
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/344511784

Towards Optimal System Deployment for Edge Computing: A Preliminary Study

Conference Paper · October 2020

DOI: 10.1109/ICCCN49398.2020.9209754

CITATION

1
READS

26

5 authors, including:

Some of the authors of this publication are also working on these related projects:

np-hard, optimization, approximation, and related View project

data center network architectures View project

Dawei Li

Montclair State University, Montclair, NJ, USA

30 PUBLICATIONS 195 CITATIONS

SEE PROFILE

Chigozie Ifunanya Asikaburu

Montclair State University

1 PUBLICATION 1 CITATION

SEE PROFILE

Boxiang Dong

Montclair State University

46 PUBLICATIONS 95 CITATIONS

SEE PROFILE

Sadoon Azizi

University of Kurdistan

23 PUBLICATIONS 38 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sadoon Azizi on 14 October 2020.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/344511784_Towards_Optimal_System_Deployment_for_Edge_Computing_A_Preliminary_Study?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/344511784_Towards_Optimal_System_Deployment_for_Edge_Computing_A_Preliminary_Study?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/np-hard-optimization-approximation-and-related?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/data-center-network-architectures?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dawei_Li11?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dawei_Li11?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dawei_Li11?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chigozie_Asikaburu?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chigozie_Asikaburu?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Montclair-State-University?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chigozie_Asikaburu?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Boxiang_Dong?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Boxiang_Dong?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Montclair-State-University?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Boxiang_Dong?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sadoon_Azizi?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sadoon_Azizi?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Kurdistan?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sadoon_Azizi?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sadoon_Azizi?enrichId=rgreq-2780c53d6d7daae62122b1d5e39e7553-XXX&enrichSource=Y292ZXJQYWdlOzM0NDUxMTc4NDtBUzo5NDY1ODQyNTQ3MDU2NjVAMTYwMjY5NDY4MTg3Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Towards Optimal System Deployment for Edge
Computing: A Preliminary Study

Dawei Li∗, Chigozie Asikaburu∗, Boxiang Dong∗, Huan Zhou†, and Sadoon Azizi‡
∗Department of Computer Science, Montclair State University, Montclair, NJ, 07043, USA

†College of Computer and Information Technology, China Three Gorges University, Yichang, Hubei, 443002, P. R. China.
‡Department of Computer Engineering and IT, University of Kurdistan, Sanandaj, Kurdistan Province, Iran.

dawei.li@montclair.edu, asikaburug1@montclair.edu, dongb@montclair.edu, zhouhuan117@gmail.com, and s.azizi@uok.ac.ir

Abstract—In this preliminary study, we consider the server
allocation problem for edge computing system deployment. Our
goal is to minimize the average turnaround time of application
requests/tasks, generated by all mobile devices/users in a geo-
graphical region. We consider two approaches for edge cloud
deployment: the flat deployment, where all edge clouds co-locate
with the base stations, and the hierarchical deployment, where
edge clouds can also co-locate with other system components
besides the base stations. In the flat deployment, we demonstrate
that the allocation of edge cloud servers should be balanced
across all the base stations, if the application request arrival
rates at the base stations are equal to each other. We also show
that the hierarchical deployment approach has great potentials
in minimizing the system’s average turnaround time. We conduct
various simulation studies using the CloudSim Plus platform
to verify our theoretical results. The collective findings trough
theoretical analysis and simulation results will provide useful
guidance in practical edge computing system deployment.

Index Terms—Edge computing, edge cloud, flat deployment,
hierarchical deployment, average turnaround time, CloudSim Plus.

I. INTRODUCTION

Our current era is witnessing a proliferation of services
and applications that are provided at the edge of the Internet.
The Internet edge includes traditional access networks, such
as Wireless Local Area Networks (WLAN) and Wireless
Metropolitan Area Networks (WMAN), as well as various
emerging systems, such as Internet of Things (IoT) systems
[1]. Edge applications can be computation-intensive and/or
communication-intensive. However, mobile devices (i.e., mo-
bile phones, tablets, and IoT devices, etc.) are still limited in
various aspects, such as storage size, computation capacity,
communication bandwidth, and battery life. Cloud computing
has been applied to facilitate mobile applications by processing
workloads offloaded from mobile devices in resource-rich
clouds backed by remote data centers. However, various issues
arise due to long latency and limited bandwidth from mobile
devices to remote clouds.

