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Abstract 

 
The growth of renewable energy technologies creates significant challenges for the stability of the system because of 
their intermittency. Nonetheless, we can value these technologies with storage systems. We model the supply by a 
renewable technology, wind, into a storage facility using the leaky bucket mechanism. The bucket is synonymous 
with storage while the leakage is equivalent to meeting load. Modelica is used to capture: (i) the time-dependence of 
the state of the bucket based on a physical model of storage; (ii) the stochastic representation of wind energy using 
wind speed data that is fed into a physical model of a wind technology; and (iii) the load, modeled as a resistor-
inductor circuit. The strength of Modelica in using non-causal equations for basic sub-systems that are linked together 
is harnessed through its libraries. We find that there is a diminishing return to storage. Beyond a certain level of 
storage, the integration of a reliable baseload power supply is required to diminish the risk due to reduced reliability. 
The need for storage systems as a hedge against intermittency is dependent on the interplay between the supply 
volatilities and the stochastic load to guarantee an acceptable level of quality of service and reliability. 
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1. Introduction 
The Energy Information Administration (EIA) recently released the 2020 version of the short-term energy outlook 
indicating that the share of generation from renewable sources will increase from 17% in 2019 to 19% this year and 
to 22% in 2021 [1]. Globally, it is estimated that the electricity from wind energy, for example, will peak at 8% this 
year [2]. The increasing capacity addition of renewable electricity holds the potential to impose a cocktail of 
implications. On the one hand, economic incentives may mitigate the need for load-following and the sequential cost 
increases that significant renewable penetration may impose on base load power plants through energy storage [3]. 
On the other hand, there are crucial impacts of the growing capacity and significance of renewable electricity on grid 
reliability and variability [4]–[6]. Of the solutions proffered to address the intermittence of wind electricity including 
demand response, storage and ramping of conventional supplies, storage is receiving significant attention because of 
the characteristic it shares with conventional technologies on dispatch. The value of storage is not limited to dispatch, 
it may also be used to minimize grid variability. In fact, some studies have shown that the availability of storage could 
reduce energy supply costs by 30% [7]. 
 
This paper uses a system of systems modeling approach to evaluate the capacity contribution of renewable 
technologies with the aid of storage systems. At the intersection of supply capacity for renewable technologies and 
load is storage. We model the supply by renewable technologies into a storage facility using its synonymous properties 
with the leaky bucket mechanism as shown in Figure 1 below. The bucket is synonymous with storage while the 
leakage is equivalent to supply from the storage resource. A prior approach [8] that employs the leaky bucket 
mechanism to evaluate the variability of electricity supply and demand uses an envelope-based modeling effort 
adapted from Network Calculus theory (NetCal) for queuing systems [9]. The method captures the zero-sum game 
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between capacity and Quality-of-Service (QoS) as a measure of system performance. However, the method is not 
cognizant of the underlying physical systems producing and consuming the electricity nor is the method cognizant of 
the interactions between the subsystems as captured using Modelica.  

 
Figure 1: Leaky-bucket illustration of storage mechanism 

 
Modelica programming language [10] is used to capture the time-dependence of the evolution of the state of the 
bucket. The strength of Modelica is harnessed based on its inherent ability to offer time-varying information not only 
on the average state of the system, but also on the physical state of the sub-systems as represented by intertemporal 
and dynamic non-causal mathematical modules.  
 
We find that there is a diminishing return to storage. Beyond a certain level of storage, the integration of a reliable 
baseload power supply is required to diminish the risk due to reduced reliability. The need for storage systems as a 
hedge against intermittency is dependent on the interplay between the supply volatilities and the stochastic load to 
guarantee an acceptable level of service and reliability. The contribution of this paper is two folds. The first is on the 
modeling construct – the model endogenizes the variability in wind speed for wind electricity and load with the 
physical representation of the underlying technologies to value the optimal threshold for storage. The second is on the 
counter-intuitive result highlighting that there is diminishing returns to storage capacity relative to the load and supply 
fluctuations. To the best of our knowledge, while the first contribution builds on existing Modelica libraries, the second 
is an unexpected outcome, and their intersection offers insights for policymakers.  
 
2. Model 
The elements of the model include the following: 

 stochastic representation of wind electricity based on a time history of available wind speed data. 
 physical model of a wind power plant  
 physical model of a storage sub-system 
 simple resistance-inductance (R-L) load 
 power system for wind to storage and storage to load 

The system model generates data providing insights to characterize the capacity contribution of storage for intermittent 
generation. This contribution is evaluated at different QoS or confidence levels ranging from 85% to 95% as the 
thresholds for “acceptable” supply.  
 
We employ Modelica [10], a standard object oriented modeling language that allows the combination of sub-systems 
into a single complex system. The value of Modelica for this analysis is based on two factors. First, it has a graphical 
user interface with readily available component libraries. Second, the mathematical representations of the time-
varying parameters that drive the components have been developed. However, the main task lies in integrating the 
components or subsystems into a single system with the right controls and flows. The model of how the subsystems 
are combined is represented in Figure 2.  
 
