
Fair k-Centers via Maximum Matching

Matthew Jones * 1 Huy Lê Nguyễn * 1 Thy Nguyen * 1

Abstract
The field of algorithms has seen a push for fair-
ness, or the removal of inherent bias, in recent
history. In data summarization, where a much
smaller subset of a data set is chosen to represent
the whole of the data, fairness can be introduced
by guaranteeing each "demographic group" a spe-
cific portion of the representative subset. Specifi-
cally, this paper examines this fair variant of the
k-centers problem, where a subset of the data with
cardinality k is chosen to minimize distance to the
rest of the data. Previous papers working on this
problem presented both a 3-approximation algo-
rithm with a super-linear runtime and a linear-time
algorithm whose approximation factor is exponen-
tial in the number of demographic groups. This
paper combines the best of each algorithm by pre-
senting a linear-time algorithm with a guaranteed
3-approximation factor and provides empirical
evidence of both the algorithm’s runtime and ef-
fectiveness.

1. Introduction
The power of Machine Learning systems has lead to a
widespread increase in their use, with roles in improving the
quality of healthcare and education, selecting items in a so-
cial media or news feed, job searching, and more (Holstein
et al., 2019). However, the potential for these algorithms
to operate in an unfair manner is not only recognized, but
has been directly observed, such as in an automated hiring
system favoring candidates based on age, gender, or race
(Tambe et al., 2019; Cowgill, 2018; Datta et al., 2015) and
in an advertisement selection algorithm which was found
more likely to produce results related to searching criminal
histories when using keywords which were names "typically

*Equal contribution 1Khoury College of Computer Science,
Northeastern University, Boston, Massachusetts, U.S.A.. Cor-
respondence to: Matthew Jones <jones.m@northeastern.edu>,
Huy Lê Nguyên <hu.nguyen@northeastern.edu>, Thy Nguyen
<nguyen.thy2@northeastern.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

associated with black people" (Sweeney, 2013). The exis-
tence of this underlying bias has led to a recent popularity
of fair ML algorithms, which attempt to correct this social
issue.

The problem in this paper particularly concerns the problem
of data summarization, which involves finding a small subset
of a large data set which is "approximately representative" of
the whole data set. To see how bias would exist in this space,
imagine an image search tool which returns some images
related to a set of keywords. Inherent bias in the set of
matching images can lead to bias in the set of images which
should summarize all the matching images. For example,
a Google Images search for the keyword "CEO" returns a
much higher fraction of men than the actual fraction of male
CEOs (Kay et al., 2015).

In the k-centers problem for data summarization, a few
centers are chosen as the representative set of the data by
choosing the set of centers such that for any data point in
the set, there is some center which is sufficiently similar to
the data point. Specifically, the ultimate goal of k-centers is
to minimize the maximum dissimilarity between any data
point and its most similar center. To introduce fairness
to this problem, consider the case where the data set is
partitioned into a set of groups. A k-centers algorithm can
be thought of as a fair algorithm if the proportion of centers
which belong to a particular group is approximately equal
to the proportion of the data which belongs to the same
group. This idea will be formalized in the next section,
but it gives a path for introducing fairness to the k-centers
algorithm: restrict the number of centers in each group such
that the approximate equality between any group’s share of
the centers and share of the whole data set is forced.

It is known that the k-centers problem is NP-hard to solve,
and is even NP-hard to approximate within a factor less
than 2. Furthermore, there exists an algorithm which takes
linear time in the size of the data set which yields a 2-
approximation for the k-centers problem (Gonzalez, 1985).
It is clear, then, that it is likewise NP-hard to solve the
fair variant of the k-centers problem. However, there exist
algorithms which are able to approximately solve the fair
k-centers problem. Currently, for this fair variant of the
k-centers problem there exists both an algorithm which
takes linear time with respect to the size of the data set and

Fair k-Centers via Maximum Matching

achieves an approximation factor which is exponential in the
number of groups (Kleindessner et al., 2019a) , as well as an
algorithm which takes at least quadratic time with respect
to the size of the data set but achieves a 3-approximation
(Chen et al., 2016). In this paper, we bridge the gap between
these two algorithms by providing an algorithm which is
a strict 3-approximation algorithm for this variant of the
k-centers problem and also runs in linear time with respect
to the size of the data set.

2. The Problem
Given a set S and a metric d on domain S×S, the k-centers
problem involves choosing k centers such that the maximum
distance of any item in S to a center is minimized. Formally,
the optimal solution to a k-centers problem is given by

argminC={c1,c2,...,ck}⊆S max
s∈S

min
c∈C

d(s, c).

That is, choose the set C ⊆ S with cardinality k such that
the maximum distance between any point s ∈ S and the
point in C closest to s is minimized. As stated earlier, the k-
centers problem is NP-hard, and is additionally NP-hard to
approximate within a factor better than 2 (Gonzalez, 1985).
Before working on the fair variant, this paper will briefly
review Gonzalez’s 2-approximation algorithm for the unfair
k-centers problem in Section 4.

Fairness can be introduced to the k-centers problem in the
case that there are demographic groups which compose S.
Formally, suppose that S is divided into m demographic
groups, such that Si is the set of points in S from demo-
graphic group i, where

m⨆︂
i=1

Si = S.

To introduce fairness to the k-centers problem, each of the
m demographic groups is given a value ki, where ki is the
number of centers (out of the total k centers) which may
come from demographic group i. We will assume that

m∑︂
i=1

ki = k

and the solution to the fair k-center problem is given as

argminC={c1,c2,...,ck}⊆S
∀1≤i≤m:|C∩Si|=ki

max
s∈S

min
c∈C

d(s, c).

