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Abstract

In many societal resource allocation domains, machine learn-
ing methods are increasingly used to either score or rank
agents in order to decide which ones should receive either
resources (e.g., homeless services) or scrutiny (e.g., child
welfare investigations) from social services agencies. An
agency’s scoring function typically operates on a feature
vector that contains a combination of self-reported features
and information available to the agency about individuals or
households. This can create incentives for agents to misrepre-
sent their self-reported features in order to receive resources
or avoid scrutiny, but agencies may be able to selectively au-
dit agents to verify the veracity of their reports.
We study the problem of optimal auditing of agents in such
settings. When decisions are made using a threshold on an
agent’s score, the optimal audit policy has a surprisingly sim-
ple structure, uniformly auditing all agents who could benefit
from lying. While this policy can, in general be hard to com-
pute because of the difficulty of identifying the set of agents
who could benefit from lying given a complete set of reported
types, we also present necessary and sufficient conditions un-
der which it is tractable. We show that the scarce resource
setting is more difficult, and exhibit an approximately opti-
mal audit policy in this case. In addition, we show that in
either setting verifying whether it is possible to incentivize
exact truthfulness is hard even to approximate. However, we
also exhibit sufficient conditions for solving this problem op-
timally, and for obtaining good approximations.

1 Introduction
Algorithmic decision-making systems are increasingly used
to make high-stakes resource allocation decisions by social
services agencies. This includes both scarce resource set-
tings, where the demand for a limited pool of resources ex-
ceeds supply (for example, housing for the homeless (Kube,
Das, and Fowler, 2019)), as well as risk-scoring settings,
where only those who fall above or below a certain thresh-
old are either given a resource (for example, a loan (Agar-
wal, Skiba, and Tobacman, 2009)) or targeted for further
scrutiny (for example, parents suspected of child maltreat-
ment or neglect (Chouldechova et al., 2018)). As is stan-
dard in classification and ranking settings, each individual
or household (henceforth agent) is associated with a feature
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vector. In many such settings, the feature vector will com-
bine information submitted by the agents themselves with
information about them available from other sources. For
example, in prioritizing households for homeless services,
agencies make decisions based on self-reported items (e.g.,
history of alcohol or drug use) as well as on information
available to them in government records (e.g., child-support
or welfare payments received) (Brown et al., 2018). Natu-
rally, this creates incentives for agents to try and game the
system by strategically choosing their self-reported features
in order to maximize their chances of receiving the resource
or avoiding scrutiny.

Prior work on strategic or adversarial classification has
considered a closely related problem where agents subject to
classification can modify feature values at some cost or sub-
ject to a constraint on the total magnitude of such modifica-
tion, with the goal of inducing an incorrect prediction (Atha-
lye, Carlini, and Wagner, 2018; Carlini and Wagner, 2017;
Hardt et al., 2016; Milli et al., 2019; Papernot et al., 2018;
Tong et al., 2019; Vorobeychik and Kantarcioglu, 2018).
This research has typically focused on either assessing how
vulnerable particular families of classifiers are to such at-
tacks (often termed adversarial examples) (Athalye, Carlini,
and Wagner, 2018; Carlini and Wagner, 2017; Lowd and
Meek, 2005; Xu, Qi, and Evans, 2016), or on designing clas-
sifiers that are robust in the sense that the prediction remains
unchanged even after budget-constrained feature modifica-
tions (Brückner and Scheffer, 2011, 2012; Hardt et al., 2016;
Li and Vorobeychik, 2018; Madry et al., 2018; Tong et al.,
2019; Wong and Kolter, 2018). In this literature, the in-
terests of the agents are commonly viewed as opposed to
those of the decision-maker (e.g., learner), often motivated
by security considerations (Šrndic and Laskov, 2014; Xu,
Qi, and Evans, 2016). Moreover, the typical models repre-
senting costs to agents of modifying features are at times
not adequate at capturing realistic limits on what agents can
do (Tong et al., 2019; Wu, Tong, and Vorobeychik, 2020).
In contrast, in the kinds of social services settings we de-
scribe, and potentially numerous others (e.g., tax filing), the
costs of misrepresenting one’s self-reported features are bet-
ter captured by the risk associated with being audited than,
say, a hard constraint on how much the features are mod-
ified. Moreover, the agents’ interests are not fundamentally
opposed to the principal’s; rather, this is a case of misaligned



incentives more akin to that studied in the incentive design
literature (Haeringer, 2018; Nisan et al., 2007).

We consider a principal who has a limited budget of audits
and can use these to determine whether an agent is telling the
truth, with the cost of failing an audit the primary deleterious
consequence to dishonest agents. For example, caseworkers
can interview associates of the agent and ask about behav-
ioral issues, alcohol or drug use, and the like, and impose
restrictions or fines on the agent if the results reveal dishon-
esty. We suppose that the principal uses a score function f
(for example, learned risk scores) that takes agent features as
input in order to decide whether an agent is subject to further
scrutiny whenever their score exceeds a predefined threshold
(we term this the threshold setting), or to allocate resources
to the agents with the top k values of f (we call this the
top-k setting). We specifically focus on two problems: 1)
designing an audit policy for the principal that minimizes in-
centives to lie, defined in terms of approximate Bayes-Nash
incentive compatibility (ε-BNIC), and 2) verifying whether
it is possible to ensure truthful reporting of features.

We show that in the threshold allocation setting an opti-
mal policy audits uniformly at random all agents who are
above the threshold, with special consideration for those
who are either obviously lying or telling the truth. Although
this policy is in general hard to compute, we present suffi-
cient conditions under which it is tractable. In the top-k set-
ting, we prove that auditing all agents who receive the scarce
resource uniformly at random (again, modulo special treat-
ment of agents who are either certainly truthful or dishonest)
yields an additive approximation bound, although the prob-
lem is hard in general. Furthermore, we show that this audit
policy is optimal if we consider dominant strategy incentive
compatibility as a solution concept instead of ε-BNIC.

