Stochastic Geometry for Sensing Environmental
Processes with a known Spatio-Temporal Profile

Abhishek K. Gupta, Kaushlendra Pandey, Harpreet S. Dhillon

Abstract—We consider the problem of sensing an environ-
mental variable with a known spatial and temporal statistical
profile. The main technical contribution is a stochastic geometry
approach to characterizing the fraction of area that is successfully
sensed by a given fraction of stationary or mobile agents for
a specific error tolerance. Our results demonstrate that the
knowledge of underlying spatio-temporal profile significantly
improves the coverage of the agents. For the mobile case, we also
compute optimal movement region of each agent to maximize the
coverage performance for a given error tolerance.

I. INTRODUCTION

Timely and accurate sensing of environmental processes is
necessary for developing effective solutions for several global
challenges, such as forest fires and the deteriorating quality
of air, water, and soil. In its most general form, this sensing
problem can be treated as a cyber physical system (CPS) prob-
lem where the physical aspects refer to the sensing part and
the cyber aspects refer to conveying and processing the sensed
information using a cyber communications network [1]. The
relevant physical aspects of CPS for this problem include the
design, placement, and trajectories (if mobile) of the sensors
as well as the signal processing aspects of reconstructing the
underlying stochastic process being sensed. On the other hand,
the relevant cyber aspects include the design and performance
analysis of the wireless sensor networks.

The problem studied in this paper is motivated by the fact
that many key macro-environmental variables (MEVs) exhibit
little variation over space and time. For example, environmen-
tal humidity and temperature of the Earth’s surface would
not change too dramatically over space and time. Because
of this, there would be a tremendous amount of redundancy
in the sensed data when such spatio-temporal processes are
sampled too densely over space and time. Therefore, it is
natural to wonder about the optimal density of sensing agents
needed to cover a given area if the spatio-temporal profile
of the variables to be sensed is available (which is the case
for many variables of practical interest, as discussed shortly).
This problem becomes even more interesting if one accounts
for the fact that sensing agents many not be placed based
on a deterministic regular pattern (such as a grid) because of
multitude of factors, such as the the need for rapid deployment
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over a large area that could include sensing agents dropped
from an aerial platform.

There is a rich literature on characterizing the spatial
variation of MEVs. For example, in [2], authors present an
approximate relation between the temperature of the soil and
its depth. Similarly, a numerical study of variation of forest
temperature over space and time was performed in [3]. As
noted above already, this spatio-temporal profile information
can be used to achieve better coverage of a region without
increasing the sensor density by avoiding redundancy in the
sensed data. However, there are only a handful of prior works
that have incorporated this correlation in their system design.
For instance, in [4], clusters of proximate sensors are formed
as they have similarity in the sensed data. In order to form
these clusters, the sink node relies on the correlation in the
data streams coming from different source nodes. In [5], the
authors used spatio-temporal correlation among the sensed
data for dual prediction and data compression where sensors
predict data based on the past observations. In [6], authors
studied the coverage performance of a dynamic event that
evolves with time (such as a forest fire). However, a systematic
stochastic analysis of this general problem has not received
much attention, which is the main focus of this paper.

Inspired by this, we develop a stochastic geometry based
approach to study this deployment problem while accounting
for the stochastic deployment of the agents, possibility of hav-
ing mobile agents, as well as the knowledge of the underlying
spatio-temporal profiles of the variables to be sensed. Using
this approach, we derive closed form results for the fraction
of area that can be sensed with a given density of sensing
agents (in both stationary and mobile cases) for a given error
tolerance level.

Notation: = = ||x| denotes the norm of x. x = /0
indicates that = is the radial distance and 6 is the angle of
the point x. B(x,r) is the ball with radius r and center x.