The fact that the unfair version of the problem can be solved
using the fair variant tells us that the fair variant is also NP-
hard up to a 2-approximation. The best existing polynomial-
time approximation for the fair k-centers problem is a 3-
approximation (Kleindessner et al., 2019a). However, ex-
isting algorithms for the 3-approximation all run in a time

complexity which is at least quadratic in |S|. This paper
presents a similar algorithm which gives a 3-approximation
in time linear with |S|.

3. Related Works
As mentioned above, our work is an improvement over
(Kleindessner et al., 2019a) in approximation factor and
(Chen et al., 2016) in runtime complexity. Specifically,
(Kleindessner et al., 2019a) proposed an (3 · 2m−1 − 1)-
approximation algorithm in time O(nkm2 + km4) for the
fair k-center problem. Note that the approximation fac-
tor is not known to be tight. (Chen et al., 2016) framed
the fair k-center problem as a matroid center problem, and
proposed matroid intersection for a 3-approximation algo-
rithm in Ω(n2 log n) time. Note that our algorithm is a
3−approximation in time O(nk), maintaining the approxi-
mation factor in (Chen et al., 2016) while having time com-
plexity linear with the size of the dataset as in (Kleindessner
et al., 2019a). In the experimental section, we also observe
that not only our algorithm has better objective value than
(Kleindessner et al., 2019a), it also has significantly better
runtime as the number of groups increases.

(Kale, 2019) extends the idea of (Guha, 2009) for ma-
troid center problem in streaming setting. They provide
a ((17+ 7ϵ)(1+ ϵ))-approximation one-pass algorithm and
a (3 + ϵ)-approximation two-pass algorithm with running
time O((nr + r3.5) log(1/ϵ)/ϵ+ r2 log(∆)/ϵ), where r is
the rank of the matroid and ∆ is the aspect ratio of the
metric.

A different fairness constraint on the selected points is stud-
ied in (Chierichetti et al., 2017). For a clustering scheme to
be fair, (Chierichetti et al., 2017) requires that proportion of
groups in each cluster must be similar to that in the whole.
This line of work defines fairness according to the disparate
impact doctrine (Feldman et al., 2015). (Chierichetti et al.,
2017) designed an algorithm for this fair variant of the k-
center and k-medoid problems for the case of two groups.
(Rösner & Schmidt, 2018) studied the fair k-center prob-
lems for multiple groups. (Bera et al., 2019) generalizes the
work of (Chierichetti et al., 2017) by allowing group overlap,
being applicable to any lp norm objective, and the incorpo-
ration of restricted domination and minority protection as
parameter of the fairness problem. Furthermore, (Schmidt
et al., 2020) studied the fair k-means problem in the stream-
ing model under Euclidean metric and (Kleindessner et al.,
2019b) considers the spectral clustering framework with the
fairness notion of (Chierichetti et al., 2017).

Another similar line of work is (Celis et al., 2018). Their
paper studies the problem of fair summarization. They
have the same fairness constraints that the chosen points
must have kf elements from each group. However, their

Fair k-Centers via Maximum Matching

Algorithm 1 Gonzalez’s 2-approximation for k-centers
Input: a set of points S = {s1, ..., sn}, a distance metric d,

an integer k s.t. 1 ≤ k ≤ n
Output: A set C such that C ⊆ S and |C| = k
Choose an arbitrary item s ∈ S and initialize C = {s}
Initialize an array A of size n with values A[i] = d(si, s)
for i = 2 to k do

Set ci = argmaxjA[j]
Set C = C ∪ {sci}
for j = 1 to n do

Set A[j] = min{A[j], d(sci , sj)}
end

end
return C

objective is to maximize the diversity score of the selected
points. This score is defined as the squared volume of the
parallelepiped spanned by the selected subset. The key
difference of this work from our work is that our method
does not need access to feature representation of the data
but only to the metric on the dataset.

4. The 2-Approximation Algorithm for Unfair
k-Centers

Algorithm 1 is Gonzalez’s 2-approximation for the k-centers
problem. It builds the solution by choosing the first of the
k points arbitrarily, and then choosing the remaining points
sequentially as the point farthest from the points actively in
the solution. We use the following well-known theorem:

Theorem 4.1. Algorithm 1 gives a 2-approximation for the
k-centers problem. (Gonzalez, 1985)

This algorithm runs in time complexity O(nk), since the
algorithm involves k linear sweeps each taking O(n) time.

Gonzalez’s algorithm will serve as the foundation for our al-
gorithm in this paper, similar to the algorithm in (Chen et al.,
2016). Specifically, we will use Gonzalez’s algorithm to
solve the unfair problem, "shift" some of the k centers to sat-
isfy fairness and guarantee a 3-approximation, and replace
centers which could not be shifted using some heuristic.

5. The 3-Approximation Algorithm for
Fairness

Now, we include the fairness constraint. Recall that each
item si ∈ S has a demographic group value fi, and the
number of centers which can be chosen for each demo-
graphic group value f is given by a value kf . It is implicit
that k =

∑︁
f kf , so in order to have k centers in total

each demographic group value f must be the demographic
group value of exactly kf centers. We use m to denote the

number of demographic group values and use Sf to denote
{si|si ∈ S, fi = f}. Also, note that we often use talk about
satisfying the fairness constraints for each kf as an upper
bound, since we will often deal with sets with less than k
items as being fair.

