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Abstract

We study the low rank regression problemy = Mx + , where x and y are d1 and
d2 dimensional vectors respectively.We consider the extreme high-dimensional
setting where the number of observationsn is less than d1 +d 2. Existing algorithms
are designed for settings wheren is typically as large as rank(M )(d 1 + d2). This
work provides an efficient algorithm which only involves two SVD, and establishes
statistical guarantees on its performance. The algorithm decouples the problem by
first estimating the precision matrix of the features, and then solving the matrix
denoising problem. To complement the upper bound, we introduce new techniques
for establishing lower bounds on the performance of any algorithm for this problem.
Our preliminary experiments confirm that our algorithm often out-performs existing
baselines, and is always at least competitive.

1 Introduction

We consider the regression problem y = Mx + in the high dimensional setting, where x ∈ R d1 is

the vector of features,

y ∈ R d2 is a vector of responses, M ∈ R d2 ×d 1 are the learnable parameters,
and   N∼  (0, σ 2I d2 ×d 2 ) is a noise term. High-dimensional setting refers to the case where the number
of observations n is insufficient for recovery and hence regularization for estimation is necessary [26,
30, 12]. This high-dimensional model is widely used in practice, such as identifying biomarkers [ 48],
understanding risks associated with various diseases [18, 7], image recognition [34, 17], forecasting
equity returns in financial markets [33, 39, 28, 8], and analyzing social networks [46, 35].

We consider the “large feature size” setting, in which the number of features d1 is excessively large
and can be even larger than the number of observations n. This setting frequently arises in practice
because it is often straightforward to perform feature-engineering and produce a large number of
potentially useful features in many machine learning problems. For example, in a typical equity
forecasting model, n is around 3,000 (i.e., using 10 years of market data), whereas the number
of potentially relevant features can be in the order of thousands [ 33, 22, 25, 13]. In predicting
the popularity of a user in an online social network, n is in the order of hundreds (each day is an
observation and a typical dataset contains less than three years of data) whereas the feature size can
easily be more than 10k [36, 6, 38].

Existing low-rank regularization techniques (e.g., [3, 23, 26, 30, 27] ) are not optimized for the large
feature size setting. These results assume that either the features possess the so-called restricted
isometry property [10], or their covariance matrix can be accurately estimated [30]. Therefore, their
sample complexity n depends on either d1 or the smallest eigenvalue valueλmin of x’s covariance
matrix. For example, a mean-squared error (MSE) result that appeared in [ 30] is of the form
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O r(d 1 +d 2 )
nλ 2

min
. When n ≤ d 1/λ 2

min , this result becomes trivial because the forecastŷ = 0 produces

a comparable MSE. We design an efficient algorithm for the large feature size setting. Our algorithm
is a simple two-stage algorithm. Let X ∈ R n×d 1 be a matrix that stacks together all features and
Y ∈ R n×d 2 be the one that stacks the responses. In the first stage, we run a principal component
analysis (PCA) on X to obtain a set of uncorrelated features Ẑ . In the second stage, we run another
PCA to obtain a low rank approximation of Ẑ T Y and use it to construct an output.

While the algorithm is operationally simple, we show a powerful and generic result on using PCA to
process features, a widely used practice for “dimensionality reduction” [11, 21, 19]. PCA is known
to be effective to orthogonalize features by keeping only the subspace explaining large variations.
But its performance can only be analyzed under the so-called factor model [40, 39]. We show the
efficacy of PCA without the factor model assumption. Instead, PCA should be interpreted as a robust
estimator of x’s covariance matrix. The empirical estimatorC = 1

n XX T in the high-dimensional
setting cannot be directly used because n  d 1 × d 2, but it exhibits an interesting regularity: the
leading eigenvectors of C are closer to ground truth than the remaining ones. In addition, the number
of reliable eigenvectors grows as the sample size grows, so our PCA procedure projects the features
along reliable eigenvectors and dynamically adjustsẐ ’s rank to maximally utilize the raw features.
Under mild conditions on the ground-truth covariance matrix C∗ of x , we show that it is always
possible to decompose x into a set of near-independent features and a set of (discarded) features that
have an inconsequential impact on a model’s MSE.

When features x are transformed into uncorrelated ones z, our original problem becomes y = Nz+ ,
which can be reduced to a matrix denoising problem [16] and be solved by the second stage. Our
algorithm guarantees that we can recover all singular vectors ofN whose associated singular values
are larger than a certain threshold τ . The performance guarantee can be translated into MSE bounds
parametrized by commonly used variables (though, these translations usually lead to looser bounds).
For example, when N ’s rank is r , our result reduces the MSE from O( r(d 1 +d 2 )

nλ 2
min

) to O( rd 2
n + n −c )

for a suitably small constant c. The improvement is most pronounced when n  d 1.