II. SYSTEM MODEL

We consider a CPS with movable sensing agents deployed
in R? to sense an environmental variable © that varies across
space and time. Examples include temperature in a forest, soil
moisture in an agricultural field, and humidity in a city. The
initial locations of agents, termed centers, are modeled as a
homogeneous Poisson point process (PPP) ¥ = {X;} with
intensity A [7]. We assume that each agent X; has a circular
area S; = B(X;, R,) around it in which it can move. The
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Fig. 1. Illustration of the system model of the considered CPS. Agents are
shown as red triangles. Each agent has a trajectory in a circle of radius R,
around itself. A realization of © is also overlaid with the agent topology.
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region physically covered by this CPS over time is Boolean-
Poisson model £ given as

¢= | Xi+s, ()

X, ev

where S = B(o, R,) denotes the movement region of each
agent around itself. Let the trajectory followed by the i-th
agent around itself is given by B; = {B(t) : 0 <t < Ty},
which is assumed to be independent (and identically dis-
tributed) of other agents. Here T, denotes the time period
after which the trajectory is repeated. We assume continuous
sensing in this paper although the analysis can be easily
extended to the case of discrete-time sensing case as well.

III. SPATIO-TEMPORAL PROFILE OF ENVIRONMENTAL
VARIABLE AND SENSOR BREATHING

We model the environmental variable as a spatio-temporal
process O(¢,x) which denotes its value at a location x at time
t. We further assume that the variation of © is bounded which
means that it can only vary by a finite value in a finite distance
and time interval. In particular, we assume that for any two
points x and y and time instants ¢; and t», the variation in
the value of O satisfies:

O(t1,%) = O(t2, y)| < f(|tn — ta, [x = yl}), @)

where f(-,-) is the tolerance function [8]. Here, f is an
increasing function with respect to both the arguments. Hence,
the uncertainty in the value of O(¢,x) conditioned on the
knowledge of O(to,xo) is

Uncert(O(t,x)|O(to,%0)) = f(|t — tol, ||x — x0l|)-
One example of tolerance function f(-,-) is
Fo[t = tol, [x = xol|) = A(evIxol+eitztol 1) = (3)

where v and w are the temporal and spatial variation rates of
O, respectively, and A is the scale coefficient. A high w means
that © changes rapidly in space (likewise, v for the time axis).
Assuming ©(to,xg) is known, this tolerance function implies
that, if ¢ = ¢y and x is close to xg, O(tg,x) is equal to
O(to,xo) (i.e. f(0,w) = 0). In other words, ©(¢p,x) can be
predicted exactly. As x moves away from Xy, the correlation
between ©(tg,x) and O(tp, xg) will reduce and hence we may
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Fig. 2. Inverse region R(n) for tolerance function fp. x-axis represents the
time elapsed since the last observation and y-axis shows the allowable distance
of the observation point for a certain 7).

not be able to accurately predict the value of ©(top,x) from
O(to,xp). Similarly, with increasing ¢, the uncertainty of the
value at location X at time ¢ increases.

We consider the case where we allow n tolerance in the
estimation of ©. To understand the spatio-temporal regions
where uncertainty in © is within a certain tolerance 7, it will be
useful to understand the inverse of tolerance function f. Since
f is a two-variable function, its inverse is a region defined as

F(n) = f~'(n) = {(t,d) : f(t.d) =n},

where ¢ is the time elapsed since the last observation and d is
the distance to the observation point. Fixing d or ¢ gives the
following two inverses which are scalar functions of 7:

7(n,d) =max{t': f(',d) = n},
p(n,t) =max{d": f(t,d') = n}.

These essentially give the largest values of the respective
variables that keep the tolerance within 7). Note that

R = |J £ (h)
h<n
denotes the spatio-temporal region with tolerance within 7.
Remark 1. For tolerance function f,, the inverses are given
as (See Fig. 2)
F7Hm) ={(t,d) s wd + vt =In(n/A + 1)},
In(n/A+1 In(n/A+1
(n,0) = BO/A+D _ (/A +1)

» p(0,0) = ————.
w

In the subsequent lemmas, we now present some useful
results on spatio-temporal characterization of uncertainty in
© given an observation at (tg,Xp).

Lemma 1 (Spatial breathing). If ©(to, X)) is known, then the
set of points where uncertainty in © is within n tolerance at
the same time instant, is given by

D(to, xo,7) £ {x : Uncert(8(to, x)|O(to, Xo)) < n}
= {x: f(0,]]x —xo|) < n}
— B(x0, p(n, 0)),

where p(n,0) is the inverse of f(0, -) with respect to the second
argument.



