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A bstr a ct — T h e  m ulti pl e- p at h o ri e nt e e ri n g p r o bl e m as ks f o r
p at hs f o r a t e a m of r o b ots t h at  m a xi mi z e t h e t ot al r e w a r d
c oll e ct e d  w hil e s atisf yi n g b u d g et c o nst r ai nts o n t h e p at h l e n gt h.
T his p r o bl e m  m o d els  m a n y  m ulti- r o b ot r o uti n g t as ks s u c h as
e x pl o ri n g u n k n o w n e n vi r o n m e nts a n d i nf o r m ati o n g at h e ri n g f o r
e n vi r o n m e nt al  m o nit o ri n g. I n t his p a p e r,  w e f o c us o n h o w t o
m a k e t h e r o b ot t e a m r o b ust t o f ail u r es  w h e n o p e r ati n g i n
a d v e rs a ri al e n vi r o n m e nts.  We i nt r o d u c e t h e  R o b ust  M ulti pl e-
p at h  O ri e nt e e ri n g  P r o bl e m ( R M O P)  w h e r e  w e s e e k  w o rst- c as e
g u a r a nt e es a g ai nst a n a d v e rs a r y t h at is c a p a bl e of att a c ki n g at
m ost α r o b ots.  O u r  m ai n c o nt ri b uti o n is a g e n e r al a p p r o xi m ati o n
s c h e m e  wit h b o u n d e d a p p r o xi m ati o n g u a r a nt e e t h at d e p e n ds o n
α a n d t h e a p p r o xi m ati o n f a ct o r f o r si n gl e r o b ot o ri e nt e e ri n g.
I n p a rti c ul a r,  w e s h o w t h at t h e al g o rit h m yi el ds a (i) c o nst a nt-
f a ct o r a p p r o xi m ati o n  w h e n t h e c ost f u n cti o n is  m o d ul a r; (ii)
l o g f a ct o r a p p r o xi m ati o n  w h e n t h e c ost f u n cti o n is s u b m o d ul a r;
a n d (iii) c o nst a nt-f a ct o r a p p r o xi m ati o n  w h e n t h e c ost f u n cti o n
is s u b m o d ul a r b ut t h e r o b ots a r e all o w e d t o e x c e e d t h ei r p at h
b u d g ets b y a b o u n d e d a m o u nt. I n a d diti o n t o t h e o r eti c al a n al ysis,
w e p e rf o r m si m ul ati o n st u d y f o r a n o c e a n  m o nit o ri n g a p pli c ati o n
t o d e m o nst r at e t h e ef fi c a c y of o u r a p p r o a c h.

I. I N T R O D U C T I O N

T h e  Ori e nt e eri n g Pr o bl e m ( O P) is t h at of d et er mi ni n g a
p at h,  w h os e l e n gt h is l ess t h a n a gi v e n b u d g et, fr o m a gi v e n
st arti n g v ert e x t h at  m a xi mi z es t h e t ot al r e w ar d c oll e ct e d al o n g
t h e p at h [ 1].  T h e r e w ar d d e p e n ds o n t h e v erti c es visit e d al o n g
t h e p at h.  T h e  O P1 n at ur all y  m o d els i nf or m ati v e- p at h pl a n ni n g
a r o b ot is t as k e d t o g at h er as  m u c h i nf or m ati o n fr o m t h e
e n vir o n m e nt as p ossi bl e  wit hi n a gi v e ti m e or e n er g y b u d-
g et. F or e x a m pl e, i n [ 2] –[ 4], o c e a n  m o nit ori n g, o p p ort u nisti c
s ur v eill a n c e, a n d 3 D r e c o nstr u cti o n t as ks ar e f or m ul at e d as
t h e  O P or its v ari a nts. I n g e n er al, t h e  O P is  N P- h ar d b ut t h er e
ar e c o nst a nt-f a ct or a p pr o xi m ati o n al g orit h ms f or  m a n y v ari-
a nts [ 5].  T his i n cl u d es t h e  M ulti pl e- p at h  Ori e nt e eri n g Pr o bl e m
( M O P) [ 5]  w h er e t h e g o al is t o d esi g n p at hs f or N r o b ots
s u c h t h at t h e s u m of t h e r e w ar ds c oll e ct e d b y all t h e r o b ots
is  m a xi mi z e d. I n t his p a p er,  w e i ntr o d u c e t h e r o b ust v ari a nt
of  O P. S p e ci fi c all y,  w e i ntr o d u c e t h e  R o b ust  M ulti pl e- P at h
Ori e nt e eri n g Pr o bl e m ( R M O P)  m oti v at e d b y s c e n ari os  w h er e
r o b ots o p er at e i n a d v ers ari al or f ail ur e- pr o n e e n vir o n m e nts.

Fi g ur e 1 s h o ws a  m oti v ati n g s c e n ari o  w h er e a t e a m of
u n d er w at er r o b ots ar e t as k e d  wit h g at h eri n g d at a i n a n o c e a n.

† D e p art m e nt of  El e ctri c al a n d  C o m p ut er  E n gi n e eri n g,  U ni v ersit y of  M ar y-
l a n d,  C oll e g e P ar k,  M D 2 0 7 4 2  U S A e m ail: g ys hi @t er p m ail. u m d. e d u.

‡ D e p art m e nt of  El e ctri c al a n d  C o m p ut er  E n gi n e eri n g,  Vir gi ni a  Te c h,
Bl a c ks b ur g,  V A 2 4 0 6 1  U S A e- m ail: lf z h o u @ vt. e d u.
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1 U nl ess s p e ci fi e d ot h er wis e,  O P r ef ers t o si n gl e r o b ot ori e nt e eri n g.