We also provide a new matching lower bound. Our lower bound asserts that  no algorithm can recover
a fraction of singular vectors of N whose associated singular values are smaller than ρτ , where
ρ is a “gap parameter”. Our lower bound contribution is twofold. First, we introduce a notion of
“local minimax”, which enables us to define a lower bound parametrized by the singular values of
N . This is a stronger lower bound than those delivered by the standard minimax framework, which
are often parametrized by the rank r of N [26]. Second, we develop a new probabilistic technique
for establishing lower bounds under the new local minimax framework. Roughly speaking, our
techniques assemble a large collection of matrices that share the same singular values ofN but are far
from each other, so no algorithm can successfully distinguish these matrices with identical spectra.

2 Preliminaries

Notation. Let X ∈ R n×d 1 and Y ∈ R n×d 2 be data matrices with their i -th rows representing the
i -th observation. For matrix A , we denote its singular value decomposition as A = U A Σ A (V A )T

and Pr (A) , U A
r Σ A

r V A
r

T
is the rank r approximation obtained by keeping the top r singular values

and the corresponding singular vectors. When the context is clear, we drop the superscript A and use
U, Σ, and V (Ur , Σ r , and Vr ) instead. Both σi (A) and σA

i are used to refer to i -th singular value of
A . We use MATLAB notation when we refer to a specific row or column, e.g.,V1,: is the first row of
V and V:,1 is the first column. kAkF , kAk2, and kAk∗ are Frobenius, spectral, and nuclear norms
of A . In general, we use boldface upper case (e.g., X ) to denote data matrices and boldface lower
case (e.g., x) to denote one sample. Regular fonts denote other matrices. Let C∗ = IE[xx T ] and
C = 1

n X T X be the empirical estimate of C∗ . Let C∗ = V ∗Λ∗ (V ∗ )T be the eigen-decomposition of
the matrix C∗ , and λ∗

1 ≥ λ ∗
2, . . . , ≥ λ∗d1

≥ 0 be the diagonal entries of Λ∗ . Let {u 1, u2, . . . ù} be
an arbitrary set of column vectors, andSpan({u 1, u2, . . . , ù}) be the subspace spanned by it. An
event happens with high probability means that it happens with probability ≥ 1 − n −5 , where 5 is an
arbitrarily chosen large constant and is not optimized.

Our model. We consider the model y = Mx + , where x ∈ R d1 is a multivariate Gaussian,
y ∈ R d2 , M ∈ R d2 ×d 1 , and   N∼  (0, σ 2I d2 ×d 2 ). We can relax the Gaussian assumptions on x and
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STEP -1-PCA-X (X)
1 [U, Σ, V ] = svd(X)
2 Λ = 1

n (Σ 2); λ i = Λ i,i .
3 Gap thresholding.
4 δ = n −O(1) is a tunable parameter.
5 k1 = max{k 1 : λk 1

− λ k1 +1 ≥ δ} ,
6 Λk 1 : diagonal matrix comprised of {λ i } i≤k 1 .
7 Uk 1

, Vk1 : k1 leading columns of U and V .

8 Π̂ = (Λ k1 )− 1
2 V T

k1

9 Ẑ + =
√

nUk1 (= X Π̂T ).
10 return { Ẑ + , Π̂} .

STEP -2-PCA-D ENOISE (Ẑ + , Y)
1 N̂ T

+ ← 1
n Ẑ T

+ Y .
2 Absolute value thresholding.
3 θ is a suitable constant; σ is std. of the noise.

4 k2 = max
n

k2 : σk2 (N̂+ ) ≥ θσ
q

d2
n

o
.

5 return Pk2 (N̂+ )

ADAPTIVE -RRR (X, Y)
1 [Ẑ+ , Π̂] = STEP -1-PCA-A (X) .
2 Pk2 (N̂+ ) = STEP -2-PCA-D ENOISE (Ẑ+ , Y) .
3 return M̂ = P k 2 (N̂+ )Π̂

Figure 1: Our algorithm (ADAPTIVE -RRR) for solving the regression y = Mx + .

for most results we develop. We assume a PAC learning framework, i.e., we observe a sequence
{(x i , yi )} i≤n of independent samples and our goal is to find an M̂ that minimizes the test error
IEx,y [kM̂x − Mxk 2

2]. We are specifically interested in the setting in which d2 ≈ n ≤ d 1.

The key assumption we make to circumvent the d1 ≥ n issue is that the features are correlated. This
assumption can be justified for the following reasons: (i) In practice, it is difficult, if not impossible, to
construct completely uncorrelated features. (ii) When n  d 1, it is not even possible to test whether
the features are uncorrelated [5]. (iii) When we indeed know that the features are independent, there
are significantly simpler methods to design models. For example, we can build multiple models
such that each model regresses on an individual feature of x , and then use a boosting/bagging
method [19, 37] to consolidate the predictions.