Recently, the edge computing paradigm [2], [3], which
extends cloud computing to the edge of the Internet, has
been proposed to support mobile applications. By running
applications on relatively small computing systems deployed
at the Internet edge, edge computing allows users to exploit
computing power outside of the mobile devices without incur-
ring long access delays to remote clouds. Several other terms
have been used, such as fog computing, cloudlets, edge-centric

computing, mobile edge computing, etc [4]–[8]. In our discus-
sion, we will consistently refer to them as edge computing. The
small computing systems deployed at the Internet edge will be
called edge clouds. Some edge computing system models allow
mobile devices to function as servers and accept workloads
offloaded from other mobile devices [9], [10]; although a
promising trend in edge computing, we do not target such
systems. In this paper, we assume that mobile devices can only
be clients, and they offload computation-intensive application
requests/tasks to edge clouds for processing.

A. Motivation and Related Work

In edge computing, the system deployment problem is a
fundamental and important one, which has been considered
by various existing works [11]–[13]. We notice that most of
them have the following limitations.

First, the system model for an edge cloud is largely
simplified. In [13], the numbers of servers in all the edge
clouds are fixed and equal to each other. In [11] and [14],
the numbers of servers in the edge clouds are not the same;
however, they are still fixed; the problem is to derive the edge
cloud placement given some capacity constraints to minimize
the edge cloud access delay, while the queueing time and
execution time of application requests are not considered.

Second, most existing works assume that edge clouds
should co-locate with Base Stations (BSs) [11], [12], [14]–
[16]. This system deployment is usually referred to as the
flat deployment [17]. The flat deployment has an important
drawback: when a local edge cloud does not have enough
resources for mobile applications, traditional remote clouds
will serve as the direct backup, in which case, long access
delays to remote clouds will be incurred. In the real world, an
edge system usually features a hierarchical architecture [18].
For example, in a WMAN, BSs first connect to aggregation
nodes, which are then connected to core nodes. Other edge
systems, such as WiFi networks, WiMax networks, and IoT
systems, may also feature similar hierarchical architectures.
Edge clouds can thus be deployed along with various system
components at various locations. When the lowest level edge
clouds cannot provide enough resources, we can resort to
edge clouds at a higher level. Such a deployment scheme is
usually referred to as the hierarchical deployment [17], [19].
Intuitively, a hierarchical deployment allows efficient resource
aggregation at a higher level within the system, while long

edge cloud

base station

𝑏1 𝑏2 𝑏𝐵

…

𝑏1 𝑏2 𝑏𝐵

…

regional central office

(a) Flat deployment (b) Hierarchical deployment

cooperation between the
regional central office
and base stations

Fig. 1. Flat deployment and hierarchical deployment
access delays to traditional remote clouds can potentially be
avoided.

B. Contributions and Paper Organization
Our main contributions in this paper are as follows:

• We consider the server allocation problem in both flat
and hierarchical deployment, where each edge cloud
is modeled as an M/M/c queueing system. In a flat
deployment, we demonstrate that if application request
arrival rates at the BSs are equal to each other, the
allocation of edge cloud servers across all the BSs
should be balanced.

• We demonstrate the potential advantages of the hier-
archical system deployment over the flat deployments
via theoretical analysis.

• We conduct various simulations using the CloudSim
Plus [20] platform to verify our results from theoret-
ical analysis. CloudSim Plus, an independent fork of
CloudSim [21], is a discrete-event simulation tool de-
signed for modeling and simulating cloud computing
infrastructures and services. It can be easily tweeked
and modified to provide high-fidelity simulations for
edge computing systems.

This papper is based on our previous work in [22] and
[23], which used numerical results from queueing theory to
verify our claims. In this paper, we focus on using a practical
and high-fidelty cloud and edge computing simulation tool
to verify our claims. The rest of the paper is organized as
follows. Section II presents the system model. In Section III,
we consider the server allocation problem in a flat deployment.
In Section IV, we demonstrate the potential advantages of the
hierarchical deployment over the flat deployment. Supporting
simulations are presented in Section V. Conclusions and future
work directions are given in Section VI.

