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Abstract

End-to-end integrity verification is used to avoid silent data corruption in file transfers by comparing the checksum of
files at source and destination end points. However, it increases transfer times significantly as checksum computation
requires reading files back from the storage and running compute-intensive hash computation. In this paper,
we propose Fast Integrity VERification (FIVER) algorithm which alleviates the overhead of end-to-end integrity
verification by overlapping checksum computation with transfer operation and enabling 1/O sharing between the
two. The results obtained from various network and dataset settings show that FIVER is able to bring down the
cost of end-to-end integrity verification from up to 120% by the state-of-the-art solutions to below 15%. Moreover,
existing implementations of end-to-end integrity verification are vulnerable to permanent data loss in the case of
an unexpected power outage due to completing the integrity verification process while data is still on memory.
FIVER addresses this issue by enforcing dirty data on memory to be flushed to disk before finishing integrity
verification such that power loss during any phase of a transfer would cause integrity verification to fail and transfer
application to retransfer lost data.
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1. Introduction

With the advancement of computing and sensing technology, the amount of data generated by scientific appli-
cations is growing at an unprecedented rate. For example, the high energy physics and particle experiment ATLAS
produces 1 PB of data each second, which is reduced to 1-2 GB after filtering [I]. Similarly, cosmology project
Large Sky Survey Telescope will be operational in 2022 and take high-quality pictures of the universe using a 3200
megapixel camera for 10 years and is expected to produce 15 TB of raw data every night [2]. This massive amount
of data often needs to be moved to geographically dispersed locations for various purposes such as processing, col-
laboration, and archival. Ensuring the integrity of data while moving it is critical for many applications (e.g., Dark
Energy Survey [3] and Sky Survey Simulation [4]) whose computation is extremely sensitive to data manipulation.
However, built-in integrity verification methods for file transfers (e.g., TCP checksum) lack robustness to capture
data corruption that may occur while transferring data from source to destination.

To give an example, TCP is the de-facto standard for file transfers due to its efficiency and reliability. However,

previous studies found that TCP’s 16-bit checksum fails to detect errors once in 16 million to 10 billion packets [5].
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While this results in a missed packet corruption once in every 30 minutes to 300 hours in 1G networks, the mean
time between missed errors reduces to 18 seconds to 3 hours in a 100 Gbps networks when MTU size is set to 1.5
KB. As a result, 5% of all file transfers in a 100 Gbps network developed data corruption that TCP checksum failed
to detect and recover [6]. Therefore, end-to-end integrity verification is introduced to improve the robustness of
transfer applications against data corruption.

The naive implementation of end-to-end integrity verification for file transfers works as follows: Sender first
reads a file from disk and sends it to the receiver. Once the transfer of the file is completed, the sender reads it
again to compute its checksum using a secure hash algorithm such as MD5 and SHA256. The receiver does the
same and computes the checksum of the file after it is received and written to the storage. Finally, the receiver
sends the checksum it computed to the sender to compare. If the checksum values of the sender and the receiver
match, then the transfer is marked as successful, otherwise the receiver copy of the file is deemed corrupted and
transfer is restarted. If the dataset consists of multiple files, then the transfer of the next file begins only after the
previous file’s transfer and integrity verification is completed successfully. While end-to-end integrity verification
is crucial for many applications, it imposes significant overhead due to involving I/O and CPU-intensive checksum
computation. To alleviate its overhead, File-Level Pipelining is proposed to overlap the checksum computation of
a file with the transfer of another file [7]. Despite improving the performance over the naive approach, File-Level
Pipelining has two main drawbacks. First, pipelining transfer and checksum operations for different files make it
difficult to take full advantage of pipelining since their execution time differs especially when the dataset is a mix of
small and large files. Second, running checksum computation and transfer operations for different files at the same
time is likely to cause I/O contention, due to which both processes would experience a slowdown. Liu et al. [§]
proposed Block-Level Pipelining to address these limitations by dividing large files into smaller blocks to better
overlap transfers and checksum operations for datasets with mixed file sizes. However, transferring large files in
small blocks increases transfer times since small files yield lower transfer throughput than larger ones [9]. Further, if
the transfer speed is faster than checksum computation speed, enforcing synchronization for these operations would
cause transfer thread to stay idle while checksum thread is trying to process a block. Keeping the transfer channel
idle for longer than connection’s round trip time, in turn, would lead to TCP window size to reset to the initial
value for every block transfer [I0], deteriorating transfer performance.

To overcome performance limitations of integrity verification for file transfers, we propose Fast Integrity VER-
ification (FIVER) that executes transfer and checksum operations simultaneously for the same file to minimize
the cost of integrity verification. While previous studies focus on overlapping checksum computation and transfer
operation of different files or blocks, FIVER overlaps them for the same file. For example, if checksum computation
of a file takes 30 seconds and transfer time takes 10 seconds, then FIVER finishes transfer and integrity verification
in around 30 seconds with the help of simultaneous execution of both processes. In addition, rather than reading
files from the storage twice (one for transfer and the other for checksum computation), FIVER reads each file once
and shares I/O between the checksum and transfer operations since file read requests of checksum computation is
being served from cache memory anyway for files that are smaller than the size of memory.

