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Abstract

We study differentially private (DP) algorithms for stochastic convex optimization
(SCO). In this problem the goal is to approximately minimize the population loss
given i.i.d. samples from a distribution over convex and Lipschitz loss functions. A
long line of existing work on private convex optimization focuses on the empirical
loss and derives asymptotically tight bounds on the excess empirical loss. However
a significant gap exists in the known bounds for the population loss.

We show that, up to logarithmic factors, the optimal excess population loss for DP
algorithms is equal to the larger of the optimal non-private excess population loss,
and the optimal excess empirical loss of DP algorithms. This implies that, contrary
to intuition based on private ERM, private SCO has asymptotically the same rate of
1/+/n as non-private SCO in the parameter regime most common in practice. The
best previous result in this setting gives rate of 1/n'/%. Our approach builds on
existing differentially private algorithms and relies on the analysis of algorithmic
stability to ensure generalization.

1 Introduction

Many fundamental problems in machine learning reduce to the problem of minimizing the expected
loss (a.k.a. population loss) £(w) = ]ED [¢(w, z)] for convex loss functions of w given access to

samples 21, ..., 2, from the data distribution D. This problem arises in various settings, such as
estimating the mean of a distribution, least squares regression, or minimizing a convex surrogate loss
for a classification problem. This problem is commonly referred to as Stochastic Convex Optimization
(SCO) and has been the subject of extensive study in machine learning and optimization [SSBD14].
In this work we study this problem with the additional constraint of differential privacy.

A closely related problem is that of minimizing the loss Z(w) = 13" 4(w, z;) on the sampled set
of functions, often known as Empirical Risk Minimization (ERM). The problem of private ERM has
been well-studied and tight upper and lower bounds are known for private ERM. We give nearly tight
upper and lower bounds on the excess population loss (a.k.a. excess population risk). At first glance
these two problems may appear to be essentially the same as an optimal algorithm for minimizing the
empirical risk should also achieve the best bounds for the population risk itself, i.e. the best approach
to private SCO is to use the best private ERM.

This simple intuition is unfortunately false, even in the non-private case. A natural approach of
bounding the population loss is by proving an upper bound on E,, . [sup,, (£(w) — L(w))]. This
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is known as uniform convergence. There are examples of distributions over losses where uniform
convergence based bounds are provably sub-optimal. For example, for convex Lipschitz losses
in d-dimensional Euclidean space, the best bound on the population loss achievable via uniform
convergence is 2(+/d/n) [Fell6]. In contrast, SGD is known to achieve excess loss of O(y/1/n)
which is independent of the dimension. As a result, in the high-dimensional settings often considered
in modern ML (when n = ©(d)), the optimal achievable excess loss is O(4/1/n), whereas the
uniform convergence bound is ©(1).

This discrepancy implies that using private ERM and appealing to uniform convergence will not lead
to optimal bounds for private SCO. The first work to address the population loss for private SCO is
[BST14] which gives bounds based on several natural approaches. Their first approach is to use the
generalization properties of differential privacy itself to bound the gap between the empirical and
population losses [DFHT 15, BNST16], and thus derive bounds for SCO from bounds on ERM. This

1
approach leads to a suboptimal bound for private SCO (specifically?, ~ max (‘f/%, ‘f) [BST14,

Sec. F]). For the important case of d being on the order of n and € being on the order of one this
results in Q(n’%) bound on excess population loss. Their second approach uses stability induced by
regularizing the empirical loss before it is minimized via a private ERM algorithm for strongly convex
losses. This technique also yields a suboptimal bound on the excess population loss ~ (d% /\/En).

There are two natural lower bounds that apply to private SCO. The lower bound of Q(1/1/n) for
the excess loss of non-private SCO applies for private SCO. Further it is not hard to show that lower
bounds for private ERM translate to essentially the same lower bound for private SCO, leading to a

lower bound of the form Q(E—‘/E) We give a detailed argument for the lower bound in the full version
[BFTT19]. In this work, we address the question:

What is the optimal excess loss for private SCO? Is the rate of O <\/% + %) achievable?

1.1 Our contribution

We show that the optimal rate of O (\/g + g) is achievable. In particular, we obtain the statistically

optimal rate of O(1/4/n) whenever d = O(n). This is in contrast to the situation for private ERM
where the cost of privacy grows with the dimension for all n.