H o w e v er, s o m e r o b ots i n t h e t e a m  m a y f ail t o c o m pl et e
t h eir p at hs eit h er d u e t o a d v ers ari al att a c ks [ 6] or h ar d w ar e
m alf u n cti o n [ 7]. If a r o b ot f ails, t h e n t h e d at a g at h er e d b y it is
l ost.  O ur g o al is t o pr o vi d e ef fi ci e nt pl a n ni n g a n d c o or di n ati o n
al g orit h ms t h at ar e r esili e nt t o s u c h f ail ur es.

Att a c k e d

Fi g. 1.  C as e st u d y of  m o nit ori n g a  m ari n e e n vir o n m e nt  wit h a q u ati c r o b ots.
T h e r o b ots ar e t as k e d  wit h fi n di n g i nf or m ati v e p at hs t o g at h er d at a.  T h e d ar k er
t h e c ol or of p at h is, t h e  m or e v al u a bl e p at h si n c e it g at h ers i nf or m ati o n fr o m a
m or e i m p ort a nt r e gi o n.  We i n v esti g at e t h e q u esti o n of h o w t h e r o b ots s h o ul d
pl a n t h eir p at hs if  w e e x p e ct s o m e of t h e r o b ots t o f ail d u e t o a d v ers ari al
el e m e nts or n at ur al c a us es ?

B uil di n g r o b ot t e a ms t h at ar e r o b ust t o a d v ers ari al att a c ks is
e m er gi n g as a n i m p ort a nt r es e ar c h ar e a [ 8] –[ 1 1].  O ur a p pr o a c h
diff ers fr o m cl assi c al f a ult-t ol er a nt fr a m e w or ks [ 1 2] –[ 1 4] t h at
f o c us o n  m a ki n g i n di vi d u al r o b ots r o b ust t o f ail ur es. I nst e a d,
w e f o c us o n t h e q u esti o n of h o w s h o ul d t h e t e a m c o or di n at e
t h eir a cti o ns t o i m pr o v e r e d u n d a n c y i n t h eir pl a ns s u c h t h at
e v e n if s o m e r o b ots f ail, t h e o v er all p erf or m a n c e of t h e t e a m
will n ot dr o p si g ni fi c a ntl y.  As s u c h, o ur  w or k is c o m pl et el y
diff er e nt t o t h e  w or k o n  m a ki n g i n di vi d u al r o b ots r o b ust.

I n t his p a p er,  w e f o c us o n t h e  R M O P t o  m a k e pr o gr ess
t o w ar ds t h e af or e m e nti o n e d br o a d er g o al.  T h e  R M O P s e e ks
pl a ns f or a t e a m of N r o b ots t h at g u ar d a g ai nst  w orst- c as e
f ail ur es.  Of c o urs e, i n t h e  w orst- c as e all N r o b ots  m a y f ail.
T o  m a k e it  m or e  m e a ni n gf ul  w e st u d y t h e c as e  w h er e at  m ost
a gi v e n n u m b er α < N r o b ots  m a y f ail.  W h at  w e s e e k is t o
u n d erst a n d h o w t h e p erf or m a n c e of t h e t e a m  will b e aff e ct e d
as a f u n cti o n of α .  O ur  m ai n c o ntri b uti o n is a n al g orit h mi c
s c h e m e t h at us es a si n gl e r o b ot  O P s ol uti o n as a s u br o uti n e.
C h o osi n g a n a p pr o pri at e s u br o uti n e all o ws us t o i n v esti g at e
t hr e e v ari a nts of t h e ori gi n al pr o bl e m. I n t h e g e n er al v ersi o n,
t h e r e w ar d c oll e ct e d b y a n i n di vi d u al r o b ot is a s u b m o d ul ar
f u n cti o n of t h e v erti c es al o n g t h e p at h. S u b m o d ul arit y is
t h e pr o p ert y of di mi nis hi n g r et ur ns [ 1 5].  M a n y i nf or m ati o n
g at h eri n g  m e as ur es s u c h as  m ut u al i nf or m ati o n [ 1 6] a n d



coverage area [17] are known to be submodular. We also study
special cases where the reward function is strictly modular
(i.e., additive) and where the budget constraint for each robot
can be relaxed by a bounded amount.

A. Related work

The orienteering problem has been researched extensively
by both theoretical computer science and operations research
communities. The review by Vansteenwegen [1] summarizes
various algorithms for OP and its variants. We highlight the
results most closely related to our work. Blum et al. [5]
presented a polynomial time 4–approximation for OP when
the objective function is modular. This result is then extended
to yield a 5–approximation for the MOP assuming all robots
start at different vertices. If the reward function is submodular,
Chekuri and Pal [18] present a recursive greedy algorithm
for a single robot that yields a approximation
algorithm, where is the reward collected by the optimal
algorithm. The algorithm runs in quasi-polynomial time.

Singh et al. [19] showed how to use OP and MOP for active
information gathering to learn a spatial model of the envi-
ronment represented by Gaussian Processes. Their algorithms
sequentially finds paths for each robot using the single-robot
algorithms by Blum et al. [5] and Chekuri and Pal [18] as
subroutines. Atanasov et al. [20] recently presented a decen-
tralized version for multi-robot information gathering along
similar lines as [19]. They use a submodular objective function
but solve a finite horizon planning problem as opposed to OP.
However, none of these works account for potential failures
of the robots, as we do in RMOP.