Surprisingly, the verification problem is even harder: de-
termining if any audit policy can incentivize truthful report-
ing is #P-hard even for a uniform prior over features and
only two agents. However, we give sufficient conditions un-
der which verification becomes tractable in the threshold set-
ting for both piecewise linear and logistic scoring functions.
Our corresponding results are weaker for the top-k setting,
where we require the distribution over features to be uni-
form to obtain a tractable algorithm for checking incentives
to lie assuming that a uniform audit policy is used. Finally,
we show that for distributions for which we can efficiently
approximate integrals over intervals, we can also approxi-
mately verify incentive compatibility.

Our results are important for understanding the potential
for audits to be useful in various social services settings. Of
perhaps the most practical importance is the clear distinc-
tion we find between the threshold (modeling unlimited, but
costly, deployment of resources) and top-k (modeling scarce
resource allocation) settings in terms of the difficulty of find-
ing a good audit policy, and the simplicity of the optimal
audit policy in the threshold setting.

2 Preliminaries
We consider a setting with a collection of n agents in which
either a scarce resource is distributed among k of them us-
ing a score function, or each agent is scored to determine

whether they are selected to receive a resource. Each agent
is associated with a vector of attributes (features) which are
grouped into two categories: “known”, denoted by x, and
“self-reported”, denoted by z. Throughout, we refer to (x, z)
as an agent’s true type, to contrast it with (x, z′) in which
z′ is self-reported and may be different from the true corre-
sponding characteristics of the agent. For example, the agent
may have a history of substance abuse, corresponding to
“true” zj = 1, but reports that they do not, with “reported”
z′j = 0. Let d be the number of known and s the number of
self-reported features. We assume that each feature in either
category either belongs to a continuous or discrete interval,
i.e., each xj , zk ∈ I = [a, b] ∩ S, where S = R (continuous
interval) or S = Z (discrete interval). We further assume
that the true types of each of the n agents are i.i.d. according
to a (common knowledge) prior distributionD with PDF (or
PMF, in the discrete case) denoted by h : Id × Is → [0, 1].
We will use P(·) to denote the associated probability mea-
sure.

Let A = {a1, ...,an} denote the collection of n agents,
where ai = (xi, zi) ∈ Id × Is represents the agent’s true
type, and let A′ = {a′1, ...,a′n} be the collection of reported
types, a′i = (xi, z

′
i). We assume that each agent knows their

own type, but only knows the common prior h about the
types of other agents.

The principal publishes a score function f : Id× Is → R
that takes each agent’s reported type a′i as input, and returns
a real-valued score. For example, f may represent the prob-
ability (learned from historical data) that a homeless person
will be safely and stably housed in 1 year if allocated a hous-
ing resource. There are two common ways that f is used in
resource allocation: (1) Threshold allocation: all agents
scoring above a threshold θ are allocated a resource (e.g.,
not chosen for further scrutiny in a child neglect case), and
(2) Top-k allocation: agents with the highest k scores based
on reported types are allocated a resource (e.g., housing).

The principal can audit up to B agents and thereby verify
whether their reported type matches their true type. Let φ
denote the audit policy, which is a function of the full col-
lection of n reported types A′. We consider stochastic audit
policies, where φi(A′) ∈ [0, 1] is the probability that agent
i is audited. If an audit of agent i determines that the agent
has lied, i.e., z′i 6= zi, there are two consequences: 1) the
agent does not receive the resource, and 2) the agent pays a
penalty (fine) c ≥ 0. Let α denote the allocation policy with
αi(f,A′, φ) = 1 if agent i receives the resource, and 0 oth-
erwise. Further, let Li = 1 if agent i is audited and z′i 6= zi
(the agent is caught lying) and 0 otherwise; note that since
the audit policy is stochastic, Li is a random variable. We
assume that an agent obtains a value of 1 for receiving the
resource and 0 otherwise. Consequently, the agent’s utility
is ui(A′) = αi(f,A′, φ)(1− Li)− cLi.

This game between a principal and agents can be ex-
pressed as the following sequence of events:

1. The principal knows D, n, Id × Is, α, c, and f , and an-
nounces an audit policy φ.

2. Realizations of n agents are drawn i.i.d. from D. Each
agent knows its own type (xi, zi), D, n, Id × Is, α, c, φ,



and f , but does not know the types of other agents.
3. Agents simultaneously submit their reported type (xi, z

′
i),

where z′i need not equal zi.
4. The principal audits up to B agents, according to φ. Any

agent i found to have reported z′i 6= zi is removed from
consideration (not allocated the resource), and pays a fine
of c.

5. The remaining agents are distributed a resource according
to α.

Note that if an agent i is found to be dishonest through an
audit in the top-k allocation setting, another agent would
receive the resource in place of i.

The goal of the principal is to achieve truthful reporting of
types by the agents in an (approximate) Bayes-Nash equilib-
rium, or (approximate) Bayes-Nash incentive compatibility
(BNIC). Formally:
Definition 1. (ε-BNIC) An audit policy φ is ε-Bayes-Nash
incentive compatible (ε-BNIC) if for all i and ai,

EA−i∼D[ui(ai,A−i)|f, φ, α]

≥ EA−i∼D[ui(a
′
i,A−i)|f, φ, α]− ε ∀a′i : x′j = xj .