In fact, under relatively mild smoothness assumptions, this rate is achieved by a variant of the standard
noisy mini-batch SGD. The parameters of the scheme need to be tuned carefully to satisfy a delicate
balance. The classical analyses for non-private SCO depend crucially on making only one pass over
the dataset. However, a single pass noisy SGD is not sufficiently accurate as we need a non-trivial
amount of noise in each step to carry out the privacy analysis. We rely instead on a different approach
to generalization, known as uniform stability [BE02]. The stability parameter degrades with the
number of passes over the dataset [HRS15, FV19], while the empirical accuracy improves as we
make more passes. In addition, the batch size needs to be sufficiently large to ensure that the noise
added for privacy is small. To satisfy all these constraints the parameters of the scheme need to
be tuned carefully. Specifically we show that ~ min(n, n%€2/d) steps of SGD with a batch size of
~ max(y/en, 1) are sufficient to get all the desired properties.

Our second contribution is to show that the smoothness assumptions can be relaxed at essentially
no additional loss. We use a general smoothing technique based on the Moreau-Yosida envelope
operator that allows us to derive the same asymptotic bounds as the smooth case. This operator
cannot be implemented efficiently in general, but for algorithms based on gradient steps we exploit
the well-known connection between the gradient step on the smoothed function and the proximal step
on the original function. Thus our algorithm is equivalent to (stochastic, noisy, mini-batch) proximal
descent on the unsmoothed function. We show that our analysis in the smooth case is robust to
inaccuracies in the computation of the gradient. This allows us to show that sufficient approximation
to the proximal steps can be implemented in polynomial time given access to the gradient of the
L(w, z;)’s.

’In this Introduction, we are concerned with the dependence on d and 7, for (¢, §)-DP. We suppress the
dependence on § and on parameters of the loss function such as Lipschitz constant and the constraint set radius.



Finally, we show that Objective Perturbation [CMS11, KST12] also achieves optimal bounds for
private SCO. However, objective perturbation is only known to satisfy privacy under some additional
assumptions (most notably, Hessian being rank 1 on all points in the domain). The generalization
analysis in this case is based on the uniform stability of the solution to strongly convex ERM. Aside
from extending the analysis of this approach to population loss, we show that it can lead to algorithms
for private SCO that use only near-linear number of gradient evaluations (wWhenever these assumptions
hold). In particular, we give a variant of objective perturbation in conjunction with the stochastic
variance reduced gradient descent (SVRG) with only O(n logn) gradient evaluations. We remark
that the known lower bounds for uniform convergence [Fell6] hold even under those additional
assumptions invoked in objective perturbation. Finding algorithms with near-linear running time in
the general setting of SCO is a natural avenue for future research.

Our work highlights the importance of uniform stability as a tool for analysis of this important class
of problems. We believe it should have applications to other differentially private statistical analyses.

Related work: Differentially private empirical risk minimization (ERM) is a well-studied area span-
ning over a decade [CMO08, CMS11, JKT12, KST12, ST13, SCS13, DIW13, Ull15, JT14, BST14,
TTZ15, STU17, WLK+17, WYX17, INSt19]. Aside from [BST14] and work in the local model
of DP [DJW13], these works focus on achieving optimal empirical risk bounds under privacy. Our
work builds heavily on algorithms and analyses developed in this line of work while contributing
additional insights. Optimal bounds for private SCO are known for some simple subclasses of convex
functions such as Generalized Linear Models [JT14, BST14] where uniform convergence bounds on
the order of 1/+/n are known [KSTO08].

2 Preliminaries

Notation: We use YW C R? to denote the parameter space, which is assumed to be a convex, compact
set. We denote by M = max |lw|| the Lo radius of W. We use Z to denote an arbitrary data universe
we

and D to denote an arbitrary distribution over Z. We let £ : R? x Z — R be a loss function that takes
a parameter vector w € )V and a data point z € Z as inputs and outputs a real value.

The empirical loss of w € W w.r.t. loss £ and dataset S = (21, ..., z,) is defined as L(w; S) £
LS L U(w, ). The excess empirical loss of w is defined as L(w; S) — x?IvIél)I/lv L(w; S).

The population loss of w € W with respect to a loss ¢ and a distribution D over Z, is defined as
L(w;D) & IED [¢(w, z)] . The excess population loss of w is defined as L(w; D) — 111111/1\; L(w; D).
zn we

Definition 2.1 (Uniform stability). Let a« > 0. A (randomized) algorithm A : Z" — W is a-
uniformly stable (w.rt. loss £ : W x Z — R) if for any pair S, S’ € Z™ differing in at most one
data point, we have

sup B [£ (A(S), 2) — £(A(S"), 2)] <
z€EZ

where the expectation is taken only over the internal randomness of A.