The correlatedness assumption implies that the eigenvalues of C∗ decays. The only (full rank)
positive semidefinite matrices that have non-decaying (uniform) eigenvalues are the identity matrix
(up to some scaling). In other words, when C∗ has uniform eigenvalues, x has to be uncorrelated.

We aim to design an algorithm that works even when the decay is slow, such as whenλ i (C ∗ ) has a
heavy tail. Specifically, our algorithm assumesλ i ’s are bounded by a heavy-tail power law series:

Assumption 2.1. The λ i (C ∗) series satisfies λ i (C ∗ ) ≤ c · i −ω for a constant c and ω ≥ 2.
We do not make functional form assumptions on λ i ’s. This assumption also covers many benign
cases, such as when C∗ has low rank or its eigenvalues decay exponentially. Many empirical studies
report power law distributions of data covariance matrices [2, 31, 44, 14]. Next, we make standard
normalization assumptions. IEkxk2

2 = 1 , kMk 2 ≤ Υ = O(1) , and σ ≥ 1 . Remark that we assume
only the spectral norm of M is bounded, while its Frobenius norm can be unbounded. Also, we
assume the noise σ ≥ 1 is sufficiently large, which is more important in practice.The case when
σ is small can be tackled in a similar fashion. Finally, our studies avoid examining excessively
unrealistic cases, so we assume d1 ≤ d 3

2. We examine the setting where existing algorithms fail to
deliver non-trivial MSE, so we assume that n ≤ rd 1 ≤ d 4

2.

3 Upper bound

Our algorithm (see Fig. 1) consists of two steps. Step 1. Producing uncorrelated features. We run
a PCA to obtain a total number of k1 orthogonalized features. See STEP -1-PCA-X in Fig. 1. Let
the SVD of X be X = UΣ(V ) T . Let k1 be a suitable rank chosen by inspecting the gaps of X ’s
singular values (Line 5 in STEP -1-PCA-X ). Ẑ + =

√
nUk1 is the set of transformed features output

by this step. The subscript + in Ẑ + reflects that a dimension reduction happens so the number of
columns in Ẑ + is smaller than that in X . Compared to standard PCA dimension reduction, there are
two differences: (i) We use the left leading singular vectors of X (with a re-scaling factor

√
n) as the

output, whereas the PCA reduction outputs Pk1 (X) . (ii) We design a specialized rule to choose k1
whereas PCA usually uses a hard thresholding or other ad-hoc rules. Step 2. Matrix denoising. We

run a second PCA on the matrix (N̂+ )T , 1
n Ẑ T

+ Y . The rank k2 is chosen by a hard thresholding rule

(Line 4 in STEP -2-PCA-D ENOISE ). Our final estimator is Pk 2 (N̂+ )Π̂, where Π̂ = (Λ k 1 )− 1
2 V T

k 1
is

computed in STEP -1-PCA-X (X) .
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3.1 Intuition of the design

While the algorithm is operationally simple, its design is motivated by carefully unfolding the
statistical structure of the problem. We shall realize that applying PCA on the features should not
be viewed as removing noise from a factor model, or finding subspaces that maximize variations
explained by the subspaces as suggested in the standard literature [19, 40, 41]. Instead, it implicitly
implements a robust estimator for x’s precision matrix, and the design of the estimator needs to be
coupled with our objective of forecasting y , thus resulting in a new way of choosing the rank.

Design motivation: warm up. We first examine a simplified problemy = Nz + , where variables
in z are assumed to be uncorrelated. Assume d = d 1 = d 2 in this simplified setting. Observe that

1
n Z T Y =

1
n Z T (ZN T + E) = (

1
n Z T Z)N T +

1
n Z T E ≈ I d1 ×d 1

N T +
1
n Z T E = N T + E, (1)

where E is the noise term and E can be approximated by a matrix with independent zero-mean noises.

Solving the matrix denoising problem. Eq. 1 implies that when we compute Z T Y , the problem
reduces to an extensively studied matrix denoising problem [16, 20]. We include the intuition for
solving this problem for completeness. The signalN T is overlaid with a noise matrixE. E will elevate
all the singular values of N T by an order of σ

p
d/n . We run a PCA to extract reliable signals: when

the singular value of a subspace is σ
p

d/n , the subspace contains significantly more signal than
noise and thus we keep the subspace. Similarly, a subspace associated a singular value . σ

p
d/n

mostly contains noise. This leads to a hard thresholding algorithm that sets N̂ T = P r (N T + E) ,
where r is the maximum index such that σr (N T + E) ≥ c

p
d/n for some constant c. In the general

setting y = Mx + , x may not be uncorrelated. But when we set z = (Λ ∗)− 1
2 (V ∗ )T x , we see that

IE[zzT ] = I . This means knowing C∗ suffices to reduce the original problem to a simplified one.
Therefore, our algorithm uses Step 1 to estimate C∗ and Z , and uses Step 2 to reduce the problem to
a matrix denoising one and solve it by standard thresholding techniques.