II. SYSTEM MODEL

We denote the set of all BSs in the target geographical
region as B = {b1, b2, · · · , bB}, where B is the cardinality of
the set, i.e., the total number of BSs. We can deploy an edge
cloud at each BS to serve the area covered by that BS. For
convenience, we will also use bi to refer to the edge cloud
deployed at the BS, the location of the BS, and the user area
covered by the BS. Besides the BSs, there exists a regional
central office where we can also deploy an edge cloud. If
we only deploy edge clouds along with the BSs, we have a
flat deployment (Fig. 1(a)). If we deploy an edge cloud at
the regional central office, we have a hierarchical deployment
(Fig. 1(b)).

The user area covered by BS bi has a collective application
request/task arrival rate of λi following Poisson distribution.
Each edge cloud provides processing services to application
requests in the form of physical machines or virtual machines
[8]. We will consistently refer to them as servers. All the
servers in the system have the same execution speed. We
assume that all the application requests have an average
execution time of 1/µ following exponential distribution. We
assumet that when an application requst is being processed, it
cannot be preempted. The turnaround time for a given applica-
tion request consists of two components: the communication
delay (consisting of the time it takes to upload the request
to a target edge cloud and the time it takes for the device
to download the results from the target edge cloud) and the
service time (consisting of the queueing time and the execution
time at the target edge cloud). Denote d1 as the average
communication delay between a mobile device and its local
edge cloud. Denote d2 as the average communication delay
between a mobile device and the edge cloud at the regional
central office. We assume that the communication between a
mobile device and the regional central office must go through
the local BS. Thus, d1 < d2. In practice, d1 and d2 depends
on a lot of factors, such as the data size of the requests, the
available bandwidth, and the propagation delay, etc. However,
we decide not to dive in such details because we will focus
on the difference between d1 and d2.

The service provider has a budget to deploy N servers
across all the edge clouds. For ease of presentation, we refer
to the regional central office as the (B+1)th edge cloud. Let ni
be the number of servers deployed at bi, ∀i = 1, · · · , B,B +
1. We have

∑B+1
i=1 ni = N . The system provider wants to

derive a server allocation plan in order to minimize the average
turnaround time for all application requests generated within
the target geographical region.

III. SERVER ALLOCATION IN FLAT DEPLOYMENT

In this section, we consider the server allocation problem
in flat deployment, where we do not deploy an edge cloud at
the regional central office, i.e., nB+1 = 0. Given a valid N ,
we aim to derive an optimal server allocation plan to minimize
the average turnaround time of all application requests.

The edge cloud at a BS can be modeled as an M/M/c queue,
i.e., the Erlang C model [24]. Let ρi = λi

niµ
. The probability

that an arriving application request is forced to join a queue
at bi (i.e., all ni servers are occupied) is given by:

C(ni, λi/µ) =

(niρi)
ni

ni!
1

1−ρi∑ni−1
k=0

(niρi)k

k! + (niρi)ni

ni!
1

1−ρi

=
1

1 + (1− ρi) ni!
(niρi)ni

∑ni−1
k=0

(niρi)k

k!

, (1)

which is the Erlang C formula. The average service time
(consisting of the queueing time and the execution time
and excluding the communication delay) of requests that are
processed at bi is

ts,i =
C(ni, λi/µ)

niµ− λi
+

1

µ
. (2)

Thus, the average turnaround time of all application requests
generated within the entire region is:

t =

∑B
i=1(λi(ts,i + d1))∑B

i=1 λi
. (3)

The optimization problem can be formulated as follows:

minimize
ni,∀i=1,··· ,B

t

subject to ni ≥ nmini , ∀i = 1, . . . , B.
B∑
i=1

ni = N.

Equations (1), (2), and (3).

The complexity of the above optimization problem lies in
the following aspects. First, it is an Integer Programming prob-
lem with an exponentially large solution search space; these
kinds of problems are generally NP-Hard. Second, the closed-
form expression of the objective function is quite complex,
resulting from the complexity of the Erlang C formula; the
fact that C(ni, λi/µ) involves factorial and exponentiation
operations on the solution variables (ni’s) makes various
relaxation-based convex optimization techniques inapplicable
here.

A. The Case With Equal Application Request Arrival Rates

Assuming that λ1 = λ2 = · · · = λB = λ, Equation (2)
reduces to:

ts,i =
C(ni, λ/µ)

niµ− λ
+

1

µ
. (4)

When λ approaches niµ, the denominator of the first term
will approach 0, making ts,i extremely large. To minimize
the average turnaround time, we should increase ni so that
niµ− λ should be much larger than 0 for all edge clouds.
However, we only have a limited total number of servers,
N . If we allocate too many servers for one edge cloud, the
number of servers available for other edge clouds will be less.
Intuitively, the allocation of servers to all the edge clouds
should be balanced so that no specific edge cloud experiences
an extremely high average service time.