For ease of discussion, we will also add another constraint
called the fair shift constraint. A set of points S′ ⊆ S
satisfies the fair shift constraint iff there is some function g
from S′ to S such that

• ∀s′ ∈ S′ : d(s′, g(s′)) < mins1,s2∈S′,s1̸=s2
d(s1,s2)

2

• The set {c | ∃s′ ∈ S : g(s′) = c} satisfies the fairness
constraint

To understand what this constraint is saying, first denote d′

as the minimum distance between any pair of distinct items
in S′. Balls of radius d′/2 around items in S′ are pairwise
disjoint. The mapping g on an item s′ ∈ S′ must return an
item which is within the (d′/2)-ball around s′. In addition,
the set given by g(S′) must satisfy the fairness constraint.
Therefore, the fair shift constraint is passed for a set S′

if there is a set S′′ with the same cardinality as S′ which
satisfies the fairness constraint and such that each item in
S′ is within distance d′/2 of some item in S′′. We design
Algorithm 3, used to test the fair shift constraint, to take the
radius of the balls as an argument rather than calculating
it from S′, because this allows the algorithm to be useful
for optimizing the fair shift later in Algorithm 2 by testing
different radii for the same set S′.

5.1. A High-Level Overview: Approximation Analysis

For our complete fair k-centers algorithm, the strategy is to
first use Gonzalez’s algorithm for the case without fairness,
and then modify the solution of Gonzalez’s algorithm by
moving the centers to satisfy the fairness constraint. Algo-
rithm 2 is the outline of the overall algorithm. A complete
algorithm is in section 2 of the appendix. This algorithm use
graph matching to make the solution fair similar to (Chen
et al., 2016) but we use carefully constructed binary searches
in small domains to optimize the radius in O(log k) itera-
tions. In the rest of this section, we will expand the outline
into a complete algorithm and prove both the asymptotic
runtime and competitive ratio for Algorithm 2.

We see that step 1 of the algorithm is similar to Gonzalez’s
algorithm, except we need to keep track of the order in
which items are added to the set C in Gonzalez’s algorithm.
This is a simple modification, and has no effect on the
asymptotic time complexity. We denote the sequence
returned by this step as {a1, a2, ..., ak}. We also introduce
the value di, which is the distance between ai and the set
{a1, ..., ai−1}. Specifically, di is the minimum distance
between ai and an item in the sequence which precedes ai.

Fair k-Centers via Maximum Matching

Algorithm 2 Outline of the 3-approximation algorithm for
k-centers with fairness
Input: a set of points S = {s1, ..., sn} each with a de-

mographic group value fi, a distance metric d, the
values kf

Output: A set C such that C ⊆ S and |{si|si ∈ C
⋀︁

fi =
f}| = kf for all demographic group values f

1 Compute a sequence of k centers by choosing the first ar-
bitrarily from S, and then iteratively choosing the point
s ∈ S which is farthest from the set S by distance.

2 Find the largest integer h such that the first h items in the
sequence satisfy the fair shift constraint.

3 Find the set of points which can substitute the first h items
in the sequence such that the new set of h points has at
most kf points for each demographic group f and the
maximum distance between an item and its substitution is
minimized.

4 Choose the remaining centers arbitrarily such that the fair-
ness constraint is satisfied.

5 Return the k centers.

A helpful lemma at this point is:

Lemma 5.1. The sequence (d2, d3, ..., dk) is non-
increasing

Proof.

di+1 = d(ai+1, {aj}j<i+1)

= min{d(ai+1, ai), d(ai+1, {aj}j<i)}
≤ d(ai+1, {aj}j<i)

≤ d(ai, {aj}j<i)

= di

The first and last equalities hold by definition. The second
equality holds because the distance from a point p to a set is
the minimum of the distance between p and any item in that
set. The first inequality holds by the definition of minimum,
and the last inequality holds because ai was chosen before
ai+1 in the sequence, so it must be no closer than ai+1

to {aj}j<i. This simplifies to di+1 ≤ di, which shows
inductively that the sequence is non-increasing.

Therefore, as the number of sequence items we are consider-
ing increases, two things occur which limit the ability of the
prefix with that size to pass the fair shift constraint. First, we
add another item from the sequence which must be matched
in order to shift centers and maintain fairness. Second, for
every sequence item p we already need to match, the number
of points which are "near" p is non-increasing, since di/2
is non-increasing with i by Lemma 5.1), so p has no new
points it can shift to, and possibly has less such points. In

these ways, our matching becomes more restricted as the
number of sequence items we are considering increases.

Let the optimal solution of a specific k-centers problem
with fairness require balls of radius r∗ around the centers
to cover S. On the same problem, we give the following
lemma and prove it directly:
Lemma 5.2. di > 2r∗ =⇒ the set {aj}j≤i satisfies the
fair shift constraint

Proof. Assume that di > 2r∗. Each item in {aj}j≤i must
be distance ≤ r∗ from an optimal center, by the definition
of r∗. Since d(aj , ak) ≥ di > 2r∗ for all 1 ≤ j < k ≤ i,
each aj’s closest optimal center is unique, by the triangle
inequality. So, we can match each aj with its closest op-
timal center. This gives a matching between the items in
{aj}j≤i and points at distance ≤ r∗ < di/2 which satisfy
the fairness constraint.

From there, we can show that the set found by shifting
{aj}j≤h gives us a 3-approximation:
Lemma 5.3. Let Ch be the set of points returned by step 3
of Algorithm 2. Then, any set C such that

• C satisfies the fairness constraints (up to equality on
all kf)

• Ch ⊆ C

is a 3-approximation for the k-centers problem with fair-
ness.