Relationship between PCA and precision matrix estimation. In step 1, while we plan to estimate
C∗ , our algorithm runs a PCA on X . We observe that empirical covariance matrix C = 1

n X T X =
1
n V (Σ)2(V )T , i.e., C’s eigenvectors coincide with X ’s right singular vectors. When we use the
empirical estimator to construct ẑ, we obtain ẑ =

√
n(Σ) −1 (V )T x . When we apply this map to

every training point and assemble the new feature matrix, we exactly getẐ =
√

nXV (Σ) −1 =
√

nU .
It means that using C to construct ẑ is the same as running a PCA in STEP -1-PCA-X with k1 = d 1.
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Figure 2: The angle matrix between C and C∗ .

When k1 < d 1, PCA uses a low rank approxima-
tion of C as an estimator for C∗ . We now explain
why this is effective. First, note that C is very far
from C∗ when n  d 1, therefore it is dangerous to
directly plug in C to find ẑ. Second, an interesting
regularity of C exists and can be best explained by
a picture. In Fig. 2, we plot the pairwise angles
between eigenvectors of C and those of C∗ from a
synthetic dataset. Columns are sorted by the C∗’s
eigenvalues in decreasing order. When C∗ and C
coincide, this plot would look like an identity ma-
trix. When C and C∗ are unrelated, then the plot
behaves like a block of white Gaussian noise. We

observe a pronounced pattern: the angle matrix can be roughly divided into two sub-blocks (see
the red lines in Fig. 2). The upper left sub-block behaves like an identity matrix, suggesting that
the leading eigenvectors ofC are close to those of C∗ . The lower right block behaves like a white
noise matrix, suggesting that the “small” eigenvectors of C are far from those of C∗ . When n grows,
one can observe the upper left block becomes larger and this the eigenvectors ofC will sequentially
get stabilized. Leading eigenvectors are first stabilized, followed by smaller ones. Our algorithm
leverages this regularity by keeping only a suitable number of reliable eigenvectors fromC while
ensuring not much information is lost when we throw away those “small” eigenvectors.

Implementing the rank selection. We rely on three interacting building blocks:
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1. Dimension-free matrix concentration. First, we need to find a concentration behavior ofC for
n ≤ d 1 to decouple d1 from the MSE bound. We utilize a dimension-free matrix concentration
inequality [32]. Roughly speaking, the concentration behaves as kC − C∗k2 ≈ n − 1

2 . This guarantees
that |λ i (C) − λ i (C ∗ )| ≤ n − 1

2 by standard matrix perturbation results [24].
2. Davis-Kahan perturbation result. However, the pairwise closeness of theλ i ’s does not imply the
eigenvectors are also close. When λ i (C ∗ ) and λ i+1 (C ∗ ) are close, the corresponding eigenvectors
in C can be “jammed” together. Thus, we need to identify an index i , at which λ i (C ∗) − λ i+1 (C ∗ )
exhibits significant gap, and use a Davis-Kahan result to show thatPi (C) is close to Pi (C ∗ ). On
the other hand, the map Π∗ (, (Λ ∗ )− 1

2 (V ∗)T ) we aim to find depends on the square root of inverse
(Λ∗ )− 1

2 , so we need additional manipulation to argue our estimate is close to (Λ∗ )− 1
2 (V ∗ )T .

3. The connection between gap and tail. Finally, the performance of our procedure is also
characterized by the total volume of signals that are discarded, i.e.,

P
i>k 1

λ i (C ∗ ), where k1 is the
location that exhibits the gap. The question becomes whether it is possible to identify a k1 that
simultaneously exhibits a large gap and ensures the tail after it is well-controlled, e.g., the sum of
the tail is O(n−c ) for a constant c. We develop a combinatorial analysis to show that it is always
possible to find such a gap under the assumption that λ i (C ∗ ) is bounded by a power law distribution
with exponent ω ≥ 2. Combining all these three building blocks, we have:

Proposition 1. Let ξ and δ be two tunable parameters such thatξ = ω(log 3 n/
√

n) and δ3 = ω(ξ) .
Assume that λ∗

i ≤ c·i −ω . Consider running STEP -1-PCA-X in Fig. 1, with high probability, we have
(i) Leading eigenvectors/values are close: there exists a unitary matrix W and a constant c1 such

that kVk1 (Λk1 )− 1
2 − V ∗

k1
(Λ∗

k1
)− 1

2 Wk ≤ c1 ξ
δ3 . (ii) Small tail:

P
i≥k 1

λ∗
i ≤ c 2δ

ω−1
ω+1 for a constant c2.