Let ni and nj be the numbers of servers deployed at bi
and bj , respectively, according to a server allocation plan, S1.
Assume that ni = n, and nj = n+m, where m ≥ 2. For the
server allocation plan, S1, the average service time of requests
at bi and bj can be calculated as t1s,i = C(n,λ/µ)

nµ−λ + 1
µ and

t1s,j = C(n+m,λ/µ)
(n+m)µ−λ + 1

µ , respectively. If there exists such an
allocation plan, S1, we can come up with a new allocation
plan, S2, where the numbers of servers deployed at bi and bj
are ni = n+1 and nj = n+m− 1, respectively. For the new
allocation plan, the average service time of requests at bi and
bj are t2s,i =

C(n+1,λ/µ)
(n+1)µ−λ + 1

µ and t2s,j =
C(n+m−1,λ/µ)
(n+m−1)µ−λ + 1

µ ,
respectively.

Conjecture 1. The average service time of applications from
areas i and j under allocation plan S1 is greater than that
under allocation plan S2, i.e.,

t1s,i + t1s,j > t2s,i + t2s,j . (5)

Illustration: Due to the complexity of the closed-form
expressions of ts,i and ts,j , a formal proof for this conjecture
is hard to derive. The conjecture states that if a server allo-
cation plan (S1) has an unbalanced server allocation, i.e., the
difference, m, in the numbers of servers deployed at bi and bj
is greater than 2, then, we can reduce the average service time
for the application requests from areas i and j with a more
balanced server allocation plan (S2), without affecting the rest
of the allocation plan. Thus, we can further reduce the overall
average turnaround time.

Here, we verify the conjecture using a basic case where
n = 1 and m = 2. For the unbalanced allocation, we have
t1s,i =

1
µ−λ and t1s,j = C(3,λ/µ)

3µ−λ + 1
µ > 1

µ For the balanced
allocation, we have t2s,i = t2s,j = C(2,λ/µ)

2µ−λ + 1
µ = 4µ

4µ2−λ2 .

Thus, t1s,i + t1s,j − (t2s,i + t2s,j) > 1
µ−λ + 1

µ −
8µ

4µ2−λ2 =
2µλ(2µ−λ)+λ3

µ(µ−λ)(4µ2−λ2) > 0.

With this conjecture, we can draw the conclusion that,
the allocation of servers to all the edge clouds should be
balanced in order to minimize the average turnaround time for
all application requests when application request arrival rates
at all the locations are equal to each other.

IV. POTENTIAL ADVANTAGES OF HIERARCHICAL
DEPLOYMENT OVER FLAT DEPLOYMENT

In this section, we compare the two deployment approaches
and demonstrate the potential benefits of the hierarchical
deployment. Before any theoretical and numerical analyses,
we would like to point out that hierarchical deployment does
not rule out flat deployment. Actually, the flat deployment is a
special case of the hierarchical deployment where nB+1 = 0.
Thus, hierarchical deployment allows more possibilities for
server allocation and thus, can provide the benefits and ad-
vantages in general.

In the following, we use a special case to explicitly
demonstrate the advantage of hierarchical deployment over flat
deployment. We consider a special case where λ1 = · · · =
λB = λ and the total number of servers is equal to the total
number of BSs, i.e., N = B. In the flat deployment approach,
each BS will have an edge cloud each with one server. For
each edge cloud queueing system to be stable, we should have
λ < µ. The average service time of application requests can
be calculated as

tfs =
1

µ− λ
. (6)

The average turnaround time of application requests is tf =
tfs + d1.

We then consider the hierarchical deployment approach
where no edge cloud is co-located with a BS. There is only
one edge cloud deployed at the regional central office. It has
B servers and can be modeled as an M/M/c queue. Due
to the additive property of the Poisson arrival process, the
effective request arrival rate at the edge cloud is Bλ. Let
ρ = Bλ/(Bµ) = λ/µ. The probability that an arriving
application request is forced to join the queue is given by:

C(B,Bλ/µ) =

(Bρ)B

B!
1

1−ρ∑B−1
k=0

(Bρ)k

k! + (Bρ)B

B!
1

1−ρ

(7)

The average service time of application requests is:

ths =
C(B,Bλ/µ)

Bµ−Bλ
+

1

µ
(8)

The average turnaround time is th = ths + d2.

