
POSH: A Data-Aware Shell

Deepti Raghavan Sadjad Fouladi Philip Levis Matei Zaharia

Stanford University

Abstract
We present POSH, a framework that accelerates shell appli-

cations with I/O-heavy components, such as data analytics with

command-line utilities. Remote storage such as networked

filesystems can severely limit the performance of these appli-

cations: data makes a round trip over the network for relatively

little computation at the client. Reducing the data movement

by moving the code to the data can improve performance.

POSH automatically optimizes unmodified I/O-intensive

shell applications running over remote storage by offloading

the I/O-intensive portions to proxy servers closer to the data.

A proxy can run directly on a storage server, or on a machine

closer to the storage layer than the client. POSH intercepts

shell pipelines and uses metadata called annotations to decide

where to run each command within the pipeline. We address

three principal challenges that arise: an annotation language

that allows POSH to understand which files a command will

access, a scheduling algorithm that places commands to

minimize data movement, and a system runtime to execute

a distributed schedule but retain local semantics.

We benchmark POSH on real shell pipelines such as image

processing, network security analysis, log analysis, distributed

system debugging, and git. We find that POSH provides

speedups ranging from 1.6× to 15× compared to NFS, without

requiring any modifications to the applications.

1 INTRODUCTION

The UNIX shell is a linchpin in computing systems and

workflows. Developers use many tools at the command-line

level for data processing [33], from core bash utilities,

including sort, head, cat and grep to more complicated

programs such as git [22], ImageMagick [30] and FFmpeg [4].

Network security engineers use shell pipelines to find potential

patterns in gigabytes of logs. The shell’s continued importance

over many decades and generations of computing systems

shows just how flexible and powerful a tool it is.

The UNIX shell, however, was designed in a time dominated

by local and then LAN storage, when file access was limited

by disk access times, such that the overhead of network storage

was an acceptable trade-off. Today, however, solid-state disks

have reduced access times by orders of magnitude. At the same

time, networked attached storage, especially for the enterprise,

remains extremely popular [9, 57, 60]. Mounting filesystems

across the wide area could incur tens of milliseconds of

latency. Furthermore, many applications use wide area storage

systems, via cloud blob storage [25, 54] or cloud-backed

filesystems [7, 48, 50, 51, 58].

Running I/O-intensive shell pipelines over the network

requires transferring huge amounts of data for little compu-

tation. For example, consider generating a tar archive on

NFS. The tar utility effectively copies the source files and

adds a small amount of metadata: the server reads blocks and

sends them over a network to a client, who shifts their offsets

slightly and sends them back. NFS mitigates this problem by

offering compound operations [29] and server-side support

for primitive commands such as cp [41]. However, something

as simple as tar requires large network transfers.

The result of these changing performance trends is that

network transfer is an increasingly large overhead on shell

scripts. For example, unzipping a dataset of size 0.5 GB with

tar -x over NFS within a cloud datacenter takes 7× longer

than on a local disk. While intra-datacenter networking is

fast, it is not as fast as a local flash drive. Some workflows are

so slow over the network that they are effectively unusable:

running git status on the Chromium repository [24] takes

2 seconds locally, but if the repository is stored in a nearby

datacenter, it takes over 20 minutes.

The underlying performance problem of using the shell

with remote data is locality: because the shell executes locally,

it must move large amounts of data to and from remote servers.

Data movement is usually the most expensive (time and energy)

part of a computation and shell workloads are no exception.

Near-data processing [1, 5, 14, 47, 52, 59] can reduce data

movement overheads. Data-parallel processing systems such

as Spark [61], stored procedures in SQL databases [43,44], and

native data structures in key-value stores such as Redis [40]

all bring computation closer to the data. However, many of

these systems require applications to use their APIs: they can

supplement, but not replace shell pipelines.

To address the shell performance problem of data locality,

this paper proposes POSH, the “Process Offload Shell”, a

system that offloads portions of unmodified shell commands to

proxy servers closer to the data. A proxy server can run on the

actual remote fileserver storing the data, or on a different node

that is much closer to the data (e.g., within the same datacenter)

than the client. POSH improves shell-based I/O workloads

through three techniques. First, it identifies parts of complex

pipelines that can be safely offloaded to a proxy server. Second,

it selects which candidates run on a proxy, in order to minimize

network data movement. Finally, it executes the pipeline

across an underlying runtime, stitching together the distributed

computations while maintaining the exact output semantics

expected by a local program. Correctly and efficiently imple-

menting these three techniques has three principal challenges:

1. Correctly understanding the semantics of shell command-

line invocations in order to deduce which files each

command in the pipeline accesses and determine which

commands can be offloaded.

2. Distributing the entire pipeline across different machines

to minimize overall data movement, based on the

“closest” execution environment (client or proxy) for

each command and its file dependencies.

3. Automatically parallelizing pipelines that access many

files while ensuring the output maintains a sequential

execution order.

In order to address the challenge of understanding the

semantics of shell command-line invocations, POSH uses

annotations. POSH’s key insight is that many shell applications

only read and write to files specified in their command-line

invocation, so POSH can deduce which files a command

accesses from a model of the application’s argument structure.

Annotations store a model of each command’s (e.g., cat’s or

grep’s) semantics and arguments, stored locally at the client’s

shell. These annotations, inspired by recent proposals to

annotate library function calls for automatic pipelining and

parallelization [46], assign types to the possible arguments

of command-line applications. At runtime, POSH can parse

which arguments are files and use the underlying storage

configuration to determine where those files are located.

Next, POSH must schedule the entire pipeline across the

execution engine in a way that reduces data movement as much

as possible. However, POSH does not know explicitly how

much data is transferred across each pipe in the entire pipeline.

If the output of grep or awk is piped to another command, POSH

cannot know how much data will travel over the pipe without

running the command. POSH constructs a DAG representation

of the entire command and associated metadata and applies a

greedy algorithm, that estimates how much data travels across

each pipe, to determine the best way to schedule the DAG.

Finally, POSH further improves performance when it knows

it can split commands into multiple data-parallel processes.

POSH ensures that each split parallel invocation retains the

same argument structure as the original command and that the

output is stitched together in the correct order. It does so by us-

ing information about each argument stored in the annotation

to safely split the command. POSH’s execution engine seri-

alizes output from any parallel processes in the correct order,

before writing to the final destination (e.g., client stdout).

This paper makes the following contributions:

1. An expressive annotation language for shell com-

mands: Annotations capture the dominant grammar of

most shell commands and summarize which inputs to

command invocations are files as well as semantics to

safely split command invocations across inputs.

2. A greedy scheduling algorithm that reduces data

movement for unmodified shell pipelines: POSH’s

scheduling mechanism decides which parts of pipelines

can be offloaded to proxy servers closer to the data

and which parts of pipelines can be parallelized, while

preserving the correctness of the output.

We evaluate POSH on a variety of workloads, including

an image processing pipeline that creates thumbnails, a git

command workflow on the Chromium repository, and log pro-

cessing pipelines from research project analysis. On one hand,

for a more compute-heavy log analysis application that in-

cludes a data transfer of one large file, POSH provides a 1.6×

speedup over running bash over NFS. In the best case, for a git

command workflow, POSH provides a 10-15× speedup over

running bash over NFS, even when the client and the server are

in the same datacenter. Section 8 contains the set of full results.

2 RELATED WORK

Near-data computing (NDP). POSH draws upon previous

work that “ships computation closer to the data.” Previous

approaches to NDP, surveyed in [5], focus on two paradigms:

PIM (processing in-memory), where compute is co-located

with memory [28, 45, 47], or ISC (in-storage computing),

where processors or accelerators are co-located with persistent

memory or storage [1,14,52,55,59]. POSH follows the second

approach and pushes portions of arbitrary shell applications

to proxy servers, compute units running on general-purpose

servers, either co-located with storage devices or closer to

storage devices than the client.