Recently, Jorgensen et al. introduced the Matroids Team
Surviving Orienteers Problem (MTSO) [2] which does account
for individual robot failures. They assume that there is some
given probability of failure associated with every edge in the
environment. The goal is to maximize the expected rewards
while ensuring each path satisfies some survival chance con-
straints. MTSO is appropriate when the failures of robots are
random and follow a known distribution. The version we study,
the RMOP, accounts for worst-case failures which makes it
better suited when operating in adversarial conditions or in
stochastic conditions when worst-case guarantees are sought
due to unknown probability distributions.

Our work builds on recent work on robust submodular
maximization [21]–[26] which select sets that are robust to
worst-case removal of some subset of items. The challenge
in this framework is to solve the trade-off between too much
overlap, thereby not enough coverage (i.e., reward) and too
little overlap, thereby not enough redundancy. The conceptual
idea in these papers is similar — the final solution consists
of two subsets, one that has enough redundancy to ensure
robustness against worst-case removal and the other that has
enough coverage to get good overall performance. Orlin et
al. [21] term the former as “copies” whereas it is called as
“baits” in [25]. The robust submodular maximization formu-
lation has been applied for multi-robot, multi-target tracking

in centralized [25] and decentralized settings [26] as well as
for active information gathering with multi-robot teams [24].

We seek similar robustness guarantees as in the works
mentioned in the previous paragraph. The key technical ad-
vancement we make is that these prior work solve a single
step selection problem whereas we solve a multi-step planning
problem. As a result, the single robot problem in the prior work
can be trivially solved optimally (amounts to selecting the best
amongst a finite set of options), whereas in the RMOP the
single robot problem (OP) itself is NP-Hard. While both [25]
and [24] use their results for planning over a finite horizon,
they make key assumptions that are limiting. Schlotfeldt [24]
assume that the single robot information gathering problem
can be solved optimally (c.f. Proposition 1) whereas Zhou et
al. [25] repeatedly solve the problem at each time step. Instead,
we show how to use an approximate solution to the OP to yield
a bounded approximation solution to the RMOP.

B. Contributions

The main contributions of this paper are as follows. We
introduce the Resilient Multiple-Path Orienteering Problem.
We present a general approximation scheme to solve RMOP.
We analyze the running time and the performance of the
algorithm. In particular, we show that the approximation ratio
is a constant of the approximation factor for single robot OP.
We show how to employ three single robot algorithms for
modular and submodular OP as subroutines in our algorithm
and analyze their performance. We evaluate the performance
of our algorithm using simulations involving a case study
of ocean monitoring with a team of robots. In addition, we
give an alternative and more complete proof on the bound of
sequential algorithm in [19] which is of independent interest.

The rest of the paper is organized as follows. We provide the
necessary background on submodular functions and formally
introduce the RMOP in Sec. II. Next, the approximation
algorithm is proposed in Sec. III. Detailed analysis of the
proposed algorithm is given in Sec. IV. Finally, simulation
results are given in Sec. V.

II. PROBLEM DESCRIPTION

In this section, we formally describe the Robust Multiple
Orienteering Problem. We start by introducing notations and
conventions used in the paper.

We use calligraphic fonts to denote sets (e.g. ). Given
a set , denotes the power set of and denotes the
cardinality of . Given another set , the set denotes the
set of elements in but not in . Given a set , a set function

, and an element , is a shorthand that
denotes . We use to denote .

We now define two useful properties of set functions.

Definition 1 (Normalized Monotonicity). For a set , a func-
tion is called as normalized, monotonically non-
decreasing if and only if for any
and if and only if .



As a short-hand, we refer to a normalized, monotonically
non-decreasing function as simply a monotone function.

Definition 2 (Submodularity). For a set , a function
is submodular if and only if for any sets and

, we have ;

Let be a graph. A path in is an ordered
sequence of non-repeated vertices. As a shorthand, we use
to denote both the path (ordered set) as well as the unordered
set of vertices along the path. Let denote the power
set of . Intuitively, is the superset of all possible sets of
vertices that a robot may visit along its path. The cost of a
path , denoted by , is the sum of the edge weights
along the path. We assume that the edge weights are metric.
We study the rooted version of the problem where the path
for robot , denoted by , must begin at a specific vertex .

We consider the case that the reward function,
, of a single robot is a monotone submodular function. We

also study the special version where the function is modular
(i.e., reward of a path is the sum of rewards of the vertices
along the path).

Let be some collection of paths corresponding to the
robots in the team, . The team reward
collected by any subset is given by,

(1)

Note that reward function of the team is a submodu-
lar function irrespective of whether the single robot reward
function is submodular or not. Multiple robots can visit
the same vertex but only one visit is accounted for when
computing the reward of the team. That is, there can be no
double counting of the rewards.

We are now ready to formally define our problem.

Problem 1 (RMOP). Given a metric graph , robots
with starting positions , budget constraint

, a single robot reward function , and a
team reward function as defined in Equation 1, the Robust
Multiple-Path Orienteering Problem seeks to find a collection
of paths, that are robust to the worst-
case failure of robots:

s.t. (2)

where additionally must be the starting vertex when
constructing a path for robot .

The RMOP can be interpreted as a two-stage perfect infor-
mation sequential game, where the first player (i.e., the team
of robots) chooses a set , and the second player (i.e., the
adversary), knowing , chooses a subset to remove from

. We seek worst-case guarantees — in practice, the adversary

may not know the paths for each robot. By playing against this
stronger adversary, we guarantee that the performance against
a weaker one will be even better. We evaluate this empirically
by considering attack models other than the worst one.

The adversarial model considered in this paper is the same
as that in prior work on robust submodular optimization [22],
[23], [25]. However, RMOP is even harder since even at the
single robot level, the optimization problem we need to solve
(i.e., OP) is NP-Hard. Nevertheless, we present a constant-
factor approximation algorithm for this problem next.

