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Abstract

To collect large scale annotated data, it is in-
evitable to introduce label noise, i.e., incorrect
class labels. To be robust against label noise,
many successful methods rely on the noisy clas-
sifiers (i.e., models trained on the noisy training
data) to determine whether a label is trustworthy.
However, it remains unknown why this heuristic
works well in practice. In this paper, we provide
the first theoretical explanation for these methods.
We prove that the prediction of a noisy classifier
can indeed be a good indicator of whether the
label of a training data is clean. Based on the
theoretical result, we propose a novel algorithm
that corrects the labels based on the noisy classi-
fier prediction. The corrected labels are consis-
tent with the true Bayesian optimal classifier with
high probability. We incorporate our label cor-
rection algorithm into the training of deep neural
networks and train models that achieve superior
testing performance on multiple public datasets.

1. Introduction

Label noise is ubiquitous in real world data. It may be
caused by unintentional mistakes of manual or automatic an-
notators (Yan et al., 2014; Andreas et al., 2017). It may also
be introduced by malicious attackers (Jacob et al., 2017).
Noisy labels impair the performance of a model (Smyth
et al., 1994; Brodley & Friedl, 1999), especially a deep neu-
ral network, which tends to have strong memorization power
(Frénay & Verleysen, 2014; Zhang et al., 2017). Improving
the robustness of a model trained with noisy labels is a cru-
cial yet challenging task in many applications (Volodymyr
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& Geoffrey E., 2012; Wu et al., 2018).

Many methods have been proposed to train a robust model
on data with label noise. One may re-calibrate the model by
explicitly estimating a noise transition matrix, namely, the
probability of one label being corrupted into another (Gold-
berger & Ben-Reuven, 2017; Patrini et al., 2017). One may
also introduce hidden layers (Reed et al., 2014), prior on
data distribution (Lee et al., 2019) or modified loss function
(Van Rooyen et al., 2015; Shen & Sanghavi, 2019; Zhang
& Sabuncu, 2018) to improve the robustness of the model.
However, these methods either assume strong global pri-
ors on the data or lack sufficient supervision for the neural
network to achieve satisfying performance. Furthermore,
global model-correction mechanisms tend to rely on a few
parameters; estimating these parameters can be challenging
and the error will lead to failing of the training.

To adapt to heterogeneous noise pattern and to fully ex-
ploit the power of deep neural networks, data-re-calibrating
methods have been proposed to focus on individual data
instead of an overall model adjustment (Malach & Shalev-
Shwartz, 2017; Jiang et al., 2018; Han et al., 2018; Tanaka
et al., 2018; Wang et al., 2018; Ren et al., 2018; Cheng
et al., 2020). These methods learn to re-calibrate the model
on each individual datum depending on its own context.
They gradually collect clean data whose labels are trust-
worthy. As more clean data are collected, the quality of
the trained models improves. These methods slowly accu-
mulate useful/trustworthy information and eventually attain
state-of-the-art quality models.

Despite the success of data-re-calibrating methods, their
underlying mechanism remains elusive. It is unclear why
the neural nets trained on noisy labels can help select clean
data. A theoretical underpinning will not only explain the
phenomenon, but also advance the methodology. One ma-
jor challenge for these methods is to control the data re-
calibration quality. It is hard to monitor the model’s re-
calibrating decision on individual data. An aggressive selec-
tion of clean data can unknowingly accumulate irreversible
errors. On the other hand, an overly-conservative strategy
can be very slow in training, or stops with insufficient clean
data and mediocre models. A theoretical guarantee will
help develop models with self-assurance that the decision
on each datum is reasonably close to the truth.
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In this paper, we provide the first theoretical explanation
for data-re-calibrating methods. Our main theorem states
that a noisy classifier (i.e., one trained on noisy labels) can
identify whether a label has been corrupted. In particular,
we prove that when the noisy classifier has low confidence
on the label of a datum, such label is likely corrupted. In
fact, we can quantify the threshold of confidence, below
which the label is likely to be corrupted, and above which is
it likely to be not. We also empirically show that the bound
in our theorem is tight.

Our theoretical result not only explains existing data-re-
calibrating methods, but also suggests a new solution for
the problem. As a second contribution of this paper, we
propose a novel method for noisy-labeled data. Based on
our theorem and statistical principles, we verify the purity
of a label through a likelihood ratio test w.r.t. the prediction
of a noisy classifier, and the threshold value of confidence.
The label is corrected or left intact depending on the test
result. We prove that this simple label-correction algorithm
has a guaranteed success rate and will recover the true labels
with high probability. We incorporate the label-correction
algorithm into the training of deep neural networks. We
validate our method on different datasets with various noise
patterns and levels. Our theoretically-founded method out-
performs state-of-the-arts due to its simplicity and due to its
principled design.

