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Robust Multiple-Path Orienteering Problem:
Securing Against Adversarial Attacks

Guangyao Shit

Abstract—The multiple-path orienteering problem asks for
paths for a team of robots that maximize the total reward
collected while satisfying budget constraints on the path length.
This problem models many multi-robot routing tasks such as
exploring unknown environments and information gathering for
environmental monitoring. In this paper, we focus on how to
make the robot team robust to failures when operating in
adversarial environments. We introduce the Robust Multiple-
path Orienteering Froblem (RMOF) where we seek worst-case
guarantees against an adversary that is capable of attacking at
most o robots. Our main contribution is a general approximation
scheme with bounded approximation gunarantee that depends on
o and the approximation factor for single robot orienteering
In particular, we show that the algorithm yields a (i) constant-
factor approximation when the cost function is modular; (i)
log factor approximation when the cost function is submodular;
and (jii) constant-factor approximation when the cost function
is submodular but the robots are allowed to exceed their path
budgets by a bounded amount. In addition to theoretical analysis,
we perform simulation study for an ocean monitoring application
to demonstrate the efficacy of our approach.

I. INTRODUCTION

The Orienteering Problem (OP) is that of determining a
path, whose length is less than a given budget, from a given
starting vertex that maximizes the total reward collected along
the path [1]. The reward depends on the vertices visited along
the path. The OP' naturally models informative-path planning
a robot is tasked to gather as much information from the
environment as possible within a give time or energy bud-
get. For example, in [2}-[4], ocean monitoring, opportunistic
surveillance, and 3D reconstruction tasks are formulated as
the OP or its variants. In general, the OP is NP-hard but there
are constant-factor approximation algorithms for many vari-
ants [5]. This includes the Multiple-path Orienteering Problem
{MOP) [5] where the poal is to design paths for N robots
such that the sum of the rewards collected by all the robots
is maximized. In this paper, we introduce the robust variant
of OP. Specifically, we introduce the Robust Multiple-Path
Orienteering Problem (RMOP) motivated by scenarios where
robots operate in adversarial or failure-prone environments.

Figure 1 shows a motivating scenario where a team of
underwater robots are tasked with gathering data in an ocean.
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However, some robots in the team may fail to complete
their paths either due to adversarial attacks [6] or hardware
malfunction [7]. If a robot fails, then the data gathered by it is
lost. Our goal is to provide efficient planning and coordination
algorithms that are resilient to such failures.

Fig. 1. Case study of monitoring a marine environment with aquatic robots.
The robots are tasked with finding informative paths to gather data. The darker
the color of path is, the more valuable path since it gathers information from a
more important region. We investigate the question of how the robots should
plan their paths if we expect some of the robots to fail due to adversarial
elements or natural causes?

Building robot teams that are robust to adversarial attacks is
emerging as an important research area [8]-[11]. Our approach
differs from classical fault-tolerant frameworks [12]-[14] that
focus on making individual robots robust to failures. Instead,
we focus on the question of how should the team coordinate
their actions to improve redundancy in their plans such that
even if some robots fail, the overall performance of the team
will not drop significantly. As such, our work is completely
different to the work on making individual robots robust.

In this paper, we focus on the RMOP to make progress
towards the aforementioned broader goal. The RMOP seeks
plans for a team of N robots that guard against worst-case
failures. Of course, in the worst-case all N robois may fail
To make it more meaningful we study the case where at most
a given number o < N robots may fail. What we seek is to
understand how the performance of the team will be affected
as a function of . Our main contribution is an algorithmic
scheme that uses a single robot OP solution as a subroutine.
Choosing an appropriate subroutine allows us to investigate
three variants of the original problem. In the general version,
the reward collected by an individual robot is a submodular
function of the wvertices along the path. Submodularity is
the property of diminishing returns [15]. Many information
gathering measures such as muotual information [16] and



coverage area [17] are known to be submodular. We also study
special cases where the reward function is strictly modular
(i.e., additive) and where the budget constraint for each robot
can be relaxed by a bounded amount.