III. ALGORITHM FOR RMOP

In this section, we present the general algorithm to solve
RMOP (Algorithm 1). The algorithm uses a generic subroutine
for solving OP. In the next section, we show examples of three
subroutines that can be used and show how they affect the
performance of the algorithm.

Before we describe the algorithm, we present additional
notation. If is a set of paths, then let denote
the set of corresponding robots whose paths are contained
in . We use to denote the
worst-case set of paths that are removed from a given set of
path . Therefore, denotes the set of paths that are
not attacked from with .

The algorithm consists of two main steps: first, it calls a
subroutine for solving OP times to compute a path for
each robot independently. It then chooses paths (denoted
by ) with highest individual rewards without considering
overlap with other robots; Second, it uses sequential greedy
assignment to find paths for the rest of the robots (denoted by

) by querying the OP subroutine times. The while
loop is used to maintain an invariant that the paths in are
always better than the paths in .

As described earlier, there is a tradeoff between redundancy
and coverage in RMOP. The two set of paths are constructed
so that adds redundancy and adds coverage, together
yields a provably good solution for RMOP. We explain each
step in Algorithm 1 next.

Constructing : Each of the paths in are better than
those in . The paths in may overlap with each other and
also overlap with those in . Thus, these paths serve to add
redundancy to the team. Constructing the best paths with
respect to itself is NP-hard. Therefore, Algorithm 1 firstly
solves orienteering problem for each robot independently and
stores in the (approximately optimal) paths for individual
robots (lines 2–5). Then Algorithm 1 sorts the paths in
based on their collected rewards (line 8) and chooses the
best paths to be (line 9).

Constructing : After finding , Algorithm 1 needs to
find the best paths for the rest of robots . Unlike ,
here the algorithm explicitly considers overlap when finding
the paths. Thus, serves to add coverage to the solution.

However, selecting optimal paths for is a
multiple-path orienteering problem and is also NP-hard. There-
fore, Algorithm 1 approximates the solution by employing the



Algorithm 1: Algorithm for Problem 1
Input : Per problem 1 requires following inputs:

set of robots
metric graph
starting vertices
number of maximum potential attacks and budget

Output: Set of paths for each robot
1

2 for to do
3

4

5 end
6 flag True
7 while flag do
8 Sort elements in such that

and

9

10 //extract starting positions for the rest of robots

11 //Sequential greedy assignment

12 //while loop control
13 if then
14 False
15 else
16 Find all robots such that
17

18 Replace the path stored in corresponding to
robot with the better path found when
constructing

19 end
20 end
21

sequential greedy algorithm (line 11). For completeness, we
present the pseudocode for SGA in Algorithm 2.

Specifically, for robots in , Algorithm 2 finds a
path using an approximation algorithm for OP (line 4). Then,
Algorithm 2 sets the reward for the vertices visited by that
robot to be zero (lines 6–8). This process repeats until we find
a path for all robots. Here we implicitly assume that there is at
least one path for each robot satisfying the budget constraints.

The paths in form the solution to RMOP. However,
we also have an outer while loop which we explain next.

Invariant: Our analysis requires the paths in and
to have the following property:

. This condition is trivially met if the single
robot problem has to just choose the best amongst a fixed
set of trajectories as in the prior work [22], [25]. However,
when solving RMOP, we employ a subroutine for solving OP
which gives us the paths in and . Since the subroutine
uses an approximation algorithm for OP instead of an exact
optimal one, we cannot guarantee that this invariant holds. For

example, if the subroutine uses randomness, then running the
same algorithm twice may give different results. In any case,
all we can guarantee is that the paths found by the subroutine
will be no more than a constant from the optimal.

We fix this problem by utilizing a while loop (lines 7–
0). When the condition of the while loop holds (lines 13–
15), the loop flag is set to be false and the while loop
terminates. Otherwise (lines 16–19), Algorithm 1 will find
those robots that violate the above inequality and update their
corresponding paths in the set . Recall that is used to
store the best path corresponding to each robot. Then, while
loop will restart to construct using the updated and
for the remaining robots, again. We show that this loop will
eventually terminate.

Corollary 1. The while loop in Algorithm 1 will terminate in
a finite number of steps.

Proof. If the flag is not set to false after an iteration of the
while loop, then it must mean that at least one new path found
when constructing , say for robot , is better than some
path in . Suppose this better path is . Note that the set
consists of a path for the robot , say . Since consists of
the best paths in and , then it must mean that the
path is strictly better than . Thus, after every iteration of
the while loop, if the flag is not set, then at least one path in

has improved. For each robot given a fixed budget, there
is a maximum amount of reward that it can collect. We cannot
keep increasing the rewards of paths in . Therefore, while
loop must terminate after finite iterations.

Algorithm 2: Sequential Greedy Assignment

1 function SGA ;
Input :

A graph representing environment
Budget for each robot
Starting positions

Output: a collection of paths
2

3 for to do
4 ;
5

6 foreach do
7 Set the reward of to be zero
8 end
9 end

10 return

Remark 1. In practice, the loop in Algorithm 1 typically
terminates after just one iteration. Paths in are found
without considering overlap. On the other hand, when solving
SGA the robots find their paths by taking into account overlap
with the previously found paths. The conditions in the latter
are a subset of the former. Furthermore, none of the three
subroutines that we employ for OP include any randomness.



Therefore, it is unlikely that the paths in will be better
than that in . As such, it is unlikely that the while loop will
take more than one iteration. Nevertheless, we give the full
algorithm for completeness.

So far, we have not discussed the subroutine used to
solve OP. In the next section, we present the analysis of the
algorithm and then present the three subroutines.