In addition to incurring high overhead, existing implementations of end-to-end integrity verification are also

vulnerable to data loss in the event of a power outage as they complete the integrity verification before files are



fully written to disk. When the receiver of a file transfer receives data from the network and attempts to write it to
disk, write requests may not be fulfilled immediately as operating systems try to optimize disk I/O performance by
aggregating write calls and flushing them all at once when enough requests were issued. This, however, leads to data
loss when the power supply of volatile memory (i.e., random access memory) is lost even if the transfer application
had already confirmed the integrity of the transfer. While this could be a reasonable trade-off for applications that
keep the copy of data on nonvolatile storage to recover from failures, it would lead to partial or complete data
loss for file transfers as transfer application would be unaware of power loss if it takes places after the integrity
verification. Therefore, FIVER enforces data on volatile storage to be flushed to disk before verifying the integrity
of transfers such that power loss can be detected and recovered. In summary, the contributions of this paper are as

follows:

e We introduce FIVER that overlaps transfer and checksum compute operations for a file and enables I/O

sharing between them to minimize the overhead of integrity verification.

e We enhance FIVER with data loss protection by forcing cache eviction before completing the integrity verifi-

cation.

e We introduce dynamic parallelism to identify and mitigate performance bottlenecks in integrity verification-

enabled file transfers.
e We run extensive analysis to evaluate the performance of FIVER in various network and datasets settings.

The rest of the paper is organized as follows: Section [2] describes related work and Section [3] demonstrates the
issues of existing implementations of end-to-end integrity verification algorithms. Section [4] describes FIVER and
presents pseudo code for transfer sender and receiver. Section 5] presents experimental results and Section[6]concludes

the paper with a summary and potential future directions.

2. Related Work

As an increasing number of applications rely on the accuracy of data to produce accurate results, integrity
verification has been widely studied in many areas including storage outsourcing [I1}, 12, T3], long term achieves [14]
15, file systems [16, [I7, [18], databases [19], provenance [20] and data transfer [g].

Zhang et al. [I8] evaluated Zettabyte Files System (ZFS) in terms of robustness to disk and memory fault
injections. It has been found that while ZFS is able to detect and mostly recover from disk corruptions, it is
susceptible to memory corruptions since it does not check the integrity of data blocks when they reside in the
memory. FIVER also makes a similar assumption and rely on existing control mechanisms to recover from possible
data corruption in memory. On the other hand, Error Correcting Codes (ECC) [2I] has been proposed to detect
and recover from the most single and multi-bit failures as well as memory leaks [22]. Meza et al. [23] have shown
that a very large portion of memory errors (over 98%) is correctable by the common ECC implementation. Yet,
more advanced error correction algorithms such as Chip-kill [24] are proposed to recover from more sophisticated

(up to 4-adjacent bit corruption) errors.



Xiong et al. [25] proposed fsum that uses a bloom filter to compute the checksum of very large datasets stored
in long term archival storage. Instead of calculating the checksum for each file, they partition files into blocks such
that multiple threads can process different portions of the file simultaneously. To achieve ordering among threads,
a bloom filter is used to combine the results from threads. Once all the blocks are processed and corresponding
hash values are inserted into the bloom filter, the final checksum is calculated by computing the hash of the bloom
filter. fsum runs up to 4x faster than the traditional file-level checksum computation approach but comes with the
cost of false positives due to relying on bloom filter.

Globus [7] supports end-to-end integrity verification for data transfers. It can pipeline data transfers and
checksum computation to minimize the overhead of integrity verification. However, it calculates the checksum of
files after their transfer completes. That is, files are read twice in the source server, one to send to destination
and one to compute the checksum. Yet, its pipelining approach fails to work well when a dataset consists of mixed
file sizes. Liu et al. [§] proposed block-level pipelining to achieve better overlapping of checksum computation and
file transfer operations. It reduces execution time considerably especially when the dataset is composed of files
with mixed sizes. Similar to Globus, block-level pipelining also reads files twice at the source server. However, as
opposed to Globus, its second read is faster for all file sizes since blocks are small enough to be kept in memory
for some time, so once a block is read for transfer operation, it will be cached. When the checksum computation
process attempts to read the file block, it will find it in the memory. On the contrary, FIVER reads files once and
runs the transfer and checksum computation processes simultaneously, reducing I/0O overhead and time required to
compute the checksum [26].

In the previous work, we presented RIVA which aims to detect undetected write errors that might happen while
flushing file data from memory to disk [27, 28]. RIVA does this by enforcing cache eviction immediately after the
transfer such that checksum computation has to read files directly from disk. While RIVA offers stronger integrity
verification coverage, it can lead to more than two times longer execution time in networks where I/O throughput
is slower than transfer speed. Therefore, FIVER can be used to execute integrity verification while keeping its
overhead at a minimum while preventing permanent data loss when end servers experience an unexpected power
outage.

On the other hand, previous work in high-speed networks mostly focuses on transfer scheduling [7], [29], through-
put optimization [30, @ BI], B2], and power consumption optimization [33]. Globus [7] offers data transfer and
sharing services and it is well adopted by the research community. HARP [34] models data transfers using his-
torical data and real-time sampling and uses this model to estimate the set of values for application-layer transfer
parameters that would maximize the throughput of given transfer tasks. PCP [35] finds the optimal values for
transfer parameters by running a series of sample transfers in the runtime. Alan et al. [33] proposed scheduling
algorithms that can tune application-layer transfer parameters to find a balance between transfer throughout and
energy consumption at the end hosts. The algorithms monitor the CPU usage of end hosts and estimates energy
consumption with the help of models that relate CPU usage to energy consumption. Then, a cost function is used to
determine the energy efficiency of each configuration based on transfer throughput and energy consumption values.

Finally, a configuration with minimum cost function is identified and used in the rest of the transfer.