A. Related work

The orienteering problem has been researched extensively
by both theoretical computer science and operations research
communities. The review by Vansteenwegen [1] summarizes
various algorithms for OP and its variants. We highlight the
results most closely related to our work. Blum et al. [5]
presented a polynomial time 4—approximation for OP when
the objective function is modular. This result is then extended
to yield a S—approximation for the MOP assuming all robots
start at different vertices. If the reward function is submodular,
Chekuri and Pal [18] present a recursive greedy algorithm
for a single robot that yields a approximation
algorithm, where is the reward collected by the optimal
algorithm. The algorithm runs in quasi-polynomial time.

Singh et al. [19] showed how to use OP and MOP for active
information gathering to learn a spatial model of the envi-
ronment represented by Gaussian Processes. Their algorithms
sequentially finds paths for each robot using the single-robot
algorithms by Blum et al. [5] and Chekuri and Pal [18] as
subroutines. Atanasov et al. [20] recently presented a decen-
tralized version for multi-robot information gathering along
similar lines as [19]. They use a submodular objective function
but solve a finite horizon planning problem as opposed to OP.
However, none of these works account for potential failures
of the robots, as we do in RMOP.

Recently, Jorgensen et al. introduced the Matroids Team
Surviving Orienteers Problem (MTSO) [2] which does account
for individual robot failures. They assume that there is some
given probability of failure associated with every edge in the
environment. The goal is to maximize the expected rewards
while ensuring each path satisfies some survival chance con-
straints. MTSO is appropriate when the failures of robots are
random and follow a known distribution. The version we study,
the RMOP, accounts for worst-case failures which makes it
better suited when operating in adversarial conditions or in
stochastic conditions when worst-case guarantees are sought
due to unknown probability distributions.

Our work builds on recent work on robust submodular
maximization [21]-[26] which select sets that are robust to
worst-case removal of some subset of items. The challenge
in this framework is to solve the trade-off between too much
overlap, thereby not enough coverage (i.e., reward) and too
little overlap, thereby not enough redundancy. The conceptual
idea in these papers is similar — the final solution consists
of two subsets, one that has enough redundancy to ensure
robustness against worst-case removal and the other that has
enough coverage to get good overall performance. Orlin et
al. [21] term the former as “copies” whereas it is called as
“baits” in [25]. The robust submodular maximization formu-
lation has been applied for multi-robot, multi-target tracking

in centralized [25] and decentralized settings [26] as well as
for active information gathering with multi-robot teams [24].

We seek similar robustness guarantees as in the works
mentioned in the previous paragraph. The key technical ad-
vancement we make is that these prior work solve a single
step selection problem whereas we solve a multi-step planning
problem. As a result, the single robot problem in the prior work
can be trivially solved optimally (amounts to selecting the best
amongst a finite set of options), whereas in the RMOP the
single robot problem (OP) itself is NP-Hard. While both [25]
and [24] use their results for planning over a finite horizon,
they make key assumptions that are limiting. Schlotfeldt [24]
assume that the single robot information gathering problem
can be solved optimally (c.f. Proposition 1) whereas Zhou et
al. [25] repeatedly solve the problem at each time step. Instead,
we show how to use an approximate solution to the OP to yield
a bounded approximation solution to the RMOP.

B. Contributions

The main contributions of this paper are as follows. We
introduce the Resilient Multiple-Path Orienteering Problem.
We present a general approximation scheme to solve RMOP.
We analyze the running time and the performance of the
algorithm. In particular, we show that the approximation ratio
is a constant of the approximation factor for single robot OP.
We show how to employ three single robot algorithms for
modular and submodular OP as subroutines in our algorithm
and analyze their performance. We evaluate the performance
of our algorithm using simulations involving a case study
of ocean monitoring with a team of robots. In addition, we
give an alternative and more complete proof on the bound of
sequential algorithm in [19] which is of independent interest.

The rest of the paper is organized as follows. We provide the
necessary background on submodular functions and formally
introduce the RMOP in Sec. II. Next, the approximation
algorithm is proposed in Sec. III. Detailed analysis of the
proposed algorithm is given in Sec. IV. Finally, simulation
results are given in Sec. V.

II. PROBLEM DESCRIPTION

In this section, we formally describe the Robust Multiple
Orienteering Problem. We start by introducing notations and
conventions used in the paper.

We use calligraphic fonts to denote sets (e.g. ). Given

aset denotes the power set of  and denotes the
cardinality of . Given another set , the set denotes the
set of elements in  but notin . Given a set , a set function

, and an element s is a shorthand that
denotes . We use to denote

We now define two useful properties of set functions.