φ is BNIC if it is 0-BNIC.
We consider two problems in this setting. First, since it is

in general impossible to induce BNIC, as we show below, we
aim to identify an optimal audit policy, defined as follows.
Definition 2. (Optimal) An audit policy φ is optimal if φ
induces an ε∗-BNIC, and there does not exist another policy
φ′ for which truthful reporting is an ε-BNIC with ε < ε∗.

In other words, the optimal φ induces the least incentive
to lie among all policies.1 As a consequence, if we find that
an optimal policy is not BNIC, then no policy can be. Our
second problem is to determine the smallest ε that can be
induced by an audit policy. We show that in general, these
problems have differing complexity.

Before proceeding with a general analysis, we make three
observations about our model: 1) if B = n, any score func-
tion f can be made BNIC; 2) if k ∈ {0, n}, the top-k case is
trivially BNIC; and 3) if (1 + c)(B/k) ≥ 1, the top-k case
is again trivially BNIC.

We begin by showing that without auditing the self-
reported features (equivalently, when the audit budget B =
0), ensuring BNIC amounts to ignoring z altogether when-
ever we use a deterministic scoring function f . Since self-
reported features may be important in determining priority
of individuals for resources, this impossibility motivates a
careful treatment of optimal auditing, which follows.
Proposition 1. Suppose B = 0. Then, both the top-k and
threshold mechanism are incentive compatible iff f(x, z) =
f(x). Moreover, in the threshold setting, BNIC can be
achieved only if c > 0.

Due to space constraints, this and other full proofs are
deferred to the supplement.

1To avoid confusion, note that the principal could have other
objectives, and our definition of optimality is specific to inducing
the “best” approximation of BNIC.

3 Design of Optimal Audit Policies
The problem of incentivizing truthfulness via auditing can
be broken into two primary components: design and verifica-
tion. The first component, design, is the construction of op-
timal or approximately optimal audit policies. The second,
verification, focuses on computing the maximum incentive
to lie under an optimal audit policy, denoted as ε∗. Although
both problems are in general hard, we show that verification
is intrinsically “harder” in the sense that in a wide range of
settings optimally auditing agents is tractable, but comput-
ing ε∗ remains hard. The focus of this section is on design. In
particular, we exhibit a simple audit policy which is guaran-
teed to be optimal under the threshold allocation setting, and
approximately optimal under the top-k allocation setting.

We begin with some remarks and notation that will be
subsequently used in characterizing the optimal audit poli-
cies. When selecting which agents to audit, the principal is
unaware of each agent’s true type ai = (xi, zi), and sees
only the reported type a′i = (xi, z

′
i). Since the principal is

interested in minimizing the marginal gain that any agent
can achieve from lying, agents’ true types must be consid-
ered through the lens of worst-case analysis. Note that the
type with the largest incentive to report (xi, z

′
i) is the type

with the lowest scoring z, given known type xi (denoted as
a∗i = (x, z∗i ). From the principal’s perspective, any agent re-
porting (xi, z

′
i) must be assumed to have true type (xi, z

∗
i ).

With this in mind, agent reports can be classified as one
of the following: a sure-truth, a sure-lie, or suspicious. Sure-
truths are reports which are guaranteed to be honest (e.g.
z′i = z∗i ). Sure-lies are reports which are guaranteed to be
false (these are only of the form h(xi, z

′
i) = 0). Suspicious

reports are those with an unknown truth value. The following
two definitions formalize these observations.

Definition 3. (Minimum Type) For any known par-
tial type xi, we say the minimum type of xi is
a∗i = (xi, z

∗
i ) = arg minz∈Is:h(xi,z)>0 f(xi, z).

Definition 4. (Suspicious) We say a type a′i is sus-
picious if the minimum type a∗i has a strictly lower
chance of being allocated a resource barring auditing, i.e.,
EA−i

[
αi
(
f,A−i ∪ {a′i}

)]
> EA−i

[
αi
(
f,A−i ∪ {a∗i }

)]
The key point here is that the principle should never waste

an audit on a sure-truth, and when looking at incentive com-
patibility (i.e. single deviations from collective truth-telling),
there is at most one sure-lie in any set of reports, which
should be audited with probability 1. The more interesting
question regarding audit polices is; what to do with suspi-
cious reports.

3.1 Threshold Allocation
Recall that in the threshold allocation setting, an agent re-
ceives a resource if f(x, z′) ≥ θ, where (x, z′) is the agent’s
reported type. We first show that, in general, optimal audit-
ing under threshold allocation is NP-hard in general, but is
tractable if and only if identifying sure-truths is tractable.
The hardness of auditing stems from the possibly arbitrary
relationship between the distribution D and the score func-
tion f .



Theorem 1. For a given set of n reports A′ and a budget
B, computing an optimal audit policy is NP-hard.

Proof Sketch. This result stems from the observation that
the principal would never want to “waste” an audit on an
agent whose report is guaranteed to be truthful. For exam-
ple, suppose agent a1 = (x1, z1) reports type a′1 = (x1, z

′
1)

with f(x1, z
′
1) ≥ θ. Suppose further that for all z with

f(x1, z) < θ, we have h(x1, z) = 0. Then the principal is
certain that agent 1 is truthful since this agent’s true type
could not have scored below the threshold. Due to this de-
pendency on the underlying distribution, one can encode a
SAT formula into the distribution such that determining if
there exists a z such that h(x1, z) > 0 and f(x1, z) < θ
is equivalent to determining the satisfiability of the SAT in-
stance.

