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Abstract

Solar flares are caused by magnetic eruptions in active re-
gions (ARs) on the surface of the sun. These events can have
significant impacts on human activity, many of which can
be mitigated with enough advance warning from good fore-
casts. To date, machine learning-based flare-prediction meth-
ods have employed physics-based attributes of the AR im-
ages as features; more recently, there has been some work that
uses features deduced automatically by deep learning meth-
ods (such as convolutional neural networks). We describe a
suite of novel shape-based features extracted from magne-
togram images of the Sun using the tools of computational
topology and computational geometry. We evaluate these fea-
tures in the context of a multi-layer perceptron (MLP) neu-
ral network and compare their performance against the tra-
ditional physics-based attributes. We show that these abstract
shape-based features outperform the features chosen by the
human experts, and that a combination of the two feature sets
improves the forecasting capability even further.

Introduction
Solar flares are caused by rearrangement of magnetic field
lines in active regions (ARs) on the surface of the Sun. These
bright flashes arise from the collision of accelerated charged
particles with the lower solar atmosphere. The coronal mass
ejections (CMEs) that can accompany these events can have
a significant impact on a range of human activity: damag-
ing spacecraft, creating radiation hazards for astronauts, in-
terfering with GPS, and causing power grid failures, among
other things. Lloyd’s has estimated that a power outage from
an event associated with a powerful solar flare could pro-
duce an economic cost of 0.6 to 2.6 trillion dollars (?). Many
of these losses could be mitigated with enough advance ac-
curate warning of impending solar flares and the accompa-
nying CMEs through actions such as switching to higher
frequency radio for over-the-horizon communications with
international airline flights, preparing satellites in orbit for
safe-mode operations, and bringing additional generation
capacity online to balance power grids against possible ge-
omagnetically induced current disturbances. Since we cur-
rently lack these accurate advanced warnings, research into
how to create them is a high priority.
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Strategies for flare forecasting rest on the fact that the
complexity of the magnetic field in an AR is known to be rel-
evant to solar-flare occurrence. Figure 1 shows three obser-
vations at different times of the line-of-sight (LOS) magnetic
field—called a magnetogram—observed from the sunspot
AR 12673 as it evolved from a simple configuration as seen
in panel (a) to more complex configurations seen in panels
(b) and (c). The white and dark regions represent the LOS
magnetic field exiting and entering the Sun’s surface (termed
positive and negative polarity, respectively). This particular
AR produced a powerful flare within 24 hours of the com-
plex mixed-polarity state observed in panel (b).

It is no surprise that these kinds of magnetic field ob-
servations have played a central role in machine learning-
based forecasting models for solar flares. Typically, this has
involved the use of features that solar-physics experts con-
sider to be revelant to solar flaring, such as the magnetic field
or electric current strength, current helicity, magnetic shear,
and the like.1 Recently, there has been a push to use convo-
lutional neural networks (CNNs) to automatically learn la-
tent features that are statistically correlated to the occurence
of a solar flare. In this work, we take a wholly different
approach, defining a novel feature set based purely on the
shapes of the structures in the magnetogram. We formally
quantify the complexity of an active region by using com-
putational geometry and computational topology techniques
on the radial component of the photospheric magnetic field,
focusing specifically on the proximity and interaction of the
polarities, as well as the components and holes in sub-level
thresholded versions of the magnetogram image. Following
a brief review of ML-based flare forecasting work and a de-
scription of the data, we present the results of a comparative
study about the efficacy of these features in a multi-layer
perceptron model.

In operational space weather forecasting offices, human
forecasters currently use the McIntosh (?) or Hale (?) clas-
sification systems to categorize active regions into various
classes; they then determine the statistical 24-hour flaring
probability derived from historical records (?). Over the
past decade, significant effort has been devoted to machine-
learning solutions to this problem, including support vec-

1Please refer to Table 1 of ? for a complete list and to ? for
details about the associated calculations.
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Figure 1: Three observations of line-of-sight magnetograms of sunspot #AR 12673, which produced multiple major (M-class
and X-class) flares as it crossed the disk of the Sun in September 2017: (a) at 0000 UT on 9/1, (b) at 0900 UT on 9/5, about 24
hours before producing an X-class solar flare, and (c) at 1000 UT on 9/7, around the time of an M-class flare.

tor machines (SVM) (?????), multi-layer perceptron (MLP)
models (?), Bayesian networks (?), logistic regression (?),
LASSO regression (?), linear classifiers (?), fuzzy C-means
(?) and random forests (??). Recently, the ML-based flare
forecasting community has turned to deep learning meth-
ods for automatically extracting important features from raw
image data that are relevant for flare-based classification
(????). The work cited in this paragraph is only a repre-
sentative subset of ongoing research in this active field; for
a more complete bibliography, please refer to ?.