Barbalace et al. [5] propose an entire operating system

architecture for NDP with features such as locality-driven

scheduling. Various systems focus on offloading database

query computation into smart SSDs [14] or FPGA accelera-

tors [32, 52, 59]. The Metal FS framework [52] allows users

to run reusable compute kernels, that perform operations

such as encryption or filtering, on FPGA accelerators near the

storage. They can be programmed with standard shell syntax

such as pipes to chain many near-data operations together.

Seshadri et al. [55] propose an extensible programmable SSD

interface where users can push specific pieces of functionality,

e.g., to run filesystem appends, to the SSD. Finally, many

databases allow users to write SQL queries to run as stored

procedures [43, 44]. Similarly, many key-value stores, such as

Redis [40], Splinter [39] and Comet [21] support extensibility

with user-defined functions. POSH, in contrast, focuses just

on a locality-aware shell, to enable the extensibility of remote

filesystems. POSH pushes computation to proxy servers (that

do not require custom hardware), without forcing the user to

explicitly decide which operations should be offloaded.

NFS Optimizations and filesystems. NFS, starting in

version 4.2 [29], offers support for some server-side operations,

such as server-side copy [41]; however, NFS does not have

support for offloading arbitrary programs. NFS allows batch-

ing operations via compound operations [29]; Juszczak [37]

describes techniques to batch writes. vNFS [10] offers a new

API for NFS that supports batching and vectorizing filesystem

operations. This technique reduces the latency of running

commands such as tar over NFS, but still requires moving the

data across the network, instead of pushing the computation

to the data. CA-NFS [6] attempts to improve application per-

formance in a multi-tenant scenario by adaptively scheduling

certain client operations to run asynchronously during periods

of high system load. POSH currently does not handle multi-

tenancy, but could use similar methods to factor system load

to adapt scheduling decisions. BlueSky [58] proposes running

proxy servers in the cloud that serve data from slower blob

storage; these proxy servers can expose NFS access to the data.

POSH, in contrast, uses proxy servers to push application code.

Distributed execution engines. Distributed cluster com-

putation systems such as Spark [61], MapReduce [13],

Dryad [31], Hadoop [19] also automatically parallelize compu-

tation on large datasets, but require that users follow a specific

API. Systems such as gg [17] and UCop [15] take “everyday

applications,” such as software compilation, unit testing and

video encoding, and automatically parallelize them in the

cloud. These systems focus on compute-intensive workloads,

not I/O-intensive, and do not necessarily make decisions about

scheduling computation to preserve data locality, unlike POSH.

Code offloading and type systems. Many systems enable

code offloading, to implement distributed applications on

many mobile devices that can benefit from computation on

nearby servers [8, 26, 35]. Some of these systems require

specific programming language constructs to offload processes

and partition programs [8, 27, 34–36]. Recently, Pyxis [11]

optimizes database applications by automatically offloading

procedures to run at the database server. It uses program

analysis to determine what to offload, while POSH uses

per-command annotations. Split Annotations [46] proposes

using per-function annotations to determine how to split and

pipeline function calls in data analytics workloads, to enable

cross-function cache pipelining and parallelization. These

annotations are fundamentally different from POSH’s shell

annotations: POSH’s annotations attempt to understand the

command-line semantics of shell commands, which tend to

have a much more varied structure than function calls.

Command-line tools. Many command-line tools allow

users to automatically parallelize and execute shell commands

remotely. rsh [3] enables remote execution of shell commands.

pssh [12] allows users to execute commands over SSH in

parallel on other machines. GNU Parallel [56] splits input

arguments and executes jobs over these inputs in parallel across

one or more machines. POSH also parallelizes commands on

remote machines, but automatically decides how to offload

and schedule commands so users do not need to explicitly

program when to offload code. POSH does not rely on SSH

access to the storage servers and can be used on top of a service

such as NFS, where remote shell access may be prohibited.

3 SYSTEM OVERVIEW

POSH consists of three main components: a shell annotation

interface (§4), a parser and scheduler (§5), and an execution

engine (§6). This section briefly describes each component

and how they link together, pictured in Figure 1.

B

A

STDERRSTDOUT

Execution Engine

bar y

foo x

Parser

STDERRSTDOUT

DAG Representation

bar y

foo x

Scheduler

/mnt/a → A
/mnt/b → B

C

awk

bar
foo
cut

cat

...

Annotations

Configuration

❯ foo x | bar y

POSH

Figure 1: In POSH’s main workflow, a shell command is passed to the

parser, which uses the annotations to generate and schedule a DAG

representation of the command. The DAG includes which machine to

run each command on, A, B, or C (client) here. The execution engine

finally runs the resulting DAG.

Annotation interface. POSH, on bootup, requires users to

provide a file containing a list of annotations for any commands

they want POSH to consider offloading. Annotations are

written once per command, e.g., once for grep or once for awk,

so POSH can then accelerate shell pipelines that combine these

commands with standard constructs, such as anonymous pipes.

We envision that developers can share annotations for popular

programs, so users do not necessarily need to write their own

annotations; crowdsourcing annotations has seen success with

TypeScript [2, 42, 49].

Parser and scheduler. Given a shell program, the POSH

parser turns each pipeline (each line of the program, potentially

consisting of several commands combined by pipes and

redirects) into a directed acyclic graph (DAG). This graph

represents the input-output relationship between commands,

the standard I/O streams (stdin, stdout and stderr) and

redirection targets, as shown in Figure 1. POSH then parses

each individual command and its arguments using the cor-

responding annotation and completes the DAG by including

additional input and output dependencies of the pipeline.

The parser finally runs a scheduling algorithm on the

DAG and assigns an execution location to each command

in the pipeline. In order to do this, the parser requires extra

configuration information that specifies a mapping between

each mounted client directory and the address for a machine

running a proxy server for the corresponding directory (if any).

Execution engine. After POSH has parsed and scheduled a

shell pipeline, it executes the command across the underlying

execution engine. The execution engine consists of one or

more proxy servers, each associated with a specific remote

client mount, either at the storage server, or in a nearby node

with access to the same data. Additionally, one “proxy server”

runs at the client to execute any local computation. POSH

ensures that the entire command looks like it has been running

locally, even if processes had been offloaded to proxy servers.

4 SHELL ANNOTATIONS

POSH must correctly understand the semantics of shell com-

mands, which can be challenging because of the wide range of

syntax allowed by command lines. In this section, we discuss

the motivation and design of POSH’s shell annotation layer.

4.1 Motivation for Shell Annotations

In order to schedule and execute shell pipelines in a way that

minimizes data movement, POSH must understand the seman-

tics of command-line pipelines. Concretely, annotations must

reveal enough information that allows POSH to determine:

1. Which commands can be safely offloaded to proxy

servers.

2. If any commands in the pipeline filter their input.

3. If any commands can be split in a data-parallel way into

multiple processes.

Consider a simple pipeline: cat A B C D | grep "foo" | tee

local_file.txt. POSH could try to offload any of the three

commands: cat, grep, or tee. To determine which commands

are safe to offload, POSH must understand which files (if

any) cat, grep and tee access, and where these files live.

Therefore, POSH must determine which arguments to the

three commands represent file paths. However, outside of the

program, all of these arguments are seen as generic strings.

For example, consider the following four commands:

cat A B C D | grep "foo"

tar -cvf output.tar.gz input/

tar -xvf input.tar.gz

git status

The cat command takes in four input files, while the

argument to grep is a string. The second command, tar -cvf,

takes an output file argument followed by -f, followed by an

input file argument (not preceded by a short option). The third

command, also tar, takes an input file argument followed

by -f and implicitly takes its output argument as the current

directory. Finally, git also implicitly relies on the current

directory as a dependency. Without a formal way to model

the argument structure for each command, POSH could not

determine the file dependencies for each command.

Secondly, in order to produce an execution schedule that

reduces data movement, POSH needs to know the relationship

between the inputs and outputs of a command. In the cat | grep

example, if the file argument to cat is remote, to minimize data

movement, POSH cannot just offload the cat command. Since

cat usually produces the same amount of output as input, but

grep usually filters its input, POSH must also offload grep.