The following is a useful implication of uniform stability.

Lemma 2.2 (See, e.g., [SSBD14]). Let A : Z™ — W be an a-uniformly stable algorithm w.r.t. loss
{:W x Z — R. Let D be any distribution over Z, and let S ~ D". Then,

|£(A(S); D) - £(A(S): 9)] <a.

E
S~Dn, A

Definition 2.3 (Smooth function). Let 3 > 0. A differentiable function f : R¢ — R is B-smooth if
for every w,v € R, we have

F(¥) < Fw) + (VT (W), v —w) + 2w — 2

In the sequel, whenever we attribute a property (e.g., convexity, Lipschitz property, smoothness, etc.)
to a loss function ¢, we mean that for every data point z € Z, the loss £(+, z) possesses that property.

Stochastic Convex Optimization (SCO): Let D be an arbitrary (unknown) distribution over Z, and
S = {z1,...,2n} be a sample of i.i.d. draws from D. Let £ : W x Z — R be a convex loss



function. A (possibly randomized) algorithm for SCO uses the sample S to generate an (approximate)
minimizer wg for £(-; D). We measure the accuracy of A by the expected excess population loss of
its output parameter wg, defined as:

AL(A; D) 2 E |L(Ws; D) — mi&vﬁ(w; D)|,
we

where the expectation is taken over the choice of S ~ D™, and any internal randomness in A.

Differential privacy [DMNS06, DKM'06]: A randomized algorithm A is (¢, §)-differentially
private if, for any pair of datasets S and S’ differ in exactly one data point, and for all events O in the
output range of .4, we have

PA(S) € O] < ¢ -P[A(S') € O] + 6,

where the probability is taken over the random coins of .A. For meaningful privacy guarantees, the
typical settings of the privacy parameters are ¢ < 1 and § < 1/n.

Differentially Private Stochastic Convex Optimization (DP-SCO): An (¢, 6)-DP-SCO algorithm
is a SCO algorithm that satisfies (e, d)-differential privacy.

3 Private SCO via Mini-batch Noisy SGD

In this section, we consider the setting where the loss £ is convex, Lipschitz, and smooth. We give
a technique that is based on a mini-batch variant of Noisy Stochastic Gradient Descent (NSGD)
algorithm [BST14, ACG*16].

Algorithm 1 Anscp: Mini-batch noisy SGD for convex, smooth losses

Input: Private dataset: S = (z1,...,2,) € Z", L-Lipschitz, 8-smooth, convex loss function
¢, convex set W C R?, step size 7, mini-batch size m, # iterations 7', privacy parameters
e<1,6 <1/n?
Set noise variance 02 := %‘)j(l/é)
Set mini-batch size m := max (n N d 1) .
Choose arbitrary initial point wy € W.
fort =0toT — 1 do

Sample a batch By = {zi, ;- -, 2, } < S uniformly with replacement.

S LR 2

Wit1 := Projy, (wt -n- (i Z;n:l Vi(wy, zi, ;) + Gt)) , where Proj,,, denotes the Eu-
clidean projection onto W, and G; ~ N (0, 02]Id) drawn independently each iteration.

_ T
7: return Wr = 7 )., Wy

Theorem 3.1 (Privacy guarantee of Ansgp). Algorithm 1 is (e, §)-differentially private.
Proof. The proof follows from [ACG™ 16, Theorem 1]. O

The population loss attained by Ansgp is given by the next theorem.

Theorem 3.2 (Excess population loss of Anscp). Let D be any distribution over Z, and let S ~ D™.
L pi ™ cn
Suppose 3 < 57 - min ( 5 2m>

AL (ANSGD; D) S 10 M L - max <\/W(1/6)’ 1)
en \/ﬁ

. . 2 2 M
Lot T = min (2, gt ) andn = A Then,

Before proving the above theorem, we first state and prove the following useful lemmas.

Lemma 3.3. Let S € Z". Suppose the parameter set VW is convex and M -bounded. For any n > 0,
the excess empirical loss of Anscp satisfies



N ~ M?  qnL? I"d log(1/6)
. _ 1 W < + +
E [E(WT’ S)} wew Lw; 8) < 2nT 2 (16 n? e? 1)

where the expectation is taken with respect to the choice of the mini-batch (step 5) and the independent
Gaussian noise vectors Gq, ..., Gr.