Proof. For ease of notation, we define Ah = {aj}j≤h.

First, it must be the case that dh+1 ≤ 2r∗. If dh+1 >
2r∗, then the integer h + 1 satisfies step 2 by Lemma 5.2,
contradicting h as a maximum. Since dh+1 ≤ 2r∗, we
see d(ah+1, Ah) = dh+1 ≤ 2r∗. Since d(ah+1, Ah) ≥
d(a,Ah) for all a ∈ S \ Ah due to the way the sequence
(ai) was chosen, it follows that

∀si ∈ S, d(si, Ah) ≤ 2r∗

Finally, we must show that step 3 only shifts items in Ah

by at most r∗ to obtain Ch. If every item in Ah is within
distance dh/2 of its covering optimal center, then it can
shift to that center, which must be a distance at most r∗. If
any item in Ah is not within distance dh/2 of its covering
optimal center, then it must be the case that dh/2 < r∗, and
every item in Ah shifts at most dh/2 < r∗. Therefore,

∀aj ∈ Ah, d(aj , Ch) ≤ r∗

By the triangle inequality,

∀si ∈ S, d(si, Ch) ≤ min
ai∈Ah

d(si, ai) + d(ai, Ch)

Fair k-Centers via Maximum Matching

≤ d(si, Ah) + r∗ ≤ 3r∗

Adding any item to Ch cannot increase d(si, Ch). So, if
Ch ⊆ C then

∀si ∈ S, d(si, C) ≤ 3r∗

Which also sufficiently proves the more concise theorem:

Theorem 5.4. Algorithm 2 gives a 3-approximation for the
problem of k-centers with fairness.

5.2. Filling in the Details: Runtime Analysis

At this point, we will expand the algorithm with details, and
explain how to implement each step correctly and efficiently.
As discussed earlier, we can run step 1 of Algorithm 2
similar to Gonzalez’s algorithm, in O(nk) time.

Steps 2 and 3 each require us to test whether we can shift to
a fair set of points within some bounded pairwise distance
to the original set. Specifically, given a set of points A ⊆ S
and a value d′, we want to know if there exists a fair set
B ⊆ S such that the following requirements are met:

• |B| ≤ |A|

• ∀a ∈ A, d(a,B) ≤ d′

It is worth noting here that the algorithm will not require
|B| = |A|, but by the nature of how we choose d′ the sets
B which we care about will always have |B| = |A|, since
the balls of radius d′ around A will be disjoint. Solving this
problem is best accomplished using the faster of either a
maximum bipartite matching or a maximum-flow algorithm.
Note that instead of rebuilding the graph every time Algo-
rithm 3 is invoked, we build them incrementally by editing
the same graph to avoid recomputation. We will discuss
how to do this shortly.

Algorithm 3 tests the fair shift constraint. First, we prove
correctness of this algorithm. If there is a way to shift points
in {aj}j≤ℓ to a fair set for some ℓ such that each point
moves at most d′ to the new set, then the distance between a
point aj and its shift destination bj is at most d′. Therefore,
the edge from aj to the demographic group of bj in G is
added, with label bj . Flow from s to t can be built by edge-
disjoint unit flows of the form s→ aj → fbj → t. Exactly
ℓ such flows exist, and therefore the maximum flow value
is ℓ. Conversely, if a flow with value ℓ exists, then every
edge from s to VA is at capacity, and the ℓ flows from Vf

to t show that the items given by the edges with labels bj
satisfy fairness up to an upper bound, since flow through
each vf ∈ Vf is upper bounded by kf and corresponds to

Algorithm 3 Testing the fair-shift constraint
Input: a set of points A = {a1, ..., aℓ}, a value d′

Output: A fair set B such that |A| ≥ |B| and ∀a ∈
A, d(a,B) ≤ d′, OR the empty set

1 Create a directed graph G = {V = {s, t}, E = ∅}
2 Create a vertex set VA of size ℓ with a one-to-one mapping

with points in A
3 Create a vertex set Vf with size m with a one-to-one map-

ping with demographic group values
4 Update V with value V ⊔ VA ⊔ Vf

5 for all demographic group values f do
6 Update E with an edge from the vertex for f in Vf to t

with weight kf
7 for i = 1 to ℓ do
8 if d(Sf , ai) < d′ then
9 Update E with an edge from the vertex for ai in

VA to the vertex for f in Vf with weight 1 and
labeled by argminb∈Sf

d(b, ai)

10 end
11 end
12 end
13 for i = 1 to ℓ do
14 Update E with an edge from s to the vertex for ai in VA

with weight 1
15 end
16 Run Dinic’s Maximum Flow Algorithm on G from s to t
17 if flow value = ℓ then
18 Calculate B from the labels of edges used in the flow

Return B
19 else
20 Return ∅
21 end

the number of centers shifted into demographic group f .
The ℓ labels of edges from VA to Vf at capacity then give
a set of points which are one-to-one with A with pairwise
distance at most d′ (since the edges exist in G) and are a
fair set. Therefore, the conditions on B imposed by this
algorithm are met, and we can use this to test the fair shift
constraint when d′ is chosen correctly.

The graph used here has size bounds |V | = ℓ+m+k+2 =
O(k) and |E| ≤ n+ ℓ+ 2k = O(n). We get the bound n
on the number of edges between VA and Vf when we are
analyzing Algorithm 3 in the context of Algorithm 2 since
d′ is always chosen such that balls of radius d′ around A are
disjoint, so each s ∈ S yields at most one edge between VA

and Vf . Therefore, the time complexity of this algorithm is
the time required to construct G, plus O(n

√
k) time for line

19 using a special case of Dinic’s algorithm. We omit the
time complexity of building G for a bit longer.