Testbed Storage CPU Memory Size | Bandwidth | RTT | Disk Write Speed
HPCLab-WS§S SATA SSD 8 x Intel Core i5-7600 @3.50GHz 16 GB 1G 0.2 ms < 500MB/s
HPCLab-DTN NVMe SSD | 16 x Intel Xeon E5-2623 @2.60GHz 64 GB 40G 0.2 ms < 3GB/s

Chameleon-WAN | SATA SSD | 12 x Intel Xeon E5-2650 @2.30GHz 64 GB 1G 32 ms < 500MB/s
Chameleon-LAN | SATA HDD | 12 x Intel Xeon E5-2670 @2.30GHz 128 GB 10G 0.2 ms < 100MB/s
Pronghorn GPFS 16 x Intel Xeon E5-2683 @2.10GHz 192 GB 10G 0.1 ms < 3GB/s

Table 1: Specifications of test environments.

3. End-to-End Integrity Verification for File Transfers

The simple implementation of integrity verification works in three steps. In the first step, a file is transferred
from source to destination using a preferred transfer protocol, such as TCP. Once the transfer of the file is completed
and it is written to the storage at the destination, the checksum of the original file at source and transferred copy
at destination are computed using a desired hash function such as MD5 or SHA256 as part of the second step.
In the third and final step, the destination server sends the checksum value it computed to the source server to
compare. If the checksum values match, then the transfer is marked as successful. Otherwise, the copy of the file
at the destination is deemed corrupt and file transfer is restarted.

The objective of end-to-end integrity verification is to detect data corruption by comparing the checksum of the
file at the source and destination servers. On the other hand, operating systems are designed to minimize cache
misses, so if a file is recently read or written, it will be kept in the memory to optimize future accesses. For example,
when a 1 MB file is transferred from a remote server and written to disk, the operating system will keep the file
data in the main memory (even after flushing it to disk) to be able to respond following read requests faster. This,
however, causes integrity verification process to be restricted to the cached copy when it is executed immediately
after the transfer of a file.

Figure[l|shows the cache hit ratio for source and destina-
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Figure 1: File read requests of checksum computation processes
for sender and receiver servers. Sender-side hit ratio is small

are served from page cache (i.e., page hit) when it is executed
during the file transfer since this is the first time the file is after the transfer.

being read. Once the file transfer is completed, check computation thread starts to read the file to compute its
checksum as part of integrity verification. Since file transfer does not involve disk read at the receiver server, the

cache hit ratio is reported as 100% throughout the transfer. Upon the completion of the transfer, the checksum



computation thread starts reading the file to compute its checksum, which ends up being served from memory
(cache hit ratio is 100%). This is because the operating system keeps file pages in the memory after they are
accessed during the transfer. As a result, if free memory space of the sender and receiver servers is larger than the
size of a file, I/O requests of checksum computation will be served from cache memory. Since the average file size of
scientific data transfers is in the order of megabytes and most production data transfer nodes are equipped with 64
GB or larger RAMs [36], this will result in checksum computation of most file transfers to be operated on cached
data.

Observation 1: Existing integrity verification algorithms read files from cache memory during checksum com-

putation.
Furthermore, we investigated the impact of caching -
(aka write-back caching) on file transfers in the event ] Chegksum Dl Welte
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data that the receiver streamed from the network and
Figure 2: Write-back caching can cause permanent data loss for file
issued write system calls, but the operating system has

transfers despite using integrity verification.
not written to disk yet.

The file transfer completes at around 11s which is followed by checksum computation to verify the integrity of
the transfer. The integrity of the transfer is verified at around 14.5s, however, write-back caching postpones disk
write for the buffered data until 32s which causes actual disk write operation to complete at 37s. Consequently,
the interval between the completion of integrity verification and disk write poses permanent data loss risk for data
stored in volatile storage in the event of power loss. We believe that integrity verification for file transfers should be
hardened to prevent such data losses even if underlying systems are prone to data loss. This is especially important
for third-party transfer services such as Globus [7] where users receive a confirmation upon the successful completion
of transfers since any power loss after the confirmation would mislead users to accept incomplete files as complete.

Observation 2: Completing integrity verification without ensuring disk write poses data loss risk in the case

of unexpected power loss.

4. Fast Integrity VERification (FIVER) Algorithm

Taking on Observations [I] and [2] we present FIVER that aims to minimize the overhead of end-to-end integrity
verification algorithm while offering robustness against data corruption and loss. To do so, FIVER exploits cache
access behavior of existing integrity verification methods and implements simultaneous execution of transfer and
computation operations for the same file. This approach has two main advantages over the state-of-the-art solutions:
First, it allows better pipelining of transfer and checksum operations by running them for the same file, thereby

shortening total execution time. As an example, the transfer takes 17 seconds and checksum computation takes



27 seconds in Figure [I] Sequential execution of them then leads to total execution time to be 44 seconds. On the
other hand, it would only take 27 seconds if they could be executed in parallel, shortening execution time by 38%.
Second, it speeds up checksum computation through I/O sharing with transfer operation. Transfer threads on the
sender and receiver keep file data on memory after processing it such that checksum threads can use it to calculate

the checksum. This data sharing minimizes I/O overhead when disk speed is the bottleneck of the whole process.