Prop. 1 implies that our estimate ẑ+ = Π̂(x) is sufficiently close to z = Π ∗ (x) , up to a unitary
transform. We then execute STEP -2-PCA-D ENOISE to reduce the problem to a matrix denoising
one and solve it by hard-thresholding. Let us refer to y = Nz + , where z is a standard multivariate
Gaussian and N = MV ∗ (Λ∗ ) 1

2 as the orthogonalized form of the problem. While we do not directly
observe z, our performance is characterized by spectra structure of N .

Theorem 1. Consider running ADAPTIVE -RRR in Fig. 1 on n independent samples (x, y) from
the model y = Mx + , where x ∈ R d1 and y ∈ R d2 . Let C∗ = IE[xx T ]. Assume that (i)
kMk 2 ≤ Υ = O(1) , and (ii) x is a multivariate Gaussian with kxk2 = 1 . In addition, λ1(C ∗ ) < 1
and for all i , λ i (C ∗ ) ≤ c/i ω for a constant c, and (iii)   N∼  (0, σ 2I d1 ), where σ ≥ min{Υ, 1} .

Let ξ = ω(log 3 n/
√

n) , δ3 = ω(ξ) , and θ be a suitably large constant. Let y = Nz + be the

orthogonalized form of the problem. Let `∗ be the largest index such that σN
` ∗ > θσ

q
d2
n . Let ŷ be

our testing forecast. With high probability over the training data:

IE[kŷ − yk 2
2] ≤

X

i>` ∗

(σN
i )2 + O

`∗d2θ2σ2

n + O

 r
ξ
δ3

!

+ O δ
ω−1

4(ω+1) (2)

The expectation is over the randomness of the test data.

Theorem 1 also implies that there exists a way to parametrize ξ and δ such that IE[kŷ − yk 2
2] ≤

P
i>` ∗ (σN

i )2 + O
` ∗ d2 θ2 σ2

n + O(n −c 0 ) for some constant c0. We next interpret each term in (2).

Terms
P

i>` ∗ (σN
i )2 + O

` ∗ d2 θ2 σ2

n are typical for solving a matrix denoising problem N̂ T
+ + E(≈

N T + E) : we can extract signals associated with `∗ leading singular vectors of N , so
P

i>` ∗ (σN
i )2

starts at i > ` ∗ . For each direction we extract, we need to pay a noise term of orderθ2σ2 d2
n , leading

to the term O ` ∗ d2 θ2 σ2

n . Terms O
q

ξ
δ3 + O δ

ω−1
4(ω+1) come from the estimations error of ẑ+

produced from Prop. 1, consisting of both estimation errors of C∗ ’s leading eigenvectors and the

error of cutting out a tail. We pay an exponent of 1
4 on both terms (e.g., δ

ω−1
ω+1 in Prop. 1 becomes

δ
ω−1

4(ω+1) ) because we used Cauchy-Schwarz (CS) twice. One is used in running matrix denoising
algorithm with inaccurate z+ ; the other one is used to bound the impact of cutting a tail. It remains
open whether two CS is can be circumvented.
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Sec. 4 explains how Thm 1 and the lower bound imply the algorithm is near-optimal. Sec. 5 compares
our result with existing ones under other parametrizations, e.g. rank(M ) .

4 Lower bound
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Figure 3: (a) Major result: signals in N are partitioned into four blocks. All signals in block 1 can be estimated
(Thm 1). All signals in block 3 cannot be estimated (Prop 2). Our lower bound techniques does not handle a
small tail in Block 4. A gap in block 2 exists between upper and lower bounds. (b)-(d)Constructing N: Step 1
and 2 belong to the first stage; step 3 belongs to the second stage. (b) Step 1. Generate a random subsetD(i) for
each row i , representing its non-zero positions. (c) Step 2. Randomly sample fromD, where D is the Cartesian
product of D(i) . (d) Step 3. Fill in non-zero entries sequentially from left to right.

Our algorithm accurately estimates the singular vectors of N that correspond to singular values above

the threshold τ = θσ
q

d2
n . However, it may well happen that most of the spectral ‘mass’ ofN lies

only slightly below this threshold τ . In this section, we establish that no algorithm can do better than
us, in a bi-criteria sense, i.e. we show that any algorithm that has a slightly smaller sample than ours
can only minimally outperform ours in terms of MSE.

We establish ‘instance dependent’ lower bounds: When there is more ‘spectral mass’ below the
threshold, the performance of our algorithm will be worse, and we will need to establish that no
algorithm can do much better. This departs from the standard minimax framework, in which one
examines the entire parameter space of N , e.g. all rank r matrices, and produces a large set of
statistically indistinguishable ‘bad’ instances [43]. These lower bounds are not sensitive to instance-
specific quantities such as the spectrum of N , and in particular, if prior knowledge suggests that the
unknown parameter N is far from these bad instances, the minimax lower bound cannot be applied.