In this paper, we use magnetograms from the Helio-
seismic and Magnetic Imager (HMI) instrument onboard
NASA’s Solar Dynamics Observatory (SDO), which has
been deployed since 2010. Rectangular cutouts of each AR
on the disk of the sun in each of these images, termed
Spaceweather HMI Active Region Patches (SHARPs)—
three examples of which make up Figure 1—are available
to download from the Joint Space Operations Center web-
site (jsoc.stanford.edu/). The metadata that accompa-
nies each SHARP record contains values for the physics-
based features mentioned above: i.e., the attributes that do-
main experts consider meaningful for the physics of the sys-
tem. The dataset for the study reported in this paper, which
covers the period from 2010-2016 at a one-hour cadence,
focuses specifically on the radial magnetic field component
from these images because of its role in magnetic reconnec-
tion.

The active regions in this dataset—which contains about
2.6 million data records, each approximately 2 MB in size,
totaling 5 TB of data—are known to have produced about
1250 major flares within 24 hours of the image time (?).
We use the NOAA Geostationary Operational Environment
Satellite (GOES) X-ray Spectrometer (XRS) flare catalog to
identify these events and label the associated SHARP with
a 1 if it produced a major flare—one whose peak flux in the
1-8 Å range is greater than 10−5W/m2—in the 24 hours fol-
lowing the time of the sample, and 0 otherwise. Next, we dis-
card all the magnetogram images that contain invalid pixel
data (NaN values). The resulting data set included 3691 ac-
tive regions, of which 141 produced at least one major flare
as they crossed the Sun’s disk and 3550 did not. This cor-

responded to 438, 539 total magnetograms, of which 5538
and 432821, respectively, were labeled as flaring and non-
flaring.

A large positive/negative imbalance like this (78:1) is
an obvious challenge in a binary classification machine-
learning problem, as described at more length below. An-
other issue is that multiple images are available from a sin-
gle AR during the run-up to a particular flare. To avoid ar-
tificially boosting our model accuracy by, for example, test-
ing on an image that is one hour earlier than, and thus very
similar to, an image in the training set, we perform an addi-
tional check each time we split the data into training (70%)
and testing (30%) sets to ensure that all the magnetogram
images belonging to a given AR are grouped together and
placed either in the training or the testing set. 10 different
random seeds are used for shuffling the data to generate 10
training/testing set combinations.

Shape-based Featurization of Active Regions
As in many machine-learning problems, the choice of fea-
tures is critical here. Quantitative comparison studies show
that none of the methods described above that use physics-
based features extracted from magnetic field data are signifi-
cantly more skilled—and indeed are typically less skilled—
than current human-in-the-loop operational forecasts (???).
In other words, while the physics-based attributes are no
doubt important, they may not necessarily form an effective
feature set for solar-flare forecasting.

The novelty of our work is our approach to the feature-
engineering task from a mathematical standpoint, rather than
a physics-based one. Specifically, we use computational
topology and computational geometry to extract features
that are based purely on the shapes of the regions in the mag-
netograms. The underlying conjecture is that this is a useful
way to capture the complexity of these regions—which is
known to be related to flaring. As preliminary evidence in
favor of that conjecture, we show that shape-based features
outperform the traditional physics-based features in the con-
text of a multi-layer perceptron model, yielding a better 24-
hour prediction accuracy.

Note that our objective in this work is not to directly com-



pare our forecasting model with other methods, but to pri-
marily convince the reader of the importance of shape-based
features for solar flare forecasting.

Computational Geometry
To compute geometry-based features from each magne-
togram, we first remove noise by filtering out pixels whose
magnetic flux magnitude is below 200G, then aggregate the
resulting pixels into clusters if they touch along any side or
corner. We then determine the number and area of each clus-
ter, discarding all whose area is less than 10% of the max-
imum cluster area. We perform these operations separately
for the positive (> 200 G) and negative (< −200 G) fields.