To better understand the nature of the problem of charac-
terizing an optimal audit policy, consider the following sim-
ple example.
Example 1. Suppose there are two agents with one known
and one self-reported binary feature, and suppose that z = 1
if x = 1, and can be either 0 or 1 according to some prior
distribution if x = 0. Further, suppose that f(x, z) = z and
θ = 1/2, which means that an agent receives the resource iff
z = 1. Now, suppose that B = 1 and the principal observes
two types: (1, 1) and (0, 1). Clearly, the principal would not
audit the former, since x = 1 already implies that the agent
is honest, but would audit the latter. This simple example
suggests that one could expect an optimal audit policy to
depend in rather complex ways on the observed types A′.

However, we show that a simple policy of uniformly au-
diting all suspicious agents (Definition 4), is optimal. We
call this policy UNIFORM, and define it formally next.
Definition 5. (UNIFORM) For a given set of reports A′, let
G(A′) be the set of all agent’s whose reports are suspicious.
Given budgetB, the UNIFORM audit policy audits each a′ ∈
A′ with probability

φi(A′) =


1 if h(a′i) = 0

min
(

B
|G(A′)| , 1

)
if a′i ∈ G(A′),

0 otherwise

Next, we show that in the threshold allocation setting, this
UNIFORM audit policy is optimal.

The intuition for the optimality of UNIFORM comes from
the fact that any type z can report any other type z′ at no cost.
This means that any lie that gets an agent above the thresh-
old is equivalent, modulo auditing. Thus, if an audit is non-
uniform (as long as the reported type is above the threshold),
some lies become more valuable than others, and we should
shift auditing to those lies (more precisely, to agents who
feature such lies). The discontinuity arises by observing a
sure-lie (i.e., h(x, z) = 0); only in this case do we know
which agent was dishonest, and can thus place higher audit
weight on this agent without increasing the value of lying
for any other agent.

Note that this implies optimal auditing is equivalent to
identifying sure-truths.

Theorem 2. In the threshold allocation setting, for any
score function f , UNIFORM is an optimal audit policy.

Proof Sketch. For the sake of illustration, we demonstrate
how this result holds in the cases of a discrete distribution
over agent types. An identical idea holds for continuous fea-
tures, although the technical details differ.

When analyzing ε-BNIC, we are considering the value
that any agent gains when deviating from a truthful report-
ing, while all other agents remain truthful, i.e. we consider
this case when at most one report is dishonest. In any set
of reports A′, if the principal sees a sure-lie, they are im-
mediately aware of the dishonest agent’s identity and should
exclusively audit that agent, since all other agents are guar-
anteed to be truthful.

The principal’s objective is to minimize the expected gain
of any type ai misreporting their type as a′i, when all other
agents are truthful. Note that when all agents, aside from
agent i are honest, the set of reported typesA′ = A−i∪{a′i}
(where A−i is the set true types for all other agents). As
such, we can express the minimum expected gain of misre-
porting, achievable by any audit policy φ, as

ε = min
φ

max
a′i,ai

(
E
A−i

[
αi(f,A′)− αi(f,A)

]
(1)

− E
A−i

[(
αi(f,A′) + c

)
φi(A′)

])
(2)

Where term (1) the expected difference in the allocation de-
cision between agent i falsely reporting a′i or truthfully re-
porting ai, and term (2) represents the expected cost of be-
ing caught lying when reporting a′i. Making use of two sim-
ple observations, we can simplify this equation. First, in the
threshold setting, agents know both their own type and the
threshold θ, thus agent i knows the allocation decision on
both the true type ai, and reported type a′i, meaning that the
expectations on α can be dropped. Second, we need only
consider this term for suspicious agents, so we may assume
that αi(f,A′) = 1 and αi(f,A) = 0. With this, the equa-
tion can be simplified to

ε = min
φ

max
a′i,ai

f(a′
i
)≥θ>f(ai)

1− (1 + c)EA−i
[
φi(A′)

]
Thus ε is solely determined by the value of EA−i

[
φi(A′)

]
for any suspicious type a′i. Let

G(A′) = {(x, z′) ∈ A′ : f(x, z′) ≥ θ and ∃z∗s.t. f(x, z∗) < θ

and h
(
(x, z∗)

)
> 0 and h

(
(x, z′)

)
> 0}

be the set of suspicious types in A′. In the case when agent
features are distributed according to a discrete distribution,
this expectation can be expressed as

EA−i
[
φi(A′)

]
=
∑
A−i

φi(A′)Q(A−i)

=
∑
A−i

min

(
1,

B

G(A′)

)
Q(A−i),



where Q(A−i) is the probability of any realization of the
specified types of agents other than i induced by D. The
probability which sure-lies are audited has no effect on the
value of other lies, and thus sure-liescan be audited with
probability 1. Moreover, the sum is equal for any two sus-
picious agents with h(a′) > 0. In each set of reports A′,
the principle fully spends their budget (or audits all suspi-
cious types with probability 1) and Q(A−i) is independent
of the type agent i reports. Thus, for any policy different
from UNIFORM, at least one audit weight must be changed,
i.e., φi(A′) 6= min

(
1,B/G(A′)), for some i and someA′. As

a result of the tightness and independence of Q(A−i), this
change of audit weight could only result in a (not necessarily
strict) increase in the expected gain of misreporting for any
agent type.

Note that while optimal, UNIFORM is in general in-
tractable because of the combinatorial structure of such poli-
cies that may be induced by h(·). However, we now show
that for sufficiently well-behaved h and f we can compute
UNIFORM efficiently.
Theorem 3. The audit policy UNIFORM can be computed in
polynomial time if for any report (x, z′), it can be efficiently
determined if (x, z′) is a sure-truth, (i.e. there exists a self
reported type z∗, such that h(x, z∗) > 0 and f(x, z∗) < θ).