Now, we are ready to examine the time complexity and

Fair k-Centers via Maximum Matching

complete correctness of Algorithm 2 using Algorithm 3,
which will yield the following result:

Theorem 5.5. There exists an algorithm which gives a 3-
approximation for the problem of k-centers with fairness
and which runs in time O(nk).

Line 1 of Algorithm 2 can be executed in O(nk) time similar
to Gonzalez’s algorithm, and lines 4 and 5 can be executed
in O(n) time.

To accomplish line 2, we use Algorithm 3 with a binary
search. That is, binary search the value ℓ over the integer
range [0, k], with d′ = dℓ/2 at each iteration. If a fair shift
exists then we need h ≥ ℓ, and if a fair shift does not exist
then we need h < ℓ. This finds the correct value h (recall
h is the maximum value such that a fair shift exists). We
can accomplish line 3 in a similar fashion. This time, we
fix ℓ = h, and we vary the value d′, to find the minimum
value r such that a fair shift exists. This time, if a fair
shift exists then we need r ≤ d′, and if a fair shift does
not exist then we need r > d′. Note that we can search
over discrete values of d′ corresponding to distances from
{ai|1 ≤ i ≤ ℓ} to {Sf | all demographic groups f}. There
are at most mk = O(k2) such distances, hence both binary
searches require O(log k) levels.

Since the time complexity of Algorithm 3 is O(n
√
k) with-

out the graph construction, the time complexity of Algo-
rithm 2 is the sum of 3 time complexities:

• O(nk) +O(n) +O(n
√
k log(k)) = O(nk)

• The time to build all graphs G for both binary searches

• The time to find the discrete values for d′ in the second
binary search.

The third item is easier to address than the second, so we’ll
start with that. Each s ∈ S has distance ≤ d′ to at most
one point in Ah, and these provide the candidate distances
for the optimal fair shift. Hence, there are at most n such
distances. We can compute these distances in O(nk) time,
and store the O(n) distances. We reduce the number of
candidate distances at each level by half using the approach
of binary search, so we can use linear-time rank-finding to
find all the values d′ for the search in O(n) time total, so
the third item takes O(nk) time total.

To do the second item efficiently, we don’t construct G from
scratch every time. Instead, we keep a base graph G′ for our
binary search, which represents the graph’s state at some
stage in the binary search, and we update G′ and build G
from G′ throughout the binary search. In line 2 of Algorithm
2, we see that when we increase the value ℓ in the binary
search, two significant changes occur with respect to G:

• The value d′ decreases (or at least doesn’t increase),
so existing edges between VA and Vf may need to be
removed. We do this by giving each edge a threshold
value re when it is created, so we can check each edge
between VA and Vf and remove edges with d′ < re.

• We add new vertices to G, and new edges incident to
those vertices. This can be accomplished by checking
distances between each point in S with each new point
ai we consider, and adding edges (and setting their
value re) as needed.

Consider a level j in the binary search in line 2 of Algorithm
2, where the search is restricted to the integer range [lj , uj]
and we need to test ℓ = (lj + uj)/2. We maintain the
invariant that G′ is the graph when we tested ℓ = lj . Initially,
[l1, u1] = [0, k] and G′ = {V = {s, t}, E = ∅}. Any
time we add an edge, we set re to the distance of the shift
corresponding to that edge. To compute the next value G at
each level of the search, start with G = G′, and modify G
as described earlier: check edges and remove all edges with
d′ < re, and add vertices and corresponding edges for each
ai, where i is between the level of G′ and ℓ (including ℓ).
Furthermore, when a binary search level would set lj+1 ← ℓ,
such that we would continue by searching the upper half of
the current range, then update G′ with the current value of
G, since we will never need to remove any of the current
vertices of G. Each iteration of the binary search then
requires time O(n) to check edges for d′ < re, time O(n+
k) = O(n) to possibly copy G or G′, and time O(n(∆ℓ)) to
obtain G from G′ where ∆ℓ is given by max{|lj − ℓ|, |uj −
ℓ|} and represents the step size at that level of the binary
search. The values ∆ℓ are decreasing geometrically, as the
step size in binary search roughly halves on each iteration.
The sum over ∆ℓ then equals O(|range|) = O(k), hence
the time to construct all the graphs for line 2 of Algorithm 2
is O(n(k + log k)) = O(nk).

In line 3 of Algorithm 2, we can keep the vertex sets constant
for all graphs G, and we modify the edges between VA and
Vf . We have O(n) edges which can ever exist at any level
of this binary search, which we partition into three sets
during the binary search: present edges, potential edges,
and absent edges. If our binary search is looking at values
of d′ in the ranges [rlow, rhigh], then present edges have
re < rlow, absent edges have re > rhigh, and potential
edges have rlow ≤ re ≤ rhigh. By this definition, the
names become clearer: absent edges will never exist in G
in future binary search levels, present edges will always
exist in G in future binary search levels, and potential edges
are not yet decided and may or may not be included in G
depending on future binary decisions. By deciding which
edges are present or absent, we are only required to check
potential edges on each iteration to obtain G. With this
intuition, when rlow is increased (i.e. we are searching on

Fair k-Centers via Maximum Matching

the upper half of our binary search range in later iterations),
then edges with rlow ≤ re ≤ d′ become present edges.
On the other hand, when rhigh is decreased because we
are searching on the lower half of our current range, then
edges with d′ < re ≤ rhigh become absent edges. We only
have to test potential edges at each level and the number
of potential edges decreases geometrically over iterations.
Thus, G′ can be updated at each level to indefinitely contain
present edges. For a simple upper bound on the runtime
analysis, testing edges to build G and the time to copy to
and from G and G′ takes O(n) time at each of the O(log k)
levels. Therefore, the time complexity of this binary search
is given by O(n(ℓ+ log k)) = O(n(k + log k)) = O(nk),
since we need to compute the value re and the closest center
ai (with i ∈ [1, ℓ]) for each s ∈ S.