Our paper shows that a theorem that is well-grounded in
applications will inspire elegant and powerful algorithms
even in deep learning settings. Our contribution is two-fold:

e We provide a theorem quantifying how a noisy classi-
fier’s prediction correlates to the purity of a datum’s
label. This provides theoretical explanation for data-re-
calibrating methods for noisy labels.

e Inspired by the theorem, we propose a new label-
correction algorithm with guaranteed success rate. We
train neural networks using the new algorithm and
achieve superior performance.

The code of this paper can be found in https://github.

com/pinggingsheng/LRT.git.

1.1. Related Work

One representative strategy for handling label noise is to
model and employ noise transition matrix to correct the loss.
For example, Patrini et al. (2017) propose to correct the
loss function with estimated noise pattern. The resulting
loss is an unbiased estimator of the ground truth loss, and
enables the trained model to achieve better performance.
However, such an estimator relies on strong assumptions
and could be inaccurate in certain scenarios. Reed et al.
(2014) consider modeling the noise pattern with a hidden
layer. The learning of this hidden layer is regularized with a

feature reconstruction loss, yet without a guarantee that the
true label distribution is learned. Another method mentioned
in their work is to minimize the entropy of neural network
output; however, this method tends to predict a single class.
To address this weakness, Dan et al. (2019) propose to utilize
a small number of trusted, clean data to pre-train a network
and estimate the noise pattern. However, such clean data
may not always be available in practice.

Alternatively, another direction proposes to design mod-
els that are intrinsically robust to noisy data. Crammer
et al. (2009) introduce a regularized confidence weighting
learning algorithm (AROW), which attempts to preserve
the weight distribution as much as possible while requiring
the model to maintain discrimination ability. The follow-up
work (Crammer & Lee 2010) improves this algorithm by
herding the updating direction via specific velocity field
(NHERD), and achieves better performance. Both of these
works impose constraints on parameters, which, however,
could prevent classifiers from adapting to complex datasets.
Another similar strategy proposes to assume Gaussian dis-
tribution for features, and models the data with a robust
generative classifier (Lee et al., 2019). However, such an
assumption may not generalize to other complex scenarios.

Devansh et al. (2017) show that deep neural networks tend
to learn meaningful patterns before they over-fit to noisy
ones. Based on this observation, they propose to add Gaus-
sian or adversarial noise to input when training with noisy
labels, and empirically show that such data perturbation
is able to make the resulting model more robust. Other
commonly adopted techniques, such as weight decay and
dropout, are also shown to be effective in increasing the
robustness of trained classifier (Devansh et al. 2017; Zhang
et al. 2017). However, the intrinsic reasons for this phe-
nomenon still remain unclear and overfitting to noisy label
is extremely likely. Data-re-calibrating methods select clean
data while eliminating noisy ones during training. For ex-
ample, Malach & Shalev-Shwartz (2017) and Han et al.
(2018) train two networks simultaneously, and update the
networks only with samples that are considered clean by
both networks. Similarly, Jiang et al. (2018) also use two
networks: the first one is pre-trained to learn a curriculum,
and then utilized to select clean samples for training the
second network. These methods deliver promising results
but lack control of the quality of the collected clean data.

Finally, beyond deep learning framework, there are several
theoretic works that demonstrate the robustness of a vari-
ety of losses to label noise (?; Nagarajan et al. 2013; ?;
Van Rooyen et al. 2015). Following the work of (Wang &
Chaudhuri 2018), Gao et al. (2016) propose an algorithm
that can converge to the Bayesian optimal classifier under
different noise settings. Moreover, they provide in-depth
discussion regarding the performance of k-nearest neighbor
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(KNN) classifiers. However, the problem with KNN is that
it is computationally intensive and difficult to be incorpo-
rated into a learning context. Within the framework of deep
learning, there are more efforts that need to be made to
bridge theory and practice.

2. The Main Theorem: Probing Label Purity
Using the Noisy Classifier

Our main theorem answers the following question: without
knowing the ground truth, how to decide whether a label is
corrupted or not. During training, the only information one
can rely on is a noisy classifier, i.e., one that is trained on
the corrupted labels. Data-re-calibrating methods use the
noisy classifier to decide whether a datum is clean-labeled.
However, these methods lack a theoretical justification.

We establish the relationship between a noisy classifier and
the purity of a label. We prove that if the classifier has low
confidence on a datum with regard to its current label, then
this label is likely corrupted. This result provides the first
theoretical explanation of why noisy classifiers can be used
to determine the purity of labels in previous methods.

This section is organized as follows. We start by providing
basic notations and assumptions. Next, we state the main
theorem for binary classification and then extend it to the
multiclass setting. We also use experiments on synthetic
data and CIFAR10 to validate the tightness of our bound.