IV. PERFORMANCE ANALYSIS

In this section, we quantify the performance of proposed
Algorithm 1. We first present a new analysis for the Sequential
Greedy Assignment (SGA) and then show the performance
bound for our algorithm. The performance is based on the
notion of curvature of the set functions.

Definition 3 (Curvature). Consider a finite ground set and a
monotone submodular set function . The curvature
of is defined as,

(3)

The curvature takes values and measures how
far is from modularity. When , is modular since
for all , we get . On the
other extreme, when there exists some element that
makes no unique contribution to the rest of the set, since we
get . We assume that the curvature of the
reward function and that of objective function is strictly less
than 1. This is reasonable since it implies every vertex and path
in the environment makes some non-zero unique contribution
over the rest.

We first analyze the SGA and then use that analysis for
proving the performance bound of our algorithm.

A. Sequential Greedy Assignment

SGA was first proposed in [19] to solve the MOP. Note that
the MOP is the same as RMOP if we consider . SGA
solves the problem by finding the path for the robot in the

iteration, by considering the paths found in the previous
iterations.

Let be the optimal solution to the
MOP with robots. It is easy to see that these paths will be
non-overlapping in a metric graph.

Proposition 1. There exists an optimal solution for the MOP
consisting of no overlapping paths, i.e., .

The proof is given in the supplementary document.
We use an approximation algorithm to find the path for

each robot. Let be the set of paths
returned by SGA. Note that SGA runs for iterations. Let

denote the set , which is the collection
of paths returned by SGA after the first iterations. We have

. With slight abuse of notation, we use to refer
to the (unordered set of) vertices visited by the paths in .

Every iteration of SGA requires solving an NP-Hard prob-
lem (c.f. line 4 in Algorithm 2). Let be the optimal solution
for the problem in iteration , i.e.,

argmax

where is the set of all feasible paths for robot
and . Let be the set

, which is the collection of optimal paths for
the problems in iterations 1 through . We also set .

The analysis in [19] gives the relation between
and which is not necessarily be the same as .
In fact, the underling relationship between and global
optimal is unclear. Recall that is the optimal set of

paths for MOP and is the set of paths where the
path is the optimal solution to the problem in iteration

of SGA. These are not necessarily the same. One way to see
this is to note that the order of the robots in SGA is arbitrary.
If we shuffle the order in which the robots select their paths,
then the paths found for each robot as well as the per stage
optimal paths will change but the optimal solution for
MOP will still be the same. In the following, we will
directly establish the relation between and .
Our proof uses ideas from [5].

For now, assume that we use an approximation for OP,

Theorem 1. Algorithm 2 (SGA) gives a approximation
for MOP, where is the approximation factor for OP and
is the curvature for the reward function .

Proof. Let be the set of vertices visited by
both the optimal path for the robot and paths found using
SGA for robots 1 through . Let . When we
construct a path for robot in the -th iteration, there is a
feasible path for robot that visits all vertices in .
That is, if we remove the vertices from the optimal path
for robot that are also in , the remaining vertices in

still form a feasible path for robot (since it cannot be
longer). Therefore, the optimal path in the iteration for
robot should satisfy

(4)

Given two sets , using the inequality presented in
the footnote in [27], we have

(5)

Note that . Applying inequality (5)
to (4) and using submodularity, we have

(6)
(7)
(8)



Using the approximation algorithm for OP, we have

Summing over all , we get

(9)

The left hand side is equal to by definition.
Furthermore, by submodularity,

(10)

We also have,

(11)

(12)

(13)

where Eq. (11) holds due to Lemma 1 in [22]; Eq. (12) follows
from Proposition 1 that states ; Eq. (13)
is due to submodularity of . Rearranging the terms and using
the definition of ,

(14)

Since , by monotonicity we have

(15)

Using Eq. (10), (14), and (15), we have,

By definition of the objective function ,

That is, .

We now use this result in proving our main result.

B. Analysis for Algorithm 1

Theorem 2. Algorithm 1 returns a set such that

where are the same as that defined in Theorem 1;
is the curvature of objective function ; and is the
optimal removal set of ; and is the optimal solution to
RMOP.

The omitted proofs can be found in here.
Now, we describe the three subroutines that can be em-

ployed for solving OP. We start with the most general case
where the reward function is submodular and the budget for
each robot must be strictly enforced.

Corollary 2. If recursive greedy algorithm [18] is used as
subroutine to solve OP and additionally each robot has a
predefined terminal vertex, then in Theorem 2 equals to

. Here is the reward collected by the optimal
algorithm. The running time of the resulting algorithm is
quasi-polynomial since the running time of recursive greedy
is quasi-polynomial.

Next, consider the variant where is still submodular, but
each robot is allowed to exceed its predefined budget by a
bounded amount.

Corollary 3. If General Cost-Benefit (GCB) approximation
algorithm [28] is used as subroutine for OP and we are
allowed to relax given budget to , then
in Theorem 2 equals to . Here, as
defined in [28]. The GCB algorithm runs in polynomial time.

Finally, consider the case where is modular. Here, we get
the strongest guarantee with no relaxations to RMOP.

Corollary 4. If the reward function is modular, then by using
the approximation algorithm for OP in [5] yields an
in Theorem 2. The running time of the algorithm in [5] is
polynomial.

V. NUMERICAL SIMULATIONS

In this section, we validate the performance of Algorithm 1
through numerical simulations. In particular, (1) we compare
the performance of our algorithm with two baseline strategies;
(2) demonstrate the robustness of the proposed algorithm
against attacks that are not necessarily the worst-case ones;
and (3) investigate the running time as a function of the size
of the input graph and number of robots. All experiments were
performed on a Windows 64-bit laptop with 16 GB RAM and
an 8-core Intel i5-8250U 1.6GHz CPU using Python 3.7.