3.2 Top-k Allocation
We now turn our attention to selecting the optimal audit pol-
icy when resources are given to the k highest scoring agents.
In this case, the optimal policy no longer admits a clean
characterization. The main challenge is that now there are
far more complex interdependencies among agents’ benefits
from lying, other agents’ reports, and the audit policy. For
example, if an agent in the top-k is caught lying, another
agent would now receive the resource. Instead, we study a
natural adaptation of UNIFORM to this setting, and exhibit
an additive approximation bound for its optimality. We then
show that if we use dominant strategy incentive compatibil-
ity (defined formally below) as a solution concept in place
of BNIC, uniform auditing is optimal even in this setting.

We begin by showing that optimal auditing in the top-k
setting is NP-hard even when sure-truths are identifiable in
constant time.
Theorem 4. In the top-k allocation setting determining
which agents should be audited is NP-hard, even for n = 4
agents, monotone f , uniform D, and even if sure-truth can
be identified in constant time.

Proof Sketch. We can encode an instance of Vertex Cover
into f such that agents with a self-reported type, which con-
stitutes a vertex cover, ranks in the top-k with extremely low
probability, while all other types have score proportional to
number of vertices that their self-reported type “covers”. For
a sufficiently small budget and penalty for lying, there will
be agents whose expected value of lying (even if never au-
dited) is smaller than agents who receive the highest proba-
bility weight. As such, the principal must determine which
agents should receive zero audit weight, which is NP hard
due to the encoding of VC.

Now, consider a variant of the UNIFORM policy in the top-
k setting where we uniformly at random audit agents who
have scores in the top k. We first define this policy formally.

Definition 6. (UNIFORM-K) For any set of reported types
A′, let UNIFORM-K denote the policy of auditing each of
the top-k agents (refereed to as the set Tk ⊂ A′) with prob-
ability min(1,B/k).

Next, we show that UNIFORM-K admits an additive ap-
proximation of an optimal audit policy in the top-k setting.
Recall that multiplicative approximations are in general NP-
hard to achieve.

Theorem 5. Let φ denote the audit policy UNIFORM-K.
Then the maximum utility gained by lying under φ is no more
than max

(
0, 1 − (1+c)B

k

)
greater than that of the optimal

audit policy, and this bound is tight.

Proof. This is the result of simple worst case analysis on the
expected value of lying, which can be expressed as

EA−i
[
αi(A′)

(
1− φi(A′)

)
− cφi(A′)− αi(A)

]
=P(a′i ∈ Tk)E[φi(A′)|a′i ∈ Tk]− cE[φi(A′)] + P(ai ∈ Tk)

In the worst case, the expected value of lying could be 0 for
all agents. However, the uniform audit policy will have ex-
pected value of lying equal to P(a′i ∈ Tk)(1− (1 + c)Bk )−
P(ai ∈ Tk). Which again in the worst case is equal to
((1− (1 + c)Bk )

This bound is tight to within any small β > 0. To see this,
construct an instance with 3 agents of types x ∈ {0, 1}, z ∈
{0, 1}. Where f(x, z) = x ∧ z. Let P(x = 1, z = 1) = β

and the rest have probability 1−β
3 . Let B = 1 and k = 2.

Then an optimal audit policy yields ε∗ = 0, but uniformly
auditing the top-k yields ε = ((1− β2)(1− (1 + c)Bk ).

A major part of what makes auditing difficult is the
dependence on the distribution. We now consider an al-
ternative solution concept which eliminates this depen-
dence: ε-Dominant Strategy Incentive Compatibility (ε-
DSIC). Specifically, under ε-DSIC the principal aims to de-
sign a policy under which truthful reporting is (approxi-
mately) optimal for agents regardless of other agents’ types.

Definition 7. An audit policy φ is ε-DSIC if for all i and ai,

E[ui(ai,A−i)|f, φ, α,A′−i]
≥ E[ui(a

′
i,A−i)|f, φ, α,A′−i]− ε ∀a′i : x′j = xj and ∀A′−i.

Theorem 6. In the top-k setting, UNIFORM-K yields ε∗-
DSIC with an optimal ε∗.

Proof Sketch. In the top-k setting the key difference from
ε-BNIC is that for any realization A−i and any set of corre-
sponding reportsA′−i, agent i knows the allocation decision
on both their true type ai and any reported type a′i. This
certainty of outcomes it precisely what made all suspicious
reports equivalent in the threshold case. Using a similar ar-
gument for the optimality of UNIFORM in the threshold case,
we can see that UNIFORM-K is optimal in the top-k case.



4 Verification of Policy Effectiveness
In the previous section we showed that in many circum-
stances we can fully characterize the optimal audit policy,
and it can be efficiently computed for a broad range of set-
tings. We now consider the problem of verification, that is,
computing the smallest ε∗ that we can achieve for an op-
timal audit policy. We show that this problem is hard even
when auditing is easy. Subsequently, we first show that we
can often effectively approximate this problem, and then ex-
hibit special cases in which we can even compute this ε∗
efficiently.

4.1 Complexity of Verification
In the threshold setting, we will show that computing the
minimum ε∗ inducible by any policy is #P-hard, even in
cases when optimal auditing is tractable. This complexity
stems from both the score function f and distribution D. In-
tuitively, these uniquely define both the set of agent types
which are considered suspicious and the probability that a
suspicious type will occur. As suspicious types are more
likely to occur, the probability that any particular agent is
audited decreases. Thus, we can encode “hard” problems
into f orD where agent types (binary vectors) correspond to
satisfying assignments of the encoded problem. We can also
observe that if the number of possible agent types is poly-
nomial, then the problem is trivially tractable through brute
force search.

