Choose a random matrix A € R™*? where m = O(bgg#), By = af3%/64n, and

A”:{—I-l/\/ﬁ w.p. 1/2
Y —-1/y/m wp.1/2.
2: Define Sg < {(Ax/| Ax||2,y) | (x,y) € S}.

3: Let W be a 5 —Net of BY".
4: Define the utility function u : (B* x {£1})" x W — [—1,0]:

u(D,w) = —% : Z Il{y- (w,x) < 110}

(x,y)€D

5: W < Mp(S4,u, W) and return w ' A.

Proof [Proof of Claim 11.1] Every point in 55" is within /10 from a center of V. Let w; be
the center within /10 from w7, that is, |w% — w}||2 < ~/10. Recall that in our conditioned
probability space, for all (x4,y) € Sa, y - (Wh,x4) > 967/100. Therefore, by these inequalities,
for all (x4,y) € Sa,

g (WEXa) =y (Wi Xa) =y - (Wh = WExa) >y (Whoxa) — [[wh = willa - [xalls >

10°
*\ 1 _
It follows that Vrvnea%u(SA,w) > u(S4, We) = =5 D (x )8 1y (w,xa) < 75} =0.
By the latter and Lemma 9, with probability at least 1 — 3/4, it holds that:

LSy (e < 2 < 2 (W) + n(4/8)) s

— (W, X - —in n

n Y AT T10S = ne

(x4,9)€54

It is a well-known result that the covering number of an m-dimensional unit ball by balls of radius
7/10 is at most O((10/~)™). Therefore, substituting m = O(log(n/aB)/v?), it follows that

In|W| = % - polylog (n, é, %, %) .Thus, by inequality (5), if n = %172 -polylog(%, %, %, %) then
with probability 1 — 3/4, %Z(XMJ)GSA 1{y - (W,xa) < 5} < . This completes the proof of
the claim. |

We note that the running time of algorithm A, g. -, is exponential in 1/v, due to the use of
the exponential mechanism to select from a net of size exp(1/). Although there are efficient
implementations of the exponential mechanism for optimizing over continuous domains (Bassily
et al., 2014), relaxing the domain to be continuous would lead to higher sample complexity.

5. A Sample Complexity Lower Bound for Pure Differential Privacy

In this section we prove a lower bound on the sample complexity of any (e, 0)-differentially private
algorithm for learning a large-margin halfspace.

10
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Theorem 12 Any (e, 0)-differentially private (%0, %,V)Jearner for halfspaces in RY/7) re-
quires Q(l/E'yQ) samples.

Proof Our proof uses a standard packing argument. We construct distributions D), ... D)

over B¢ x {£1} for d = 1/10007? and K = 2%/2°, We will construct these distributions so that
no classifier is simultaneously accurate for two distinct distributions D9 and DY), This will imply
that n = Q(log(K)/e) = Q(1/e?) samples are necessary to achieve (¢, 0)-differential privacy.
Each distribution D) is defined with respect to a halfspace w¥) € {41/1/d}? such that
Pri »~pi [y - (w) x) > ~] = 1. In addition, x is distributed uniformly at random on the re-
maining surface of B‘Q’l so that is does not violate the margin and y = sign((w(i) ,x)). Formally, if
U denotes the uniform distribution on Bg and fy its pdf, then the pdf of X where (X, y) ~ D s

Fx(x) = {fu(x')/PrXNUn<w<i>,x>| > 9], i [(w®, )| >

0, otherwise.
Using standard constructions of error correcting codes, there exists a set w(), ... w) such
that the Hamming distance of any pair ¢ # j, is Ham(w(l),wm) > %, which implies that

Let {w), ... w5} be such a set and let DV, ... D) be the resulting distributions. The
crux of the proof is in establishing the following claim about this set of distributions. For each
distribution D(*), we define the set G) = {W € B : err 5 (W) < 75} of all classifiers that have
error at most 1/10 on the distribution DO,

Claim 12.1 For every i # j, G and GU) are disjoint.

We prove this claim in Appendix C. Using this claim, we can complete the proof as follows.
Let SU) ~ (D(i))n denote a random iid sample of n examples from D). Let A be an (¢,0)-
differentially private (%, %, ~v) learner. By privacy and accuracy, we have forevery i € {2,3,..., K},
; 9
PrlA(SM) € GD] > exp(—ne) PrlA(SM) e g1] > 0 exp(—ne).