2.1. Preliminaries and Assumptions

We first focus on binary classification. Later the result will
be extended to multiclass setting. Let X be the feature space,
Y = {0, 1} be the label space. The joint probability dis-
tribution, D, can be factored as D(x,y) = Pr(y|z) Pr(x).
We denote by n(x) = Pr(y = 1|x) the true conditional
probability. The risk of a binary classifier h : X — ) is
R(D,h) = Prg ~plh(x) # y]. A Bayes optimal classi-
fier is the minimizer of the risk over all possible hypotheses,
i.e., h* = argmin, R(D, h). It can be calculated using the
true conditional probability, 7,

1 n(x) >%

h*(z) = 1{n(m)>%}(x) = { 0 otherwise °

We assume 7 satisfies the Tsybakov condition (Tsybakov,
2004). This condition, also called margin assumption,
stipulates that the uncertainty of 7 is bounded. In other
words, the margin region close to the decision boundary,
{x € X | n(x) = 1/2}, has a bounded volume.

Assumption 1 (Tsybakov Condition). There exist constants
C,A>0,andty € (0, %], such that for all t < t,

Pr Hn(:c) - ;‘ < t} < Cth.

This assumption is adopted in previous works such as
(Chaudhuri & Dasgupta, 2014; Belkin et al., 2018; Qiao
et al., 2019). However, we have not seen any empirical
verification of the condition in real datasets. In this paper,
we conduct experiments to verify this condition and pro-
vide empirical estimation of the constants C' and A. Our
experiments indicate that this condition holds with moderate
values of the constants C' and \.

The noisy label setting. Instead of samples from D, we are
given a sample set with noisy labels S = {(z, y)}, where §
is the possibly corrupted label based on the true label y. We
assume a transition probability T;_.; = Pr(y = jly = 1),
i.e., the chance a true label y is flipped from class ¢ to class
j. For simplicity, we denote 7;; = 7;_,;. The transition
probabilities 791 and 71¢ are independent of the true joint
distribution D and the feature . We denote the conditional
probability of the noisy labels as 7j(x) = Pr(y = 1|x). We
call 7] the noisy conditional probability. 1t is easy to verify
that 7 is linear to the true conditional probability, 7:

(@) = (1= 70)n(x) + 7011 — n()]
= (1 — 701 — 7'10)7](113) =+ T01-

We intend to learn a classifier whose prediction is consistent
with the Bayes optimal classifier A*. Therefore, we call the
prediction of h* the correct label.

Definition 1 (Correct Label). Given x, its correct label is
the Bayes optimal classifier prediction h*(x).

The correct label, h*(x), is subtly different from the true
label, y. In particular, h* () is uniquely decided by n(x),
whereas y is a sample from 7). Since L™ is our final goal, we
focus on recovering the correct label, h*(x), instead of y.

2.2. The Main Theorem

Our main theorem connects a noisy classifier f : X — )
with the chance of a noisy label 3 being correct. We assume
f is trained on the noisy labels and is trained well enough,
i.e., e-close to the noisy conditional probability, 7. For
convenience, we denote by f5 the classifier prediction of
label being y, formally, f;(x) = f(x)ify =1, and 1 —
f () otherwise. Define the estimation error € := || f — 77| co-

Theorem 1. Assume 1(x) satisfies the Tsybakov condition
with constants C,\ > 0, and ty € (0,3]. Assume e <
to(1 — 7110 — T01)- For A = m, we have:

A
Prey)en 7= (@), fy(@) < A] < clo@)] .

Implication of the theorem. Intuitively, the theorem states
that a noisy label y has bounded probability to be correct if
it has a low vote-of-confidence by f. The upper bound of
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the probability is controlled by e, the approximation error of
f. In other words, the better f approximates 7, the tighter
the bound is. This justifies the usage of a good-quality f
to determine if y is trustworthy. Later we will show e is
reasonably small in deep learning setting and the bound is
tight in practice.

We remark that the constant A and the constant hidden
inside the big-O in the theorem depend on 7;;’s, which
are unknown in practice. Based on this theorem, we will
propose a new label-correction algorithm that determines A
robustly in practice without knowing 7;;’s.

2.2.1. PROOF OF THEOREM 1

Preliminary Lemmata. To prove this theorem, we need to
first prove two lemmata. Lemma 1 will show that if a classi-
fier g is a linear transformation of 7, when the value g5 is be-
low a certain threshold, ¥ is unlikely to be consistent with the
true Bayesian optimal decision, h*. Next, Lemma 2 states
that since 7() is a linear transformation of n(x), Lemma 1
will apply to 7j(x) and A can be set accordingly. Finally,
based on the conclusion of Lemma 2 and the Tsybakov con-
dition, we can upperbound Pr [y = h*(x), fz(x) < Al if f
is e-close to 7).