We show here hardness in terms of f ; a similar construc-
tion works to show the hardness in terms of D. In this con-
struction, optimal auditing is easy even in the top-k case.
Theorem 7. In both the threshold and top-k setting, com-
puting the minimum ε inducible by any audit policy is #P-
hard, for both continuous and discrete features, even when
the feature distribution is uniform, there are only 2 agents,
and f is both monotone and binary.

Proof Sketch. For this proof sketch we will work in the
setting of threshold allocation and discrete features, simi-
lar logic holds in the other cases. We reduce from #VC.
For a graph G = (V,E), let D be uniform and agents be
a = 〈x1, ..., x|V |, z1〉, for x, z ∈ {0, 1}. Let θ = 1

2 and set

f(x, z) =
( ∧
(vr,vt)∈E

(xr ∨ xt)
)
∧ z1.

Under this construction of f we see that an agent scores
f(a) = 1 if and only if x constitutes a vertex cover and
z = 1. Thus when B = 1 and n = 2, if agent 1 scores
below 1

2 and is considering misreporting their type, they are
audited with lower probability if f(a2) = 1. Since D is uni-
form, the probability of this occurring is equivalent to the
number of vertex covers of G.

In addition to hardness of checking BNIC, we can show
that it is even hard to multiplicatively approximate an ε-
BNIC in the threshold and top-k settings.
Theorem 8. Multiplicatively approximating to any constant
factor the smallest ε such that there is an ε-BNIC audit pol-
icy, in both threshold and top-k allocation is NP-hard even
for Θ(1) agents.

Proof. This result is a straightforward consequence of the
construction in the proof of Theorem 7. In that proof we
encode an NP-hard problem into an instance of our prob-
lem, and show that determining if truthful reporting is
BNIC is equivalent to counting the number of satisfying
assignments of vertex covers. If we reduce instead from
an Unambiguous-SAT instance (f is no longer monotone),
then the mechanism is BNIC if and only if the formula has
exactly one satisfying assignment. This would imply that
ε = 0 if and only if the U-SAT instance has no satisfying
assignment, and any multiplicative factor ε would likewise
be zero, immediately indicating the satisfiability of the U-
SAT instance.

Note that UNIFORM-K is the optimal audit policy in these
cases, implying that not only is verification of an optimal
policy hard, but also verification of UNIFORM-K is also in
general hard.

In summary, the problem of checking whether a particular
setting is ε-BNIC is hard, even in instances when auditing is
tractable. To further outline the relation of the complexity of
both problems we make the following observation.

Theorem 9. In the threshold allocation setting, verification
being in P implies optimal auditing is also in P.

Next, we turn to positive results. To begin, we now show
that when agents’ minimum type can be efficiently computed
we can achieve a probabilistic bound on the value of lying
in polynomial time, via Monte Carlo simulations.

Theorem 10. Suppose that ε∗ is the minimum value for
which UNIFORM is ε∗-BNIC. Then, for any γ ∈ Θ(1), per-
forming nγ rounds of Monte-Carlo sampling will yield a
value ε′, such that ε′ = ε∗ ± Θ

(
1/
√
nγ−3

)
with probabil-

ity at least 1− 1/n2. This can be done in time Θ(nγ+1).

Observe from Theorem 10 that as n increases, the error
of approximation tends towards 0 with probability tending
towards 1. Next, we consider special cases in which verifi-
cation is tractable.

4.2 Tractable Special Cases
Thus far, our results are negative when it comes to checking
incentive compatibility, and mixed in terms of devising an
optimal audit policy. We now proceed to identify a number
of special cases in which we can check incentive compati-
bility in polynomial time. In the threshold setting, we focus
on checking ε-BNIC for a UNIFORM audit policy, which we
showed earlier is optimal, while in the top-k setting we fo-
cus on the UNIFORM-K audit policy. We consider, in partic-
ular, three common machine learning models for f : linear,
piecewise linear, and logistic (sigmoid) functions. Through-
out, we assume that distributions over types are sufficiently
well behaved, in that it is tractable to compute probabilities
of intervals.

We begin by showing that verification is tractable in
any instance in which the CDF (CMF) of h can be com-
puted over the set of suspicious agent types. As can be sur-
mised from the complexity results regarding verification, the



“hardness” of the problem stems from determining the prob-
ability that an agent’s true type is suspicious. However, when
this can be computed efficiently, so can ε∗.
Theorem 11. Let U = {(x, z′) ∈ Id × Is :
f(x, z′) ≥ θ, h(x, z) 6= 0, and ∃(x, z∗) with f(x, z∗) <
θ and h(x, z∗) 6= 0}. If Pa∼D

(
a ∈ U

)
can be efficiently

computed, then so can ε∗.

Proof Sketch. Let pU = Pa∼D(a ∈ U). Suppose an agent
initially scores below the threshold, then this agent’s only
means for allocation is to report a type in U . Moreover, UNI-
FORM only audits agents in U and does so uniformly. Thus,
for a given realization, the more agents with true types in U ,
the lower the probability that the dishonest agent is audited.
More specifically, suppose that some agent ai = (xi, zi),
with f(ai) < θ, is able to falsely submit a′i = (xi, z

′
i) with

f(a′i) ≥ θ. Then, this agent’s expected marginal gain is,
EA−i [ui(ai,a′i)|f, α, φ] = EA−i [1− (1 + c)φi(A′)]

= 1− (1 + c)

n−1∑
`=0

(
n− 1

`

)
p`U (1− pU )n−`−1 min

(
1,B/`+1)

Since, under UNIFORM all dishonest reports have either
value 0 or value EA−i [ui(ai,a′i)|f, α, φ], we need only com-
pute this single sum, for any agent type, and have found ε.
Moreover, UNIFORMis optimal and thus ε = ε∗.