We then compute an interaction factor (IF) between all
positive/negative polarity pairs, defined in a manner similar
to the so-called Ising Energy used by ? (introduced first in
?, ?):

IF =
Bpos ×Bneg

r2min

(1)

where Bpos and Bneg are the sums of the flux over the re-
spective components and rmin is the smallest distance be-
tween them. A high IF value is an indication of strong,
opposite-polarity regions in close proximity—an ideal con-
figuration for a flare. Following this reasoning, we choose
the pair with the highest IF value and derive a number of
secondary features from it, such as the center of mass dis-
tance between the two clusters. Extraction of the most in-
teracting pair on an example magnetogram is shown in Fig-
ure 2. Together with the values used in the computation of
IF—the magnetic flux of the positive and negative clusters,
the center of mass distance between them, the smallest dis-
tance between them, the interaction factor, etc.—these make
up the 16-element feature vector that quantifies the interac-
tion of the opposite polarity regions. The feature extraction
process together with the final list of geometry-based fea-
tures is summarized in Algorithm 1.2

Computational Topology
Computational topology, also known as topological data
analysis (TDA) (???), operationalizes the abstract mathe-
matical theory of shape to allow its use with real-world data.
These methods, which have been used to advantage in ap-
plications ranging from biological aggregation models (?) to
the large-scale structure of the universe (?), provide a useful
strategy for extracting and codifying the spatial richness of
magnetograms like the ones shown in Figure 1.

The homology of an object formally quantifies its shape
using the Betti numbers: the number of components (β0),
holes (β1), voids (β2), and so on. When one has a smooth,
well-defined object, the textbook formulation of homology
addresses this quantification, but real-world data—a finite
collection of points or a set of pixels—does not really have
a “shape.” TDA handles this by filling in the gaps between
the data points with different types of simplices. The sim-
plest way to do this maps well to pixellated images; one can
create a manifold from a selected set of pixels in an image

2Please refer to Table 2 of ? for a complete description.
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Figure 2: Process for determining the most interacting pos-
tive/negative cluster pair in geometry-based feature extrac-
tion. From a sample magnetogram shown in panel (a), pos-
itive (blue) and negative (yellow) clusters of a sufficiently
large size are extracted (panel b); from these, the most in-
teracting cluster pair is determined via calculations of the
magnetic flux in each of the paired regions (panel c).

by replacing each one by a cubical simplex—a square piece
complete with its vertices and edges. This leads to the no-
tion of connectedness amongst discrete pixels: a pair of pix-
els are said to be “connected” if their corresponding cubical
simplices share an edge or a vertex. Such connections lead
to the formation of different connected components, holes,
etc.

In images where the pixel values range over some inter-
val, it can be useful to combine this idea with thresholding.
Figure 3 demonstrates the process of generating a cubical
complex for a range of threshold values t.



Algorithm 1 Geometry-based Feature Extraction

1: for each SHARPs magnetogram image do
2: Cap magnitude of all pixels to 200G from below, preserving the sign of each pixel.
3: Find positive and negative flux clusters in the magnetogram.
4: Remove clusters with area less than 10% of the maximum cluster size.
5: for each pair of positive and negative clusters {Bpos, Bneg} do
6: Compute the interaction factor IF (Eqn. 1).
7: end for
8: Determine the pair with the maximum IF; call it the most interacting pair (MIP): {Bpos, Bneg}max.
9: Extract 16 geometry-based features: total positive and negative clusters in the magnetogram (2), areas of the largest

positive and negative cluster (2), total magnetic fluxes of the largest positive and negative cluster (2), IF (1), MIP center
of mass distance (1), MIP smallest distance (1), ratio of the MIP center of mass distance to the MIP smallest distance (1),
total magnetic fluxes of the MIP clusters (2), areas of the MIP clusters (2) and total flux densities of the MIP clusters (2).

10: end for

Algorithm 2 Topology-based Feature Extraction

1: for each SHARPs magnetogram image do
2: Compute β1 persistence diagrams using a cubical complex algorithm for positive and negative flux values.
3: Count the number of “live” β1 holes for 20 flux values in the range [−5000G, 5000G].
4: end for

(a) Example Image (b) t=0 (c) t=1

(d) t=2 (e) t=3 (f) t=4

(g) β1 Persistence Diagram

Figure 3: Computational topology: (a) Image-based dataset.
(b)-(f) Cubical complex of that dataset for five values of sub-
level thresholding (t = [0, 1, 2, 3, 4]). For each complex, the
threshold t and the (β0, β1) counts are mentioned. (g): β1
Persistence diagram.