Lemma 1. If a classifier g depends linearly on n, i.e.,
glx) = an(x) + b with a,b > 0. Set A =
min (% +b,1—-b— 7) We have

Py~ [gz h(x), gz(z) < A} -0

Proof. To calculate Pr(, ,)~p [ﬂ = h*(x), gy(x) < A},

we enumerate two cases:

Case 1: § = 1. Observe h*(x) = 1iff n(x) > 1/2;
g5(x) = g(x) = an(x) + b < Aiff n(z) < 2. We
have:

Pr {ﬂzh*(w),gg(m)<A} —Pr[1 n(x) <

2
We next show that this probability is O for the chosen A =
min (% +b,1— b —4).IfA =%+, the probability is
ZEero as u = 5. Otherwise, A =1 — b — . We know

thatl—b—7<%+b. Therefore,1—2b<a In this case,
A-b_1-20 1 _ 1 _1

a  a 2 2 2
Aﬂ]:&

Case 2: y = 0. Observe that h*(x) = 0 iff n(x) < 1/2;

gy(x) =1—g(x) =1—[an(x)+b] < Aiff p(x) > L :=
1=b=4 'we have:

Thus we have Pr [§ < n(z) <

Pr |y =h*(x), g5(x) < A} =Pr [L <n(z) < ﬂ .

A—b].

Similar to Case 1, by checking when A = & + b
and when A = 1 — b — %, we can verify that
Pr[1==2 < p(z) < ] =0.

This proves Equation (1) and completes the proof. O

Lemma 2. Let A = m. Lety = nand ny =
1-17

Priayen [J= (@), 75(@) < A =0. @)

Proof. Recall 5j(x) = (1 — 701 — 710)1(x) + 71, in which
To1 and 71 are transition probabilities. We can directly
prove this lemma using Lemma 1 by setting g = 77 with
azl—ml—ﬁoandb:ml. O]

Proof of Theorem 1 using the Lemmata.

Proof. When§ = 1. fz(x) = f(x) > ii(z) -
Pr[j=h*(x), fz(x) < Al < Pr[j = h* (@), 7i(x) — ¢ < A
Substituting A with A + € into equation (2), we have:
Pr [~: h*(m) = 1,ﬁ($) —e< A}
=Prly=h"(x) =1,7(z) < A+ ¢
A —

< (@) < M}
1 =701 — 710

Similar to Lemma 1, by discussing the cases when A =

147mg=701 and when A = 47=T10 we can show that
A=t

T % Based on the Tsybakov condition, we have
—7T01—T10

A—Tol + € :|

1— 701 — 710

€ € A
¢ J<cof-—c
1—7'01—7'10} - (1—7'01—7'10>

Pr B <n(x) <

1— 701 — 710
1 1

<Pr|- S

< r[2 <n(z) < 5

This implies that:
A
Prly = () = 1fy(e) < Al < € (1=
I =701 — 7o

Similar to case 1 of Lemma 1, by using equation (3) for the
case when y = 0, we can prove that

Pr[y=h*(z) =0, fjm) < 4]

<Pr[j— h*()f()l @) —e < Al
— T01 — € 1
<nx) <=
[ 1—Ti0—701 1— 70— 701 n(@) 2}

<n(@) <
1—7’01—7’10 " 2

A
1 01 10
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Figure 1. Synthetic experiment using CIFAR10 at noise level 20%. (a): Check of Tsybakov condition using linear regression. Where
y-axis is the proportion of data points at distance ¢ from decision boundary. (b): Proportion of labels that are not correct (not consistent
with Bayes optimal decision rule) and the proposed upper bound. (c). Same as (b) but labels are corrupted with asymmetric noise.

Combining the two cases (y = 1) and (y = 0) completes
the proof. [

Remark 1. Indeed, we can also prove a bound for the
opposite case: when fg is highly confident, 3 is correct with
high probability. In this paper, we only focus on the bound
in theorem 1 as we only want to identify incorrect labels
and fix them.

2.3. Multiclass Setting

Theorem 1 can be generalized to a multiclass setting. Let y
be the observed (possibly) corrupted label, n;(x) = Pr(y =
i | ®)and 7;(x) = Pr(y = i | ). Recall f;(x) is the
classifier’s prediction on label 7. Define N, to be the number
of total classes and [N.] = {1,2,--- , N.}.

First we extend the Tsybakov condition to multiclass sce-
nario (Chen & Sun, 2006). Denote by u, the Bayes op-
timal classifier prediction, or say the class predicted by
n(x), formally u, := h*(x) = arg max; 7;(x). Denote by
sq the second best prediction, s 1= argmax;, 7:(T).
The difference between their corresponding true conditional
probability is a non-negative function, whose zero level set
{x|nu, () — ns, () = 0} is the decision boundary of h*.
We assume the Tsybakov condition around the margin of
this decision boundary: 3C, A > 0 and 3t € (0, 1], such
that for all ¢ < tg,

Pr [, (@) = 1, (x) < ] < C @)

For any pair of labels 4,j € [N.], we have the lin-
ear relationship 7;(x) = > ;c(n,7jinj(x). Define
Mg = argmax; f;(x). Define the estimation error € :=
maxg,; | fi(@) — 1 ().