The model used in this study, represented in Figure 2, was adapted from the “RenewableSources” framework within 
the Building Library in the Modelica Standard Library to include battery storage and charging controls.  
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Figure 2: Modelica scheme of the system (adapted from [11]). 
 
The loads (loa1, loa2, etc) are defined by 24-hour periodic power consumption. They are each fed by a conductor 
(line1, line2, etc). The renewable generation is given by a simplified wind turbine, which takes wind velocity as its 
input, and outputs phase and power. The battery subsystem (bat) consists of an idealized battery component, controlled 
by an ideal peak-shaving controller. Finally, the larger electrical grid (gri) to which this hybrid system connects to is 
an infinite sink/source for power. The reason for including the grid component is to introduce slack into an otherwise 
stiff model for solving purposes. It serves the added benefit of providing an intuitive reference for the gap between 
the power provided by the wind/battery system, and the total power demanded by the loads. 

 
3. Results 
In determining the QoS contributions of the storage or battery system, the absolute sizing of the generation, storage, 
and load is less important than the relative sizing. Thus, the wind system was arbitrarily scaled so that over the 30-day 
period of analysis, the energy generated was equal to the energy consumed. In this scenario, there will be a value for 
energy storage that closes the energy gap between the load and renewable curves. The envelope curve is shown in 
Figure 3. To achieve the balance of energies, the load was given a nominal power of 350W, the installed wind capacity 
was 8,400W, and the battery capacity ranged from 1kWh to 4,000kWh.  

Figure 3: Energy Envelope 
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Figure 4 shows the time histories for wind and demand. It can be seen that the wind availability for the given 
location is less than ideal, with long periods of low wind and short spikes or periods of high wind speed.  
 

 
Figure 4: Plot of load and wind 

 
The model was validated by assessing component performance under known scenarios. Figure 5 shows a time 
segment including the battery power, wind surplus, and grid power. The wind energy is scaled from an hourly wind 
velocity dataset from San Francisco International Airport for thirty days. The difference between the wind power and 
the load demand is given as WindSurplus. This serves as the control signal for the battery. Figure 5 shows a period 
of time in which the battery power (bat.P) very closely follows the Wind Surplus. Note that the convention used for 
battery power is positive for charging, and negative for discharging. The opposite is true for the grid power and wind 
power. When the battery is unable to provide power, the grid (gri.P.real) is forced to generate the deficit.  
 

Figure 5: Operational validation of the model 
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The grid also provides phase and voltage stabilization. In this configuration, the large capacity of the battery means 
that makeup power is rarely required from the grid. It can be observed that all signals behave as expected, with wind 
providing the primary power, the battery making up the difference as best it can, and the grid providing the slack to 
maintain the conservation of power. 
 
Results were generated for some scenarios with varying battery capacity. To assess the impact of increasing storage, 
the grid contributions were used as a proxy for load that was not covered by either the battery or wind generator. In 
this case it is a very close proxy, but it should be noted that a small error is introduced by the grid contributions for 
voltage and phase stabilization. Because this error is constant between cases, it is negligible in this study. 
 
Figure 6 shows that in the given scenario, the QoS reaches the 85% threshold when the storage capacity is ~275 times 
greater than the installed wind capacity. This indicates that for the given installation, the potential for renewables to 
reliably satisfy grid on their own would be a costly proposal. Luckily, the connection to the grid makes it more viable, 
but with higher levels of intermittent supply coming online in the future, there is a clear need for flexible, dispatchable 
energy sources such as storage. 
 

 
Figure 6: Diminishing returns for increasing storage capacity 

 
4. Conclusion  
This study reconfirms the long-held notion that energy storage can mitigate the volatility and variability of renewables 
[12]. However, as we rightly postulated, beyond a certain capacity, the QoS contributions diminish. When the cost of 
investment into storage systems is considered, then it becomes paramount to elicit what the optimum capacity should 
be. The inherent value in this approach is the inclusion of the physical characteristics of the system. Nonetheless, this 
study initiates a set of tasks aimed at providing a more robust QoS assessment of storage systems. In this exploration, 
the next steps include: (i) improving the resolution of the modeling components to better represent physical limitations 
of the system; (ii) incorporating the stochastic nature of not only production, but also of load signals simultaneously 
to better understand how the quality of those signals relates to storage QoS systems. One important consideration for 
future work is a comparison of how storage contributions vary between areas with high availability factor for wind 
capacity versus areas with low availability factor, as well as between wind resource locations with higher variances. 
In the data leveraged for this work, the high volatility and unreliable quality of the available wind resource likely 
drove the need for storage capacity much higher than it would be for a more consistent wind resource. More work is 
needed to provide answers to how the relationship between predictability (variance) and availability affect capacity 
decision making. 
 
 
 
 
 
 

y = 3E-06x2 - 0.0029x + 0.6836
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