Lemma 1 shows that if a certain tolerance is allowed in
sensing, a circular region around each agent can also be
covered by the current observation of that agent. Naturally, the
radius of this region increases with the increase in the tolerance
level. The following Lemma shows a similar behavior for the
temporal domain. When a certain tolerance is allowed, the
agents need to sense a location only after a certain time.

Lemma 2 (Temporal breathing). If O(to,Xg)) is known, then
the time after which the uncertainty in ©(t,xq) grows more
than n tolerance is given as

T(t0,x0,1) 2 max {1 : Uncert(O(t, x0)[O/(t, X0)) < 1}
= max {t : f(t —to,0) <7}
=t + 7(777 O)a

where 7(n,0) is the inverse of f(-,0) with respect to the first

argument.

Theorem 1. Consider a point of interest P at the origin at

time t. Consider a sensor with center location x and arbitrary

trajectory B(t), which could be deterministic or a given

realization of a random trajectory. The event that uncertainty

in © at this location at the current time is within 7 tolerance

is equivalent to each of the following events:

1) The sensor agent is present in the region B(o, p(n,t —1t'))
at t — t' time for some t' > 0.

2) At least, one observation by the sensor agent should occur
at a point z at t' time ago such that (t',]z||) € R(n).

3) Let the distance of the sensor agent from the point of
interest at t' time ago is denoted as

w(t') = lx+ Bt -1
Then, the curve y.(t') should intersect region R(n) i.e.
ye(t) < p(n,t') for some t'.

4) Let the uncertainty due to an observation at time t —t' by
the sensor agent (with its initial location x) is

u(t') = f(t, Ix + B(t = t)]).

Then, the minimum uncertainty offered by any observation
should be less than 7 i.e.

= mi N <
My (1) glé%ut(t)fn.

Example 1. Let us consider a scenario where the agent is
following a circular trajectory around its center location x =
xZ0. Hence, B(t) = (R, cos(2nt/T),), Ry, sin(2nt/T,)). The
distance trajectory can be expressed as
t £\ )2
y(t') = (:c2 + R? 4 2zR, cos <27r +0— 27r>> :
T, T,
Fig. 3(a) shows the distance trajectory for two values of t,
where the one with t = 2 intersects the R(n) showing the
uncertainty in © at t = 2 is within n. Fig. 3(b) shows the
uncertainty u:(t') for two values of t showing the uncertainty
in © at t = 2 is within n. Fig. 3(c) shows the variation of
M (t) with time t.
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Fig. 3. Uncertainty for circularly moving sensor agents for © with tolerance
function f. (a) Distance trajectory y: (¢') for two values of ¢, (b) Uncertainty
ut(t'), (c) Variation of Mx (t) with time ¢. Here, w = 0.2m~1, v =0.3s71,
A =0.7,7 =1.37, T = 3. The sensor’s center is at x = (5,0) and R, = 1.

IV. COVERAGE ANALYSIS

In this section, we will derive the n—tolerance coverage
probability which is defined as the probability that the envi-
ronmental variable © is known at an arbitrary point of interest
P with an error tolerance of 7.

A. Case I: Stationary Agents
We first consider the case when all sensing agents are
stationary i.e. B; = {0}.

Theorem 2. If the agents are stationary, the probability that
at an arbitrary location P, the value of © is known with n
tolerance, is

po(n) =1 — exp (=Amp*(n,0))

which is also equal to the average fraction of the area that is
covered with n tolerance.

Proof. See Appendix A. O
B. Case II: Mobile Agents

We now present the main results assuming that all sensing
agents are mobile with i.i.d. trajectories.

Theorem 3. If the agents are moving in a 2D region according
to their trajectories B;, the probability that the value of © is
known with n tolerance at an arbitrary location P at time t is

w(t,n) =1—exp ()\/RQ(l — E [Mx(t) > n])dx) .

where inner expectation is with respect to the random trajec-
tory B.

Proof. See Appendix B. O

As evident from Theorem 3, the n—tolerance coverage
probability depends on ¢ and the trajectory. The following
result shows how this general result can be applied to various
trajectories.