Intuitively, the probability that a newly arrived request finds
all the B servers occupied in the hierarchical deployment is
less than the probability that a newly arrived request finds the
only one local server occupied in the flat deployment. We have
the following theorem.

Theorem 1. In the above-mentioned scenario, the average
service time of a request in the hierarchical deployment is
always less than the average service time of a request in the
flat deployment.

Proof: Calculate the difference between ths and tfs :

ths − tfs =
C(B,Bλ/µ)

Bµ−Bλ
+

1

µ
− 1

µ− λ

=
1

B(µ− λ)

(Bρ)B

B!
1

1−ρ∑B−1
k=0

(Bρ)k

k! + (Bρ)B

B!
1

1−ρ

− λ

µ(µ− λ)

=
1

µ− λ

 BB−1ρB

B!
1

1−ρ∑B−1
k=0

(Bρ)k

k! + BBρB

B!
1

1−ρ

− ρ


=

1

µ− λ

(
BB−1ρB

B!

(1− ρ)
∑B−1
k=0

(Bρ)k

k! + BBρB

B!

− ρ

)

=

BB−1ρB

B! − ρ
(
(1− ρ)

∑B−1
k=0

Bkρk

k! + BBρB

B!

)
(µ− λ)

(
(1− ρ)

∑B−1
k=0

(Bρ)k

k! + BBρB

B!

) .

Consider that
B−1∑
k=0

Bkρk

k!
>
B−1∑
k=0

Bkρk

B!
>
BB−1ρB−1

B!
. (9)

We have

ths − tfs <
BB−1ρB

B! − ρ
(
(1− ρ)B

B−1ρB−1

B! + BBρB

B!

)
(µ− λ)

(
(1− ρ)

∑B−1
k=0

(Bρ)k

k! + BBρB

B!

)
=

ρB+1BB−1(1−B)
B!

(µ− λ)
(
(1− ρ)

∑B−1
k=0

(Bρ)k

k! + BBρB

B!

) . (10)

All the factors are positive except (1−B). Thus, ths < tfs .

A. Illustration With Simple Cases

We illustrate and compare the average turnaround time of
the flat and hierarchical deployment with two simple cases.
When B = 2, we have

C(2, 2λ/µ) =
1

1 + (1− ρ) 2!
(2ρ)2

∑1
k=0

(2ρ)k

k!

=
2ρ2

1 + ρ
. (11)

Thus, ths = C(2,2λ/µ)
2µ−2λ + 1

µ =
λ2/µ2

1+λ/µ

µ−λ + 1
µ = µ

µ2−λ2 , and th =

d2 + ths .

Corollary 1. When B = 2, the average turnaround time
of the hierarchical deployment, th, is less than that of the
flat deployment, tf , if µ <

√
λ

d2−d1 + λ2; th = tf if

µ =
√

λ
d2−d1 + λ2; th > tf if µ >

√
λ

d2−d1 + λ2.

Proof: Calculate the difference between tf and th:

th − tf = d2 +
µ

µ2 − λ2
− (d1 +

1

µ− λ
)

= d2 − d1 −
λ

µ2 − λ2
(12)

We can see that th < tf if and only if d2 − d1 − λ
µ2−λ2 < 0,

which is equivalent to µ <
√

λ
d2−d1 + λ2.

V. SIMULATIONS

We use the CloudSim Plus [20], [25], [26] platform to
conduct various simulations. CloudSim Plus, an independent
fork of CloudSim [21], is a discrete-event simulation tool
designed for modeling and simulating cloud computing in-
frastructures and services. The entire simulation platform is
written in the Java programming language. It defines many
classes/interfaces for entities in the cloud computing envi-
ronments; these interfaces/classes include Datacenter, Host,
Vm, and Cloudlet (the class that corresponds to an application
request/task in CloudSim Plus). It also defines the inter-
faces/classes for common concepts/techniques used in cloud
computing, such as CloudInformationServices (serving as a
registry of all resources in a cloud), DatacenterBroker (acting
as a cloud customer that accepts application tasks/requests
and submits them to the cloud), VmAllocationPolicy (used
by the data center to allocate hosts for VMs), VmSchedul-
ingPolicy (defining how a host schedules the VMs assigned
to it), CloudletScheduler (defining how a VM schedules the
cloudlets, i.e., application tasks/requests, assigned to the VM),
etc. For most Java interfaces, the simulation tool provides
some basic implemtations, and makes implementations of
customized classes quite convenient. The simulation tool can
also be easily modified to provide high-fidelity simulations for
edge computing systems.