Finally, suppose cat had multiple file arguments, but these

files lived on different mounts (e.g., a pipeline that processes

logs from different servers). POSH could not safely offload this

command to a single proxy server, as the proxy server may not

have access to all the mounts. However, many command-line

programs perform map functions over each line in the file in

sequence. For example, cat prints all lines to the output, and

grep filters the input line by line. Therefore, these commands

can be split into processes across their input files and then

offloaded to different proxy servers. However, parallelization

is not safe for all commands: wc, for example, “reduces” the

input. Without a formal model for the command’s semantics,

POSH could not make optimal scheduling decisions.

4.2 Annotation Interface

Annotations need enough information to allow POSH to

deconstruct, parse and schedule each command. Annotations

contain two types of information: argument-specific and

command-specific information. First, they contain a list of

arguments along with a type assignment for each argument.

Second, they contain information relevant to parsing the

entire command line, either semantic information relevant to

scheduling, or custom parsing options. The annotation inter-

face is inspired by the POSIX conventions for command-line

arguments and their GNU extensions [23], which are followed

by a multitude of UNIX utilities. If a program does not follow

these conventions, POSH may not be able to determine how to

accelerate it. We describe both parts of the annotation in turn.

4.2.1 Argument-Specific Information

POSH supports the following classes of command-line

arguments:

1. A single option with no arguments (e.g., -d or --debug).

2. An option, followed by one or more parameters (e.g. -f

<file>).

3. A parameter without a preceding option (e.g. the

arguments in cat A B C D).

The annotations must specify the following information for

each argument that has associated parameters:

1. The short or long option name: This is only relevant for

arguments preceded by options.

2. The type: input_file, output_file, or string.

3. The size: 1, specific_size(x), or list (for variable

size).

4. If the argument is splittable: If an argument has multi-

ple parameters, the splittable keyword specifies that the

command can be split in a data-parallel way across this ar-

gument (this is only allowed for up to a single argument).

The above format applies to many popular UNIX commands

and core utilities. For example, the annotation for cat may

look like:

cat:

- PARAMS:

- type:input_file,splittable,size:list

This specifies that cat takes in one or more input files, and it

can be split across its inputs.

4.2.2 Command-Specific Information

Annotations contain information relevant to the semantics of

the entire command, specified by the following keywords:

• needs_current_dir: Whether the command implicitly

relies on the current directory.

• splittable_across_input: Whether the command can be

split across its standard input. In the example pipeline, if

the cat is split into separate cats, POSH would also need

to split the grep command into separate commands to

truly take advantage of parallelism.

• filters_input: Whether the command is likely to have

a smaller output than input.

• long_arg_single_dash: Most programs use double

dashes before long arguments (e.g. --debug), but some

programs require long arguments be preceded by a single

dash. (e.g. -debug).

4.2.3 Annotation Conflicts

Some commands can be invoked with flags whose behavior

changes depending on which other flags are present. For

example, the annotation for a tar invocation used to create

an archive could be:

tar: [filters_input]

- FLAGS:

- short:c

- short:z

- OPTPARAMS:

- short:f,type:output_file,size:1

- PARAMS:

- type:input_file,size:list

However, developers commonly invoke both tar -x and tar

-c, to extract and create a tarball, respectively. The assignment

for the -f flag conflicts; it would be an input_file in the -x

case, but an output_file in the -c case. POSH supports this

by allowing multiple annotations per command. In particular,

a client can include one annotation per type of invocation for

every binary, and POSH will try all annotations until it finds

one that fits the current invocation.

4.3 Correctness and Coverage

Potential mistakes. POSH depends on correct annotations

for optimal execution: if the annotations are incorrect in some

way, POSH does not make guarantees about the correctness

or the performance of the resulting execution. Annotations

with incorrect type semantics (assigning an argument with str

instead of input_file) or parallelization semantics (specifying

a command is splittable when the command needs all input

files concurrently) could cause execution errors. POSH might

schedule the command on a machine without access to a nec-

essary file, or incorrectly try to split the command into parallel

workers. Annotations might not include potential optimization

information, by omitting that a command filters its input or

it can be parallelized. In this case POSH might not make the

optimal scheduling decision, but execution will still be correct.

Finally, a command, such as awk, could either filter or

increase its input depending on its invocation. awk could

include multiple annotations for each separate program string,

which separately specify or omit the filters_input keyword.

Mitigations. In practice, we expect that a community of

developers would maintain and crowdsource a set of “verified”

annotations; other annotation-based systems such as Type-

script [42] make this assumption. To prevent incorrect type

semantics, POSH could use a sandbox on top of the filesystem

interface that checks if the program only reads and writes to

files specified by the annotation, and crash the execution if the

program accesses a file outside of its dependency list [17, 20].

Finally, future work could explore profiling commands to

automatically deduce whether command invocations produce

less, more or the same amount of input data as output data.

Coverage. The POSH interface covers the command-line

syntax for a wide range of command line programs, as spec-

ified by the GNU command-line standard syntax and exten-

sions [23]. Along with the source code of POSH, we provide an-

notations for 21 different commands, which cover a wide range

of unmodified shell applications used in our evaluation (§7).

However, POSH will not cover all parsing options for all pro-

grams. While POSH can interpret wildcards (“*”) when listing

file paths, it will not do any custom parsing to list paths. For ex-

ample, ffmpeg allows users to provide input files (input frames)

based on a pattern, such as “%04d.jpg”, which corresponds

to all files between 0000-9999.jpg. POSH will not parse com-

mands whose file dependencies are specified dynamically, via

a pipe: e.g., “find . -type -iname "*.jpg" | xargs -i mogrify

-resize 100x100” could be used to dynamically list all jpg files

and resize them with ImageMagick. Since POSH does not know

what the file inputs to the mogrify command are upfront, it

cannot decide whether to offload the mogrify command or not.

5 POSH’s PARSER AND SCHEDULER

This section discusses how POSH solves two challenges in

executing shell commands efficiently across a set of proxy

servers: (1) scheduling pipelines to minimize data movement

(§5.2) and (2) correctly parallelizing pipelines (§5.3). We

begin by discussing how POSH constructs an intermediate

program representation of the command that allows it to

Client

Server 0 Server 1

cat 01.log 02.log

 03.log 04.log

grep 128.151.150.12

cat 05.log 06.log

 07.log 08.log

grep 128.151.150.12

STDERR

tee output.txt

STDOUToutput.txt

$ cat mount0/*.log mount1/*.log

 | grep 128.151.150.12

 | tee output.txt

STDERR

Figure 2: DAG representation of a simple shell program that uses

cat and grep to analyze logs across different mounts. POSH uses

its scheduling and parallelization mechanisms to offload the cat and

grep to each server.

effectively solve these two problems.

5.1 POSH’s Program Representation

POSH needs a program representation that allows the runtime

to see every data source (file that is read), data sink (output file

that is written to), and flow (pipe) that connects two commands

within the pipeline. Understanding which files commands read

and write allows POSH to determine the execution location

closest to the data for each command. Understanding the

connections in the pipeline allows POSH to see how data

flows between commands and allows POSH to preserve

dependencies when parallelizing nodes.

POSH represents parsed shell pipelines as directed acyclic

graphs (DAGs), which contain nodes and streams. Nodes

represent single commands (command nodes) along with each

of their arguments, and parsed annotation metadata (argument

types, if it is splittable, and if it filters its input). Nodes also

represent sources and sinks in the entire pipeline: reading from

stdin (read nodes) or writing to stdout or a file (write nodes).

Streams represent the data flows in and out of these nodes.

Given a shell pipeline, POSH constructs a DAG that models

the dependencies between commands (UNIX pipes) and stan-

dard I/O streams (stdin, stdout and stderr). POSH then builds

a custom argument parser for each command from the anno-

tations, to determine which arguments actually appear in each

command’s invocation and what their corresponding types are.