Algorithm 1: File transfer methods for Algorithm 2: FIVER checksum computation

FIVER sender and receiver method for integrity verification
1 Function send(fileName, offset, length): 1 Function computeChecksum(fileName, offset, length):

2 global queue, socket // Fixed size, synchronized queue 2 remaining = length

3 file = openForRead(fileName, offset) s while remaining > 0 do

4 size = 0 4 chunkSize = min(remaining, CHUNK_SIZE)

5 computeChecksum(fileName, offset, length) 5 remaining = remaining - chunkSize

6 while file.read(buffer) > 0 and size < length do 6 tmp = chunkSize

7 socket.write(buffer) 7 while tmp > 0 do

8 queue.add(buffer) // Synchronized operation s buffer = queue.remove()

9 size = size + buffer.length 9 checksum.update(buffer)

10 end 10 tmp = tmp — buffer.length()

11 return 11 end
12 localChecksum = checksum.digest()
13 if agent is Sender then
14 remoteChecksum = socket.read()
15 if localChecksum == remoteChecksum then

12 Function receive(fileName, offset, length): 16 ‘ Transfer is successful

13 global queue, socket // Fixed size, synchronized queue w else

14 file — openForWrite(£ileNane, offset) 18 curOffset — length - remaining -chunkSize

15 size — 0 19 send(fileName,offset + curOffset, chunkSize)

16 computeChecksum(fileName, offset, length) 20 end

17 while socket.read(buffer) > 0 and size < length do 21 else

18 file.write(butfer) 22 cache.clear(fileName, offset, chunkSize)

19 queue.add(buffer) // Synchronized operation 238 socket.send(localChecksum)

20 size = size + buffer.length 24 end

21 end 25 end

22 return 26 return

Algorithm [1] and [2] illustrate how FIVER, operates. Both sender and receiver execute transfer and checksum
computation methods concurrently on different threads. send and receive methods are used to transfer files by
the sender and the receiver, respectively. As mentioned in Observation [] that when checksum threads attempt to
read small files after their transfer, file pages are served from the page cache. Therefore, FIVER reads files once
and shares data between threads via a synchronized queue to move file caching to user space and remove the need
for system calls to read files (lines [§ and [19) in Algorithm [[). The total execution time of FIVER depends on the
slowest of transfer and checksum computation operations as it executes them simultaneously and waits for both to
finish. Since the shared queue object has a fixed size, it will ensure that the transfer thread waits for the checksum
thread if it is faster. As queue size is important to determine how much space FIVER can reserve and let the
transfer speed go ahead of the checksum thread, we assessed its impact in Section To guarantee that files are

flushed to disk at the receiver side before completing the integrity verification, FIVER evicts the file pages of the



current chunk before sending its checksum to the sender (line [22|in Algorithm . Upon the completion of the cache
eviction, the receiver sends the checksum to the sender to compare. If the checksum values do not match, then the
destination copy of the file is assumed to be corrupted and the file is transferred again.

When an integrity verification algorithm detects a mismatched checksum value, it needs to transfer the file
again to ensure the correctness of data at the destination. For algorithms that run integrity verification at the file
level (i.e., calculating a checksum for the whole file), this means repeating the transfer and integrity verification
operations for the whole file again even if only a single bit is corrupted, which incurs a significant cost for large
files. Thus, we implemented chunk-level integrity verification for FIVER as follows: FIVER first calculates the size
of a chunk as the minimum of file size (or remaining data size) and maximum chunk size (CHUNK _SIZE) as
shown in line [l Then, it processes items in the queue until the total size reaches the size of the chunk. Then,
it sends the computed checksum value for the chunk to the sender to compare. Since checksum computation is
executed when update() function is called, calling digest() method frequently has a negligible computational cost.
Since the size of checksum value is in the order of bytes (16 bytes for MD5 and 64 bytes for SHA512), calculating
and exchanging checksum values does not affect the performance of FIVER noticeably unless CHUNK _SIZFE is
set to very small values. By default, CHUNK_SIZFE is set to 256 MB, but we evaluated larger and smaller values
as well in Section [5.4] If integrity verification fails for a chunk of a file, then the sender will only retransfer the

failed portion of the file, considerably shortening the time to recover from failures.

5. Evaluations

We tested FIVER in Chameleon, HPCLab, Pronghorn networks whose specifications are listed in Table
Chameleon is an academic cloud service that offers instances in two sites, Chicago, IL and Austin, Texas. Thus,
we call the experiments that run transfers between the instances of the same site as Chameleon-LAN and different
sites as Chameleon-WAN. For HPCLab experiments, we used two pairs of nodes as HPCLab-WS and HPCLab-
DTN. HPCLab-WS involves two workstations in the same local area network with 1 Gbps network bandwidth. On
the other hand, HPCLab-DTN is comprised of two data transfer nodes in the same local area network with 40
Gbps connectivity. Pronghorn is a campus cluster and its transfer nodes are connected with 10G links. Finally,
we used one Pronghorn server as the sender and one Chameleon Cloud instance (in Chicago) as the receiver to
test the algorithms in more wide-area network settings. We report the results in terms of overhead which is
calculated as a percentage of increase in transfer duration by integrity verification algorithms compared to the
execution time of the slower operation between file transfer and checksum computation as shown in Equation [I]
tehksums birans fers talgorithm Tefer to the time it takes to run checksum computation, file transfer, and an integrity
verification-enabled file transfer algorithm, respectively. For example, if file transfer without integrity verification

takes 90 seconds, checksum computation takes 120 seconds, and FIVER completed in 130 seconds, then the overhead

130—maz(120,90) _ g 307

becomes maxz(120,90)

algorithm — max(tchksum7 ttransfer) (1)

t
Overhead = 100 x
max(tchksu’mv ttransfer)
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Figure 3: Illustration of the order of transfer (T), checksum (C), and cache eviction (E) operations in different integrity verification
implementations. Note that cache eviction (E) is executed both by the sender and the receiver in RIVA, while it is only executed by

the receiver in FIVER.