When the threshold is low, as in Figure 3(b), none of the
pixels are in the complex (β0 = 0) and it has no holes
(β1 = 0). As t is raised and lower-value pixels enter the
computation, the complex develops a small connected com-
ponent at the top right (β0 = 1). Four different compo-
nents can be observed in Figure 3(d) for a threshold t = 2;
at t = 3, all the components become merged together. In
addition to the formation of components, two-dimensional
“holes” are also formed when edges from various cubical
simplices form a loop in the complex that is not filled by
a cubical simplex (dark regions surrounded by green edges
on all sides). We can see the presence of one and five holes,
respectively, for t = 2 and t = 3.

This formation and merging of the various components
and holes with changing threshold captures the shape of the
set in a very nuanced way. The idea of persistence, first in-
troduced in ? (and independently by ?, ?), is that tracking
that evolution allows one to deduce important information
about the underlying shape that is sampled by these points.
To capture all of this rich information, one can use a sin-
gle plot called a persistence diagram (?). Most components,
for example, have birth and death parameter values, where
they appear and disappear, respectively, from the construc-
tion. A β0-persistence diagram has a point at (tbirth, tdeath)
for each component, while a β1-persistence diagram (PD)
does the same for all the holes. The β1 PD for our toy image
example is shown in Figure 3(g). Multiplicity of different
holes with the same (tbirth, tdeath) is represented by color;
the single hole that formed at t = 2 and died at t = 3 is
represented in blue, whereas the five holes corresponding to
(3,4) are colored red.

The β1 persistence diagram is the basis for our topology-
based feature set. For each magnetogram, we first generate
separate PDs for the positive and negative polarities. Figure
4 shows β1 PDs for the positive flux field in the series of



magnetograms in Figure 1. The increase in the complexity
of the AR between 2017-09-01 00:00:00 UT and 2017-09-
05 09:00:00 UT is reflected in the patterns in the PDs: Figure
4(b) (24 hours prior to a flare) contains a far larger number of
off-diagonal holes—i.e., those that persist for larger ranges
of t—than Figure 4(a), which is a newly formed AR.

This visual evidence supports our claim that PDs can ef-
fectively quantify the growing complexity of a magnetogram
during the lead-up to a flare. The next step is to deter-
mine whether that observation translates to discriminative
power in the context of a machine-learning method. This re-
quires one more step: vectorization of the persistence dia-
grams into a set of features. For this, we use a very sim-
ple method, choosing a set of 20 flux values in the interval
[−5000G, 5000G], and counting the number of holes that
are “live” in the PDs at each of these flux values. Repeating
this operation separately for the positive and negative po-
larities, we obtain 20 entries for our topology-based feature
set. The feature extraction process is briefly summarized in
Algorithm 2.

While our persistence diagram vectorization approach is
relatively simple, there has been a significant effort over the
last few years to more efficiently vectorize persistence di-
agrams for using them with ML models (?????). We plan
to incorporate some of these techniques in future work to
improve our solar flare prediction model.

Machine Learning Model
As a testbed for evaluating the different feature sets, we de-
sign a standard feedforward neural network using PYTORCH
with six densely connected layers. The input layer size is
variable depending on the size of the feature set; the out-
put layer contains two neurons corresponding to the two
classes—flaring and non-flaring. The four intermediate lay-
ers contain 36, 24, 16 and 8 neurons respectively, when
counting from the direction of the input to the output layer.
To prevent over-fitting, a Ridge Regression regularization
with a penalty factor is used at each layer that limits the L2

sum of all the weights. At each hidden layer, a ReLU acti-
vation is used, with a softmax activation applied to the final
layer. We use an Adagrad optimizer for updating the model
weights during the back propagation. A batch size of 128 is
used in the gradient descent. The loss function used for opti-
mization is a weighted binary cross-entropy error; since the
dataset is imbalanced, a weight greater than 1 is associated
with the flaring class to penalize a flare misprediction more
than a non-flare misprediction. Finally, the model is trained
over 15 epochs before evaluation.

Hyperparameter Tuning
For each feature set combination, we tune a number of im-
portant model hyperparameters— the learning rate, the L2

penalty regularization factor, the cross-entropy weight ratio
and the learning rate decay—to ensure that the model is op-
timized for the corresponding feature set and the comparison
is fair. Our tuning algorithm is as follows:

1. Select 40 different hyperparameter combinations using
the python bayesopt library (?), which employs a

Gaussian process-based Bayesian sampling approach.
2. Use a five-fold cross-validation approach to determine

the performance of each hyperparameter combination
by evaluating the average validation True Skill Statistic
(TSS) metric score (?) across the five folds.