A. Verification for Balanced Server Allocation

In this subsection, we use a simple scenario to verify
that when the request arrival rates across different user areas
are the same, the server allocation to edge clouds should be
balanced to achieve the minimum average turnaround time.
Our simulation scenario consists of two user areas, and thus,
two BSs. We have a total of 10 hosts to be allocated to the two
BSs. Each host has one processing element, and runs a VM that
uses all the resources on the host. The execution speed of the
processing element is 1000 Million Instructions Per Second
(MIPS). In each area, there is a same set of 60 application
requests randomly arriving between 0 second to 600 seconds.
The average length, i.e., of all the application requests is
50,000 Million Instructions (MI), while the length of each
application request can range from 30,000 MI to 70,000 MI
with uniform distribution. Thus, the average execution time of
the application requests is 50 seconds, and the execution time
for each application request can range from 30 seconds to 70

TABLE I. AVERAGE TURNAROUND TIME FOR DIFFERENT SERVER
ALLOCATIONS

VM Mapper Area Subscenario No.
1 2 3 4 5

Round-Robin
Area 1 1267.92 510.6 263.95 146.62 85.62
Area 2 54.27 55.74 59.30 65.58 85.62
Overall 661.11 283.16 161.63 106.10 85.62

Best VM
Area 1 1267.95 509.87 263.35 144.1 82.67
Area 2 53.77 54.67 53.07 61.58 82.67
Overall 660.86 282.27 158.21 102.84 82.67

seconds. We choose these settings so that when there are 5
hosts at either BS, the load of the system at each area is close
to 100% (50 (seconds) ∗ 60 (tasks)

600 (seconds) ∗ 5 (VMs) = 1).

We consider 5 subscenarios and caculate the average
turnaround time for all the application requests in both user
areas. In the ith subscenario, there is/are i host(s) at the first
BS, and there are 10− i hosts at the second BS. For example,
in the first subscenario, there is 1 host at the first BS, and there
are 9 hosts at the second BS. In the second subscenario, there
are 2 hosts at the first BS, and there are 8 hosts at the second
BS. In the 5th subscenario, there are 5 hosts at the first BS,
and there are 5 hosts at the second BS.

The edge clouds at the two BSs will use the same strategy
to map the application requests to the hosts/VMs in the local
edge cloud. CloudSim Plus provides a simple datacenter broker
(DatacenterBrokerSimple) that maps application requests to
the VMs in a Round-Robin fashion. We also define our cus-
tomermized datacenter broker DatacenterBrokerSimpleBestVm
so that when we consider mapping an application request to a
VM in the local edge cloud, we choose the VM that can finish
the application request the earliest. This is done by overriding
the defaultVmMapper() method in the DatacenterBroker inter-
face. We denote our new VM Mapper method as “Best VM,”
although it is just an intuitive heuristic.

The simulation results for the 5 subscenarios with different
VM Mappers are shown in Table II. We can see that, the
minimal turnaround time is achieved when the allocation of
hosts to the BSs is balanced, i.e., when the numbers of hosts
at two BSs are equal.

B. Verifications for Potential Advantages of Hierarchical De-
ployment Over Flat Deployment

We design simulation scenarios so that we can compare the
turnaround time of a flat deployment and that of a hierarchical
deployment. We still consider a scenario with 2 areas, i.e., 2
BSs. We have a total of 10 hosts. Each host has one processing
element, and runs a VM that uses all the resources on the
host. We randomly generate a set of N REQUESTS application
requests for each user area. Each application request has the
same characteristics as that in our previous simulation. That
is, each application request randomly arrive between 0 seconds
to 600 seconds, with an average execution time of around 50
seconds.

In the flat deployment scenario, we allocate the servers to
the base stations in the best way. That is, the two BS will
have the same number of servers, i.e., the flat deployment
scenario has 5 hosts at each BS. The first set of N REQUESTS
application requests are processed at the 5 hosts at the first
BS. The second set of N REQUESTS application requests are

processed at the 5 hosts at the second BS. As we have shown
through theoretical analysis, the hierarchical deployment can
have potential advantages over the flat deployment because
it enables resource sharing for all application requests. In
our simulation, we choose a extreme design to place all the
10 hosts at the central office as the hierarchical deployment
scenario, while there are no servers co-located with the BSs.
In this design, all of the 10 hosts can be shared by all the
application requests. The application requests can be flexibly
assigned to any server/VM for execution. We assume that the
communication delay bewteen the BS and the central office
is negligible compared to the application requests’ execution
time.