For example, if a tar -c invocation contained the -f argument,

POSH knows the string following -f is an output_file.

Figure 2 shows an example DAG generated for the simple

program discussed in §4.1, that runs cat and grep on files

stored in different mounts and pipes the final output to tee.

Algorithm 1 POSH Scheduling Algorithm

1: function SCHEDULE(dag)

2: for node ∈ dag.GETNODES do

3: if CONSTRAINT(node) != NULL then

4: node.location ← CONSTRAINT(node)

5: for source_node ∈ dag.GETSOURCES do

6: path ← GETPATHTOSINK(dag,source_node)

7: sink_node ← path[path.length() - 1]

8: if source_node.location == sink_node.location then

9: for node ∈ path do

10: if node.location == NULL then

11: node.location ← source_node.location

12: else

13: �푚�푖�푛_�푤�푒�푖�푔ℎ�푡←1

14: edges ← {}

15: for (node,next) ∈ path do

16: if ISFILTERNODE(node) then

17: �푚�푖�푛_�푤�푒�푖�푔ℎ�푡←�푚�푖�푛_�푤�푒�푖�푔ℎ�푡∕2

18: edges[(node.id,next.id)] =�푚�푖�푛_�푤�푒�푖�푔ℎ�푡

19: for (node,next) ∈ path do

20: if node.location == NULL then

21: if edges[(node.id,next.id)] ≥�푚�푖�푛_�푤�푒�푖�푔ℎ�푡 then

22: node.location ← source_node.location

23: else

24: node.location ← sink_node.location

25: else if node.location != CONSTRAINT(node) then

26: node.location ← CLIENT

POSH schedules and parallelizes the workload by first splitting

the command into separate cat and grep commands that run

at each proxy server and then merging the outputs at the client.

Sections 5.2 and 5.3 discuss these steps in turn.

5.2 Scheduling

POSH’s scheduling algorithm seeks to minimize data move-

ment, as it assumes that in scenarios where the computation is

I/O bound rather than CPU bound, minimizing data movement

will reduce end-to-end latency. However, POSH does not know

how much data a command will produce prior to execution.

We describe the exact setup of the problem and POSH’s greedy

algorithm that uses information from POSH’s annotations to

estimate how to minimize data movement.

Problem setup. The POSH scheduling algorithm, summa-

rized in Algorithm 1, takes the DAG representation of the

command discussed in §5.1 and assigns an execution location

to each node. POSH must pay attention to two concerns:

constraints on where certain nodes can execute and the number

of bytes transferred across edges in the DAG. The first concern

arises because certain proxy servers might not be able to exe-

cute certain nodes as they do not have access to all the necessary

files. The second concern arises because POSH seeks to min-

imize the number of bytes transferred between two locations

across the network. Concretely, consider a cat node (operating

on a remote file) that pipes its output to a grep node, that filters

Algorithm 2 POSH Scheduling Algorithm Helper Functions

1: /* Returns constrained location assignment for node, if any. */

2: function CONSTRAINT(node)

3: loc ← NULL

4: if ISREADNODE(node) then

5: loc ← GETREADLOC(node)

6: else if ISWRITENODE(node) then

7: loc ← GETWRITELOC(node)

8: else if ISCMDNODE(node) then

9: deps ← Set()

10: for file ∈ GETFILEDEPENDENCIES(node) do

11: deps.append(GETLOCATION(file))

12: if deps.length() > 1 then

13: loc ← CLIENT

14: else if deps.length() == 1 then

15: loc ← deps[0]

16: return cost

17: /* Given a source node, trace a path to the sink via stdout paths. */

18: function GETPATHTOSINK(dag,node)

19: path ← [node]

20: while node.children.length() > 0 do

21: path.append(GETSTDOUT(node))

22: return path

its input, which in turn writes its output to stdout on the client.

To schedule the least data movement across the network,

POSH should offload both the cat and grep commands: in the

path through the cat, grep and the stdout nodes, the minimum

cut (edge with least data transferred) occurs after grep.

Step 1: Resolving constraints on each node. Algorithm 2

summarizes the helper functions for the scheduling algorithm,

including a function, Constraint, that determines whether a

node in the DAG has any constraints on execution location

(lines 1-16). Read and write nodes are assigned to the location

of their input or output data streams (lines 4-7). Command

nodes that access files on a single mount are greedily assigned

to execute on the proxy server corresponding to that mount

(lines 14-15). Finally, command nodes that access files from

multiple different mounts are always assigned to execute

on the client (lines 12-13). Only the client has access to all

mounts; by default, proxy servers only serve requests for a

single mount. We discuss an optimization to this decision in

§5.3, for special cases where the command can be parallelized.

Step 2: Minimizing data transfer. In Algorithm 1, after

assigning locations to nodes with constraints (lines 1-4), POSH

assigns locations for the remaining command nodes. POSH

first iterates through all the source nodes of the graph, traces the

path from each source to a sink node with the GetPathToSink

helper function defined in lines 18-19 of Algorithm 2, and

considers each path individually. Each path is guaranteed to

be linear because each node in the graph effectively has one

child. POSH assumes most data transfer occurs along stdout

streams: even though command nodes have two children (one

edge to stdout and one to stderr), POSH only pays attention

to stdout connections. Read nodes can have one child by

definition, and write nodes are sinks, so have no children.

Within a path, when the source and sink nodes have the same

location, scheduling is simple: all nodes along the path from

the source to the sink are assigned that location (lines 8-11).

However, when the source and sink have different locations, the

scheduler must find the edge along which cross-location data

transfer should occur: to minimize data transfer, this should be

the edge where the least data flows. POSH first iterates along

each edge in a path and assigns relative weights according

to heuristics (lines 13-18). POSH assumes nodes produce the

same amount of output as input, or filters input by half (lines 16-

18). The helper function IsFilterNode called on line 16 returns

true for commands whose annotations indicate that they filter

their input from the filters_input keyword. This heuristic,

that filter commands halve their input, obviously does not fit all

cases. Some filters, such as wc, usually produce much less than

half the input. To find the minimum cut, only the relative order-

ing of edges matters, rather than the absolute weight values.

POSH then iterates along each path and schedules each

unassigned node’s location to be either the source location

or the sink location, depending on if the node is before or

after the minimum cut edge. For example, if a path contains

cat, grep, and cut, and writes to stdout on the client, POSH

determines the minimum weight edge is in between cut and

the stdout write node. When there are conflicting assignments

from nodes appearing in two different paths, POSH schedules

the node on the client (lines 25-26).

5.3 Parallelization

The second challenge POSH resolves is determining when

commands are safe to parallelize and then guaranteeing

correct execution while parallelizing nodes. After determining

a command is safe to split, correctly executing the command

in a data-parallel way requires: (1) splitting the command

only across the argument that can be split while preserving the

other arguments and (2) stitching the outputs of the command

back together in the correct order.

Determining which nodes to parallelize. POSH can auto-

matically parallelize nodes that are safe to parallelize across

the files they access, or across their input edges. In the first

case, to parallelize the command cat -n A.txt B.txt C.txt,

POSH needs to know that the file arguments are A.txt, B.txt

and C.txt, and that the “-n” flag must be preserved. POSH uses

the per-argument splittable keyword in an annotation, which

indicates that the command can be split across a particular

argument (here, the file argument). In the above example,

POSH would replace the single node for cat with three nodes,

each with the -n flag and one of A.txt, B.txt or C.txt.

In the second case, POSH allows nodes to also be par-

allelized across their input streams. Concretely, if the cat

above piped its output to grep, there would not be much

performance benefit to parallelizing cat, unless POSH also

split grep across the three input cat nodes. POSH determines

which commands this parallelization is safe for via the

splittable_across_input keyword. The annotation for grep

would include this keyword, so POSH would replace the grep

node with three grep nodes for each cat node. This is not safe

for commands that reduce or merge the input such as word

count (wc): since the annotation for wc would not include this

keyword, POSH would ensure that the output of the prior

commands are merged before executing wc.