Since all G are disjoint,

X 9K —1)
PrlA(SW) ¢ gV >3 " Pr[A(sW) € g0 > 5 exp(-ne).
=2
Since, by accuracy, Pr[A(SM) ¢ g] < 5. it follows that
9 1
(K -1 “ne) < —.
(K~ 1) exp(ne) < o
Rearranging, and substituting our choice of K, we conclude n = Q(1/e7?). [ |
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Appendix A. Algorithm and Proofs of Section 3

A.1. Differentially Private Empirical Risk Minimization Algorithm F

A complete algorithm, employing the differentially private stochastic gradient descent algorithm
by Bassily et al. (2014), is presented below in Algorithm 3. We denote by Il (-) the euclidean

projection on C and by ||C||2 the diameter of C.

Algorithm 3: A, 3. 5(5)

1:

Choose a random matrix A € R™*¢, where m = O (%), By = af3?/64n, and

”:{—H/\/ﬁ wp. 1/2
Y —1/y/m  wp.1/2.

2: Define S < {(Ax/|Ax|2,y) | (x,y) € S}.
3: Define the hypothesis set C < B3".
4: Define the 1% -Lipschitz loss function £ : C x (By* x {£1}) — Ras

10:

11:
12:
13:

14:
15:

16:

86y

flwi () =1y (wox) < S L+ (G2 = 200,

: Let w < F(S4,4,(g,0),C).

return w ' A.

procedure F(D,/, (¢,0),C)
for i < 1to [log(8/53)] do
W(Z) — »ANoise—GD(Dv 67 (5/ Hog(8//6)~| ) 5/ “0g(8//6)~|), C)
end
W {w w8y,
return w < Mpg(D,—(,W).

procedure Anoise.gp(D, ¢, (¢',0"),C)
32L%n2 log(n/&") log(1/68")
2

Noise variance 02 5

, where L is the Lipschitz constant of £.
Cll2

Vt(n2L2+mo?)’

Learning rate function 7 : [n?] — R: n(t) =
Choose a point from C, w.
fort < 1ton? —1do

Pick (x,y) ~, D with replacement.

wip1 « He(wy — n(t)[nVE(wy; (x,5)) + by]), where by ~ N(0,1,,02).
end
return w2.

To achieve a high-probability guarantee, algorithm F runs Aneise-Gp [log(8/3)] times, with
privacy parameters £/ [log(8/3)] and 6/[log(8//)], and uses the Exponential Mechanism to pick

the best hypothesis W, as described in Appendix D of Bassily et al. (2014).
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A.2. Proof of Lemma 5
We state Lemma 5 again for convenience.

Lemma 13 (Lemma 5) For every given matrix A, let G4 C X x {1} be the set of data points
(x,y) that satisfy the following two statements:

(i) |1 A3 = [IxII3] < 113 and

(ii) wh = ﬁ has margin at least 96v/100 on (x4,y), i.e. y - (W, x4) > 96/100.

It holds that

Pr [(x,y) € Ga| >1—48y;.
(x,y)ND[( y) € Ga] BiL

Proof [Proof of Lemma 5] By Lemma 4,

A _
4wl = ral] < <[l

holds for a point u € R¢ with probability at least 1 — 3,7, By union bound, it holds simultaneously
for all points x + w*, x — w*, x, and w*, with probability at least 1 — 4. Under this condition,
statement (¢) is true and for y = 1 we have:

(wx) = 2l x w5 = % = w3

1 1
< A+ w5 - | A(x — w")||2
4(1 - 135) 2 41+ %) 2
- oz (1 e
_4<1_1g(2)2>[(1 100)IIA( x4+ w*)|3 ( 100>||A(x )M
1
:7( | Ax + Aw™ H2—7|| Ax — Aw* H2>
1 1002
e
200 (| Ax o+ AW + || Ax — Aw”]3
4(1_1332)( 2 2)
1
:1—7 (Aw™*, Ax) + ( > (|l Ax|[|3 + || Aw*[|3)
1002
e
S;CAW AX> 0(1+100)
1— -2 1_
1002 1002