Definition 1 (Normalized Monotonicity). For a set , a func-
tion is called as normalized, monotonically non-
decreasing if and only if for any

and if and only if



As a short-hand, we refer to a normalized, monotonically
non-decreasing function as simply a monotone function.

Definition 2 (Submodularity). For a set , a function
is submodular if and only if for any sets and
, we have ;

Let be a graph. A path in is an ordered
sequence of non-repeated vertices. As a shorthand, we use
to denote both the path (ordered set) as well as the unordered
set of vertices along the path. Let denote the power
set of . Intuitively, 1is the superset of all possible sets of
vertices that a robot may visit along its path. The cost of a
path , denoted by , is the sum of the edge weights
along the path. We assume that the edge weights are metric.
We study the rooted version of the problem where the path
for robot , denoted by , must begin at a specific vertex

We consider the case that the reward function,

, of a single robot is a monotone submodular function. We
also study the special version where the function is modular
(i.e., reward of a path is the sum of rewards of the vertices
along the path).

Let be some collection of
robots in the team,
collected by any subset

paths corresponding to the
. The team reward
is given by,

6]

Note that reward function of the team is a submodu-
lar function irrespective of whether the single robot reward
function is submodular or not. Multiple robots can visit
the same vertex but only one visit is accounted for when
computing the reward of the team. That is, there can be no
double counting of the rewards.

We are now ready to formally define our problem.

Problem 1 (RMOP). Given a metric graph ,  robots
with starting positions , budget constraint
, a single robot reward function , and a

team reward function  as defined in Equation 1, the Robust
Multiple-Path Orienteering Problem seeks to find a collection
of  paths, that are robust to the worst-

case failure of  robots:

s.1. 2)

where additionally
constructing a path

must be the starting vertex when
for robot

The RMOP can be interpreted as a two-stage perfect infor-
mation sequential game, where the first player (i.e., the team
of robots) chooses a set , and the second player (i.e., the
adversary), knowing , chooses a subset  to remove from

. We seek worst-case guarantees — in practice, the adversary

may not know the paths for each robot. By playing against this
stronger adversary, we guarantee that the performance against
a weaker one will be even better. We evaluate this empirically
by considering attack models other than the worst one.

The adversarial model considered in this paper is the same
as that in prior work on robust submodular optimization [22],
[23], [25]. However, RMOP is even harder since even at the
single robot level, the optimization problem we need to solve
(i.e., OP) is NP-Hard. Nevertheless, we present a constant-
factor approximation algorithm for this problem next.

III. ALGORITHM FOR RMOP

In this section, we present the general algorithm to solve
RMOP (Algorithm 1). The algorithm uses a generic subroutine
for solving OP. In the next section, we show examples of three
subroutines that can be used and show how they affect the
performance of the algorithm.

Before we describe the algorithm, we present additional
notation. If  is a set of paths, then let denote
the set of corresponding robots whose paths are contained
in . We use to denote the
worst-case set of paths that are removed from a given set of
path . Therefore, denotes the set of paths that are
not attacked from  with .

The algorithm consists of two main steps: first, it calls a
subroutine for solving OP times to compute a path for
each robot independently. It then chooses  paths (denoted
by ) with highest individual rewards without considering
overlap with other robots; Second, it uses sequential greedy
assignment to find paths for the rest of the robots (denoted by

) by querying the OP subroutine times. The while
loop is used to maintain an invariant that the paths in  are
always better than the paths in

As described earlier, there is a tradeoff between redundancy
and coverage in RMOP. The two set of paths are constructed
so that adds redundancy and adds coverage, together
yields a provably good solution for RMOP. We explain each
step in Algorithm 1 next.

Constructing  : Each of the
those in . The paths in ~ may overlap with each other and
also overlap with those in . Thus, these paths serve to add
redundancy to the team. Constructing the best  paths with
respect to  itself is NP-hard. Therefore, Algorithm 1 firstly
solves orienteering problem for each robot independently and
stores in the (approximately optimal) paths for individual
robots (lines 2-5). Then Algorithm 1 sorts the paths in
based on their collected rewards (line 8) and chooses the
best paths to be (line 9).