Splitting across mounts. When POSH splits nodes that can

be parallelized, it will inherently split commands that read and

write to different mounts. This allows the scheduler to bypass

the restriction in Algorithm 2, lines 12-13. If a single com-

mand accesses files in different mounts, but the command can

be split, instead of assigning this node to run at the client, POSH

will split it into multiple workers that run in parallel on differ-

ent proxies. POSH by default parallelizes commands across

machines, but within a single machine, the maximum splitting

factor parameter determines the degree to which to split further.

The default value is 1, but increasing the splitting factor to a

value �푠>1 causes POSH to split a command into �푠 commands

that each operate on
�푛

�푠
sized chunks of the input files, where �푛 is

the number of files that the node accesses on a single machine.

Correctly preserving output order. In order to ensure that

the output of the entire pipeline is correct, when POSH splits

a command in parallel, it must ensure that any node that reads

the output of this node now reads the output of the replacement

nodes in sequence. When nodes execute, they process their

inputs in sequential order, guaranteeing correct output order.

6 POSH CONFIGURATION AND EXECUTION

In this section, we discuss how to configure POSH and how

POSH executes programs.

6.1 POSH Configuration

To understand how to setup and configure POSH, consider a

client that has access to folders on two NFS servers, within

a nearby datacenter. Each NFS administrator has agreed to

allow a separate proxy server, that resides within the same

datacenter, to access the same mounts on behalf of the client

(via NFS).1 To use POSH, each of the two proxy servers must

run the POSH server program, which is configured with a list

of client credentials mapped to the folder paths each client has

access to (which the proxy servers themselves access via NFS).

The client must run the POSH client program, which takes in

a file containing the shell annotations, and a configuration file

that specifies a mapping from locally mounted folders, to the

addresses for proxy servers for those mounts. In the previous

example, the client’s configuration file would map each of

the two mounted folders to the corresponding proxy server.

Together, the client and the two proxy servers make up POSH’s

1The remote fileserver itself can also run the POSH server program and

act as a proxy server.

execution engine, which can be used to execute any schedules

POSH’s parser creates.

6.2 Execution Engine

After the client schedules a shell pipeline, the execution engine

can execute the DAG.

Setup Phase. First, the client divides the DAG into sub-

graphs that need to execute on different machines (including

a subgraph that will execute on the client itself). The client

handles setting up persistent connections with proxy servers

for any pipes between DAG nodes assigned to two different

machines. Finally, when all pipes are setup, the client sends

a request to each proxy server to start executing their portion

of the DAG.

Execution Phase. Once each proxy server receives a

request to execute a subprogram DAG, it will first spawn all

the nodes in the DAG corresponding to processes that need

to be executed (e.g., cat or grep). To redirect I/O between

processes, POSH spawns a thread for each redirection that

needs to occur and copies the output from each node to the

correct pipe, TCP stream or file. For nodes that have multiple

inputs, nodes process these inputs sequentially. Nodes that

send output to nodes with multiple inputs buffer the content

until the receiver starts processing that node’s output.

6.3 Implementation

POSH is implemented in about 12,400 lines of Rust code.

POSH uses Rust’s CLAP library [38] to build custom parsers

for each command, based on the command’s annotation, to find

out which arguments are actually present in an invocation.2

7 METHODOLOGY

We evaluate POSH by measuring its performance impact over

five unmodified I/O-intensive shell applications. This section

describes our evaluation methodology: the applications, why

they cover a broad range of I/O-intensive shell applications,

and our experimental setups.

7.1 Applications

For each application, in our evaluation setting, we assume that

all input data files and intermediate files live on a remote NFS

mount, so POSH accelerates these applications by preventing

unnecessary data movement. Some applications require

writing the final output to stdout or a file on the client; we

specify this on a per-application basis.

Ray-tracing log analysis. The first application represents a

best-case workload for POSH: it is computationally light, can

be parallelized, and its output is a tiny fraction of the data it

reads. The application analyzes logs of a massively distributed

research ray-tracing (computer graphics) system [18], to track a

2The implementation of POSH is available at https://github.com/deeptir18/

posh.

task (a simulated ray of light) through the path of workers it tra-

versed. The analysis first cleans and aggregates each worker’s

log into one file with cat, grep, head and cut. It then runs sed

to search for the path of a single ray (e.g., a straggler) across

all the workers and stores the final output on a file at the client.

Thumbnail generation. The next application is CPU-

intensive, but still produces output that is a tiny fraction of its

input, and is highly parallelizable. The application uses Im-

ageMagick [30] to generate thumbnails of size 10KB for each

image in a folder of about 1090 images, each about 4MB large;

the output thumbnails are also written to the remote mount.

Port scan analysis. The third application is computationally

heavy, but not parallelizable, and involves data transfers of

large files. ZMap [16] is a network scanning tool that performs

Internet-wide scans of the public IPv4 address space. Network

security researchers run the following shell application to

analyze 40GB subset of a full Internet scan of port 80; the

final output file is stored in the remote mount.

1. Clean the raw data with a program called zannotate.

2. Use a JSON processing tool, jq, to isolate the IP and

AS ID# (Autonomous System ID) columns.

3. Use pr to merge the columns together.

4. Use awk to count the number of IPs per AS.

Distributed log analysis. The next application is a syn-

thetic benchmark that models system administrators running

analysis on logs across different storage servers, to search for

an IP address within the access logs stored across different

machines. It is computationally light, highly parallelizable,

and the output is a tiny fraction of the input. This workload

runs cat over all of the files and then filters for a particular IP

with grep and writes the results back to the file stored locally at

the client. Each of five storage servers contains approximately

15GB of logs from the SEC’s EDGAR Log File Data Set [53].

Git workflow. The final application, a git pipeline on the

Chromium [24] repository, attempts to imitate a developer’s

git workflow and is extremely metadata-heavy. After rolling

back the repository by 20 commits and saving each commit’s

patch, the workload successively applies each patch and runs

three git commands: git status,git add ., and git commit -m.

7.2 Setup and Baselines

Baselines. For all workloads, we compare POSH to two

NFS configurations, one with with synchronous operations

(rw,sync,no_subtree_check) and the other with asynchronous

operations (rw,async,no_subtree_check).

POSH configuration. For all experiments, unless otherwise

specified, the POSH proxy runs on the same machine as the

NFS server. The POSH client also mounts the NFS folder

locally in case some computations must run on the client.

Section 8.2.1 evaluates the impact of placing the proxy directly

at the storage server versus on another machine.

Network settings. We focus on two network scenarios:

1. Client and server in the same Google Compute Platform

(GCP) region (us-west2). The RTT and throughput

between the two machines are 0.5ms and 5-10Gbps, as

measured by ping and iperf.

2. Client in a university network (at Stanford) and server in a

nearby GCP region (us-west2). The RTT and throughput

between the client and server are approximately 20ms

and 600Mbps.

Setup. GCP client, proxy, and storage machines are

configured with 4 vCPUs, 15GB of memory, and 10Gbps

egress network bandwidth (n1-standard-4); they run Ubuntu

19.04. The client at Stanford runs Ubuntu 18.04. All storage

servers store data on regional persistent SSDs.

8 EVALUATION

Our evaluation seeks to answer several questions: (1) Can

POSH accelerate end-to-end pipelines that use many different

command-line tools to access remote data over NFS (§8.1)?

(2) What is the best way to configure POSH (§8.2)? (3) Where

do performance benefits come from (§8.3)?

8.1 End-to-End Application Performance

For each workload described in §7.1, Figures 3 and 4 show the

performance of POSH compared to bash over NFS for two net-

work settings: one where the client is in the same GCP region as

the storage server (“cloud”) and one where the client is in a uni-

versity network outside the datacenter (“university”). For git,

Figure 4 only shows results for a client in the same datacenter.