3. Select the hyperparameter combination with the highest
score and use it to train the model on the full training set,
then evaluate this model on the test set.
This procedure is followed for all 10 training set/testing

set splits of the magnetogram data described earlier. We use
the ray.tune library (?) to parallelize the effort of this
computationally intensive task. With this setup, each tuning
experiment for a single training-test combination and a sin-
gle feature set takes about 5 hours on an NVIDIA Titan RTX
GPU.

Results
To determine whether these geometry- and topology-based
feature sets improve upon, or synergize with, the commonly
used physics-based SHARPs feature sets described in the
third paragraph of the introduction, we follow the procedure
described in the previous section for each feature set in iso-
lation, as well as in various combinations with the other sets.

To evaluate the results, we employ a number of standard
metrics from the prediction literature: accuracy, precision,
recall, True Skill Statistic (TSS), Heidke Skill Score (HSS),
and frequency bias (FB). These metrics, which assess cor-
rectness in different ways, are derived from the entries of the
contingency table generated by comparing the model fore-
cast against the ground truth—True Positives (TP), False
Positives (FP), False Negatives (FN) and True Negatives
(TN). A description of these metrics can be found in ? and
?. In the context of this problem, a flaring magnetogram is
considered as a positive while a non-flaring magnetogram is
considered a negative. For an imbalanced dataset like this,
the standard accuracy metric is not very useful: a simple
model that always predicted “no-flare” would have a high
accuracy of 98.7%. The True Skill Statistic (TSS) score ad-
dresses this, striking an explicit balance between correctly
forecasting the positive and negative samples in a highly-
imbalanced dataset. TSS scores range from [−1, 1], where a
score of 0 indicates the model doing as well as an “always
no-flare” forecast or a chance-based forecast. The Heidke
Skill Score (HSS) is another normalized metric used in this
literature that takes values in the range of [−∞, 1] and re-
ports a score of 0 for a chance-based forecast. Frequency
bias (FB) measures the degree of overforecasting (FB > 1)
or underforecasting (FB < 1) in the model.

The results of these evaluation experiments, which are
summarized in Table 1, show that the geometry features
do almost as well as, or slightly better than, the SHARPs
features, whereas the topology features outperform the
SHARPs features by a significant margin, as assessed by
the TSS score (≈ 0.05). Combining the shape-based fea-
tures with the physics-based features reveals some useful
synergies: all of the pairwise-combined feature sets outper-
form the individual feature sets. The size of the improve-
ment varies: the effect is somewhat stronger when geometry-
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Figure 4: β1 persistence diagrams for the magnetograms of Figure 1, constructed from the set of pixels with positive magnetic
flux densities using the cubical complex approach. These diagrams reveal a clear change in the topology of the field structure
well before the major flare that was generated by this active region at 0910 UT on 6 September 2017.

Accuracy Precision Recall FB TSS HSS
Perfect score 1 1 1 1 1 1

SHARPs (19) 0.84 ± 0.02 0.06 ± 0.01 0.87 ± 0.05 13.84 ± 1.93 0.70 ± 0.01 0.09 ± 0.02

Geometry (16) 0.82 ± 0.01 0.06 ± 0.01 0.89 ± 0.04 14.89 ± 1.15 0.71 ± 0.04 0.09 ± 0.01

Topology (20) 0.86 ± 0.02 0.08 ± 0.01 0.90 ± 0.02 12.20 ± 1.96 0.75 ± 0.03 0.12 ± 0.02

SHARPs + Geometry (35) 0.84 ± 0.02 0.07 ± 0.01 0.89 ± 0.05 13.24 ± 1.98 0.73 ± 0.03 0.11 ± 0.01

SHARPs + Topology (39) 0.86 ± 0.01 0.08 ± 0.01 0.89 ± 0.03 11.55 ± 1.06 0.75 ± 0.03 0.12 ± 0.01

All three sets (55) 0.86 ± 0.01 0.08 ± 0.01 0.87 ± 0.04 11.77 ± 1.27 0.74 ± 0.03 0.11 ± 0.01

Table 1: Performance of the various feature sets. Numbers in paranthesis indicate the number of elements in the input feature
vector. For all the metrics except for frequency bias (FB), higher is better.

based features are involved. Interestingly, combining all
three feature sets does slightly worse than the SHARPs-
topology combination: that is, simply using more features
does not guarantee better performance, a trend that has been
noted in the flare-forecasting literature, e.g. ?. These im-
provement trends are visible across all of the metrics in the
table.