Constructing  : After finding , Algorithm 1 needs to
find the best paths for the rest of robots . Unlike ,
here the algorithm explicitly considers overlap when finding
the paths. Thus, serves to add coverage to the solution.

However, selecting optimal paths for is a
multiple-path orienteering problem and is also NP-hard. There-
fore, Algorithm 1 approximates the solution by employing the

pathsin  are better than



Algorithm 1: Algorithm for Problem 1

Input : Per problem 1 requires following inputs:
set of robots
metric graph
starting vertices

number of maximum potential attacks and budget
Output: Set  of paths for each robot

1

2 for to do

3

4

5 end

6 flag  True

7 while flag do

8 Sort elements in such that

and

9

10 /lextract starting positions for the rest of robots
11 /ISequential greedy assignment

12 /Iwhile loop control

13 if then

14 \ False

15 else

16 Find all robots such that

17

18 Replace the path stored in corresponding to

robot with the better path found when
constructing

19 end
20 end

21

sequential greedy algorithm (line 11). For completeness, we
present the pseudocode for SGA in Algorithm 2.
Specifically, for robots in , Algorithm 2 finds a
path using an approximation algorithm for OP (line 4). Then,
Algorithm 2 sets the reward for the vertices visited by that
robot to be zero (lines 6-8). This process repeats until we find
a path for all robots. Here we implicitly assume that there is at
least one path for each robot satisfying the budget constraints.
The paths in form the solution to RMOP. However,
we also have an outer while loop which we explain next.
Invariant: Our analysis requires the paths in and
to have the following property:

. This condition is trivially met if the single
robot problem has to just choose the best amongst a fixed
set of trajectories as in the prior work [22], [25]. However,
when solving RMOP, we employ a subroutine for solving OP
which gives us the paths in and . Since the subroutine
uses an approximation algorithm for OP instead of an exact
optimal one, we cannot guarantee that this invariant holds. For

example, if the subroutine uses randomness, then running the
same algorithm twice may give different results. In any case,
all we can guarantee is that the paths found by the subroutine
will be no more than a constant from the optimal.

We fix this problem by utilizing a while loop (lines 7—
0). When the condition of the while loop holds (lines 13—
15), the loop flag is set to be false and the while loop
terminates. Otherwise (lines 16-19), Algorithm 1 will find
those robots that violate the above inequality and update their
corresponding paths in the set . Recall that is used to
store the best path corresponding to each robot. Then, while
loop will restart to construct  using the updated and
for the remaining robots, again. We show that this loop will
eventually terminate.

Corollary 1. The while loop in Algorithm I will terminate in
a finite number of steps.

Proof. 1f the flag is not set to false after an iteration of the
while loop, then it must mean that at least one new path found
when constructing , say for robot , is better than some
path in . Suppose this better path is . Note that the set
consists of a path for the robot , say . Since  consists of
the best  paths in and , then it must mean that the
path s strictly better than . Thus, after every iteration of
the while loop, if the flag is not set, then at least one path in

has improved. For each robot given a fixed budget, there
is a maximum amount of reward that it can collect. We cannot
keep increasing the rewards of paths in . Therefore, while
loop must terminate after finite iterations.

Algorithm 2: Sequential Greedy Assignment
1 function SGA ;

Input :
A graph  representing environment
Budget  for each robot

Starting positions

Output: a collection  of paths
2
3 for to do
4 ;
5
6 foreach do
7 ‘ Set the reward of to be zero
8 end
9 end
10 return

Remark 1. In practice, the loop in Algorithm 1 typically
terminates after just one iteration. Paths in are found
without considering overlap. On the other hand, when solving
SGA the robots find their paths by taking into account overlap
with the previously found paths. The conditions in the latter
are a subset of the former. Furthermore, none of the three
subroutines that we employ for OP include any randomness.



Therefore, it is unlikely that the paths in will be better
than that in . As such, it is unlikely that the while loop will
take more than one iteration. Nevertheless, we give the full
algorithm for completeness.

So far, we have not discussed the subroutine used to
solve OP. In the next section, we present the analysis of the
algorithm and then present the three subroutines.