Summary of all results. On the university-to-cloud

network, POSH performs 8× better than bash over NFS on the

ray-tracing workload, 1-2× better on the thumbnail generation

and port scan analysis workloads, and 12.7× better on the

distributed log analysis workload. On the cloud-to-cloud net-

work, POSH outperforms bash over NFS for the git workload

and distributed log analysis workload; however, POSH does

not outperform bash over NFS on the other three applications,

partially because these applications are more bandwidth than

latency sensitive. We discuss each set of applications below.

Ray-tracing log analysis. This workload sees an 8×

improvement on the university-to-cloud network and no

improvement on the cloud-to-cloud network. The workload

reads 6GB of input from about 2000 files over NFS, and

aggregates them into one 4GB file, which is written back

to NFS. The final output of sed on the aggregated file is

much smaller (20 lines). POSH prevents 10GB of data

from being copied across the network unnecessarily. On

the cloud-to-cloud network, both the overheads of separate

filesystem requests (to open and read 2000 files) and the

overheads of transferring data to the client are not as large.

Thumbnail generation. This workload sees a 1.7× im-

provement in the university-to-cloud setting and no improve-

 51 46 61 70
 51 46

458456

0

100

200

300

400

cloud university

Client Network

Ti
m

e
(s

)

nfs−sync nfs−async local posh

(a) Ray-Tracing Log Analysis

 668 661 666 673 679 661

11571181

0

400

800

1200

cloud university

Client Network
Ti

m
e

(s
)

nfs−sync nfs−async local posh

(b) Thumbnail Generation

2411227624262442 24162276

4101

3892

0

1000

2000

3000

4000

cloud university

Client Network

Ti
m

e
(s

)

nfs−sync nfs−async local posh

(c) Port Scan Analysis

 206
 419

 573

 212

2696
2563

0

1000

2000

3000

cloud university

Client Network

Ti
m

e
(s

)

nfs−sync nfs−async posh

(d) Distributed Log Analysis

Figure 3: End to end latency of POSH on four applications, compared to NFS sync, NFS async and local execution time for two networks: one

where the client is in a university network and one where the client is in the same GCP region as the storage server. The POSH proxy runs directly

on the NFS server. POSH provides between 1.6-12.7× speedups in the university-to-cloud network compared to NFS. Using POSH from a client

outside the datacenter results in about same latency as a client inside the datacenter using NFS, with barely any overhead over local execution.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

status

commit

add

0 5 10 15 20

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

Commit Number

Ti
m

e
(s

)

● posh nfs−sync nfs−async local

Figure 4: Average latency of 20 git status, git add, and git

commit commands run on Chromium repo, of POSH compared to

NFS and local execution, for a client in the same cloud datacenter

as the storage server. POSH provides up to 10-15× speedups by

preventing round trips for filesystem metadata calls.

ment in the cloud-to-cloud setting. Generating thumbnails with

ImageMagick is computationally heavy: it takes 12 minutes to

finish when running locally. While generating thumbnails pro-

duces a smaller input (12MB of thumbnails vs. 15GB of input

images), in the cloud network, transferring 15GB of data to

the client will take about 12 seconds on a 10Gbps connection.

However, in the university-to-cloud setting, POSH attenuates

the added delay from transferring data over a slower network.

Port scan analysis. The scanning analysis workload sees a

1.6× benefit with POSH in the university-to-cloud setting, but

no benefit in the cloud-to-cloud setting. The scanning workload

starts by processing one large 40GB file with zannotate and

writing the result back to NFS. This is more bandwidth than

latency sensitive, as the application makes fewer filesystem

requests across the network than the ray-tracing or thumbnail

generation workloads. In addition, zannotate is CPU-intensive

as it must parse each line of JSON in the input file.

Distributed log analysis. This workload sees a 12.7×

improvement in the university-to-cloud setting, because POSH

is able to parallelize the computation across the five different

mounts and only aggregate the result locally. Both offloading

the computation in order to prevent data movement as well

as running the work on each machine in parallel, instead

of sequentially, reduces latency. Even in the cloud-to-cloud

setting, this results in a 2× speedup.

Git workflow. POSH sees the greatest performance benefit,

a 10-15× latency improvement, when running git commands

over NFS. Figure 4 shows the time for each git status,

git add, and git commit commands for 20 commits, in the

cloud-to-cloud network. We did not perform this full analysis

for the university-to-cloud network, because the time to run

a single add was up to two hours. git repositories typically

contain many small files; commands like status and add

check the status of every file in the folders to see if it has been

modified. This results in NFS making filesystem requests such

as stat for every file. As a comparison, the ray-tracing log

analysis workload makes around 2,500 open() calls and 2,500

stat() class. For a git add in this workload, these numbers

are 34,000 and 340,000, respectively, measured by strace. By

offloading these commands to the server, POSH avoids many

unnecessary roundtrips.

8.2 POSH Configuration

We evaluate two aspects of POSH’s configuration: placement

of proxy servers and maximum parallelization factor within

a single machine.

8.2.1 Proxy Placement

Figures 5 and 6 shows the cost of placing the proxy server on

a different machine from the storage server, within the same

datacenter, for the client at Stanford, for three applications:

ray-tracing, thumbnail generation, and git. The proxy server is

closer to the data than the client; it has both a higher bandwidth

469

 58 81

0

200

400

nfs−sync posh posh−proxy

Configuration

Ti
m

e
(s

)

(a) Ray-Tracing Log Analysis

1153

 713 775

0

400

800

1200

nfs−sync posh posh−proxy

Configuration

Ti
m

e
(s

)
(b) Thumbnail Generation

Figure 5: Cost of running the POSH proxy on a separate server from

the storage server, for a client outside the datacenter (“POSH-proxy”,

versus POSH where the proxy is at the storage server (“POSH”),

and the baseline NFS sync execution time. POSH-proxy has a low

overhead over POSH because there is not much overhead to running

NFS between two machines in the datacenter.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

status

commit

add

0 5 10 15 20

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

Commit Number

Ti
m

e
(s

)

● posh posh−proxy

Figure 6: Cost of running the POSH proxy on a separate server

from the storage server for a client outside the datacenter for the git

workload. There is a 10-15x slowdown over POSH running directly at

the storage server because running bash over NFS for this workload

results in a 10-15x slowdown, due to filesystem metadata calls.

(10Gbps vs. 600Mbps) as well as lower latency (0.5ms vs.

20ms) connection to the storage server. However, in this

setting, the proxy server will have at least the same latency

as bash over NFS for the cloud-to-cloud setting. The proxy

still must perform remote filesystem requests and transfer all

the necessary data within the datacenter, because it mounts

the data over NFS as well. bash over NFS does not have

much overhead for the ray-tracing and thumbnail generation

workloads, but has a 10-15× overhead for the git workload,

due to many filesystem metadata calls. However, running git

at the client outside the datacenter over NFS would have taken

on the order of hours; POSH merely takes seconds.

8.2.2 Parallelization on a Single Machine

For a 16-core machine, Figure 7 shows the effects of varying

the maximum splitting factor for the ray-tracing and thumbnail

generation workload. The latency of the ray-tracing workload

decreases until �푠=4 processes and the latency of the thumbnail

●

●

● ● ●

●

32

29

25 25 25

28

0

10

20

30

40

1 2 4 8 16 32

Parallelization Factor

Ti
m

e(
s)

(a) Ray-Tracing Parallelization

●

●

●

●
● ●

65
0

33
0

16
8

14
7

13
8

13
7

0

200

400

600

1 2 4 8 16 32

Parallelization Factor

Ti
m

e(
s)

(b) Thumbnail Generation Paral-

lelization

Figure 7: Latency improvements from using POSH to parallelize

pipelines within a single machine, for the ray tracing and thumbnail

generation workloads.

Application NFS POSH

Ray-Tracing Log Analysis 10GB 3KB

Thumbnail Generation 15GB 0

Port Scan Analysis 175GB 0

Distributed Log Analysis 80GB 76.3KB

Table 1: Bytes transferred over the network. Data movements are

significantly reduced by POSH.