Lemma 3. Consider the scenario where the agents are sweep-
ing the 2D ball of radius R, completely and with infinite speed



(i.e. they immediately return to their centers). The probability
that the value of © is known with 1 tolerance at an arbitrary
location P is

p(n,t) =1 —exp (=An(Ry + p(1,0))?) .
Proof. See Appendix C. [

It may be difficult to solve u(n,t) derived in Theorem 3
for a general trajectory. There are also scenarios when the
trajectory is not known. Many times, a guarantee to achieve at
least a certain coverage can suffice which is given by the lower
bound of u(n,t). The following theorem present a simple
lower bound for general trajectories.

Theorem 4 (Current time coverage). Consider the scenario
where the agents are moving in a 2D region. The probability
that at an arbitrary location P, the value of © is known with
7 tolerance at any time instant, is

p(n,t) =1 —exp (=Amp*(n,0)) .

Proof. The sufficient condition to ensure that the uncertainty
in © is within 7 is that there is a sensor in B(o, p(n,0) at the
current time instant. Since B;’s are independent to each other,
at any time instant, the current locations of sensors form a PPP
with density A, owing to the displacement theorem [7]. Using
the void probability of PPP, we get the desired result. O

Theorem 5 (All times coverage). Consider the scenario where
the agents are moving in a 2D ball of radius R, with time
period T, and at least sweeping the boundary completely. The
probability that at an arbitrary location P, the value of © is
known with n tolerance at all times, is

v(n) >1—exp (—)\71'0,2(77))

) = {max (p(n.T) + Ro, p(n.0) = Ro) if £(T,.0) <
max (0, p(n,0) — Ry)

with

Proof. The sufficient condition (A) to ensure uncertainty in ©
within 7 at all times, is that there is a sensor with its center
located in B(o,r1) with r; = max(p(n,0) — R,,0). This will
ensure that the sensor is always within distance p(7, 0) from P
at the current time instant. The probability that the condition
is met is

vi(n) =1 —exp (=Amr).

Another sufficient condition (B) to ensure uncertainty in ©
within 7 at all times, is that there is a sensor with its center
located in B(o,rz) with ro = p(n, T,,) + R,. This will ensure
that the sensor visits B(P, p(n,T})) neighborhood of P once
in the last T;,. The probability that the condition is met is

vi(n) =1 —exp (=Anr3).

Note that above condition (B) is only true if p(n,T,) exists
which is only possible if f(73,0) < 7, otherwise it is not
possible to achieve sub—n uncertainty from a 7, time old
observation. Combining these arguments, we get the desired
result. O

if f(T,,0)>n

To demonstrate the remarkable tractability of the afore-
mentioned setup, we consider a trajectory which is uniformly
sweeping the B(o, R,) in time T;. Assuming a constant area
sweeping rate V,,, T, is related to R, as

R?
T,=—".
Vo
We can observe that increasing the sweep radius R, has
following three effects on the coverage probability:

1) First, as agents are able to cover larger area, spatial
distance of an arbitrary point from physically covered area
¢ decreases which has a positive effect on the coverage.

2) Second, as R, increases, the farthest possible location of
sensor agents increases, thereby decreasing coverage.

3) Third, an increase in 7, results in the data sensed during
the last visit being stale, which increases the uncertainty in
O. It decreases p(n,T,) and hence has a negative impact
on the coverage probability.
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Fig. 4. The variation of n—tolerance coverage probability v(n) with the
sweep time T, for different values of w and v. Here A = 0.0006,V, =
1, A = 0.01/m? and allowed tolerance np = 1. The tolerance function is
taken as (3).

Fig 4 shows the variation of v(n) with the sweep time 7,
for the tolerance function in (3) for different values of w
and v. These different sets of w and v show different rates
of spatial and temporal correlation. The optimal value of T,
is indicated by a black circular marker for each curve. As
discussed earlier, the trade-off in v with respect to T, can be
observed here. For the case when spatial variation rate w is
higher, the optimal strategy would be to cover more area (thus
large T,). When temporal variation rate in © is higher than
the spatial variation rate, the optimal strategy is to perform
sensing more frequently, and hence to use smaller 7,.