We introduce the notion of local minimax. We partition the space into parts so that similar matrices
are together. Similar matrices are those N that have the same singular values and right singular
vectors; we establish strong lower bounds even against algorithms that know the singular values and
right singular vectors of N . An equivalent view is to assume that the algorithm has oracle access to
C∗ , M ’s singular values, and M ’s right singular vectors. This algorithm can solve the orthogonalized
form as N ’s singular values and right singular vectors can easily be deduced. Thus, the only reason
why the algorithm needs data is to learn the left singular vectors of N . The lower bound we establish
is the minimax bound for this ‘unfair’ comparison, where the competing algorithm is given more
information. In fact, this can be reduced further, i.e., even if the algorithm ‘knows’ that the left
singular vectors of N are sparse, identifying the locations of the non-zero entries is the key difficulty
that leads to the lower bound.

Definition 1 (Local minimax bound) . Consider a model y = Mx + , where x is a random
vector, so C∗ (x) = IE[xx T ] represents the co-variance matrix of the data distribution, and M =
UM Σ M (V M )T . The relation (M, x) ∼ (M 0, x0) ⇔ (Σ M = Σ M 0

∧V M = V M 0
∧C ∗ (x) = C ∗ (x 0))

is an equivalence relation and let the equivalence class of(M, x) be R(M, x) = {(M 0, x0) : Σ M 0

=
Σ M , VM 0

= V M , and C∗ (x 0) = C ∗ (x)}. The local minimax bound for y = Mx + with n
independent samples and   N∼  (0, σ 2I d2 ×d 2 ) is

r(x, M, n, σ ) = min̂
M

max
(M 0,x 0) R∈ (M,x)

E X, Y from
y M∼

0x 0+

h
IEx 0[kM̂(X, Y)x 0− M 0x0k2

2 | X, Y]
i
. (3)
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It is worth interpreting (3) in some detail. For any two (M, x) , (M 0, x0) in R(M, x) , the algorithm
has the same ‘prior knowledge’, so it can only distinguish between the two instances by using the
observed data, in particular M̂ is a function only of X and Y , and we denote it as M̂(X, Y) to
emphasize this. Thus, we can evaluate the performance of M̂ by looking at the worst possible
(M 0, x0) and considering the MSE IEkM̂(X, Y)x 0− M 0x0k2.

Proposition 2. Consider the problem y = Mx + with normalized form y = Nz + . Let ξ be
a sufficient small constant. There exists a sufficiently small constantρ0 (that depends on ξ) and a

constant c such that for any ρ ≤ ρ 0, r(x, M, n, σ ) ≥ (1 − cρ
1
2

−ξ )
P

i≥t (σN
i )2 − O ρ

1
2

−ξ

dω−1
2

, where

t is the smallest index such that σN
t ≤ ρσ

q
d2
n .

Proposition 2 gives the lower bound on the MSE in expectation; it can be turned into a high probability
result with suitable modifications. The proof of the lower bound uses a similar ‘trick’ to the one used

in the analysis of the upper bound analysis to cut the tail. This results in an additional termO ρ
1
2

−ξ

dω−1
2

which is generally smaller than the n−c 0 tail term in Theorem 1 and does not dominate the gap.

Gap requirement and bi-criteria approximation algorithms. Let τ = σ
q

d2
n . Theorem 1 asserts

that any signal above the threshold θτ can be detected, i.e., the MSE is at most
P

σN
i >θτ σ2

i (N )
(plus inevitable noise), whereas Proposition 2 asserts that any signal below the threshold ρτ cannot
be detected, i.e., the MSE is approximately at least

P
σN

i ≥ρτ (1 − poly(ρ))σ 2
i (N ). There is a ‘gap’

between θτ and ρτ , as θ > 1 and ρ < 1 . See Fig. 3(a). This kind of gap is inevitable because both
bounds are ‘high probability’ statements. This gap phenomenon appears naturally when the sample
size is small as can be illustrated by this simple example. Consider the problem of estimating µ when
we see one sample from N (µ, σ2). Roughly speaking, when µ  σ , the estimation is feasible, and
whereas µ  σ , the estimation is impossible. For the region µ ≈ σ , algorithms fail with constant
probability and we cannot prove a high probability lower bound either.

While many of the signals can ‘hide’ in the gap, the inability to detect signals in the gap is a
transient phenomenon. When the number of samples n is modestly increased, our detection threshold

τ = θσ
q

d2
n shrinks, and this hidden signal can be fully recovered. This observation naturally leads

to a notion of bi-criteria optimization that frequently arises in approximation algorithms.

Definition 2. An algorithm for solving the y = Mx + problem is (α, β) -optimal if, when given an
i.i.d. sample of size αn as input, it outputs an estimator whose MSE is at most β worse than the local
minimax bound, i.e., IE[kŷ − yk 2

2] ≤ r(x, M, n, σ ) + β.