Proof. The proof follows from the classical analysis of the stochastic oracle model (see, e.g.,
[SSBD14]). In particular, we can show that

2

~_ Lo M nL2 9
. . <
E |:,C(WT,S)j| - I%lyvﬁ(w, S) o + 5 +no°d,

where the last term captures the extra empirical error due to privacy. The statement now follows from
the setting of o in Algorithm 1. O

The following lemma is a simple extension of the results on uniform stability of GD methods that
appeared in [HRS15] and [FV19, Lemma 4.3] to the case of mini-batch noisy SGD. We provide a
proof for this lemma in the full version [BFTT19].

Lemma 3.4. In Anscp, suppose n < %, where (3 is the smoothness parameter of £. Then, Anscp is

a-uniformly stable with o = LQ%.

Proof of Theorem 3.2

By Lemma 2.2, a-uniform stability implies that the expected generalization error is bounded by a.
Hence, by combining Lemma 3.3 with Lemma 3.4, we have

W i e . nT
E  [L(Wr; D)) - min L(w; D)< E {/; ;5}_ Liw: D) + L?
5o ey P DI = i £ws D) < B [£(rs S)] = min, £(w; D)+ L7
5 ~ T
< B |E®r:S)— min E(W;S)]+L2n
S~D™, Ansep we n
(D
M? L2 Td nT
< 16 1) 21~
_217T+ 2 < n262+ )+ n

W S~D
mi1I/1V L(w; D). Optimizing the above bound in 7 and T yields the values in the theorem state-
we

where (1) follows from the fact that [ [min E(w; S)} < min E {E(W;S)} =
S~Dn" |wew we "

ment for these parameters, as well as the stated bound on the excess population loss.

4 Private SCO for Non-smooth Losses

In this section, we consider the setting where the convex loss is non-smooth. First, we show a
generic reduction to the smooth case by employing the smoothing technique known as Moreau-Yosida
regularization (a.k.a. Moreau envelope smoothing) [Nes05]. Given an appropriately smoothed
version of the loss, we obtain the optimal population loss w.r.t. the original non-smooth loss function.
Computing the smoothed loss via this technique is generally computationally inefficient. Hence, we
move on to describe a computationally efficient algorithm for the non-smooth case with essentially
optimal population loss. Our construction is based on an adaptation of our noisy SGD algorithm
Anscp (Algorithm 1) that exploits some useful properties of Moreau-Yosida smoothing technique
that stem from its connection to proximal operations.

Definition 4.1 (Moreau envelope). Let f : W — R? be a convex function, and 3 > 0. The 3-Moreau
envelope of f is a function f5 : W — R% defined as

B

o) = mig (5 + Slw Vi) wew,

Moreau envelope has direct connection with the proximal operator of a function defined below.



Definition 4.2 (Proximal operator). The prox operator of f : W — R% is defined as
1
prox;(w) = arg‘l}éivr\l} (f(v) + §||W - v||2) , weWw.
It follows that the Moreau envelope fg can be written as
B
Faw) = £ (proxy s (w) ) + 5 lIw = prox 5 (w) ||

The following lemma states some useful, known properties of Moreau envelope.

Lemma 4.3 (See [Nes05, Canll]). Let f : W — R4 be a convex, L-Lipschitz function, and let
B > 0. The 3-Moreau envelope f3 satisfies the following:

1. fgis convex, 2L-Lipschitz, and B-smooth.

2.VweW fa(w) < f(w) < fa(w) + L.

3. VYweW Vfg(w)=8 (w - proxf/ﬂ(w)) .

Let £ : W x Z — R be a convex, L-Lipschitz loss. For any z € Z, let £(-, z) denote the 5-Moreau
envelope of /(-, z). For a dataset S = (21,...,2,) € 2", let Lg(-; S) £ L3 l5(-, 2;) be the

n

empirical risk w.r.t. the 3-smoothed loss. For any distribution D, let L5(+; D) = ED [¢(-, z)] denote

the corresponding population loss. The following theorem asserts that, with an appropriate setting for
3, running Anscp over the 3-smoothed losses ¢5(-, z;), @ € [n] yields the optimal population loss
w.r.t. the original non-smooth loss ¢.