IV. PERFORMANCE ANALYSIS

In this section, we quantify the performance of proposed
Algorithm 1. We first present a new analysis for the Sequential
Greedy Assignment (SGA) and then show the performance
bound for our algorithm. The performance is based on the
notion of curvature of the set functions.

Definition 3 (Curvature). Consider a finite ground set and a
monotone submodular set function . The curvature
of is defined as,

3)

and measures how
is modular since

The curvature takes values
far  is from modularity. When ,
for all , we get . On the
other extreme, when there exists some element that
makes no unique contribution to the rest of the set, since we
get . We assume that the curvature  of the
reward function and that ~ of objective function is strictly less
than 1. This is reasonable since it implies every vertex and path
in the environment makes some non-zero unique contribution
over the rest.

We first analyze the SGA and then use that analysis for
proving the performance bound of our algorithm.

A. Sequential Greedy Assignment

SGA was first proposed in [19] to solve the MOP. Note that
the MOP is the same as RMOP if we consider . SGA
solves the problem by finding the path for the robot in the

iteration, by considering the paths found in the previous
iterations.

Let be the optimal solution to the
MOP with  robots. It is easy to see that these paths will be
non-overlapping in a metric graph.

Proposition 1. There exists an optimal solution for the MOP
consisting of no overlapping paths, i.e.,

The proof is given in the supplementary document.

We use an approximation algorithm to find the path for
each robot. Let be the set of paths
returned by SGA. Note that SGA runs for iterations. Let

denote the set , which is the collection
of paths returned by SGA after the first iterations. We have
. With slight abuse of notation, we use to refer

to the (unordered set of) vertices visited by the paths in

Every iteration of SGA requires solving an NP-Hard prob-
lem (c.f. line 4 in Algorithm 2). Let be the optimal solution
for the problem in iteration , i.e.,

argmax

where
and

is the set of all feasible paths for robot
. Let be the set
, which is the collection of optimal paths for
the problems in iterations 1 through . We also set
The analysis in [19] gives the relation between
and which is not necessarily be the same as .
In fact, the underling relationship between and global
optimal is unclear. Recall that is the optimal set of
paths for MOP and is the set of  paths where the
path is the optimal solution to the problem in iteration
of SGA. These are not necessarily the same. One way to see
this is to note that the order of the robots in SGA is arbitrary.
If we shuffle the order in which the robots select their paths,
then the paths found for each robot as well as the per stage
optimal paths will change but the optimal solution for
MOP will still be the same. In the following, we will
directly establish the relation between and
Our proof uses ideas from [5].

For now, assume that we use an  approximation for OP,

Theorem 1. Algorithm 2 (SGA) gives a —— approximation
for MOP, where is the approximation factor for OP and
is the curvature for the reward function

Proof. Let be the set of vertices visited by

both the optimal path for the robot and paths found using

SGA for robots 1 through . Let . When we

construct a path for robot in the -th iteration, there is a

feasible path for robot that visits all vertices in

That is, if we remove the vertices from the optimal path

for robot that are also in , the remaining vertices in
still form a feasible path for robot (since it cannot be

longer). Therefore, the optimal path in the iteration for

robot should satisfy

“4)

Given two sets , using the inequality presented in
the footnote in [27], we have

(%)
Note that . Applying inequality (5)
to (4) and using submodularity, we have

(6)

(7N

3



Using the approximation algorithm for OP, we have

Summing over all , we get

E— 9

The left hand side is equal to ——
Furthermore, by submodularity,

by definition.

(10)

We also have,

(1)

12)

13)

where Eq. (11) holds due to Lemma 1 in [22]; Eq. (12) follows
from Proposition 1 that states ; Eq. (13)
is due to submodularity of . Rearranging the terms and using
the definition of

(14)
Since , by monotonicity we have

5)

Using Eq. (10), (14), and (15), we have,

By definition of the objective function

That is,

We now use this result in proving our main result.

B. Analysis for Algorithm 1

Theorem 2. Algorithm 1 returns a set  such that

where are the same as that defined in Theorem 1;

is the curvature of objective function ; and is the
optimal removal set of ; and is the optimal solution to
RMOP.

The omitted proofs can be found in here.

Now, we describe the three subroutines that can be em-
ployed for solving OP. We start with the most general case
where the reward function is submodular and the budget for
each robot must be strictly enforced.