A. Simulation Setup

Application case study: We use the application of moni-
toring a marine environment for mapping oil leaks, macroalgal
blooms, or pH values. Specifically, as explained in [29], such
tasks usually calls for collaboration of multiple sensors in-
cluding satellites, which can provide coarse prior information



( a) S G A p at hs ( b)  R M O P p at hs

Fi g. 2.  C as e st u d y of  m o nit ori n g  m a cr o al g al bl o o ms usi n g N = 6 r o b ots
ass u mi n g α = 3 f ail ur es.  C ol or e d d ots i n di c at e l o c ati o ns t o b e  m o nit or e d
al o n g  wit h t h eir i m p ort a n c e (i. e., r e w ar ds).  R e d cr oss es i n di c at es  w orst- c as e
att a c ks f o u n d usi n g br ut e-f or c e. P at hs r et ur n e d b y t h e pr o p os e d al g orit h m
m a n a g es t o c o v er o n e of t h e t hr e e i m p ort a nt ar e as (l o w er l eft c or n er)  w hil e
S G A l os es all t hr e e.  T h e b a c k gr o u n d  m a p is p art of  Yell o w S e a,  w h er e gr e e n
ti d es pr e v ails e v er y s u m m er si n c e 2 0 0 7.

o n t h e c o n c e ntr ati o n of t h e p h e n o m e n o n of i nt er est, a n d
m o bil e r o b oti c s e ns ors,  w hi c h c a n us e t h e pri or i nf or m ati o n
f or t ar g et e d d at a c oll e cti o n.  Usi n g t his as  m oti v ati o n,  w e
c o nsi d er a s c e n ari o  w h er e pri or i nf or m ati o n fr o m s at ellit es
(f or e x a m pl e) c a n b e us e d t o d e fi n e a n i m p ort a n c e  m a p o v er
t h e e n vir o n m e nt t o b e  m o nit ori n g. Fi g. 2 s h o ws t h e s et u p
w hi c h c o nsists of 9 6 v erti c es pl a c e d i n t h e e n vir o n m e nt.  T h e
c ol or of t h e v ert e x r e fl e cts t h e i m p ort a n c e of t h at v ert e x  w hi c h
gi v es t h e r e w ar d ass o ci at e d  wit h visiti n g t h at v ert e x.  H er e, t h e
si n gl e r o b ot f u n cti o n, g (P i ) , is a  m o d ul ar r e w ar d.  T h e c ost
al o n g t h e e d g es is t h e  E u cli d e a n dist a n c e b et w e e n t h e v erti c es.
Ass u mi n g u nit s p e e d of tr a v el, t h e c ost of a p at h r e fl e cts t h e
tr a v el ti m e of t h e r o b ot. I n all t h e i nst a n c es, e a c h r o b ot is
gi v e n a b u d g et B = 6 0 u nits.

B as eli n e al g orit h ms: Si n c e  w e i ntr o d u c e  R M O P i n t his
p a p er, t h er e is n o ot h er ef fi ci e nt al g orit h m t o dir e ctl y c o m p ar e
t h e p erf or m a n c e  wit h.  O n e o pti o n is t o c o m p ut e t h e o pti m al
s ol uti o n ( usi n g f or e x a m pl e, br ut e-f or c e e n u m er ati o n)  w hi c h
q ui c kl y b e c o m es i ntr a ct a bl e. I nst e a d,  w e c h o os e t w o a p pr o x-
i m ati o n al g orit h ms f or  M O P, t h e n o n- a d v ers ari al v ersi o n, as
b as eli n es.  T h e first o n e us es t h e s e q u e nti al gr e e d y assi g n m e nt
f or all N r o b ots ( w e r ef er t o it as S G A)  w h er e t h e p at h f or
r o b ot i is b as e d o n t h e p at hs c o m p ut e d f or r o b ots 1 t hr o u g h
i − 1 .  T h e s e c o n d b as eli n e is t h e n ai v e gr e e d y al g orit h m  w h er e
e a c h r o b ot n ai v el y ( wit h o ut c o nsi d eri n g t h e tr a v el c ost) a n d
gr e e dil y ( wit h o ut c o nsi d eri n g ot h er r o b ots)  m a xi mi z e t h eir
r e w ar ds ( w e r ef er t o it as  N G).

F or b ot h S G A a n d t h e pr o p os e d al g orit h m,  w e us e t h e
G C B al g orit h m s ol vi n g  O P d u e t o its ef fi ci e n c y a n d e as e of
i m pl e m e nt ati o n. S p e ci fi c all y,  w e i m pl e m e nt  G C B usi n g d et ails
pr o vi d e d i n [ 2 8].  W h e n r u n ni n g  G C B,  w e si m pl y s et t h e
r el a x e d b u d g et its elf t o b e B .

Att a c k  m o d els: O ur al g orit h m is d esi g n e d t o gi v e p er-
f or m a n c e g u ar a nt e es a g ai nst  w orst- c as e att a c ks.  H o w e v er, i n
pr a cti c e,  w e  w o ul d li k e f or a n y al g orit h m t o b e r o b ust t o n ot
j ust t h e  w orst- c as e att a c ks b ut als o ot h er att a c ks.  T h er ef or e,  w e
e v al u at e t w o ot h er t y p es of att a c ks b esi d es  w orst- c as e att a c ks.
T h e d et ails ar e pr o vi d e d i n t h e n e xt s u bs e cti o n.