Therefore, our total time complexity is O(nk) +O(nk) +
O(nk) = O(nk), and our algorithm is a correct 3-
approximation for the fair k-centers problem by Theorem
5.4, which yields Theorem 5.5.

6. Experiments
In this section, we report experimental results of our pro-
posed fair k-center algorithm on real and synthetic datasets,
in comparison with the (3 · 2m−1 − 1)-approximation algo-
rithm and heuristic methods proposed in (Kleindessner et al.,
2019a). The first heuristic (Heuristic A in (Kleindessner
et al., 2019a)) runs algorithm 1 with k = kf for each mem-
ber of the same group f and returns the union of centers
returned by each run. The second heuristic (Heuristic B in
(Kleindessner et al., 2019a)) chooses centers similarly to
algorithm 1 but only from groups that does not have enough
centers. We also designed another heuristic (Heuristic C)
that also runs algorithm 1 on each subgroup. However, in-
stead of choosing the center that maximizes the minimum
distance to the only centers in each subgroup, it selects new
centers that maximize the minimum distance to all centers.
Heuristic C is an improvement over Heuristic A, as the latter
does not take into account distance to centers from other
groups when choosing the next center. We tested two vari-
ants of algorithm 2. The difference is at the final step, once
it is already guaranteed the 3-approximation and the algo-
rithm has to pick additional centers to satisfy the fairness
constraint up to equality. The fist variant is Algorithm 2-
Seq, which sequentially goes through points in the datasets
and selects points to be centers from groups that does not
reach the required number of centers. The second variant is
Algorithm 2-Heuristic, which selects the remaining centers
by running Heuristic B with k = k′f for each f , where k′f
is the required number of centers from group f minus the
number centers that’s already selected in that group after
step 3. It is also possible to run algorithm 2 with other
heuristics methods.

For each algorithm, we collect objective values and run-
time on every dataset for 100 random runs (performed on
a PC with 3.7 GHz i3 / 8GB DDR4). For the method in
(Kleindessner et al., 2019b), we utilized the implementation
provided by the author for the experiments. The original im-
plementation in (Kleindessner et al., 2019b) calculates the
whole distance matrix of the data before running the clus-
tering algorithm. To compare the runtime of the algorithms,
our implementation computed the distances on the fly. For
fair comparison, we slightly modified the implementation
of (Kleindessner et al., 2019b) so the distance between each
point is computed when needed.

6.1. Simulated Data

We generate m 4-dimensional Gaussian isotropic blobs with
identity covariance matrix. The total number of points is
fixed at 4000 and divided equally among each blob. Each
point is randomly assigned to a group. The total number
of group is m. We set kf = 1 for all f , to require the
algorithms to output m centers satisfying the constraint that
one member from each group is represented. We report
the the objective value and running time with varied m for
Euclidean metric.

Table 1 shows the mean and standard deviation of objective
value on simulated data. As seen in table 1, our proposed
algorithms outperformed the other methods. It is also im-
portant to note that our algorithm’s performance has the
least variance among those tested. This shows that our al-
gorithms are less sensitive to the choice of the initial center
in algorithm 1. Figure 1 shows our algorithm tends to-
ward significantly better runtime than (Kleindessner et al.,
2019a). Although both algorithms are linear with respect
to the number of samples, the algorithm’s time complexity
in (Kleindessner et al., 2019a) has the large order term at
O(nkm2), while ours is at O(nk). This explains why our
algorithm is much faster as the number of groups grows.
It is also worth noting that there does not seem to be a
clear performance advantage to running Heuristic B over
sequentially adding points after algorithm 2.

We also include more experiments for simulated data in
the Appendix. In the additional experiments, we unbalance
the groups by forcing one group to have disproportionately
more centers than the rest.

6.2. Real data

We apply our algorithm on 4 real datasets. For each dataset,
we use numeric features for clustering and selected categor-
ical attributes as group assigment:

• Adult (A) dataset (Kohavi & Becker, 1996) contains
socioeconomic records of 48842 individuals for pre-
diction of whether income exceeds 50k/year. We use

Fair k-Centers via Maximum Matching

Table 1. Mean and standard deviation of objective value on
simulated data

Algorithms 50 Groups 100 Groups 200 Groups 400 Groups
Alg 2-Seq 6.89 (0.2) 6.52 (0.31) 6.5 (0.41) 6.46 (0.38)
Alg 2-Heu B 6.91 (0.26) 6.48 (0.25) 6.51 (0.43) 6.44 (0.38)
Kleindessner 7.01 (0.46) 6.88 (0.75) 7.45 (0.78) 7.26 (0.51)
Heuristic A 21.38 (2.84) 17.7 (1.55) 16.61 (1.57) 13.87 (1.33)
Heuristic B 7.66 (1.09) 8.16 (0.94) 7.81 (0.71) 7.8 (0.62)
Heuristic C 7.26 (1.17) 7.43 (0.87) 7.44 (0.6) 7.42 (0.62)

Figure 1. Mean runtime in seconds on simulated data

gender and race for group assignment.
• Wholesale (W) dataset (Cortez, 2014) contains mone-

tary spending on various products of clients of a whole-
sale distributor. We select the location attribute for
group assignment.