To summarize: the shape-based features outperform
and/or supplement the predictive power of the SHARPs fea-
tures. In the context of our MLP model, this is a particularly
striking result: abstract shape-based features automatically
extracted from the magnetic field of an active region do as
well or even better than handcrafted features viewed by ex-
perts as relevant to the physics of an active region and the
flaring process.

A look at the other metrics in Table 1 shows that tuning
the model for the TSS can impact some of the other met-
rics. A value of FB > 1—i.e., low scores for precision and
high scores for recall—indicates a high percentage of false
positives (FP) and a low percentage of false negatives (FN).
That is, our model is essentially an overforecasting model: it
sacrifices false alarms (FP) in order to lower missed events
(FN). This is a trend observed in other flare-prediction mod-

els in the literature, such as DeepFlareNet (?). Via further
investigation, we found that this is the consequence of tun-
ing the binary cross-entropy loss function weight. As a con-
sequence of tuning for the TSS metric, this parameter takes
on high values (> 150), causing the model to err on the side
of correctly forecasting the flaring magnetograms. With our
hyperparameter tuning framework, it is possible to optimize
for some other metric based on the priorities of the fore-
caster.

Deployment
Deployment is a major aim for us, since this research is pro-
ceeding in the Space Weather Technology Research and Ed-
ucation Center, an organization that has a strong focus on
transitioning research models and tools to operations. Both
NOAA’s Space Weather Prediction Center (a division of the
National Weather Service) and NASA’s Community Coor-
dinated Modeling Center have capabilities for comparative
validation of various space weather forecasting tools. We
will submit our final model for comparison against other
solar flare forecasting systems to one or both of these gov-
ernment organizations for comparative validation. As in ter-
restrial weather forecasting, it is ultimately up to the Na-



tional Weather Service which tools they choose to deploy,
and those judgments are based not only on quantitative met-
ric comparisons but on ease of use in their human-in-the-
loop operational forecasting environment. We are also in dis-
cussions with the UK Met Office for evaluation and deploy-
ment of several forecasting innovations including this solar
flare prediction model.

As an initial step for deployment, we compared our model
with the operational flare-forecasting models evaluated in
?. We used a dataset similar to the one used in that paper
(training set: 2010-2015, testing set: 2016-2017), trained our
shape-based model using topological and SHARPs feature
sets, and limited our comparison to the M1.0+/24hr flare
forecasting problem (see the top panel of Figure 5, ?, ?).
When tuned on the TSS metric, our proposed shape-based
model returns a TSS score of 0.78, outperforming all the
existing operational systems (TSS = [0-0.5]). However, our
model produces a high FB score of 20.62 (i.e., overforecast-
ing), and performs poorly on other metrics such as accuracy
(0.89). In comparison, the existing forecasting systems re-
port an FB score in the range of [0-1.5] and an accuracy of
approximately 0.95 (excluding a single outlier). Optimizing
our shape-based model on the precision metric, on the other
hand, reduces the false positives to 0, improving the accu-
racy (0.995) and FB (0.30) and making them on par with or
better than the operational forecasting models. This comes
at the cost of a lowered TSS score (0.30).

Conclusions
In this work, we introduced novel shape-based features
constructed using tools from computational geometry and
computational topology. We successfully demonstrated their
higher forecasting capability when compared to the physics-
based features that are traditionally used in the context of
a multi-layer perceptron model. This is an important result
for ML-based solar flare forecasting research, and a stronger
result than many other feature comparison approaches—for
example ?, which showed that CNN autoencoder-extracted
features from magnetograms did as well as SHARPs-based
features.

Our future directions will focus on alternative modeling
approaches, improved feature engineering, and metric opti-
mization strategies. More specifically, this will include val-
idating our results with alternative ML models (LSTMs,
SVMs), improved featurization/vectorization of persistence
diagrams, performing multivariate feature ranking to un-
derstand feature relevance with solar flares and finally, in-
vestigating optimization trade-offs over the different met-
rics using our hyperparameter tuning framework. The fea-
ture engineering methodology in this work will eventually
be integrated into a hybrid solar flare forecasting model that
will use CNN-extracted features from solar magnetic and at-
mopsheric data in combination with the physics- and shape-
based features.
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