B.  R es ults

Fi g. 2 s h o ws a q u alit ati v e e x a m pl e c o m p ari n g o ur pr o p os e d
al g orit h m a n d S G A  wit h N = 6 a n d α = 3 .  N ot s ur prisi n gl y,
t h e si x p at hs f o u n d b y S G A d o es n ot h a v e a n y o v erl a p
b ut t h e o n es f o u n d b y o ur al g orit h m d o es.  As a r es ult, t h e
w orst- c as e att a c k t a k es a w a y all t hr e e r o b ots c o v eri n g t h e
i m p ort a nt r e gi o ns i n S G A,  w h er e as o n e of t h e t hr e e r e gi o ns is
still c o v er e d  wit h o ur al g orit h m.  T h e  w orst- c as e att a c ks  w er e
c o m p ut e d usi n g br ut e-f or c e.

N e xt,  w e pr es e nt q u a ntit ati v e r es ults. I n all f oll o wi n g fi g-
ur es, t h e err or b ar s h o ws t h e v ari a n c e of 2 0 tri als  w h er e t h e
st arti n g r o b ot p ositi o ns ar e r a n d o ml y c h os e n.

α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 α = 8

N u m b er of  w orst- c as e att a c ks

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

R e w ar ds aft er  w orst- c as e α att a c ks

R M O P

S G A

N G

( a)

α = 0 α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 α = 8

N u m b er of r a n d o m att a c ks

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

R e w ar ds aft er r a n d o m α att a c ks

R M O P

S G A

N G

( b)

Fi g. 3. ( a)  R e w ar ds aft er  w orst- c as e att a c k  wit h i n cr e asi n g α a n d N = 1 0 .
( b)  R e w ar ds aft er r a n d o m α att a c ks a n d N = 1 0 .

Fi g. 3 a s h o ws t h e c o m p aris o n b et w e e n o ur al g orit h m f or
R M O P  wit h S G A a n d  N G as α i n cr e as es  wit h N = 1 0 .  T h e
b ars s h o w t h e r e w ar ds c oll e ct e d b y t h e r o b ots aft er att a c ks.
O ur al g orit h m r et ur ns p at hs t h at ar e sli g htl y  w ors e t h a n S G A
w h e n α is s m all.  T his is n ot s ur prisi n g si n c e o ur al g orit h m  will
h a v e o v erl a p pi n g p at hs  w h er e as S G A  will n ot.  N G is t h e ot h er
e xtr e m e si n c e e a c h r o b ot pl a ns f or its elf  w hi c h c a n l e a d t o hi g h
d e gr e e of o v erl a p.  As α i n cr e as es, o ur al g orit h m o ut p erf or ms
S G A. F or e x a m pl e,  w h e n α = 8 o ur al g orit h m yi el ds a r e w ar d
of 4 5 1 w h er e as S G A o nl y yi el ds 2 8 3 o n a v er a g e.

N e xt,  w e e v al u at e t h e p erf or m a n c e of o ur al g orit h m  w h e n
t h e att a c k  m o d el d o es n ot  m at c h t h e  w orst- c as e o n e ass u m e d
d uri n g pl a n ni n g.  T h e g o al is t o v erif y t h e r o b ust n ess of
t h e al g orit h m t o ot h er att a c k  m o d els. Fi g. 3 b s h o ws t h e
c o m p aris o n b et w e e n o ur al g orit h m a n d t h e t w o b as eli n es as
α v ari es  w h e n t h e att a c k e d r o b ots ar e r a n d o ml y c h os e n.  O ur
al g orit h m still pl a ns ass u mi n g  w orst- c as e att a c ks.  We o bs er v e



| SA | = 0 | SA | = 1 | SA | = 2 | SA | = 3 | SA | = 4

N u m b er of att a c ks

0

5 0 0

1 0 0 0

1 5 0 0
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2 5 0 0

R e w ar ds aft er | SA |≤ α = 4 att a c ks

R M O P

S G A

N G

Fi g. 4.  R e w ar ds aft er  w orst- c as e att a c ks of i n cr e asi n g si z es, | SA | ≤ α .  H er e
t h e pl a n n er us es N = 7 a n d α = 4 .

t h e s a m e tr e n d  wit h r a n d o m att a c ks as  wit h t h e  w orst- c as e
o n es  — as α i n cr e as es, o ur al g orit h m o ut p erf or ms S G A.

Fi g. 4 s h o ws r es ults f or t h e c as e  w h er e  w e c o nstr u ct p at hs
ass u mi n g α = 4 r o b ots  will b e att a c k e d b ut i n pr a cti c e o nl y
| SA | ≤ α r o b ots s uff er fr o m  w orst- c as e att a c ks. S G A p erf or ms
b ett er t h a n o ur al g orit h m  w h e n t h e n u m b er of r o b ots a ct u all y
att a c k e d | SA | is f ar fr o m t h e d esi g n e d v al u e of α .  As t h e a ct u al
n u m b er of r o b ots att a c k e d i n cr e as es a n d | SA | a p pr o a c h es α ,
o ur al g orit h m o ut p erf or ms S G A.

Wit h o ut att a c k W orst- c as e att a c k R a n d o m att a c k
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

R e w ar ds aft er att a c ks

R M O P

S G A

N G

( a) 7 r o b ots  wit h α = 4

Wit h o ut att a c k W orst- c as e att a c k R a n d o m att a c k
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R e w ar ds aft er att a c ks

R M O P

S G A

N G

( b) 8 r o b ots  wit h α = 4

Wit h o ut att a c k W orst- c as e att a c k R a n d o m att a c k
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( c) 9 r o b ots  wit h α = 5

Wit h o ut att a c k W orst- c as e att a c k R a n d o m att a c k
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( d) 1 0 r o b ots  wit h α = 6

Fi g. 5.  R e w ar ds aft er: ( 1) n o att a c ks; ( 2) α o ut of N r o b ots u n d er  w orst- c as e
att a c k; ( 3) α o ut of N r o b ots u n d er r a n d o m att a c k.