Theorem 2. Assume n(x) fulfills multi-class Tsy-

bakov condition for constants C; A > 0 and ty €
(0,1].  Assume that ¢ < tomint, For A =
K3

i [ngn[rg,wsm (@) + % ijw)}] :
J#Y

Pr
(z,y)~D

~ . A

7= h"(), fy(@) < A] <CO)

The proof of Theorem 2 will be provided in supplementary
material.

2.4. Empirical Validation of the Bound

To better understand the Tsybakov condition assumption
and the bound in our theorem, we conduct the following
experiment. On the CIFAR10 dataset, we train deep neural
networks to approximate relevant functions. We use these
functions to estimate the constants C' and A in the Tsybakov
condition. Using these constants, we calculate the bound in
Theorem 2 as a function of € and check if it is tight.

To estimate C' and A\, we approximate the true conditional
probability 7 using a deep neural network trained on the
original clean-labeled CIFAR10 data. We densely sample
t between 0 and 0.9. For each ¢, we empirically evaluate
the left hand side (LHS) probability of Equation (4) and
then use these values to estimate C' and A via regression.
In particular, for each ¢ we calculate LHS of Equation (4)
using the frequency p; = % it Y (@)—n., ()<t} (),
in which n is the number of data. If the RHS bound is tight,
we can use log p; to approximate log(Ct*). log(Ct*) =
logC + Alogt. As shown in Figure 1(a), we plot all
(log t,log(Ct")) pairs as blue dots and estimate C' and A
via linear regression (red line). We observe that the sam-
ples are quite close to linear. Indeed, we could get ordinary
least square (OLS) estimator of constant C' and A\ with high
confidence (determinant coefficient R? = 0.99, p-value
< le — 53). The estimated C' and A are 0.23 and 1.04
respectively.

Next, we verify our bound in Theorem 2. Using the esti-
mated C' and A, we can calculate the bound (RHS of Equa-
tion (4)) as a function of e (the constant in the big-O is
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Figure 2. An illustration of the label correction algorithm. 4 is set to 1. (a): a corrupted sample and its corresponding classifier prediction
f. (b): after correction, the labels are consistent with the true conditional probability, 7. (c): likelihood ratio for y = 1. Data with x < 0
are corrected to 7new = 0 as LR(x) are below 6 = 1. (d): likelihood ratio for § = 0. Data with z > 0 are corrected to Tjnew = 1 as

LR(x) are below § = 1.

provided in the supplemental material). In Figure 1(b), we
plot the bound function in green curve. We compare this
bound with the LHS of Equation (4) which we can empir-
ically evaluate. In particular, we train a noisy classifier f
by training a neural network on noisy labels (symmetric
noise level 20%, see Section 4 for details). Using f, we
can count the number of data points which has f; < A
and meanwhile ¥ is equal to h*(x) (calculated using 7: the
clean-label-trained neural network). This gives us the LHS
of Equation (4), which is the probability of a label being
correct when f has low confidence (blue line in Figure 1(b)).
Similarly, we can calculate the probability of a label being
correct when f has high confidence (orange line in Fig. 1(b)).
We also carry out the same experiment on a different noise
setting (asymmetric noise level 20%, see Sec. 4 for details).

Discussion. On CIFAR10 dataset, we estimated the con-
stants of Tsybakov condition to be C' = 0.23 and A = 1.04
with high confidence. This means our bound (Equation (4)
is almost linear. As observed in Figure 1(b) and (c), the
bound is rather small (only up to 0.2 when the approxima-
tion error of the classifier, ¢, is below 0.4). Furthermore, the
empirically evaluated chance of 3 being correct when f has
low confidence (blue lines Figure 1) is almost zero, well
below the curve of the bound. In Figure 1(b) The fact that
the blue and green line intersects at e = 0.06 implies that €
can be as small as 0.06. Similarly, Figure 1(c) implies € can
be as small as 0.12. Finally, we note that the orange lines
are well above the blue ones. This means when f has high
confidence on y, there is a high chance ¥ is correct. In other
words, by comparing f3 with a properly chosen constant A,
we can identify most data with corrupted labels.

We also conduct experiments on synthetic data (generated

using multivariate normal distribution). In such case, we
can calculate 1 and 7 exactly. The estimated C' and A are
0.6 and 1.3 respectively. More details about the synthetic
experiments can be found in the supplemental material.

In conclusion, experiments on synthetic and on CIFAR10
datasets show that the constants in Tsybakov condition are
rather small and the bound in our theorem is almost linear
to e. We also note the bound is generally small/tight even
in deep learning setting. Thresholding f’s confidence does
detect corrupted labels accurately.

3. The Algorithm: Likelihood Ratio Test for
Label Correction

Our theoretical insight inspires a new algorithm for label
correction. We propose to directly test the confidence level
of the noisy classifier to determine whether a label is correct.
One additional requirement is that if we decide that a label
is incorrect, we also need to decide what is the correct
label. Therefore, instead of checking the confidence level,
we check the likelihood ratio between f’s confidence on
y and its confidence on its own label prediction, i.e., M.
Specifically, we check the likelihood ratio

LR(f,2,9) = fy(2)/ fm, ().