Corollary 2. If recursive greedy algorithm [18] is used as
subroutine to solve OP and additionally each robot has a
predefined terminal vertex, then in Theorem 2 equals to

. Here is the reward collected by the optimal
algorithm. The running time of the resulting algorithm is
quasi-polynomial since the running time of recursive greedy
is quasi-polynomial.

Next, consider the variant where is still submodular, but
each robot is allowed to exceed its predefined budget by a
bounded amount.

Corollary 3. If General Cost-Benefit (GCB) approximation
algorithm [28] is used as subroutine for OP and we are
allowed to relax given budget to , then

in Theorem 2 equals to . Here, as
defined in [28]. The GCB algorithm runs in polynomial time.

Finally, consider the case where is modular. Here, we get
the strongest guarantee with no relaxations to RMOP.

Corollary 4. If the reward function is modular, then by using
the approximation algorithm for OP in [5] yields an

in Theorem 2. The running time of the algorithm in [5] is
polynomial.

V. NUMERICAL SIMULATIONS

In this section, we validate the performance of Algorithm 1
through numerical simulations. In particular, (1) we compare
the performance of our algorithm with two baseline strategies;
(2) demonstrate the robustness of the proposed algorithm
against attacks that are not necessarily the worst-case ones;
and (3) investigate the running time as a function of the size
of the input graph and number of robots. All experiments were
performed on a Windows 64-bit laptop with 16 GB RAM and
an 8-core Intel i5-8250U 1.6GHz CPU using Python 3.7.

A. Simulation Setup

Application case study: We use the application of moni-
toring a marine environment for mapping oil leaks, macroalgal
blooms, or pH values. Specifically, as explained in [29], such
tasks usually calls for collaboration of multiple sensors in-
cluding satellites, which can provide coarse prior information
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Fig. 2. Case study of monitoring macroalgal blooms using W = & robots
assuming « = 3 failums. Colored dots indicale locations to be monitored
along with their importance (i.e., rewards). Red crosses indicates worst-case

found using brute-force. Paths retumed by the proposed algorithm
manages to cover one of the three important areas (lower left comer) while
SGA loses all three. The background map is part of Yellow Sea, wheme green
tides prevails every summer since 2007

on the concentration of the phenomenon of interest, and
mobile robotic sensors, which can use the prior information
for targeted data collection. Using this as motivation, we
consider a scenario where prior information from satellites
{for example) can be used to define an importance map over
the environment to be monitoring. Fig. 2 shows the setup
which consists of 96 vertices placed in the environment. The
color of the vertex reflects the importance of that vertex which
gives the reward associated with visiting that vertex. Here, the
single robot function, g(P;), is a modular reward. The cost
along the edges is the Euclidean distance between the vertices.
Assuming unit speed of travel, the cost of a path reflects the
travel time of the robot. In all the instances, each robot is
given a budget B = 60 units.

Baseline algorithms: Since we introduce RMOP in this
paper, there is no other efficient algorithm to directly compare
the performance with. One option is to compute the optimal
solution (using for example, brute-force enumeration) which
quickly becomes intractable. Instead, we choose two approx-
imation algorithms for MOP, the non-adversarial version, as
baselines. The first one uses the sequential greedy assignment
for all N robots (we refer to it as SGA) where the path for
robot i is based on the paths computed for robots 1 through
i—1. The second baseline is the naive greedy algorithm where
each robot naively (without considering the travel cost) and
greedily (without considering other robots) maximize their
rewards (we refer to it as NG).

For both SGA and the proposed algorithm, we use the
GCB algorithm solving OP due to its efficiency and ease of
implementation. Specifically, we implement GCB using details
provided in [28]. When running GCB, we simply set the
relaxed budget itself to be B.

Attack models: Our algorithm is designed to give per-
formance guarantees against worst-case attacks. Howewver, in
practice, we would like for any algorithm to be robust to not
just the worst-case attacks but also other attacks. Therefore, we
evaluate two other types of attacks besides worst-case attacks.
The details are provided in the next subsection.

EBiRMaY parELLny

B. Resulis

Fig. 2 shows a qualitative example comparing our proposed
algorithm and SGA with N = 6 and o = 3. Not surprisingly,
the six paths found by 5GA does not have any overlap
but the ones found by our algorithm does. As a result, the
worst-case attack takes away all three robots covering the
important regions in SGA, whereas one of the three regions is
still covered with our algorithm. The worst-case attacks were
computed using brute-force.