We also consider two strategies for mapping application
requests to the servers/VMs: the Round-Robin strategy used
by DatacenterBrokerSimple, and our customized strategy (Best
VM) that maps the application request to the VM that can fin-
ish the request the earliest. We vary the number of application
requests, N REQUESTS, from 30 to 120 with a stepsize of 10,
and design 10 groups of comparisions. The simulation results
with different VM mappers are shown in Table II.

Using either Round-Robin or Best VM as the VM mapper,
the row labeled with “Area 1” includes the average turnaround
time for application requests at area 1 in the flat deployment;
the row labeld with “Area 2” include the average turnaround
time for application requests at area 2 in the flat deployment;
the row labeled with “Average of Flat” includes the average
turnaround time for all the application requests in the flat
deployment. The row labeled with “Average of Hierarchical”
includes the average turnaround time for all application re-
quests in the hierarchical deployment. We can see from the
table that if we use the “Round-Robin” as the VM mapper,
for majority of the cases, the average turnaround time in the
hierarchical deployment is less than that in the flat deployment;
however, there are some exceptions. For example, when the
number of application requests is 110, the average turnaround
time of the hierarchical deployment (308.35 seconds) is greater
than that of the flat deployment (307.88). This result is not a
counter example however, because Round-Robin is really not
a method that can efficiently share the available resources; it
just blindly assign the requests to the VMs without taking into
consideration the current assignment/execution of the VM. In
contrast, Best VM is a much better method that tries to achieve
efficient resource sharing. From the table, we can see that if we
use the “Best VM” as the VM mapper, the average turnaround
time in the hierarchical deployment is always less than that
in the flat deployment. This argument is also backed by all
other simulations that have been conducted but whose results
are not included in the paper due to page limit. The simulation
results also tell us that although the hierarchical deployment
has great potential to achieve better performances, we need to
use efficient scheduling/mapping methods to achieve the good
performances.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the server allocation problem
with two general edge cloud deployment approaches: flat and
hierarchical deployment. For the flat deployment strategy, we
demonstrate that when the request arrival rates are the same
across all the edge clouds, the allocation of servers to the

TABLE II. AVERAGE TURNAROUND TIME FOR DIFFERENT NUMBERS OF APPLICATION REQUESTS

VM Mapper Scenario Number of Application Requests in Each Area
30 40 50 60 70 80 90 100 110 120

Round-Robin

Area 1 49.23 49.40 58.14 83.78 142.46 173.18 179.67 209.32 321.72 373.38
Area 2 50.56 58.45 62.16 66.62 130.37 166.98 191.87 252.60 294.03 352.70

Average of Flat 49.90 53.93 60.14 75.20 136.42 170.08 185.77 230.96 307.88 362.85
Average of Hierarchical 48.95 51.78 54.77 69.69 133.71 167.48 175.71 227.52 308.35 360.33

Best VM

Area 1 48.90 48.60 55.88 78.08 141.67 168.16 178.98 208.58 321.05 372.29
Area 2 50.56 56.85 59.78 64.30 129.30 163.08 190.22 252.10 293.12 351.13

Average of Flat 49.73 52.67 57.83 71.19 135.49 165.62 184.60 230.34 307.09 361.71
Average of Hierarchical 48.78 50.91 52.25 64.72 132.40 160.94 171.44 226.33 307.02 359.16

edge clouds should be balanced to achieve the minimum
average turnaround time. We demonstrate that the hierarchical
deployment approach has great potentials in terms of reducing
the average turnaround time, compared to the flat deployment;
besides, the strategy we use to schedule/map application re-
quests to VMs may play an important role.

Future work can be conducted in, but not limited to, the
following directions. First, general and practical hierarchical
architectures with more than two hierarchical levels should be
considered. Second, more practical application request models
and VM models should be considered; for example, each
application request may require multiple processing elements,
and we may have different types of VMs to choose from at
real time. Third, the impact of various scheduling/allocation
policies should be investigated, and explorations of optimal
system deployment considering these scheduling/allocation
policies are needed.