Theorem 4.4 (Excess population loss for non-smooth losses via smoothing). Let D be any distribution

over Z. Let S = (z1,...,2n) ~ D" Let § = %-min <

N en
ya &/W) . Suppose we run Anscp
(Algorithm 1) over the 3-smoothed version of { associated with the points in S: {{g(-, z;), i € [n]}.
Let ) and T be set as in Theorem 3.2. Then, the excess population loss of the output of Anscp w.rt. £
satisfies

AL (Ansopi D) < 240 L - max (dlg(lﬂ;) 1)

en RV

Proof. Let W be the output of Ansgp. Using property 1 of Lemma 4.3 together with Theorem 3.2,
we have

E [Ls(Wr;D)]

d log(1/d 1
— min Lg(w; D) <20M L - max (og(/) ) .
S~D™, AnsGD wew

€n RV
By property 2 of Lemma 2 and the setting of 5 in the theorem statement, for every w € W, we have

Ls(w; D) < L(w; D) < L(w; D) +2M L - max (;ﬁ 2C“°§<1/5>> .

Putting these together gives the stated result. O

Computationally efficient algorithm Ap,..cp (NSGD + Prox)

Computing the Moreau envelope of a function is computationally inefficient in general. However,
by property 3 of Lemma 4.3, we note that evaluating the gradient of Moreau envelope at any point
can be attained by evaluating the proximal operator of the function at that point. Evaluating the
proximal operator is equivalent to minimizing a strongly convex function (see Definition 4.2). This
can be approximated efficiently, e.g., via gradient descent. Since our Ansgp algorithm (Algorithm 1)
requires only sufficiently accurate gradient evaluations, we can hence use an efficient, approximate
proximal operator to approximate the gradient of the smoothed losses. The gradient evaluations in



Anscp will thus be replaced with such approximate gradients evaluated via the approximate proximal
operator. The resulting algorithm, referred to as Ap,oxcp, Will approximately minimize the smoothed
empirical loss without actually computing the smoothed losses.

Our construction of Ap,oxcp involves =~ n2 -T2 -m gradient evaluations (of individual losses), where
T is the number of iterations of Ansgp reported in Theorem 3.2, and m is its mini-batch size.

We argue that the approximate proximal operation will essentially have no impact on the guarantees
of Aproxgp as compared to those of Ansgp. In particular, in terms of privacy, the sensitivity of
the approximate gradients (evaluated via the approximate prox operator) will basically remain the
same as that of the exact gradients. In terms of empirical error, since the approximation error in
the prox operations can be made sufficiently small (while maintaining computational efficiency),
the impact of the approximation error on the empirical loss guarantee of Ap,oxgp Will be negligible.
Finally, in terms of uniform stability, again since the approximation error is sufficiently small, the
error accumulated across iterations will have no pronounced impact on the uniform stability of
Anscp (established in Lemma 3.4). Putting these together shows that Ap,.xgp achieves the optimal
population loss bound in Theorem 4.4.

A more detailed description of Ap,ogp and its guarantees is given in the full version [BFTT19].

5 Private SCO via Objective Perturbation

In this section, we show that the technique known as objective perturbation [CMS11, KST12] can be
used to attain optimal population loss under additional assumptions on the loss. These assumptions
are invoked to ensure differential privacy. The excess empirical loss of this technique for smooth
convex losses was originally analyzed in the aforementioned works, and was shown to be optimal by
the lower bound in [BST14]. We revisit this technique and show that the regularization term added for
privacy can be used to attain the optimal excess population loss by exploiting the stability-inducing
property of regularization. The objective perturbation algorithm Aopjp is described in Algorithm 2.

In addition to smoothness and convexity, we make the following assumption on the loss.

Assumption 5.1. Forall z € Z, ((-, z) is twice-differentiable, and the rank of its Hessian V*{(w, z)
at any w € W is at most 1.

Algorithm 2 Aoyjp: Objective Perturbation for convex, smooth losses

Input: Private dataset: S = (21,...,2,) € Z", L-Lipschitz, 8-smooth, convex loss function /,
convex set YW C R?, privacy parameters € < 1, § < 1/n?, regularization parameter \.

1: Sample G ~ N (0,021) , where 02 = 1027 log(1/)

2: return W = arg mi)r/lvf(w; S) 4+ 18w o \|lw||2, where L(w; S) 2 L5 f(w, z).
we

n n

Note: Unlike in [KST12], the regularization term as appears in Aopjp is not normalized by n.
Hence, whenever the results from [KST12] are used here, the regularization parameter in their
statements should be replaced with nA. This presentation choice is more consistent with literature on
regularization.