Next, we present quantitative results. In all following fig-
ures, the errorbar shows the variance of 20 trials where the
starting robot positions are randomly chosen.
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Fig. 3. () Rewards after worst-case attack with increasing o and NV = 10
(b) Rewards after random o attacks and N = 10.

Fig. 3a shows the comparison between our algorithm for
RMOP with SGA and NG as o increases with N = 10. The
bars show the rewards collected by the robots after attacks.
Ouwr algorithm returns paths that are slightly worse than SGA
when « is small. This is not surprising since our algorithm will
have overlapping paths whereas SGA will not. NG is the other
extreme since each robot plans for itself which can lead to high
degree of overlap. As o increases, our algorithm outperforms
SGA. For example, when o = 8 our algorithm yields a reward
of 451 whereas SGA only yields 283 on average.

Next, we evaluate the performance of our algorithm when
the attack model does not match the worst-case one assumed
during planning. The goal is to verify the robustness of
the alporithm to other attack models. Fig. 3b shows the
comparison between our algorithm and the two baselines as
v varies when the attacked robots are randomly chosen. Our
algorithm still plans assuming worst-case attacks. We observe
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Fig. 4 Rewards after worst-case attacks of increasing sizes, |S4| < o. Hem
the planner uses W = 7 and o = 4.

the same trend with random attacks as with the worst-case
ones — as o increases, our algorithm outperforms SGA.

Fig. 4 shows results for the case where we construct paths
assuming o = 4 robots will be attacked but in practice only
|&.4| < o robots suffer from worst-case attacks. SGA performs
better than our algorithm when the number of robots actually
attacked |S 4 | is far from the designed value of «. As the actual
number of robots attacked increases and |S4| approaches o,
our algorithm outperforms SGA.
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Fig. 5. Rewards after: (1) no attacks; (2) o out of N robots under worst-case
attack; (3) o out of IV robots under random attack.

Fig. 5 shows the evaluation when there are (1) no attacks;
{2) worst-case attacks; and (3) random attacks for four con-
figurations of N and «. In all three cases, our algorithm still
plans the paths assuming worst-case attacks for the given value
of @ When there are no attacks (first set of bars in each
subfigure), SGA outperforms our algorithm as observed in
previous charts. When worst-case attacks do happen (middle
set of bars), the average rewards collected by the unattacked
robots employing our algorithm is better than that of SGA.
This is also the case when the o attacked robots are chosen

randomly (third set of bars). This trend holds for various values
of N and o as shown.
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Fig. 6. Running time of Algorithm 1 and SGA

The running time comparisons between our algorithm and
SGA are shown in Fig. 6. We vary the number of robots as
well as the size of the graph. Our algorithm takes longer than
SGA which is expected since it uses SGA as a subroutine.
Nevertheless, we observe similar trends in the runtime.

Discussion of Results: The results show the proposed
algorithm works in practice as inlended. As the number of
attacked robots increases (either S4 or «), it outperforms
SGA. Furthermore, we observe that the margin between our
algorithm and SGA increases as the number of attacked robots
increases. Even when our algorithm finds worse paths than
SGA, they are still comparable to SGA and are significantly
better than NG. We also observe that our algorithm is robust
to the actual attack models — even if the attacks are not the
worst-case ones, we see similar trends.

WVI. CONCLUSION

We introduced a new problem, termed Robust Multiple-Path
Orienteering Problem, in which we seek to construct a set of
paths for robots such that even if a subset of robots fail, the rest
of the team still performs well. We provided an approximation
algorithm for RMOP, which builds on bounded approximation
algorithm for OP and the sequential greedy assignment frame-
work. We showed three variants of the general algorithm that
use three different subroutines for OP and still yield a bounded
approximation for RMOP In addition to theoretical results,
we presenied empirical results showing that our algorithm
is robust to attacks other than the worst-case ones. We also
compare our performance with baseline algorithms and show
that our algorithm yields better performance as more and more
robots are attacked. An immediate future direction to extend
our work to the online variant of RMOP in which robots can
replan once they know which (if any) robots are attacked.
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