We compare this likelihood ratio with a predetermined
threshold 0. The value of ¢ is given in the next theorem.
This is essentially a hypothesis testing on the null hypothe-
sis Hy : y = h*(x). fLR(f, ,y) < J, we reject the null
hypothesis and flip the label ¥,,¢, = my. Otherwise, the
label remains unchanged, ¥,y = y. If ¥ = my then the
likelihood ratio is 1, Ynew = Mg = Y. Detailed algorithm
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is provided in Procedure 1. See Figure 2 for an illustration
of the algorithm in a binary classification case.

Procedure 1 LRT-Correction

Input: (x,9), f(x),0.
Output: ¥,
1: my = arg max; f;(x)

2 LR(f,2,7) := f3(x)/ fm, ()

3: if LR(f, x,y) < 0 then
4: ﬂnew = Mg

5: else

6: gnew = ﬂ

7: end if

We will show in the following theorem that the LRT cor-
rection algorithm is guaranteed to make proper correction
and clean most of the corrupted labels. In particular, we
show that in practice if we have a reasonable approximation
4 to the theoretically optimal 4, the algorithm flips 7 to the
correct label (the Bayes optimal prediction, h*(x)) with a
good chance. Recall the approximation error of the classifier
is € := maxg ; | fi(x) — 7: ().

We consider two cases: (1) the label being flipped ¢y =
mg; and (2) the label remaining the same 4, = 9.
Each case has its own ideal . We bound the probabil-
ity of obtaining a correct label with € and £. Here € is
the difference between the chosen & and the ideal 5. We
also introduce an additional term, ¥, denoting the prob-
ability that the true label is neither § nor my, formally,
U = Pr(w’y)ND [um ¢ {mm, g}]

Theorem 3. Vi, j € [N,], assume n(x) fulfills multi-class
Tsybakov condition for constants C > 0, A > 0, to € (0, 1].

Case 1 (Label flipped by LRT-Corr ((x,7), f(x),5)):

let 61 = min | gy | gt (2) + ij,yﬂj(w)ﬂ

J#Y
and & = |0 — 6.  Assume & < 6 and
2 1 . Jp— 27
€ < min (—t051 e & gla(to—&)minﬂ-i).
1 K3
Then: Priz )b [Unew = h*(x), y is flipped | is at

least 1 — C [O(max(e, &) — 0.
Case 2 (Label preserved by LRT-Corr ((x,7), f(x),5)):

_ f5 (=)
let 0 = max Tl @)1 3 T3 (@) and
JFme
& = \3 — 82, Assume & < 0y and € <
2 N . pypp— 27
min (W’ (to — &) mzm T”)

Then: Pty yyp [Unew = N*(x), y isn’t flipped) is at least
1 — C[O(max(e, €))]* — W.

3.1. Training Deep Nets with LRT-Correction

We incorporate the proposed label-correction into the train-
ing of deep neural networks. Similar to other data-re-

calibrating methods, our training algorithm continuously
trains a deep neural network while correcting the noisy la-
bels. Procedure 2 is the pseudocode of the training method,
called AdaCorr. It trains a neural network model itera-
tively. Each iteration includes both label correction and
model training steps. In label correction step, the prediction
of the current neural network, f, is used to run LRT test
on all training data, and to correct their labels according
to the test result. Since f is used to approximate the con-
ditional probability 7, we use the softmax layer output of
the neural network as f. After the labels of all training
data are updated, we use them to train the neural network
incrementally. We continue this iterative procedure until the
training converges.

We also have a burn-in stage in which we train the network
using the original noisy labels for m epochs. During the
burn-in stage, we use the original cross-entropy loss, Lo g.
Afterwards, we add an additional retroactive loss, with the
intention of stabilizing the network and avoiding overfitting.

After the burn-in stage, we want to avoid overfitting of the
neural network, so that its output better approximates 7;.
To achieve this goal, we introduce a retroactive loss term
Lyetro(f(x),y). The idea is to enforce the consistency
between f and the prediction of the model at a previous
epoch, f7. It has been observed that a neural network at
earlier training stage tends to learn the true pattern rather
than to overfit the noise (Devansh et al., 2017). Formally,
the loss can be written as Zil fr(x)log f.(x), in which
N, is the number of possible label classes. The training loss
is the sum of the retroactive loss and the cross-entropy loss:

L(f(IL'), Y, fr) = Lretro(f(w)v fr(g:)) + LC’E(f(w)v g)
N, Ne
= ng((ll) log fc(x) + chlog fc(a:)
c=1 c=1

Procedure 2 AdaCorr
Input: S = {(x,9)},0,m, T
1: for epoch=1 to m do
2:  Train neural network with Lo g