• Student (S) dataset (Cardoso, 2014) includes infor-
mation about grades, socioeconomic, and school data
relevant to predicting academic performance of stu-
dents on Math. We use features sex, address (urban or
rural) and student’s school for group assignment.

The required number of centers from each group is pro-
portional to the size of that group. This makes sure that
every group is fairly represented in selected centers. Our
constraint is based on the fairness notion of disparate impact
(Feldman et al., 2015) for classification setting. Equiva-
lently, we require the selected centers to include a percent p
of members from every group. For A-Gender and A-Race,
we select p = 0.4%. For the other datasets, p = 5%. Table
2 shows the summary of the real datasets. In the appendix,
we include further experiments with the constraint that re-
quires an equal number of centers for each group. We utilize
the Euclidean distance as the metric for both settings.

Table 3 show the mean and standard deviation of objective
values on real data. Our algorithms perform at least similar
or better than the algorithm proposed in (Kleindessner et al.,

Table 2. Summary of real dataset: number of samples, dimension-
ality, and count of each class for each attribute

Adult: n=32561, d=6, gender = (10771, 21790),
race = (311, 1039, 3124, 271, 27816)
Student: n=649, d=16, school = (423, 226), ad-
dress = (197, 452), sex = (383, 266)
Wholesale: n=440, d=6, region = (77, 47, 316)

2019a). Similar to the simulated data, we observe little
performance difference between Alg-2 Seq and Alg2-Heu
B. In constrast to the simulated data, heuristics methods
have reasonably good performance on real dataset. This is
also observed in (Kleindessner et al., 2019a). Figure 2 and 3
show our algorithms have better runtime than (Kleindessner
et al., 2019a) in all settings. It is worth noting that our
algorithms have a similar or better objective value on the
real datasets, while having significantly better runtime.

Figure 2. Mean runtime in seconds on adult dataset

Figure 3. Mean runtime in seconds on student and wholesale
dataset

6.3. High Number of Centers

We provide the experiments for synthetic data for case when
the number of centers is large. Specially, we require that
each demographic group has p = 70% of its points selected
as centers. We set n = 4000 and use the same approach

Fair k-Centers via Maximum Matching

Table 3. Mean and standard deviation of objective value on real data
Algorithms A-Gender A-Race S-Sex S-School S-Address W-Location
Alg 2-Seq 0.32 (0.01) 0.32 (0.01) 1.29 (0.04) 1.3 (0.04) 1.31 (0.05) 0.26 (0.01)
Alg 2-Heu B 0.32 (0.01) 0.32 (0.01) 1.28 (0.03) 1.28 (0.04) 1.3 (0.04) 0.26 (0.01)
Kleindessner 0.36 (0.03) 0.34 (0.02) 1.29 (0.05) 1.29 (0.06) 1.3 (0.05) 0.27 (0.03)
Heuristic A 0.41 (0.02) 0.35 (0.03) 1.36 (0.02) 1.39 (0.04) 1.37 (0.04) 0.28 (0.01)
Heuristic B 0.37 (0.02) 0.32 (0.01) 1.29 (0.03) 1.3 (0.04) 1.3 (0.04) 0.27 (0.01)
Heuristic C 0.4 (0.02) 0.32 (0.02) 1.29 (0.03) 1.29 (0.02) 1.35 (0.05) 0.24 (0.02)

in section 6.1 to generate synthetic data. Our experiments
confirm that our algorithm still has favorable performance
and better runtime.

As observed in table 4 and figure 4, our approach is much
faster and provide better performance compared to (Klein-
dessner et al., 2019b).

Table 4. Mean and standard deviation of objective value on stimu-
lated data for larger number of centers
Algorithm 50 Groups 100 Groups 200 Groups 400 Groups
Alg 2-Seq 1.06 (0.01) 1.47 (0.01) 1.73 (0.02) 2.54 (0.04)
Alg 2-Heu B 1.06 (0.02) 1.46 (0.01) 1.74 (0.04) 2.52 (0.05)
Kleindessner 1.21 (0.06) 1.43 (0.06) 1.84 (0.1) 2.36 (0.15)
Heuristic A 2.37 (0.16) 3.23 (0.18) 3.66 (0.25) 4.10 (0.29)
Heuristic B 1.03 (0.06) 1.31 (0.16) 1.73 (0.06) 2.58 (0.16)
Heuristic C 1.65 (0.04) 1.98 (0.22) 2.74 (0.01) 3.01 (0.23)

Figure 4. Mean runtime in seconds on stimulated data for large
number of centers

7. Conclusion
The results of the experiments suggest that the algorithm in-
troduced in this paper shows an improved runtime over exist-
ing algorithms for the same problem without sacrificing the
quality of the result. This paper’s algorithm has an asymp-
totic complexity of O(nk), as opposed to the time complex-
ity of O(nkm2+km4) in the algorithm from (Kleindessner

et al., 2019a). We make the assumption that m ≤ k ≤ n,
which is reasonable: we should have less centers than data
points, and since we only consider demographic groups with
at least one center required, we see that m ≤ k with equal-
ity only when each demographic group gets exactly one
center. Given these assumptions, it is understandable why
the prior time complexity may show better performance,
especially as m increases. The experiments reflect this. On
most datasets, Algorithm 2 is significantly faster, by fac-
tors between 2 and 4. The difference in runtimes is fairly
stable on the real datasets, with runtimes scaling together.
The significance of the m2 factor is most noticeable in the
synthetic dataset, in Figure 1, where the ratio between the
previous algorithm and Algorithm 2 blows up as the number
of groups increases.