The privacy guarantee of Aopjp follows directly from [KST12]:

Theorem 5.2 (Privacy guarantee of Aopjp, restatement of Theorem 2 in [KST12]). Suppose that
Assumption 5.1 holds and that the smoothness parameter satisfies 3 < en . Then, Aopjp is
(e, 0)-differentially private.

We now state our main result for this section showing that, with appropriate setting for A, Aopjp
yields the optimal population loss.

Theorem 5.3 (Excess population loss of Aopjp). Let D be any distribution over Z, and let S ~
D™ Suppose that Assumption 5.1 holds. Suppose that W is M-bounded. In Aopjp, set X =

2L /2 + 4d log(1/96)
M n €2 n2

AL (Aobjp; D)S?ML\/2+4leg(l/5)O<ML.maX<l dlog(1/5)>>

n €2 n2 NGR en

. Then, we have




Note: According to Theorem 5.2, the privacy of Aopjp entails the assumption that 3 < en A. With
the setting of A in Theorem 5.3, it would suffice to assume that 8 < 2££/2n + 4 d log(1/4).

To prove the above theorem, we use the following lemmas.

Lemma 5.4 (Excess empirical loss of Aopjp, restatement of Theorem 26 in [KST12]). Let S ~ Z".
Under Assumption 5.1, the excess empirical loss of Aowjp satisfies

N 16L2dlog(1/5) 5
where the expectation is taken over the Gaussian noise in Aogjp.
Lemma 5.5 ([SSBD14]). Let f : W x Z — R be a convex, p-Lipschitz loss, and let A > 0. Let

S = (z1,-..,2n) ~ Z™ Let Abe an algorithm that outputs W = arg mi}r/lv (]?(w; S)+ A ||w||2) ,
we

where ]?(w; S) =13 f(w, z). Then, Ais 2)\”: -uniformly stable.

Proof of Theorem 5.3

Fix any realization of the noise vector G. For every w, z define fg(w,z) £ {(w, z) + @

Note that fg is <L+ @)—Lipschitz. For any S = (z1,...,2,) € Z7, let ﬁ(;(w; S) £

L3 | fa(w, z;). Hence, the output of Aopjp can be written as W = arg mi‘l;lv Fa(w: S)+A||wl2.
we

Define Fg(w; D) = IED [fa(w, z)]. Thus, by combining Lemmas 5.5 and 2.2, we have

~ 1Gly?
< EDn [fc;(vAv; D) — Fa(w; S)} < W On the other hand, note that Fg(w; D) —

Fa(W; S) = L(W; D) — L(W; S) since the linear term cancels out. Hence,

[£(%; D) - L(w: 5)] < g\ )

S~Dn

By taking expectation over G ~ N (0, 0%1;) as well, we get E [ﬁ(w D) — L(W; S)} <gL

Now, observe that:

AL (Aobjp; D) < E {E(w; S) — min £(w; S)] +E {qw D) — L(W; 5)}

wew

2 2
8 (2L2dlog(1/6) | L2\, | 10
A €2n2 n

IN

where we use Lemma 5.4 in the last bound. Optimizing this bound in A yields the result.

A note on the rank assumption: The assumption on the rank of \72/(w, z) can actually be relaxed
(using similar argument in [INST19]) to a rank of 9] (Lﬁivzjd) without affecting the asymptotic
population loss guarantees (see the full version [BFTT19] for a discussion.)

Efficient Objective Perturbation: The privacy guarantee of the standard objective perturbation
technique is given only when the output is the exact minimizer [CMS11, KST12]. Exact minimization
is not usually attainable in practice. We give a practical version of algorithm Aopp that attains the
same guarantees of privacy and optimal population loss as Aopjp, and in addition, makes only
O(nlogn) number of gradient evaluations. The main idea is to first obtain an approximate minimizer
w that is sufficiently close to the true minimizer, and then perturb w with only a small amount
of Gaussian noise to ensure privacy. The extra error due to the little noise added in the last step
ends up having a trivial impact on the population loss. Hence, the algorithm achieves the same
guarantees as Aopjp. Crucially, it attains the optimal population loss in an efficient manner. In
particular, we use Stochastic Variance Reduced Gradient Descent (SVRG) [JZ13, XZ14] to perform
the optimization step, which leads to a construction with O(n log n) number of gradient evaluations.
Detailed discussion can be found in the full version [BFTT19].
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