Equivalently (Aw™*, Ax) > (1 - %) (W*,x) — 135 (1 + 15)- Since y = 1 and (w*,x) =
y - (W*,x) > =, it follows that:
2

gl s gl 98y
(Aw*, A 1— (1 7) > 20
y- (4w X>—< 1002>7 1o\ T 100/ = 100

Therefore, for y = 1,

* 98y
e twn) =y (e o) > 28 > o

[Aw*[ly’ [[Ax][2/ = T+ 135 — 100"

15
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The proof for y = —1 is similar. We conclude that with probability at least 1 — 43 j7,, statements
() and (77) are true. [

Appendix B. Proofs of Section 4

B.1. Proof of Sample Complexity: (¢, 0)-DP
Theorem 14 (Sample Complexity, Theorem 11) Algorithm A, g~ is an («, 3,7)-learner with

sample complexity
1 1 111
Qe 2'p01y10g R
g a Bey

n =

Proof [Proof of Theorem 11] As in the previous section, the first step of the algorithm is to sample

mxd
matrix A uniformly at random from U = {iﬁ} . From Lemma 5, it follows that:

B[ Pr foxn) # 64| <46

A [ (x,y)~D

And, by Markov’s inequality,

5| Pr o) ¢ 6l

A | (x,y)~D

< 481

}}«L Pr [(x,y)%gA]Zﬂ/} < 2 S5

x,y)~D

2

We set 3 = «3/4n. Then, substituting 3, = 06‘4%, we get that with probability at least 1 —3/4,

wbr L6 y) €041 21 - B

Therefore, with probability 1 — 3/4, the sampled matrix A satisfies the above inequality, that
is, a point (x,y) ~ D is in G4 with probability at least 1 — /. Furthermore, by union bound,
V(x,y) € S it holds that (x,y) € G4, with probability at least 1 — n’ > 1 — /4.

For the remainder of the proof, we condition on the event that

1. ( P)r D[(x, y) € Ga] > 1 — [ holds for A and
X,y )~

2. 8 C Ga, thatis, w¥ has margin at least 96/100 on Sj4.

This event occurs with probability at least 1 — 5/4 — /4 =1 — (/2.

Claim 14.1 Ifn = ;. polylog( L L1 l), then with probability 1 — (3/4, for hypothesis W

a2 a’Brery
returned by the Exponential Mechanism it holds that
Sy oy e <2< ©
— (W, x — —.
n VAW RIS 900 =
(x4,9)€ESa
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Proof [Proof of Claim 14.1] Every point in B5" is within /10 from a center of VV. Let w be the
center within /10 from w’, that is,

Wi —well2 < 7/10. 9
Recall that in our conditioned probability space,
y - (Wi, x4) > 96v/100 ®)
holds for all (x4,y) € Sa. Therefore, for all (x4,y) € Sa,

Yy (WesXa) =y - (W, Xa) =y - (Wi — W, X4)
>y (Wa,xa) = [wi — well2 - [[xall2

> 96+/100 — v/10 = 86~/10 > ~/10. (by inequalities (7), (8))
It follows that
1
Vrglea)/)\c}u(SA,w) > u(Sa,wi) = - Z Il{y- (W, x4) < 1—70} = 0. )
(x4,9)€Sa

By Lemma 9 and inequality (9), with probability at least 1 — /3/4, it holds that:

=S afy e < H) < (W) + (/) (10

10
(x4,y)€SA

It is a well-known result that the covering number of an m-dimensional unit ball by balls of
m
radius /10 is at most O (( /10> ) Therefore, substituting m = O <bg(:¢>, it follows that

1 1 11
InW|=— ~polylog<n, — )
gl a By

Thus, by inequality (10), if n = a; 7 (é 1 % %) then with probability at least 1—3/4,

B’
PMIRICRIENES I
— (W, x — —.
n YIAWEAIS 100 =
(xa4,9)€Sa
This concludes the proof of the claim. |