V. CONCLUSION

In this paper, we considered a CPS with movable agents
deployed to sense an environmental variable that exhibits
correlation across both space and time. We demonstrated that
the information about its spatio-temporal profile improves the
coverage probability and reduces the required sensor density
to cover a given area of observation. There are numerous



possible extension of this work. For instance, one can consider
a problem of determining the trajectory that provides the
best coverage performance for a particular spatio-temporal
profile. Further, understanding the impact of various spatio-
temporal variation profiles on the performance is another
possible extension of this work.

APPENDIX

A. Proof of Theorem 2

Due to stationarity of W, we can consider the point of
interest at the origin o. From Theorem 1, we know that
to estimate the value of © with 7 uncertainty at o, there
should be at least one agent in 55(o, p(n,t’) at ¢’ time ago for
some t’. Since agents are not moving, it is equivalent to the
condition that there should be at least one agent in (o, p(n, 0).
Mathematically, the condition can be written as

E= |J {Xi€B(o,p(n0)}

X; €W

= ﬂ {Xi ¢ B(o, p(n,0))}

X; €V

Hence, the probability that the value of © is known with 7
uncertainty at o is

po() =PE]=1-E | [T 1(Xi ¢ Blo,p(n,0)))

X;eW

@1 exp (-3 [ (1= 16 Blop(r.0)) ax)
=1—exp (—)\ /]R2 1 (x € B(o, p(n,0))) dx)

=1 exp (=A|B(o, p(n,0))]) = 1 — exp (~Amp*(n, 0)) ,

where (a) is due to the probability generating functional
(PGFL) of the PPP [7].

B. Proof of Theorem 3

Let the point of interest be at the origin o. To ensure that the
value of © is known with 7 uncertainty at o due to observations
from the sensor (with its center at x), the minimum uncertainty
offered by its observations should be less than 7, i.e.

= mi "y <.
My (t) glélolut(t)in

In case of multiple sensor agents, at least one sensor needs to
satisfy the above condition, i.e.

U {5, (0)

X, eV

<nb=|{ () {Mx.(t) > n}

X, eV

Hence, the probability that the value of © is known within
7) uncertainty at o is

p(n,t) =P[E=1-E

H]lMx > )

<g>1_exp< A/Rz (1—P[Mx(t)>77})dx)7

where (a) is due to PGFL of the marked PPP. Here, my =
1 (Mx(t) > n) is taken as the mark of the point at x of the
point process.

C. Proof of Lemma 3

Let us assume that the sensor agents sweep their movement
region completely in 7, time with T,, — 0. It is sufficient to
consider only one time period. Hence, the minimum uncer-
tainty offered by any observation in this time period is

_ n_ Y

Nut) = min () = min fE Ix+ Bt = 1))
As T, — 0,

My(t) = lim Nyi(t) = lim min f(¢,|x+ B(t—1t)|)

T,—0 T,—0 T, >t/ >0
= lim min f(O lx+ B(t—t)]),

Ty—=0T,>t'>

which is due to the fact that all observations are at the current
time owing to infinitesimal sweep time 7. Due to lack of
the time delay term in the above expression, the minimum is
achieved when distance term ||x + B(¢ — ¢')|| is minimized.

This occurs when the sensor is at distance min(||x|| — Ry, 0).
Therefore,
Mx(t) = lim Nx(t) = f(0, min(||x]| — Ry, 0)).
T,—0

Now, the event that My (t) > 7 is equivalent to
{My(t) > n} = {f(0, min(||x|| = Ry,0)) > n}
= {min(([x| = Ry, 0) > p(n,0)}
={lxll > Ry + p(n,0)}
= {x ¢ B(0, R, + p(n,0)}.

Now, from Theorem 3,
p(tn) = 1— exp (—A [a-Epnw> n])dX>
]R2

=1—exp ()\/ 1(x € B(0, R, + p(n,0)) dx)
R2
=1 —exp (=A[B(0, Ry + p(n,0)])
which gives the desired result.
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