The performance of Algorithm 2 is also strong, compared
to the previous algorithm in (Kleindessner et al., 2019a).
On the simulated data, Algorithm 2 performed the strongest
of all the algorithms, as seen in Table 1. The real data
results in Table 3 show that Algorithm 2 is competitive with
existing algorithms. All of these datasets have very low
variation in the objective values of the various algorithms,
and Algorithm 2 showed the best performance in all except
the Wholesale data and displayed the lowest variance.

In conclusion, Algorithm 2 shows a couple significant im-
provements over existing algorithms for the same problem.
The algorithm is the first which is both linear in the size of
the dataset and has a strict constant bound on the objective
value of the result. Additionally, the time complexity and
the competitiveness of Algorithm 2 are not significantly
dependent on the number of demographic groups m, given
m ≤ k. In all cases, Algorithm 2 shows effective speed
and competitiveness for adding fairness to the k-centers
problem.

Acknowledgments
We thank the reviewers for their insightful comments and
suggestions. The authors were supported by NSF grants
CCF 1909314 and CCF 1750716.

Fair k-Centers via Maximum Matching

References
Bera, S., Chakrabarty, D., Flores, N., and Negahbani, M.

Fair algorithms for clustering. In Advances in Neural
Information Processing Systems, pp. 4955–4966, 2019.

Cardoso, M. UCI machine learning repository.
archive.ics.uci.edu/ml/datasets/
wholesale+customers, 2014.

Celis, L. E., Keswani, V., Straszak, D., Deshpande,
A., Kathuria, T., and Vishnoi, N. K. Fair and di-
verse dpp-based data summarization. arXiv preprint
arXiv:1802.04023, 2018.

Chen, D. Z., Li, J., Liang, H., and Wang, H. Matroid and
knapsack center problems. Algorithmica, 75(1):27–52,
2016.

Chierichetti, F., Kumar, R., Lattanzi, S., and Vassilvitskii,
S. Fair clustering through fairlets. In Advances in Neural
Information Processing Systems, pp. 5029–5037, 2017.

Cortez, P. UCI machine learning repository.
archive.ics.uci.edu/ml/datasets/
student+performance, 2014.

Cowgill, B. Bias and productivity in humans and algorithms:
Theory and evidence from resume screening. Columbia
Business School, Columbia University, 29, 2018.

Datta, A., Tschantz, M. C., and Datta, A. Automated ex-
periments on ad privacy settings. Proceedings on privacy
enhancing technologies, 2015(1):92–112, 2015.

Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C.,
and Venkatasubramanian, S. Certifying and removing dis-
parate impact. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 259–268. ACM, 2015.

Gonzalez, T. F. Clustering to minimize the maximum in-
tercluster distance. Theoretical Computer Science, 38:
293–306, 1985.

Guha, S. Tight results for clustering and summarizing data
streams. In Proceedings of the 12th International Confer-
ence on Database Theory, pp. 268–275, 2009.

Holstein, K., Wortman Vaughan, J., Daumé III, H., Dudik,
M., and Wallach, H. Improving fairness in machine learn-
ing systems: What do industry practitioners need? In
Proceedings of the 2019 CHI Conference on Human Fac-
tors in Computing Systems, pp. 600. ACM, 2019.

Kale, S. Small space stream summary for matroid
center. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

Kay, M., Matuszek, C., and Munson, S. A. Unequal repre-
sentation and gender stereotypes in image search results
for occupations. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, pp.
3819–3828. ACM, 2015.

Kleindessner, M., Awasthi, P., and Morgenstern, J. Fair k-
center clustering for data summarization. arXiv preprint
arXiv:1901.08628, 2019a.

Kleindessner, M., Samadi, S., Awasthi, P., and Morgen-
stern, J. Guarantees for spectral clustering with fairness
constraints. In International Conference on Machine
Learning, pp. 3458–3467, 2019b.

Kohavi, R. and Becker, B. UCI machine learning repos-
itory. archive.ics.uci.edu/ml/datasets/
adult, 1996.

Rösner, C. and Schmidt, M. Privacy preserving cluster-
ing with constraints. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018.

Schmidt, M., Schwiegelshohn, C., and Sohler, C. Fair
coresets and streaming algorithms for fair k-means. In
Bampis, E. and Megow, N. (eds.), Approximation and
Online Algorithms, pp. 232–251, Cham, 2020. Springer
International Publishing. ISBN 978-3-030-39479-0.

Sweeney, L. Discrimination in online ad delivery. Commu-
nications of the ACM, 56(5):44–54, 2013.

Tambe, P., Cappelli, P., and Yakubovich, V. Artificial intelli-
gence in human resources management: challenges and
a path forward. California Management Review, 61(4):
15–42, 2019.

archive.ics.uci.edu/ml/datasets/wholesale+customers
archive.ics.uci.edu/ml/datasets/wholesale+customers
archive.ics.uci.edu/ml/datasets/student+performance
archive.ics.uci.edu/ml/datasets/student+performance
archive.ics.uci.edu/ml/datasets/adult
archive.ics.uci.edu/ml/datasets/adult