We run the experiments using two types of datasets; uniform and mixed datasets. Uniform datasets consist of
one or more files in the same size. We created six uniform datasets where the size of files is chosen to represent
small and large files in each network. Mixed datasets contain both small and large files, where files are shuffled
before the transfer to randomize the order of files. Example of a mixed dataset used in Pronghorn experiments is
as follows: 100x10MB, 100x50MB, 50x250MB, 10x2GB, 4x8GB, 4x10GB, 1x15GB, and 2x20GB; a total of 271 files
and 165.5GB size. We repeat experiments at least six times and report the average and standard deviation values.

FIVER is compared against following implementations of file transfer integrity verification:

e File-Level Pipelining (FileLevelPpl): Transfer of a file is overlapped with checksum calculation of another

file.

e Block-Level Pipelining (BlockLevelPpl): Large files are split into small blocks (of size 256 MB, by

default) and checksum calculation of a block is overlapped with the transfer of another block [§].

¢ Robust Integrity Verification Algorithm (RIVA): Similar to BlockLevelPpl, RIVA processes large files
in blocks but relaxes synchronization requirement between the checksum and transfer operations [27] [28§].
This lets the transfer of a dataset to finish much earlier than its integrity verification when the transfer is
faster than checksum computation. Moreover, it enforces cache eviction before calculating the checksum of file
blocks to be able to detect undetected disk write errors, thus incurs significant performance overhead when

disk I/O throughput is the bottleneck.

Figure [3] depicts the order of operations for different integrity verification methods. FileLevelPpl overlaps the
transfer of a file with a checksum computation of another file. As a result, if files of different sizes are overlapped,
the benefit of pipelining becomes marginal. BlockLevelPpl, on the other hand, tries to achieve better pipelining of
transfer and checksum computation operations by dividing large files into blocks. As opposed to BlockLevelPpl,
RIVA transfers files independent of the checksum computation, which could result in transfer operation to finish

much earlier than integrity verification if network throughput is faster than checksum computation speed. Besides,
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Figure 4: Comparison of algorithms in HPCLab-WS, Pronghorn-Chameleon, and Chameleon-WAN. The speed of the checksum is faster

than the speed of transfer in these networks.

RIVA (both sender and receiver) also runs cache eviction for each file block before starting to compute its checksum.
Finally, FIVER pipelines transfer and checksum computation operations for the same file and runs cache eviction
(only receiver) after completing checksum computation but before terminating integrity verification to avoid data
loss in the event of a power outage.

The performance of FileLevelPpl is affected by the file size distribution of the dataset as well as the speed
difference between transfer and checksum operations. For example, if files are ordered in a way that 10 MB file is
followed by a 10 GB file, then it will overlap transfer of 10 GB file with a checksum computation of 10 MB file
which will decrease the benefit of pipelining since the transfer of 10 GB file will take much longer than checksum
computation of 10 MB file. While BlockLevelPpl outperforms FileLevelPpl by dividing large files into small blocks,
it has two main disadvantages. First, while it achieves better pipelining when the dataset contains very small and
large files, misalignment can still occur for files that are smaller than the block size. For example, if the block size
is set to 256 MB, pipelining the transfer of 5 MB file with the checksum computation of 256 MB file would result
in poor pipelining. Finding the optimal block size could be challenging since small blocks will suffer from poor
transfer throughput and large blocks will cause suboptimal pipelining of transfer and checksum operations. Second,
dividing large files into blocks may have a negative impact on transfer throughput if the network speed is faster

than checksum speed as a result of keeping data channel idle more than window size reset threshold [10].

5.1. Overhead Analysis

Figure 4| shows the results of experiments in networks where network speed is slower than the checksum cal-
culation speed. Since FIVER creates two threads, one for network transfer and one for checksum computation,
the thread that handles file transfer determines the baseline for the overhead calculations as shown in Equation
While all algorithms perform similar for small files, the overhead of FileLevelPpl becomes more than 20% for mixed
files due to misalignment of transfer and checksum operations for files with different sizes as shown in Figure
On the other hand, FIVER is able to keep its overhead less than 3% for all uniform datasets and less than 1% for
mixed datasets. FIVER outperforms BlockLevelPpl and FileLevelPpl algorithms by optimizing checksum calcula-
tion through I/O sharing. BlockLevelPpl and FileLevelPpl use system calls to open and read files to calculate their

checksum, which incurs context switching overhead even though files are located in the page cache.

10
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Figure 5: Comparison of algorithms in HPCLab-DTN, Chameleon-LAN, and Pronghorn networks. The speed of the transfer is faster
than the speed of checksum.

Policy Definition Default Value

dirty_expire_centisecs Flush dirty data to disk if it has been in memory for more than this value. 30 seconds
If dirty data accounts for more than this policy value of total memory size,

dirty_background ratio 10%

then start disk write.

If dirty data accounts for more than this policy value of total memory size,
dirty.ratio 20%

then block file I/O and start disk write.

Maximum dirty bytes that can stay in memory before disk write starts. This
dirty_background_bytes 0 bytes

will only be enforced if dirty_background ratio is set to zero.
The maximum dirty size that the memory can hold before file I/O is blocked

dirty_bytes 0 bytes

for disk write. This policy will take effect only if dirty_ratio is set to zero.

The frequency of pdflush process to check above policies and start disk write
dirty writeback_centisecs 5 seconds

when necessary.

Table 2: Write-back caching policies. The default values are taken from Linux kernel 4.4.