Corollary 1. Let ξ and c0 be small constants and ρ be a tunable parameter. Our algorithm is
(α, β) -optimal for α = θ2

ρ
5
2

and β = O(ρ 1
2

−ξ )kMxk 2
2 + O(n −c 0 )

The error term β consists of ρ1
2

− kMxk 2
2 that is directly characterized by the signal strength and

an additive term O(n−c 0 ) = o(1) . Assuming that kMxk = Ω(1) , i.e., the signal is not too weak,
the term β becomes a single multiplicative bound O(ρ 1

2
−ξ + n −c 0 )kMxk 2

2. This gives an easily
interpretable result. For example, when our data size is n log n, the performance gap between
our algorithm and any algorithm that uses n samples is at most o(kMxk 2

2). The improvement is
significant when other baselines deliver MSE in the additive form that could be larger than kMxk 2

2
in the regime n ≤ d 1.

Preview of techniques. Let N = U N Σ N (V N )T be the instance (in orthogonalized form). Our
goal is to construct a collection N = {N 1, . . . , NK } of K matrices so that (i) For any N i  ∈ N ,
Σ N i = Σ N and V N i = V N . (ii) For any two N i , Nj  ∈ N , kN − N 0kF is large, and (iii)
K = exp(Ω(poly(ρ)d 2)) (cf. [43, Chap. 2])

Condition (i) ensures that it suffices to construct unitary matrices UN i ’s for N , and that the resulting
instances will be in the same equivalence class. Conditions (ii) and (iii) resemble standard construction
of codes in information theory: we need a large ‘code rate’, corresponding to requiring a large K
as well as large distances between codewords, corresponding to requiring thatkUi − U j kF be large.
Standard approaches for constructing such collections run into difficulties. Getting a sufficiently tight
concentration bound on the distance between two random unitary matrices is difficult as the matrix
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Table 1: Summary of results for equity return forecasts (left) and average results for Twitter (right) from 10
random samples. R2 are measured by basis points (bps). 1bps = 10−4 . Bold font denotes the best

out-of-sample results and smallest gap. out − in denotes MSEout−in.
Equity return Twitter dataset

Model R2
out Sharp t-stat MSEout out − in corrout MSEout out − in

ADAPTIVE -RRR 18.576 1.623 15.413 1.005 0.1006 0.67 ± 0.13 9.42 ± 2.31 4.417
Lasso 1.124 0.595 0.018 1.063 0.534 0.47 ± 0.15 14.82 ± 4.81 12.452
Ridge 0.212 0.574 0.067 1.029 0.355 0.47 ± 0.17 13.62 ± 4.39 12.2 27

Reduced ridge 1.082 1.548 0.062 1.972 1.235 0.49 ± 0.18 12.23 ± 2.70 7.708
RRR 4.580 -0.477 0.640 1.087 0.474 0.38 ± 0.22 13.07 ± 2.63 8.731

Nuclear norm 2.210 -0.370 -0.899 1.109 0.955 0.48 ± 0.16 13.05 ± 4.38 8.668
PCR 5.233 1.280 0.699 1.026 0.493 0.48 ± 0.15 13.08 ± 4.19 8.889

entries, by necessity, are correlated. On the other hand, starting with a large collection of random unit
vectors and using its Cartesian product to build matrices does not necessarily yield unitary matrices.

We design a two-stage approach to decouple condition (iii) from (i) and (ii) by only generating sparse
matrices UN i . See Fig. 3(b)-(d). In the first stage (Steps 1 & 2 in Fig. 3(b)-(c)), we only specify the
non-zero positions (sparsity pattern) in each UN i . It suffices to guarantee that the sparsity patterns of
the matrices UN i and UN j have little overlap. The existence of such objects can easily be proved
using the probabilistic method. Thus, in the first stage, we can build up a large number of sparsity
patterns. In the second stage (Step 3 in Fig. 3(d)), we carefully fill in values in the non-zero positions
for each UN i . When the number of non-zero entries is not too small, satisfying the unitary constraint
is feasible. As the overlap of sparsity patterns of any two matrices is small, we can argue the distance
between them is large. By carefully trading off the number of non-zero positions and the portion of
overlap, we can simultaneously satisfy all three conditions.

5 Related work and comparison

In this section, we compare our results to other regression algorithms that make low rank constraints
on M . Most existing MSE results are parametrized by the rank or spectral properties of M , e.g.
[30] defined a generalized notion of rank Bq(RA

q ) ∈ A ∈ R d2 ×d 1 :
P d2

i=1 |σA
i |q ≤ R q , where

q ∈ [0, 1], A  {N, M }∈ , i.e. RN
q characterizes the generalized rank of N whereas RM

q characterizes
that of M . When q = 0, RN

q = R M
q is the rank of theN because rank(N ) = rank(M ) in our setting.