Application Setup Time

Ray-Tracing Log Analysis 50ms

Thumbnail Generation 30ms

Port Scan Analysis 10ms

Distributed Log Analysis 10ms

git status 0ms

Table 2: Median setup time.

generation workload decreases until�푠=16processes. The limit

at 16 is expected for a machine that only has 16 cores. In addi-

tion, with higher splitting factors, there is a higher overhead to

spawning more threads and context switching. The ray-tracing

workload does not benefit from parallelism past 4 threads be-

cause it already consists of multiple processes running in paral-

lel, as the workload has many commands (cat, grep, cut, head):

splitting this further does not provide further benefit.

8.3 Performance Improvements Analysis

Data movement reductions. For each of the log analysis

applications and the thumbnail generation application, Table 1

reports the number of bytes of data transferred over the

network that this application would generate, as well as the

number transferred with POSH and its scheduling mechanism.

POSH overheads. Table 2 reports the latency of POSH’s

parsing and scheduling steps before execution for a single

pipeline (single line of the script) from each application. The

overheads are on the order of 10s of milliseconds and barely

Scenario Latency Data Movement

NFS Sync 225.8s ± 36.1s 6.38GB

POSH 221.6s ± 22.1s 6.38GB

POSH-OPT 33.27s 3.11GB

Table 3: Expected latency of running POSH with a scheduler that

can handle commands that need files from different mounts, for the

command comm A B, for the university to cloud network.

affect total end-to-end latency. This includes time to parse the

configuration file, parse all annotations (which is done once

on shell startup), and parse and schedule each command in the

pipeline. The ray-tracing and thumbnail generation workloads

require resolving more filepaths, causing a larger overhead

than the other applications.

9 LIMITATIONS AND FUTURE WORK

Algorithm limitations. POSH’s scheduling algorithm

handles pipelines that access data on different mounts in a map-

reduce style pattern [13], but cannot handle commands which

access data on different mounts that cannot be split. Consider

a command such as comm, that finds the common lines between

two files on different mounts: POSH would schedule this com-

mand to run at the client, causing no performance benefits over

bash over NFS. However, if POSH scheduled this command on

one of the proxy servers, rather than the client, and transferred

the necessary files beforehand, POSH could provide a benefit

over NFS. To produce such a schedule, POSH could consider

the input files for each command, the data transfer speeds

between the proxy machines and the dependencies of the DAG

to construct an optimization problem and use standard graph

partitioning techniques to solve for the optimal execution

location of all nodes. Table 3 shows the expected benefits of

a such a scheduler (“POSH-OPT”), for a comm command that

correlates two 3 GB files stored at two different proxies. It

estimates execution time by summing the local execution time

of comm with the time to transfer one of the files (measured by

the time to scp the file between the two machines).

Security. POSH allows users to offload parts of shell

commands to proxy servers, which could be running directly at

the storage layer. POSH currently does not address the security

implications of this system design. POSH might allow users

to access files such as /proc/sys on the storage server which

should be restricted. To mitigate this, POSH could ensure that

offloaded programs run with limited file access permissions,

so they do not access restricted files, and only access files that

are specified by the input and output arguments parsed from

the annotations. POSH could use sandboxing [20] mechanisms,

for example, to restrict users from running offloaded programs

that access the network.

Resource management. Since POSH proxy servers could

run directly at the storage server, a shared storage server

could result in an overloaded CPU and longer latencies for

users who expected their commands to take less time since

they were offloaded, as well as slowdowns to regular remote

filesystem requests. POSH does not currently have policies for

load balancing and multitenancy, but could explore policies

suggested by prior work [6]. However, initial experiments

show that POSH could use a simple policy on the storage server

such as monitoring how many cores are in use, and refusing

to run programs at the storage server when it is overloaded.

Failure recovery. Currently, POSH does not recover from

server-side failures; it does not have mechanisms to migrate

or restart jobs if single commands within pipelines fail.

Since POSH aims to provide shell semantics, which involves

streaming data without providing fault tolerance for failed

commands, POSH currently does not provide the fault

tolerance mechanisms present in standard cluster computing

frameworks [17, 31, 61]. However, this is an interesting area

of future work: POSH knows exactly what files are being mod-

ified or created from the annotations, so POSH could modify

programs to write to temporary locations, and only write to

the final location when the entire operation is successful.

10 CONCLUSION

I/O-intensive shell pipelines that run over networked storage

incur a significant cost from moving data over the network. We

present POSH, a framework that accelerates unmodified shell

pipelines with I/O heavy components that access networked

storage such as NFS. POSH intercepts shell pipelines and

moves individual commands closer to the data by offloading

them to run on proxy servers closer to the data than the client.

POSH uses metadata about shell commands, written once per

command, called annotations, that specify information relevant

to safely offloading these commands to proxy servers as well as

scheduling them to minimize data movement. POSH uses anno-

tations to schedule and automatically parallelize shell pipelines

across the client and proxy servers, while maintaining local

execution semantics. We showed that POSH can accelerate a

wide range of unmodified shell applications running over NFS

and allow them to achieve local execution times.

ACKNOWLEDGMENTS

We thank our shepherd, Mahadev Satyanarayanan, and the

anonymous ATC reviewers for their invaluable feedback. We

are grateful to Shoumik Palkar, Deepak Narayanan, Riad

Wahby, Keith Winstein, Liz Izhikevich, Akshay Narayan and

members of the Stanford Future Data and SING Research

groups for their comments on various versions of this work.

This research was supported in part by affiliate members and

other supporters of the Stanford DAWN project—Ant Finan-

cial, Facebook, Google, Infosys, NEC, and VMware, as well

as the NSF under CAREER grant CNS-1651570 and Graduate

Research Fellowship grant DGE-1656518. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect the views of the National Science Foundation.

References

[1] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active

disks: Programming model, algorithms and evaluation.

In ASPLOS, 1998.

[2] Christopher Anderson, Paola Giannini, and Sophia

Drossopoulou. Towards type inference for JavaScript.

In Proceedings of the 19th European Conference on

Object-Oriented Programming, 2005.

[3] BSD Authors. rsh. https://linux.die.net/man/1/rsh.

[4] FFmpeg Authors. FFmpeg. https://ffmpeg.org/.

[5] Antonio Barbalace, Anthony Iliopoulos, Holm Rauch-

fuss, and Goetz Brasche. It’s time to think about an

operating system for near data processing architectures.

In HotOS, 2017.

[6] Alexandros Batsakis, Randal Burns, Arkady Kanevsky,

James Lentini, and Thomas Talpey. CA-NFS: A

congestion-aware network file system. ACM Transac-

tions on Storage (TOS), 2009.

[7] Alysson Bessani, Ricardo Mendes, Tiago Oliveira,

Nuno Neves, Miguel Correia, Marcelo Pasin, and Paulo

Verissimo. SCFS: A shared cloud-backed file system.

In Usenix ATC, 2014.

[8] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward

Wobber. Network objects. In SOSP, 1993.

[9] Ming Chen, Dean Hildebrand, Geoff Kuenning, Sou-

janya Shankaranarayana, Bharat Singh, and Erez Zadok.

Newer is sometimes better: An evaluation of NFSv4.1.

In SIGMETRICS, 2015.

[10] Ming Chen, Dean Hildebrand, Henry Nelson, Jasmit

Saluja, Ashok Sankar Harihara Subramony, and Erez

Zadok. vNFS: Maximizing NFS performance with

compounds and vectorized i/o. In FAST, 2017.

[11] Alvin Cheung, Owen Arden, Samuel Madden, and

Andrew C. Myers. Speeding up database applications

with Pyxis. In SIGMOD, 2013.

[12] Brent Chun and Andrew McNabb. pssh.

https://code.google.com/archive/p/parallel-ssh/.

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-

plified data processing on large clusters. In OSDI, 2004.

[14] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik

Park, Kwanghyun Park, and David J. DeWitt. Query

processing on smart SSDs: Opportunities and challenges.

In SIGMOD, 2013.