3: end for

4: f" = current model prediction

5: for epoch=m + 1 to T' do

6: if epoch > m + 10 then

7: f = current model prediction

8: for all (x,y) € S do

9: Unew= LRT-Correction((x,y),f,0)
10: g = gnew
11: end for
12:  endif

13: Train using L,etro + Lo, with f7 and y
14: end for

In the experiment we evaluate our method on 4 public
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datasets: CIFAR10, CIFAR100, MNIST and ModelNet40
(see Section 4 for more details). Based on previous observa-
tions (Devansh et al., 2017), on CIFAR10 and CIFAR100
datasets, a neural network takes about 30 epochs to fit the
true pattern before overfitting the noise. We use this num-
ber as the burn-in stage length m. For easier datasets like
MNIST and ModelNet40, we set m to be slightly smaller
(25). As for 4, setting § to be slightly smaller than 1 seems
sufficient. Our Theorem 3 guarantees that the bound is af-
fected almost linearly (as A = 1 per Section 2.4) to the error
of the manually picked ¢ from the optimal one.

4. Experiments

In this section we empirically evaluate our proposed method
with several datasets, where noisy labels are injected accord-
ing to specified noise transition matrices.

Datasets. We use the following datasets: MNIST (LeCun
et al. 1998), CIFAR10 (Krizhevsky et al. 2009), CIFAR100
(Krizhevsky et al. 2009) and ModelNet40 (Wu et al. 2015).
MNIST consists of 28 x 28 grayscale images with 10 cat-
egories. It contains 60,000 images, and we use 45,000 for
training, 5,000 for validation and 10,000 for testing. CI-
FAR10 and CIFAR100 consist of the same 60,000 images
whose size is 32 x 32 x 3. CIFARI10 has 10 classes while
CIFAR100 has 100 fine-grained classes. Similar to MNIST,
we split 90% and 10% data from the official training set
for the training and validation, respectively, and use the
official test set for testing. ModelNet40 contains 12,311
CAD models from 40 categories, where 8,859 are used for
training, 984 for validation and the remaining 2,468 for test-
ing. We follow the protocol of (Qi et al., 2017) to convert
the CAD models into point clouds by uniformly sampling
1,024 points from the triangular mesh and normalizing them
within a unit ball. In all experiments, we use early stopping
on validation set to tune hyperparameters and report the
performance on test set.

Baselines. We compare the proposed method with the fol-
lowing methods: (1) Standard, which trains the network in a
standard manner, without any label resistance technique; (2)
Forward Correction (Patrini et al. 2017), which explicitly
estimates the noise transition matrix to correct the train-
ing loss; (3) Decoupling (Malach & Shalev-Shwartz 2017),
which trains two networks simultaneously and updates the
parameters on selected data whose labels are possibly clean;
(4) Coteaching (Han et al. 2018), which also trains two
networks but exchanges their error information for network
updating; (5) MentorNet (Jiang et al. 2018), which learns a
curriculum to filter out noisy data; (6) Forgetting (Devansh
et al., 2017), which uses dropout to help deep models resist
label noise. (7) Abstention (Thulasidasan et al. 2019), which
regularizes the network with abstention loss to ensure model
robustness under label noise.

Experimental setup. For the classification of MNIST, CI-
FAR10 and CIFAR100, we use preactive ResNet-34 (He
et al. 2016) as the backbone for all the methods. On Mod-
elNet40, we use PointNet. We train the models for 180
epochs to ensure that all the methods have converged. We
utilize RAdam (Liu et al. 2019) for the network optimiza-
tion, and adopt batch size 128 for all the datasets. We use an
initial learning rate of 0.001, which is decayed by 0.5 very
60 epochs. We also update f” to f once at epoch m + 40
to reflect better predictive power of network after several
epochs. The experimental results are listed in Table 2. As is
shown, our method overall achieves the best performance
across the datasets under different noise settings.

Clothing 1M. We also evaluate our method on a large scale
Clothing 1M dataset (Xiao et al., 2015), which consists of
IM images with real-world noisy labels. We use pre-trained
ResNet-50 and train the model using SGD for 20 epochs.
Our method achieves accuracy 71.47%. It outperforms Stan-
dard (68.94%), Forward Correction (69.84%) and Backward
Correction (Patrini et al., 2017) (69.13%), where we take
the number from the original paper directly. Note that other
baselines (Forgetting, Decoupling, MentorNet, Coteaching
and Abstention) did not report results on this dataset.