In their setting, the MSE is parametrized byRM and is shown to be O RM
q

σ2 λ ∗

1 (d 1 +d 2 )
(λ ∗

min ) 2 n

1−q/2
.

In the special case when q = 0 , this reduces to O σ2 λ ∗

1 rank(M)(d 1 +d 2 )
(λ ∗

min )2 ·n . On the other hand, the

MSE in our case is bounded by (cf. Thm. 1). We have IE[kŷ − yk 2
2] = O R N

q ( σ2 d2
n )1−q/2 + n −c 0 .

When q = 0 , this becomes O σ2 rank(M)d 2
n + n −c 0 .

The improvement here is twofold. First, our bound is directly characterized byN in orthogonalized
form, whereas result of [30] needs to examine the interaction between M and C∗ , so their MSE
depends on both RM

q and λ∗
min . Second, our bound no longer depends on d1 and pays only an

additive factor n−c 0 , thus, when n < d 1, our result is significantly better. Other works have different
parameters in the upper bounds, but all of these existing results require thatn > d 1 to obtain non-
trivial upper bounds [26, 9, 12, 26]. Unlike these prior work, we require a stochastic assumption on
X (the rows are i.i.d.) to ensure that the model is identifiable when n < d 1, e.g. there could be two
sets of disjoint features that fit the training data equally well. Our algorithm produces an adaptive
model whose complexity is controlled by k1 and k2, which are adjusted dynamically depending on
the sample size and noise level. [9] and [12] also point out the need for adaptivity; however they still
require n > d 1 and make some strong assumptions. For instance, [9] assumes that there is a gap
between σi (XM T ) and σi+1 (XM T ) for some i . In comparison, our sufficient condition, the decay
of λ∗

i , is more natural. Our work is not directly comparable to standard variable selection techniques
such as LASSO [42] because they handle univariatey . Column selection algorithms [15] generalize
variable selection methods for vector responses, but they cannot address the identifiability concern.

8



6 Experiments

We apply our algorithm on an equity market and a social network dataset to predict equity returns and
user popularity respectively. Our baselines include ridge regression (“Ridge”), reduced rank ridge
regression [29] (“Reduced ridge”), LASSO (“Lasso”), nuclear norm regularized regression (“Nuclear
norm”), reduced rank regression [45] (“RRR”), and principal component regression [1] (“PCR”).

Predicting equity returns. We use a stock market dataset from an emerging market that consists of
approximately 3600 stocks between 2011 and 2018. We focus on predicting the  next 5-day returns.
For each asset in the universe, we compute its past 1-day, past 5-day, and past 10-day returns as
features. We use a standard approach to translate forecasts into positions [4, 47]. We examine two
universes in this market: (i) Universe 1 is equivalent to S&P 500 and consists of 983 stocks, and (ii)
Full universe consists of all stocks except for illiquid ones.

Results. Table 1 (left) reports the forecasting power and portfolio return for  out-of-sample periods in
Full universe (see our full version for Universe 1). We observe that (i) The data has a low signal-to-
noise ratio. The out-of-sample R2 values of all the methods are close to 0. (ii) ADAPTIVE -RRR has
the highest forecasting power. (iii) ADAPTIVE -RRR has the smallest in-sample and out-of-sample
gap (see column out − in ), suggesting that our model is better at avoiding spurious signals.

Predicting user popularity in social networks. We collected tweet data on political topics from
Oct. 2016 to Dec. 2017. Our goal is to predict a user’s next 1-day popularity, which is defined as
the sum of retweets, quotes, and replies received by the user. There are a total of 19 million distinct
users, and due to the huge size, we extract the subset of 2000 users with the most interactions for
evaluation. For each user in the 2000-user set, we use its past 5 days’ popularity as features. We
further randomly sample 200 users and make predictions for them, i.e., settingd2 = 200 to make d2
of the same magnitude as n.

Results. We randomly sample users for 10 times and report the average MSE and correlation (with
standard deviations) for both in-sample and out-of-sample data (see full version for more results). In
Table 1 (right) we can see results consistent with the equity returns experiment:  (i) ADAPTIVE -RRR
yields the best performance in out-of-sample MSE and correlation. (ii)ADAPTIVE -RRR achieves
the best generalization error by having a much smaller gap between training and test metrics.

7 Conclusion
This paper examines the low-rank regression problem under the high-dimensional setting. We design
the first learning algorithm with provable statistical guarantees under a mild condition on the features’
covariance matrix. Our algorithm is simple and computationally more efficient than low rank methods
based on optimizing nuclear norms. Our theoretical analysis of the upper bound and lower bound
can be of independent interest. Our preliminary experimental results demonstrate the efficacy of our
algorithm. The full version explains why our (algorithm) result is unlikely to be known or trivial.

Broader Impact

The main contribution of this work is theoretical. Productionizing downstream applications stated in
the paper may need to take six months or more so there is no immediate societal impact from this
project.
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