In both the discrete and continuous case, when P(a ∈ U)
can be computed exactly, verification is tractable. Next,
we give a sufficient condition on this, and present several
tractable special cases.
Definition 8. We say a PDF h is well-behaved if h is zero
on a polynomial number of s + d−dimensional maximal
intervals, and over any any interval [a, b] ⊂ R, the value
of
∫ b
a
h(x, z)dzr and

∫ b
a
h(x, z)dxt for observed features r

and unobserved features s have closed-form solutions deriv-
able in polynomial-time w.r.t. (n,B, s, d, log(c)).
Remark 1. Many commonly used distributions, such as uni-
form and exponential, are well-behaved. In many other com-
mon cases, such as Gaussian, we can obtain a good numer-
ical approximation, so that the approaches below can ap-
proximately apply in these also. We formalize this below.

As we show next, in the threshold case, checking ε-BNIC
is easy for piecewise linear and logistic score functions
as long as the distribution over types is well-behaved. For
top-k, we need a much stronger assumption that types are
distributed uniformly to obtain comparable positive results.
Each proof proceeds as follows (see the supplement for de-
tails). The score function f partitions Id × Is into two dis-
joint regions, one of which is U (the set of suspicious types).
We then show that one of the two partitions it is easy to
compute the CDF, as long as h is well-behaved. Once this
is done, we have computed either pU or 1 − pU and from
here Theorem 11 directly implies that ε∗ is computable in
polynomial time.
Definition 9. A function f : Rn → R is said to be Piece-
wise Linear if for some partition of Rd+s into disjoint rect-
angular regions, given by P = {L1, ..., Lm} the function
f
∣∣
Ls

: Rd+s → R is linear for each Ls ∈ P .

Corollary 1. Suppose the distribution of agent types is well-
behaved and f is piecewise linear, or logistic, and α(f,A′)
is threshold allocation. Then determining the minimum ε ≥
0 such that UNIFORM is ε-BNIC, can be done in polynomial
time.

Corollary 2. Suppose the distribution of agent types is uni-
form. Suppose further that f is piecewise-linear, or logistic,
and α(f,A′) is top-k allocation. Then determining the min-
imum ε ≥ 0 such that UNIFORM-K is ε-BNIC, can be done
in polynomial time.

For many common continuous distributions, such as
Gaussian, only a numerical approximation of pU = P(a ∈
U) can be computed. Our final result is to quantify the error
in ε∗, in terms of the additive numerical error γ in pU .
Theorem 12. Suppose with error γ we have a numerical
approximation p′U = pU ± γ. Then we can compute ε′ =

ε∗ ± (n−B)
(
n−1
B−1

) ∫ pU+γ

pU
xB−1(1− x)n−Bdx.

Although the error term looks messy, it is tight and in gen-
eral small relative to γ, which itself is also in general a small
value. As an illustration, when we have error γ = 4.44E−4,
a typical absolute error for a standard Gaussian, and n =
1000, B = 250, and pU = 0.6, then ε′ = ε∗ ± 6E−60.

5 Conclusion
We study the problem of auditing self-reported attributes in
resource allocation settings from two perspectives: 1) the
complexity of checking whether a particular audit policy is
incentive compatible, and 2) characterizing and computing
an audit policy that minimizes incentives to lie. We find that
checking incentive compatibility is, in general, hard. How-
ever, in settings where resources are assigned by threshold-
ing the individual’s computed score, a uniform audit policy,
particularly appealing for its simplicity, is optimal. In addi-
tion, we show that in two important classes of score func-
tions, piecewise linear and logistic, we can check incentive
compatibility in polynomial time under some assumptions
on the distribution of agent types.

A number of open questions remain. While we show that
computing an optimal audit policy in the setting where re-
sources are allocated to the top-k scoring agents is hard, it
may be possible to achieve a better approximation of opti-
mal than what we exhibit for the uniform policy. Moreover,
our model presumes that agents incur no direct costs of mis-
reported preferences besides the endogenous costs of being
audited. In practice, there may be both cognitive and tangi-
ble costs involved, and these can be considered as an exten-
sion to our model. Finally, we assume that the distribution
over agent types is known a priori, whereas it likely needs to
be learned from data.
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Supplementary Materials
Proof of Proposition 1
When resources are allocated via threshold, this result is
straightforward. In the case of top-k, the need for auditing
can be seen by a simple two agent example for any arbitrary
score function. Let n = 2 and k = 1. Given f : Id × Is →
R, assume by way of contradiction that f induces truthful
reporting to be an equilibrium, but has f(x, z) 6= f(x).
Then there exists some values x ∈ Id, z1, z2 ∈ Is with
f(x, z1) 6= f(x, z2). WLoG assume f(x, z1) > f(x, z2).
Let a1 = (x, z1) and a2 = (x, z2). Since k = 1, agent 2 will
never receive the resource unless they report z′2 = z1 6= z2.
Therefore reporting truthful z can be an equilibrium iff
∀(x, z) ∈ Id × Is, f(x, z) = f(x).

Proof of Theorem 1
To show the hardness of optimally auditing we will re-
duce from SAT. Before showing this reduction, we make
the following observation about optimal auditing. Suppose
an agent reports type a′i = (xi, z

′
i), by definition the prin-

cipal is sure that xi is reported truthfully, but may be sure
about the veracity of z′i. However, in some cases the princi-
pal may know for certain if z′i was reported truthfully. One
such case, which we will make use of, is when for all z ∈ Is
with z 6= z′i, we have h(xi, z) = 0.