Figure [p] shows the results of experiments in networks where network throughput is faster than checksum
computation throughput. Since the network bandwidth of HPCLab-DTN, Chameleon-LAN, and Pronghorn is
faster (>10 Gbps as shown in Table [1)) than the speed of checksum computation (around 2.4 Gbps using a single
CPU core), checksum calculation becomes the bottleneck. While FIVER, BlockLevelPpl, and FileLevelPpl achieve
less than 20% overhead, RIVA’s overhead reaches more than 120% in Chameleon-LAN as in Figure [5(b)| since its
cache eviction policy when executed on slow disks takes a long time to complete. For mixed datasets, FIVER is
able to keep the overhead less than 15% in all networks. The overhead of BlockLevelPpl is also around 15% in
HPCLab-DTN and more than 15% in Pronghorn. The overhead of FileLevelPpl is more than 40% in HPCLab-DTN

and Pronghorn networks and over 20% in Chameleon-LAN.

5.2. Data Loss Restlience

Operating systems try to improve the user experience for disk write I/O operations by caching write requests
in main memory (i.e., page cache), also known as write-back caching. Cached data on the main memory is flushed
to disk later at a disk write rate which is significantly slower compared to memory speed. However, write-back
caching raises permanent data loss concerns since cached data can be lost when an unexpected power outage takes
place. Table lists policies and their default values (for Linux kernel 4.4) that regulate caching policy for disk write

operations. pdflush is responsible to enforce the policies, which is executed once every five seconds, by default.
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Figure 6: The impact of dirty_ratio on transfer time and dirty data size on memory when transferring a 100 GB file. High values lead
to shorter transfer time in exchange of increase memory footprint to cache write I/O requests.

The first rule (dirty_expire_centisecs) defines the maximum duration a file page can stay on page cache before
getting flushed to disk. If a dirty file page has been in the memory for more than this value, then pdflush starts
to write the page to disk unless any other policy does it earlier. dirty_background ratio and dirty_ratio define
thresholds for the amount of dirty data that can be kept on memory before kernel initiates disk write. When dirty
data size reaches to dirty_background ratio of total memory size, the kernel will immediately start pushing dirty
data to disk in the background. At this point, the kernel will still accept new write requests. However, write I/0O
requests arrive faster than disk write speed, the amount of dirty ratio on memory will keep growing. To avoid
filling up the memory with dirty data, the kernel will stop caching write I/O requests when dirty data size reaches
to dirty_ratio to let OS kernel to evict dirty data from memory to disk. Finally, dirty_background bytes and
dirty_bytes are used to specify dirty data size in bytes and will be effective only when the corresponding ratio
value is set to 0.

To assess the impact of dirty_ratio on file transfer without integrity verification, we configured it to three
different values (30%, 60%, and 90%) and measured transfer time and size of dirty data as shown in Figure[6] We
use the Chameleon-LAN network where the receiver server is equipped with a 128 GB main memory as given in
Table Therefore, 30%, 60%, and 90% approximately account for 31, 62, and 93 GB after excluding memory
space used by the kernel. Since page cache can hold 31 GB or more data in all three dirty_ratio values, their
transfer times are almost the same. As the dataset size increases, however, lower dirty_ratio values start to
experience higher transfer times since kernel blocks application I/O (in file transfer case it is blocking file write at
the receiver) until it is able to bring total dirty page size on memory down to the defined threshold. As a result,
transfer time of a 100GB file becomes around 200 seconds when dirty_ratio is set to 90% whereas it takes more
than 900 seconds when it is 30%. This in turn comes at a cost of higher volume of dirty data to be kept in the main
memory. Figure demonstrates the volume of dirty data on main memory over time for a 100 GB file. When
dirty_ratio is set to 30%, the dirty volume reaches 31 GB fairly quickly. Then, kernel throttles application I/O
rate to the disk I/O rate to ensure that dirty data size does not go beyond the limit. Similar behavior is performed
when the dirty volume reaches to 62 GB when dirty_ratio is 60%. On the other hand, when dirty_ratio is set
to 90%, dirty data size does not reach to 93 GB which is because kernel starts to flush dirty data to disk when it
reaches to dirty_background ratio (10% by default) at around 25s, thus by the time dirty size reaches to 82 GB

(at around 205s), kernel finished flushing 18 GB of data and no more write requests are issued. Please note that
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Figure 7: Analysis of dirty data size for file transfers with integrity verification. Points on lines mark the times that integrity verification
processes is completed. For example, the integrity verification is completed at 13s for FileLevelPpl in HPCLab-WS network.
although the transfer time of 100 GB file varied for different values of dirty_ratio, it takes almost the same time
to finish draining all dirty data to disk since disk write speed is not affected by the dirty_ratio values.

Figure [7]shows the volume of dirty size for the transfer of 1GB file in HPCLab-WS and HPCLab-DTN networks
and 25 GB file for the Chameleon-LAN network with integrity verification. We marked the times that integrity
verification is completed with different algorithms. In all networks, the dirty size is zero when integrity verification
is completed by FIVER and RIVA as they enforce cache eviction before verifying its integrity. On the other hand,
FileLevelPpl, BlockLevelPpl, and FIVER without cache eviction report positive numbers for dirty volume when
integrity verification is completed. Therefore, a power outage that can happen after integrity verification but before
finishing the synchronization of dirty pages to disk would result in data loss in such a way that transfer application
would be unaware of. This poses a significant threat to the integrity of file transfers since the user will assume that
the transfer was successful and will run analysis on the incomplete dataset. In particular, if the destination server
experiences power loss and recovers from it quietly, then the user would be unaware of what has happened and will
presume that the transfer is completed successfully despite lost content.