[15] John R Douceur, Jeremy Elson, Jon Howell, and Jacob R

Lorch. The utility coprocessor: Massively parallel

computation from the coffee shop. In Usenix ATC, 2010.

[16] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.

Zmap: Fast internet-wide scanning and its security

applications. In Usenix Security, 2013.

[17] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,

Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,

and Keith Winstein. From laptop to lambda: Outsourcing

everyday jobs to thousands of transient functional

containers. In Usenix ATC, 2019.

[18] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,

Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,

and Keith Winstein. Outsourcing everyday jobs to thou-

sands of cloud functions with gg. Usenix Login, 2020.

[19] Apache Software Foundation. Hadoop.

http://hadoop.apache.org/.

[20] Tal Garfinkel et al. Traps and pitfalls: Practical problems

in system call interposition based security tools. In

NDSS, 2003.

[21] Roxana Geambasu, Amit A Levy, Tadayoshi Kohno,

Arvind Krishnamurthy, and Henry M Levy. Comet: An

active distributed key-value store. In OSDI, 2010.

[22] Git SCM. https://git-scm.com/.

[23] GNU. Program argument syntax conventions.

https://www.gnu.org/software/libc/manual/html_

node/Argument-Syntax.html, 2020 (Accessed March

28,2020.).

[24] Google. Chromium. https://chromium.googlesource.

com/chromium/src, 2020 (Accessed January 4, 2020).

[25] Google. Cloud storage. https://cloud.google.com/

storage, 2020 (Accessed May 29, 2020).

[26] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke,

Z. Morley Mao, and Xu Chen. COMET: Code offload

by migrating execution transparently. In OSDI, 2012.

[27] Robert S Gray. Agent Tcl: A flexible and secure

mobile-agent system. In Tcl/Tk Workshop, 1996.

[28] Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz,

Jacqueline Chame, Jeff Draper, Jeff LaCoss, John

Granacki, Jay Brockman, Apoorv Srivastava, William

Athas, Vincent Freeh, Jaewook Shin, and Joonseok Park.

Mapping irregular applications to DIVA, a PIM-based

data-intensive architecture. In Proceedings of the 1999

ACM/IEEE Conference on Supercomputing, 1999.

[29] T. Haynes. NFS Version 4 Minor Version 2. https://tools.

ietf.org/html/draft-ietf-nfsv4-minorversion2-41, 2016.

[30] ImageMagick – convert, edit, or compose bitmap images.

https://imagemagick.org/.

[31] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,

and Dennis Fetterly. Dryad: Distributed data-parallel pro-

grams from sequential building blocks. In EuroSys, 2007.

[32] Zsolt István, David Sidler, and Gustavo Alonso. Caribou:

intelligent distributed storage. VLDB, 2017.

[33] Jeroen Janssens. Data Science at the Command Line:

Facing the Future with Time-Tested Tools. O’Reilly

Media, Inc., 1st edition, 2014.

[34] Rakesh Jha, Dennis T. Cornhill, and J. Michael Kamrad.

Ada program partitioning language: A notion for dis-

tributing ada programs. IEEE Trans. Softw. Eng., 1989.

[35] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K.

Gifford, and M. F. Kaashoek. Rover: A toolkit for mobile

information access. In SOSP, 1995.

[36] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-

grained mobility in the emerald system. In SOSP, 1987.

[37] Chet Juszczak et al. Improving the write performance

of an NFS server. In USENIX Winter, 1994.

[38] Kevin K. Command line argument parser.

https://crates.io/crates/clap, 2019.

[39] Chinmay Kulkarni, Sara Moore, Mazhar Naqvi, Tian

Zhang, Robert Ricci, and Ryan Stutsman. Splinter:

Bare-metal extensions for multi-tenant low-latency

storage. In OSDI, 2018.

[40] Redis Labs. Redis. https://redis.io/.

[41] James Lentine, Anshul Madan, and Trond Myklebust.

Accelerating nfs with server-side copy. In FAST, 2011.

[42] Microsoft. TypeScript. https://www.typescriptlang.org/.

[43] Microsoft. CREATE PROCEDURE (Transact-SQL).

https://docs.microsoft.com/en-us/sql/t-sql/statements/

create-procedure-transact-sql?view=sql-server-ver15,

2017.

[44] Oracle. Developing and using stored procedures. https:

//docs.oracle.com/cd/B28359_01/appdev.111/b28843/

tdddg_procedures.htm, 2020 (accessed May 27, 2020).

[45] Mark Oskin, Frederic T. Chong, and Timothy Sherwood.

Active pages: A computation model for intelligent

memory. In ISCA, 1998.

[46] Shoumik Palkar and Matei Zaharia. Optimizing

data-intensive computations in existing libraries with

split annotations. In SOSP, 2019.

[47] David Patterson, Thomas Anderson, Neal Cardwell,

Richard Fromm, Kimberly Keeton, Christoforos

Kozyrakis, Randi Thomas, and Katherine Yelick. A case

for intelligent RAM. IEEE Micro, 1997.

[48] Google Cloud Platform. A user-space file sys-

tem for interacting with Google Cloud Storage.

https://github.com/GoogleCloudPlatform/gcsfuse, 2020

(Accessed May 29, 2020).

[49] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin

Bierman, and Panagiotis Vekris. Safe & efficient gradual

typing for TypeScript. In POPL, 2015.

[50] s3fs fuse. FUSE-based file system backed by amazon S3.

https://github.com/s3fs-fuse/s3fs-fuse, 2020 (Accessed

May 29, 2020).

[51] s3ql. A full featured file system for online data storage.

https://github.com/s3ql/s3ql, 2020 (Accessed May 29,

2020).

[52] Robert Schmid, Max Plauth, Lukas Wenzel, Felix

Eberhardt, and Andreas Polze. Accessible near-storage

computing with fpgas. In EuroSys, 2020.

[53] U.S. Securities, Division of Economic Exchange Com-

mission, and Risk Analysis. Edgar log file data set.

[54] Amazon Web Services. Amazon S3. https:

//aws.amazon.com/s3/, 2020 (Accessed May 29, 2020).

[55] Sudharsan Seshadri, Mark Gahagan, Sundaram

Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin, Yang

Liu, and Steven Swanson. Willow: A user-programmable

SSD. In OSDI, 2014.

[56] Ole Tange. GNU Parallel 2018. https:

//doi.org/10.5281/zenodo.1146014, March 2018.

[57] Vasily Tarasov, Dean Hildebrand, Geoff Kuenning, and

Erez Zadok. Virtual machine workloads: The case for

new NAS benchmarks. In FAST, 2013.

[58] Michael Vrable, Stefan Savage, and Geoffrey M Voelker.

BlueSky: A cloud-backed file system for the enterprise.

In FAST, 2012.

[59] Louis Woods, Jens Teubner, and Gustavo Alonso. Less

watts, more performance: An intelligent storage engine

for data appliances. In SIGMOD, 2013.

[60] N Yezhkova, L Conner, R Villars, and B Woo. World-

wide enterprise storage systems 2010–2014 forecast:

recovery, efficiency, and digitization shaping customer

requirements for storage systems. IDC, May, 2010.

[61] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,

Ankur Dave, Justin Ma, Murphy McCauley, Michael J.

Franklin, Scott Shenker, and Ion Stoica. Resilient

distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In NSDI, 2012.

	Introduction
	Related Work
	System Overview
	Shell Annotations
	Motivation for Shell Annotations
	Annotation Interface
	Argument-Specific Information
	Command-Specific Information
	Annotation Conflicts

	Correctness and Coverage

	Posh's Parser and Scheduler
	Posh's Program Representation
	Scheduling
	Parallelization

	Posh Configuration and Execution
	Posh Configuration
	Execution Engine
	Implementation

	Methodology
	Applications
	Setup and Baselines

	Evaluation
	End-to-End Application Performance
	Posh Configuration
	Proxy Placement
	Parallelization on a Single Machine

	Performance Improvements Analysis

	Limitations and Future Work
	Conclusion