REFERENCES

[1] X. Sun and N. Ansari, “Mobile edge computing empowers internet of
things,” ArXiv e-prints, vol. arXiv:1709.00462, September 2017.

[2] Z. Pang, L. Sun, Z. Wang, E. Tian, and S. Yang, “A survey of cloudlet
based mobile computing,” in Proceedings of International Conference
on Cloud Computing and Big Data (CCBD), November 2015, pp. 268–
275.

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, Third quarter 2017.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC Workshop on Mobile Cloud Computing, August 2012, pp. 13–16.

[5] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the Workshop on Mobile
Big Data (Mobidata), June 2015, pp. 37–42.

[6] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” SIGCOMM Comput. Commun. Rev.,
vol. 45, no. 5, pp. 37–42, October 2015.

[7] Y. Cui, J. Song, K. Ren, M. Li, Z. Li, Q. Ren, and Y. Zhang, “Soft-
ware defined cooperative offloading for mobile cloudlets,” IEEE/ACM
Transactions on Networking, vol. 25, no. 3, pp. 1746–1760, June 2017.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, October - December 2009.

[9] C. Zhou and C. K. Tham, “Deadline-aware peer-to-peer task offloading
in stochastic mobile cloud computing systems,” in Proceedings of IEEE
International Conference on Sensing, Communication, and Networking
(SECON), June 2018, pp. 1–9.

[10] S. Bohez, T. Verbelen, P. Simoens, and B. Dhoedt, “Allocation al-
gorithms for autonomous management of collaborative cloudlets,” in
Proceeding of the 2nd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, April 2014, pp. 1–9.

[11] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms for
capacitated cloudlet placements,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 27, no. 10, pp. 2866–2880, October
2016.

[12] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in Proceedings of IEEE Interna-
tional Conference on Computer Communications (INFOCOM), April
2016, pp. 1–9.

[13] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE
Transactions on Cloud Computing, vol. 5, no. 4, pp. 725–737, October
2017.

[14] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Capacitated cloudlet
placements in wireless metropolitan area networks,” in Proceedings of
the 40th IEEE Conference on Local Computer Networks (LCN), October
2015, pp. 570–578.

[15] X. Sun, N. Ansari, and Q. Fan, “Green energy aware avatar mi-
gration strategy in green cloudlet networks,” ArXiv e-prints, vol.
arXiv:1509.03603, September 2015.

[16] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795–2808, October 2016.

[17] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in Proceedings of IEEE Conference on Computer
Communications (INFOCOM), April 2016, pp. 1–9.

[18] A. Ceselli, M. Premoli, and S. Secci, “Cloudlet network design opti-
mization,” in Proceedings of IFIP Networking Conference, May 2015,
pp. 1–9.

[19] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang,
“A hierarchical distributed fog computing architecture for big data
analysis in smart cities,” in Proceedings of the ASE BigData and
SocialInformatics (BD&SI), October 2015, pp. 28:1–28:6.

[20] M. C. S. Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inácio, and
M. M. Freire, “Cloudsim plus: A cloud computing simulation frame-
work pursuing software engineering principles for improved modularity,
extensibility and correctness,” in IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), May 2017, pp. 400–406.

[21] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning
algorithms,” Softw. Pract. Exper., vol. 41, no. 1, pp. 23–50, January
2011.

[22] D. Li, B. Dong, E. Wang, and M. Zhu, “A study on flat and hierarchical
system deployment for edge computing,” in 2019 IEEE 9th Annual
Computing and Communication Workshop and Conference (CCWC),
2019, pp. 0163–0169.

[23] E. Wang, D. Li, B. Dong, H. Zhou, and M. Zhu, “Flat and hierarchical
system deployment for edge computing systems,” Future Generation
Computer Systems, vol. 105, pp. 308 – 317, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X19304042

[24] L. Kleinrock, Queueing Systems. Volume 1: Theory. Wiley-
Interscience, January 1975.

[25] “A modern, full-featured, highly extensible and easier-to-use java 8+
framework for modeling and simulation of cloud computing infrastruc-
tures and services,” http://cloudsimplus.org/, accessed: 2020-03-22.

[26] “A modern, full-featured, highly extensible and easier-to-use java
8+ framework for cloud computing simulation,” https://github.com/
manoelcampos/cloudsim-plus, accessed: 2020-03-22.

View publication statsView publication stats

https://www.researchgate.net/publication/344511784