To validate this claim, we reproduced power loss in file transfers and measured the amount of data loss with
end-to-end integrity verification. We utilized HPCLab-WS and Chameleon networks where we have physical or root
access to shutdown the server/instance instantly. We applied a power shutdown immediately after the integrity
of transfers is verified and measured file size after restarting the server. The amount of data loss for different file
sizes is given in Figure[8] Since both FIVER and RIVA evict dirty file data from memory before finishing integrity
verification, they are resilient to data loss in the event of a power outage. On the other hand, Fiver without cache
eviction, BlockLevelPpl, and FileLevelPpl are vulnerable to data loss in all three networks. It is important to note
that FileLevelPpl does not cause data loss for large files because checksum computation for large files takes long
enough for dirty_expire_centisecs to kick in and flush all dirty pages to disk before completing the integrity

verification process.

5.83. Dynamic Checksum and Transfer Parallelism

By default, FIVER creates one transfer and one checksum thread, however, this may lead to suboptimal uti-
lization of network and compute resources when a single thread is insufficient. For instance, the throughput of

checksum calculation is around 2.4 Gbps using a single core Intel E5-2623 core with a 2.60GHz clock rate, which
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Figure 8: Amount of lost data when the power supply of the receiver is disconnected right after the integrity of the transfer is validated.
FIVER and RIVA avoid data loss by employing cache eviction.

limits the overall performance in networks with over 10 Gbps throughput. Therefore, we implemented dynamic
parallelism (FIVER Dynamic) to spawn new checksum or transfer threads to mitigate performance bottlenecks.

Algorithm |3| describes how dynamic parallelism operates. We keep track of maximum achieved transfer and
checksum throughput to determine whether or not creating a new thread is improving the performance. We also
define pyp,, to be the ratio of average throughput of the last three intervals to the maximum observed throughput
as shown in line It is used to determine if creating new transfer threads help to increase transfer throughput.
For example, if transfer throughput is 4.5 Gbps using three transfer threads, the algorithm will continue opening
new transfer threads if using four transfer threads returns more than 5.4 Gbps (4.5 Gbps x 1.2) throughput to stop
creating new threads when the gain becomes negligible. Although it’s is configurable, we noticed that 20% expected
gain is sufficient to take advantage of transfer parallelism while avoiding creating too many threads. In a similar
way, new checksum threads are created as long as overall checksum speed increases noticeably (20% or more for
each new thread) and there are enough items in the checksum queue. The latter condition ensures that new threads
are only created if there is a sufficient amount of data to be processed both by existing and new threads.

We also define confidence interval to avoid transient variations in transfer and checksum throughput such that
FIVER will open a new transfer or checksum threads only after it builds enough confidence (CONF_THRESHOLD)
on results. The threshold is configurable but we used 3 in our experiments. As monitor function is called once a
second, this would set the confidence threshold to three seconds. If the throughput improvement ratio as a result
of the recently created thread (pin,) is greater than 20% (line[d), FIVER deduces that transfer throughput benefits
from parallelism and creates a new transfer thread after building enough confidence to further enhance performance.
Increasing the number of transfer threads could also improve checksum throughput since checksum throughput can
only go as fast as transfer thread due to the producer-consumer relationship. If adding a new checksum or transfer
thread does not improve the performance, FIVER assumes that it has reached to maximum performance thus stops

adding more threads since doing so will only overload system resources (lines [4f and .
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Algorithm 3: Dynamic parallelism algorithm for checksum and transfer operations in FIVER Dy-

namic

1 Function DynamicParallelism(curChecksumThr,curTransferThr, checksumQueue):
Data: maxTransferThr, maxChecksumThr

2 __ curTransferThr
Pthr = LaxTransferThr

curChecksumThr

3 Pechk = maxChecksumThr

4 if pipr > 1.2 then

5 if thr-confidence ==CONF_-THRESHOLD then
6 createNewTransfer Thread()
7 thr-confidence= 0
8 else
9 thr-confidence++
10 end
11 maxTransferThr = curTransferThr

12 if penk > 1.2 € checksumQueueu is at least half full then

13 if chk-confidence ==CONF_THRESHOLD then
14 createNewChecksumThread()

15 chk-confidence= (

16 else

17 chk-confidence++

18 end

19 maxChecksumThr = curChecksumThr

We evaluated the dynamic parallelism algorithm in HPCLab-WS, HPCLab-DTN, and Pronghorn networks as
shown in Figure[9] Single-threaded checksum computation can only reach around 3 Gbps speed and becomes the
bottleneck in HPCLab-DTN and Pronghorn networks. Thus, dynamic parallelism creates new checksum threads
and increases checksum computation throughput to keep up with transfer speed. At the same time, transfer
parallelism is increased to improve transfer throughput. It keeps adding more checksum and transfer threads until
no further improvement is observed, which happens at around 28s in HPCLab-DTN and 26s in Pronghorn. The
dynamic parallelism algorithm increases FIVERs overall throughput from 3 Gbps to around 16 Gbps and 5.5 Gbps
for HPCLab-DTN and Pronghorn, enabling 5x improvement over single-threaded implementation. On the other
hand, it is also possible adding new transfer and checksum threads may not improve the performance when a single
thread is sufficient to utilize available resources. For example, FIVER’s performance in HPCLab-WS is limited to
800 Mbps due to bandwidth limitations. Unaware of this limitation, dynamic parallelism opens up a new transfer
thread at around b5s as shown in Figure After realizing that this change does not improve transfer performance,

dynamic parallelism terminates the search immediately and keeps using a single thread.