Claim 14.2 Ifn = polylog(a, 32 7) then with probability 1 — 3/2, the error of the

returned classifier W A on distribution D is

Pr [y-(Ww'A x)<0]<a. (11)
(WND[y ( ) < 0]
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Proof [Proof of Claim 14.2] Let D4 denote the probability distribution with domain Bj* x {1},
from which a sample (x4,y) € Sa is drawn. Let us also denote by D)g, distribution D restricted
on G4. In our conditioned probability space, S4 ~ D'}, where the probability density function of
D 4 would be defined as

/ / / /
e N (7= |
Let H = {h:{xa ]| (x,y) € Ga} — {£1} s.t. h(x) = sign((w, x)) for some w € B5'} be a
concept class of threshold functions in B5*. By Theorem 3.4 of Anthony and Bartlett (2009),
VCdim(H) = m + 1.
By the generalization bound of Theorem 5.7 of Anthony and Bartlett (2009), stated in Lemma 7,
it holds that:

1
< Pan dheH:errp,(h)>2-— Z 1{h(xa) #y} + % < 411y (2n) exp(—an/32)
AT " (xa,y)€S54
where the growth function I13;(2n) < (2n)™*!41, by Theorem 3.7 of Anthony and Bartlett (2009).
Using m = O(W),ithows thatifn = a%z-polylog(é, 3, %) then 4113 (2n) exp(—an/32) <
B/4. Therefore, with probability at least 1 — 3/4,
a

; (12)

1
errp, (fw) <2+~ > Iy (W,xa) <0} +
(x4,y)€ESa

ByClaim14.1,2 > 1I{y-(W,x4) <0} <1 > 1{y  (W,x4) < %} < 2holds

(x4,9)€54 (x4,9)ES
with probability 1 — 3/4,if n = L - polylog (1, 1,51, 1).
Therefore, by inequality (12), if n = %72 : polylog(é, %, %, %, %), then with probability at
least1 — 3/4 — /4 =1— /2,
a o 3o
errp, (fa) 2.4+ =
Equivalently, with probability at least 1 — /3/2,
Pr [y (WTAx) <0l = Pr [y (W,xa) < 0] =errp, (fa) < -2
(x,y)~Dig , (xa,y)~Da 4
Since, by Condition 1., ( P;r [(x,y) ¢ Ga] < B’ < ¢, it follows that with probability at least
x?y ~
1-p5/2,
Pr [y- (WA x)<0]< Pr [y (WAx)<0-(1-5)+1-5
(x,y)~D (x,y)~Dig ,
3
<=+
< 3a n a
—+—-<a.
ST TS



EFFICIENT PRIVATE ALGORITHMS FOR LEARNING LARGE-MARGIN HALFSPACES

This completes the proof of the claim. |

Accounting for the probability that we are not in the conditioned space, we conclude that if n =
ael'yQ -polylog(é, %, %, %, %) , then with probability atleast 1 — 3/2— /2 = 1=, errp(fg74) <
«. This completes the proof of the theorem. |

B.2. Proof of Privacy Guarantee: (¢,0)-DP
Theorem 15 (Privacy guarantee, Theorem 10) Algorithm A, s .~ is (€, 0)-differentially private.

Proof [Proof of Theorem 10] The sensitivity of the utility function is

1
Au = max max lw(Z,w) —u(Z' ,w)| < —.
WEW 7,7/ e(Xx {+1})" n
YA

It follows by Lemma 9 that Mg is (¢, 0)-DP.
Differentialy privacy is closed under post-processing Dwork et al. (2006). Therefore it suffices
to show that an algorithm A that is the same as A, 3. - except that it returns W instead of w'A,is

(€,0)-DP.
Let S and S’ be two neighboring sample sets such that S = S’ \ {(x/,¢")} U {(x,v)}. Let
xd
U= {iﬁ}m . If we fix a matrix A € U, the sample sets .S and S’ would correspond to Mg’s

inputs S4 and S’y = Sa \ {(x/y,v")} U {(x4,y)}, respectively. For any measurable set R C R"™,
it holds that

PriN(S) € R] = Y Pr[A] - Pr[Mg(Sa) € R| A]

AeU

< Z Pr[A] - exp(e) Pr[Mg(Sy) € R | A] (since Mg is (g,0)-DP)
AeU

= exp(e) Z Pr[A] - Pr[Mg(SY) € R | A

= exp(e) Pr[N(S') € R].