Fi g. 5 s h o ws t h e e v al u ati o n  w h e n t h er e ar e ( 1) n o att a c ks;
( 2)  w orst- c as e att a c ks; a n d ( 3) r a n d o m att a c ks f or f o ur c o n-
fi g ur ati o ns of N a n d α . I n all t hr e e c as es, o ur al g orit h m still
pl a ns t h e p at hs ass u mi n g  w orst- c as e att a c ks f or t h e gi v e n v al u e
of α .  W h e n t h er e ar e n o att a c ks ( first s et of b ars i n e a c h
s u b fi g ur e), S G A o ut p erf or ms o ur al g orit h m as o bs er v e d i n
pr e vi o us c h arts.  W h e n  w orst- c as e att a c ks d o h a p p e n ( mi d dl e
s et of b ars), t h e a v er a g e r e w ar ds c oll e ct e d b y t h e u n att a c k e d
r o b ots e m pl o yi n g o ur al g orit h m is b ett er t h a n t h at of S G A.
T his is als o t h e c as e  w h e n t h e α att a c k e d r o b ots ar e c h os e n

r a n d o ml y (t hir d s et of b ars).  T his tr e n d h ol ds f or v ari o us v al u es
of N a n d α as s h o w n.
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( b)  R u n ni n g ti m e  w.r.t. r o b ots

Fi g. 6.  R u n ni n g ti m e of  Al g orit h m 1 a n d S G A

T h e r u n ni n g ti m e c o m p aris o ns b et w e e n o ur al g orit h m a n d
S G A ar e s h o w n i n Fi g. 6.  We v ar y t h e n u m b er of r o b ots as
w ell as t h e si z e of t h e gr a p h.  O ur al g orit h m t a k es l o n g er t h a n
S G A  w hi c h is e x p e ct e d si n c e it us es S G A as a s u br o uti n e.
N e v ert h el ess,  w e o bs er v e si mil ar tr e n ds i n t h e r u nti m e.

Dis c ussi o n of  R es ults: T h e r es ults s h o w t h e pr o p os e d
al g orit h m  w or ks i n pr a cti c e as i nt e n d e d.  As t h e n u m b er of
att a c k e d r o b ots i n cr e as es ( eit h er S A or α ), it o ut p erf or ms
S G A. F urt h er m or e,  w e o bs er v e t h at t h e  m ar gi n b et w e e n o ur
al g orit h m a n d S G A i n cr e as es as t h e n u m b er of att a c k e d r o b ots
i n cr e as es.  E v e n  w h e n o ur al g orit h m fi n ds  w ors e p at hs t h a n
S G A, t h e y ar e still c o m p ar a bl e t o S G A a n d ar e si g ni fi c a ntl y
b ett er t h a n  N G.  We als o o bs er v e t h at o ur al g orit h m is r o b ust
t o t h e a ct u al att a c k  m o d els  — e v e n if t h e att a c ks ar e n ot t h e
w orst- c as e o n es,  w e s e e si mil ar tr e n ds.

VI.  C O N C L U S I O N

We i ntr o d u c e d a n e w pr o bl e m, t er m e d  R o b ust  M ulti pl e- P at h
Ori e nt e eri n g Pr o bl e m, i n  w hi c h  w e s e e k t o c o nstr u ct a s et of
p at hs f or r o b ots s u c h t h at e v e n if a s u bs et of r o b ots f ail, t h e r est
of t h e t e a m still p erf or ms  w ell.  We pr o vi d e d a n a p pr o xi m ati o n
al g orit h m f or  R M O P,  w hi c h b uil ds o n b o u n d e d a p pr o xi m ati o n
al g orit h m f or  O P a n d t h e s e q u e nti al gr e e d y assi g n m e nt fr a m e-
w or k.  We s h o w e d t hr e e v ari a nts of t h e g e n er al al g orit h m t h at
us e t hr e e diff er e nt s u br o uti n es f or  O P a n d still yi el d a b o u n d e d
a p pr o xi m ati o n f or  R M O P. I n a d diti o n t o t h e or eti c al r es ults,
w e pr es e nt e d e m piri c al r es ults s h o wi n g t h at o ur al g orit h m
is r o b ust t o att a c ks ot h er t h a n t h e  w orst- c as e o n es.  We als o
c o m p ar e o ur p erf or m a n c e  wit h b as eli n e al g orit h ms a n d s h o w
t h at o ur al g orit h m yi el ds b ett er p erf or m a n c e as  m or e a n d  m or e
r o b ots ar e att a c k e d.  A n i m m e di at e f ut ur e dir e cti o n t o e xt e n d
o ur  w or k t o t h e o nli n e v ari a nt of  R M O P i n  w hi c h r o b ots c a n
r e pl a n o n c e t h e y k n o w  w hi c h (if a n y) r o b ots ar e att a c k e d.

VII.  A C K N O W L E D G E M E N T

T his  w or k is s u p p ort e d b y t h e t h e  N ati o n al S ci e n c e F o u n-
d ati o n u n d er  Gr a nt  N o. 1 9 4 3 3 6 8, a n d t h e  Of fi c e of  N a v al
R es e ar c h u n d er  Gr a nt  N o.  N 0 0 0 1 4 1 8 1 2 8 2 9
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