Table 1. Performance on Clothing 1M Dataset

Method  Accuracy(%)
Standard 68.94
Forward 69.84
Backward 69.13
AdaCorr 71.74 £0.12

Discussion. Our method outperform state-of-the-arts over
a broad spectrum of noise patterns and levels. This is due
to the relatively simple procedure our theoretically guar-
anteed algorithm. Looking closely, in Figure 3, we draw
convergence curves on CIFAR10 with 0.4 uniform noise.
On the left, we show the curves of our proposed AdaCorr
method. The model continues to flip labels to correct ones.
Meanwhile, it fits with the corrected labels y,,¢., and the test
accuracy on clean labels does not drop. This shows that the
model and the label correction are improving in a harmonic
fashion and do not collapse. On the right, we show the
curves of the Standard method. Without label correction,
the model overfits with noisy labels and the performance on
test data degrades catastrophically.

5. Conclusion

We prove theoretical guarantees for data-re-calibrating meth-
ods for noisy labels. Based on the result, we propose a label
correction algorithm to combat label noise. Our method can
produce models robust to different noise patterns. Experi-
ments on various datasets show that our method outperforms
many recently proposed methods.
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Figure 3. Convergence curves for CIFAR10 with 40% uniform noise. Left: AdaCorr - training accuracy evaluated against the corrected
label (ynew) (cyan), testing accuracy against clean label (orange), and the proportion of correct label (green). Right: Standard - training
accuracy against noisy label () and testing accuracy against clean label.

Table 2. The classification accuracy of different methods.

Data Set Method

Noise Level of Uniform Flipping

Noise Level of Pair Flipping

0.2 0.4 0.6 0.8 0.2 03 0.4
Standard  99.0 0.2 98.7+04 98.1+03 913+09 | 993+01 992+0.1 988=+0.1
Forgetting 99.0 +£0.1 988 +£0.1 977402 62.6+89 |993+0.1 965+20 89.7+19
Forward  99.14+0.1 98.7+02 98.0+04 89.6+48|994+£00 992402 965444
Decouple 993 4+0.1 99.0+0.1 985+02 946+£02|994+£00 99.3+£0.1 99.1 402
MNIST ~ MentorNet 99.2+02 987+0.1 98.1+0.1 87.5+52[986+04 99.1+0.1 989+0.1
Coteach  99.14+02 987+03 982+03 957+07|99.1+£0.1 99.0+02 989402
Abstention 94.0 £0.3 768+£03 496+0.1 212405 |943+03 885+03 81.4+02
AdaCorr  995+£00 994+00 99.1+£00 97.7+£02 ] 995+00 99.6+00 99.4+0.0
Standard  87.5+02 83.1+04 764+04 476+20 ] 888+02 884-+03 845+03
Forgetting 87.1 £02 834+£02 765207 33.0+£1.6|89.6+0.1 837+0.1 86.4=+0.5
Forward  87.4+08 83.1+08 747+17 383+£308.0+£05 874+1.1 847405
Decouple  87.64+04 842+05 77.6+0.1 485+09 [ 90603 89.1+03 863405
CIFARI0  MentorNet 903 +£0.3 832+05 755+07 3412£25|9044+02 889+0.1 833+1.0
Coteach  90.1 £04 873+05 809+05 250+36|91.8+0.1 89.9+02 80.1+07
Abstention 853 +04 82.0+07 638+04 338+77|885+00 83.1+05 77.4+04
AdaCorr  91.0 £ 0.3 88705 81L2+-04 492+24 | 922+01 91.3+03 89.2+04
Standard 589+ 0.8 521 +1.0 421+07 208=E1.0]595+04 529+06 447+13
Forgetting 59.3+0.8 53.0£02 409+05 77+1.1|614+£09 546+0.6 37.7+£46
Forward 584 +05 522403 41.1+05 206+06|583+07 532+06 444+28
Decouple  59.0 £ 0.7 522+07 402+04 185+08 [ 60.8+0.7 56.14+0.7 484410
CIFARI00 MentorNet 63.6+0.5 514+14 387208 174409 | 6474+02 574+08 474+17
Coteach  66.1+0.5 60.0+06 483+0.1 161+1.1|634+09 57.6+03 492-+03
Abstention 75.1+ 54 60.0+08 51.1£08 103+05 | 654+05 568+05 473+03
AdaCorr 678 £0.1 602+:08 465+12 246+1.1]| 683+02 61.1+0.5 49.8+0.7
Standard  79.1 £2.6 753+33 700+3.0 57.9+23|844+12 823+13 789+07
Forgetting 80.1+1.8 73.9+06 69.0+0.7 262+48|833+1.1 620+30 59.5+29
Forward 523 +5.1 494+68 435+52 282455 |48.1+68 480437 49.1+44
Decouple 825422 80.7+07 729+1.0 554+£27|857+14 843+10 805424
ModeINet40 MentorNet 86.5+0.5 754+1.8 709+19 527431 |83.7+18 81.0+1.5 793+2.1
Coteach  85.6+09 842+08 81.8+1.1 689+28|857+08 79.14+3.0 69.1+24
Abstention 78.1 £0.6 656405 456+15 235405 | 823+05 804+06 656+0.5
AdaCorr 86903 851+06 786+14 721+1.1 ]| 87.6+04 84.6+L05 83.7+05
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