5.4. Impact of Queue Size and Chunk Size on Performance

As pointed in Algorithm [1]and [2] transfer and checksum threads have a producer-consumer relationship through

a shared queue, where transfer thread adds file data into queue and checksum thread pulls from the queue to compute
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dynamic parallelism does not improve the performance.
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the checksum. Therefore, we evaluated the effect of queue size on the performance as shown in Figure[I0] The results

indicate that smaller queue size values yield the best performance for FIVER. However, when dynamic parallelism is

enabled (FIVER Dynamic), multiple threads start to read and write from/to the same queue, necessitating a large

queue to avoid filling it up quickly. Yet, setting queue size to large values without knowing how many threads that

dynamic parallelism will create could lead to inefficient use of memory space. Thus, FIVER dynamically adjusts the

queue size depending on the number of active threads. Specifically, it starts with a queue size of 10, then increases

it by 10 for every new thread.

We also analyzed the impact of the integrity verification chunk size
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Figure Chunk size defines the data size that checksum thread will digest before starting to verify its integrity

as described in line [] of Algorithm 2] The results reveal that a chunk size of 4 MB yields the optimal performance
in all networks for both FIVER and FIVER Dynamic. Lower (i.e., 2 MB) or larger (e.g., 1024 MB) values result

in a more than 30% increase in execution time for FIVER. Larger chunk size values (e.g., 1024 MB) causes the

execution time to nearly triple in Pronghorn and HPCLab-DTN networks when FIVER Dynamic is utilized.

5.5. Impact of Hash Algorithm

Although MD?5 is still widely used, it has been found weak to collision

attacks[37]. Hence, we measured execution times for MD5, SHA1, and 1388 [ Checksunﬁ%g v,
SHA256 hash algorithms as shown in Figure We transferred a mixed 1200 f Bllgﬁklieve:EP: ——
% 1100 lieLevelrpl Y
dataset that is used in Figure [ g 1000
& 900
As expected, the time spent on checksum computation is proportional ‘QET 800 |
E 700
to the complexity of hash algorithm. For example, checksum computa- T s00 {
500 |
tion without data transfer (Checksum Only) took 476, 713, and 1043 400
MD5 SHA1 SHA256
seconds for MD5, SHA1 and SHA256 algorithms, respectively. It took Hash Algorithm

more than twice time to compute the hash of files with SHA256 than

Figure 12: Impact of hash algorithms on the ex-

ecution time of integrity verification algorithms.

it took when using MD5. As a result, total execution time of integrity

verification algorithms also increased drastically. However FIVER still imposes the lowest overhead compared to

BlockLevelPpl and FileLevelPpl. If we take Checksum Only as a baseline, BlockLevelPpl induces 50-60 seconds

delay and FileLevelPpl induces 300 seconds delay.

5.6. Efficient Error Recovery

Table [3]shows the execution times of FIVER and BlockLevelPpl
when a dataset with 15 large files (10x1GB files and 5x10GB files)
is transferred in the HPCLab-DTN network when integrity verifica-
tion detects checksum mismatches. We injected faults by flipping
a random bit of randomly-chosen files during the transfer opera-
tion. CHUNK _SIZE is chosen to be the same size as the block
in BlockLevelPpl (i.e., 256 MB). When the chunk size is set to the
size of the file (i.e. FIVER with file-level integrity verification),

the execution time increases drastically since it has to transfer the

Fault FIVER Block-Level
Count | File Int. Ver. | Chunk Int. Ver. | Pipelining
0 179.2s 180.2s 204.2s
8 253.1s 186.2s 208.8s

24 347.3s 198.5s 222.3s

Table 3: Execution times of algorithms in the presence
of data corruption. FIVER’s chunk-level integrity ver-
ification offers an efficient error recovery mechanism by

resending only a small portion of files.

whole file again. Its execution time almost doubles in case of 24 integrity verification failures compared to no-failure

case. On the other hand, when the chunk size is set to 256 MB, FIVER is able to handle faults by only transferring

a small portion of the file due to which its execution time and total transferred data size increase slowly. Moreover,

running integrity verification in the chunk level does not degrade the execution time when there is no fault observed

(i.e., fault count is 0) compared to running integrity verification for the whole file, showing the effectiveness of

conducting integrity verification for small data sizes.
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6. Conclusion and Future Work

End-to-end integrity verification is vital for many applications that are sensitive to data corruption. However, it
could degrade transfer performance significantly due to compute and I/O intensive checksum computation. In this
paper, we propose FIVER to minimize the cost of integrity verification by overlapping checksum computation and
data transfer operations. The results show that FIVER reduces the overhead of running integrity verification from
up-to 120% by the state-of-the-art solutions to less than 15% in all network settings. In addition, FIVER is resilient
to data loss in the case of an unexpected power outage by enforcing cache eviction before validating the integrity
of transfers. Furthermore, we implemented dynamic parallelism to detect and mitigate performance bottlenecks for
integrity verification-enabled transfers, which improves overall performance by more than 5x with the help of multi-
threaded checksum computation and multi-channel network transfers. As a future direction, we will investigate
taking advantage of in-network compute powers to even further reduce the overhead of integrity verification. In
particular, smartNICs offer compute resources that can be utilized to compute the checksum of files such that
end-to-end integrity verification can be executed without causing performance slowdowns or consuming too much
CPU power of end servers. We will further investigate the use of blockchain technology to store the checksum of the
scientific dataset in a distributed database such that users can download files from third-party servers and check

their integrity using blockchain transactions.
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