Therefore, N is (g,0)-DP, and so is Aq g c - |

Appendix C. Remaining Proofs of Section 5
Claim 15.1 (Claim 12.1) For every i # j, G and GY) are disjoint.

Proof [Proof of Claim 12.1] We will show that for an arbitrary w € Bg, and every ¢ # j, if
err i) (W) < 1/10 then err ;) (W) > 1/10. Let U; be the distribution over B x {41} such that
(x,y) ~ U; if x ~ U is uniform over the unit sphere in R? and y = sign((w(?, x)). Define the
probability

Py = Pr[l(w.x)] <]
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of a uniformly distributed point on B¢ lying within margin ~ of a unit vector w. Probability D~y
remains unchanged if we replace w with any other unit vector and, more specifically,
- (%)
py= Pr wox)| <
v= Pl ) <o)

holds for all U;, i € [K].
The next lemma will allow us to show that U; is not too far from D,

Lemma 16 Ifd = 55z then py < 0.2.

1000

Proof Consider the following sampling process from the uniform distribution on the sphere: choose
each coordinate z; ~ MN(0,1) and normalize with ||x|[2. By the symmetric property of multi-
dimensional gaussian vectors, we know that the projection of x on a unit vector w is distributed as
x1/|%]2, where 21 ~ N(0, 1) is the first coordinate of x and ||x||3 ~ ¥%(d) is the square of the
normalization factor. The probability of a point having margin more than v from w is:

|71
1-— =P >
P x~%[||xu2—"

21| (12 35) A (12 < 15 )]

=1 pe[(ln < 55) v (Il > vI0a)] €= 1g57)

1
== % < > 10d
=T N, 1)[‘ 1l 10] ”x”2 Lo [HXHQ ]

| \Y

By the tables of the standard normal distribution we have that R’[r( : Ux1| < %0] < 0.08. Also,
0,1

€T~

the mean of a ¥2(d) distributed variable is d. By Markov’s inequality, it follows that

P [Ix]13 > 10d] < d/10d = 1/10.

Thus, p, < 0.18. [ |

We can apply the preceding lemma to relate erry, (W) to err ) (W). Specifically, for any W
with err ;) (W) < 0.10, it holds that:

erry, (W) = Pr[sign((W,x)) # sign<<w<“,x>>}

(xry)NUi
< Pr |[sign sign - Pr w(i),x >
< JPr | fsian((,x) # sian((w® ) | [w) )] 29 Pr (e x)] > 4]
+ Pr (w9, x)| <
Pl 0] <)

<01+02=0.3

Therefore,
) <0.3. (13)

%

erry; (
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Next we will argue that the same vector w cannot have low error with respect to some other
distribution Uj. Fix any two vectors w®, w() as in our construction. Consider the plane defined
by these vectors and let § be their angle. It holds that

, , 20 0 cos '((w wl)))
Pr lsi (i) — g () _ Y _7_ ’ )
P fsign((wt, x)) = sign((w), x))] = =0 =7 &

Since Ham(w(®, wl?)) > d/10, (w®, w?)) < 1(9d/10 — d/10) = &. Thus,

cos~1(8/10)

Pr [sign((w?, %) = sign((wl), x))] < 2

=0.21

For the error of W on distribution U; it holds that:

v [sien((W,x)) = sign((w\) x
P, lsn((.) = sign((w, )]

= (x,yf)’ng [sign((W,x)) # sign((w?,x))] + (X,S};Uj sign((w¥), x)) = sign((w®, x))]

<0.3+0.21 =051 (by (13))

Therefore,
erry, (W) > 0.49. (14)

Once again, we can relate this to the error on the distribution D) as follows.

Pr  [sign((W,x)) # sign((w'?), x))]

(x,y)~DU)

= Pr[sign((W,x)) #sign((w), x)) | (W, x)| > 4] Pr [{wl) x)| > 9]
(x,9)~Uj (x,9)~Uj

> Pr[sign((W,x)) # sign(w@),x)] = Pr[[(w9),x)] <]
(x,y)~U; (x,y)~U;

>0.49 — py, > 0.29 (by (14))

Therefore, err ;) (W) > 0.29. Thus, for any W, if err ;) (W) < 0.1 then err ;) (W) > 0.29. MW
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