For a given Boolean Φ, over variables b1, . . . bm, we will
encode Φ into the distribution over agent types, given by
D, such that it is NP-hard to determine if for some re-
ported (xi, z

′
i) there exists another (xi, z) with z 6= zi and

h(xi, z) > 0. Suppose that I = {0, 1}, i.e. agent features
are binary, set d = 2, and s = m, the agents are of the form
〈x1, x2, z1, . . . zm〉. Define the PDF of D over I2 × Is as

h(x, z) =


1

2m+1 if x1 = 1, x2 = 1, and z = 1
1

2m+1 if x1 = 1, z 6= 1, and x2 = Φ(z)
1

2m+1 if x1 = 0

0 otherwise

Lastly, suppose that c = 0 (the cost of lying), B = 1 (the
number of audits), and f(x, z) = x2z1...zm. Note that only
agents with x2 = 1 and z = 1 are allocated a resource, and
for non-constant n the value of lying will always be positive.
Under this definition of h, we see that given x1 = 0, types
are distributed uniformly. However, when x1 = 1 the PMF
is defined conditionally on the relationship between x2 and
z. The hardness of this problem arises when the principal
must decide how to audit an agent reporting 〈1, 1, . . . , 1〉.
If Φ has no satisfying assignments, other than potentially
Φ(z) = 1, then an agent reporting 〈1, 1, . . . , 1〉 is guaranteed
to be truthful. However,if Φ does have such an assignment,
then the principal will have to audit that agent with nonzero
probability. This is due to the fact that another agent, will
have x1, x2 = 1, but z 6= 1 and will be incentivized to lie
and report z = 1. With out a satisfying assignment, no such
incentivized type will exist.

Proof of Theorem 2
First note that for any realization of agents, only agents
whose true type scores below the threshold, but can report

a type scoring above the threshold, will have incentive to lie.
Denote the set of these agent types as

U = {(x, z) ∈ Id × Is : f(x, z) ≥ θ with h(x, z) > 0 and

∃z′ s. t. f(x, z′) < θ with h(x, z′) > 0}.
That is, U is the set of all suspicious-types. For any set of
reports A′, UNIFORM considers reports in A′ to be in one
of three categories; impossible, suspicious, or neither. First
note that by definition, any agent regardless of their true type
receives utility at most 0 from reporting a type which falls
into the “neither” category, even when that agent is audited
with probability 0. Hence any optimal audit policy need only
focus on how to audit agents whose reports fall into the other
two categories, impossible or suspicious.

Since the notion of optimality is defined in terms of ε-
BNIC, we are examining the case when all agents report
their type truthfully, and one agent, say agent i is consider-
ing deviating while all other agent’s strategies remain fixed.
As such, from the principal’s perspective, there is at most
one dishonest agent in any set of reports. Thus, if agents i
reports type a′i and h(a′i) = 0, the principal is immediately
aware of the identity of the dishonest agent. Moreover, if
some other agent aj , considers falsely reporting some a′j ,
agent j knows that type a′i will never in appear in the set
A′−j and thus aj’s utility of falsely reporting is independent
of the probability with which any impossible type is audited.
Therefore auditing any impossible type with probability 1 is
optimal.

Now we need only show that the way in which UNIFORM
audits suspicious types constitutes an optimal audit policy.
Let
L = {(x, z) ∈ Id × Is : h(x, z) > 0 and ∃z′ s.t. (x, z′) ∈ U}
That is, L is the set of all true types that could possibly re-
port a suspicious type. Under UNIFORM, for any realization
of agents, all agents with true type in L have the same ex-
pected value of lying when misreporting a type which scores
above the threshold. That is, for any realization A and for
any ai,aj ∈ A,
E[ui(a

′
i,A′−i)|f, φ] = E[ui(a

′
j ,A′−j)|f, φ]

∀a′i,a′j with f(a′i), f(a′j) ≥ θ
Let G(A−i) be the set of agents whose true type scores
above the threshold. Then the previous equivalence can be
seen by the fact that under threshold, the expected value of
lying for agent ai when all other agents are truthful is
E[ui(a

′
i,A′−i)|f, φ] = EA′−i [1− φi(A

′)− cφi(A′)]
=EA−i [1− φi(A−i ∪ {a′i})− cφi(A−i ∪ {a′i})]

= 1− (1 + c)EA−i
[

min

(
1,

B

|G(A−i)|+ 1

)]
= 1− (1 + c)( n−1∑
`=B

B

`+ 1

(
n− 1

`

)
Pa

(
f(a) ≥ 0

)`(
1− Pa

(
f(a) ≥ 0

))n−`
+

B−1∑
`=0

(
n− 1

`

)
Pa

(
f(a) ≥ 0

)`(
1− Pa

(
f(a) ≥ 0

))n−`)
.



Thus the expected value of lying has no dependence on the
agents particular type, or the particular type they misreport,
and depends only on the fact that the agent’s true type is
in L and their misreported type scores above the threshold.
This implies that agents ai and aj have equivalent expected
values of lying. The significance of this fact is that UNI-
FORM induces an ε∗BNIC where the value of ε∗ is tight for
all agents with true type in L.

We will now leverage the tightness of ε∗ in order to show
that no other policy can achieve εBNIC for ε < ε∗. Let A
again be any possible realization of agent types, which has at
least one type in L, denote the agent of this type as (xi, zi).
Then, given any audit policy ψ and assuming other agents
are truthful, the expected value of agent i misreporting type
a′i, with f(a′i) ≥ 0, is given as

E[ui(a
′
i,A−i)|f, ψ] = 1− (1 + c)EA−i [ψi(A ∪ {a′i}]

= 1− (1 + c)(
EA−i

[
ψi(A′

∣∣|G(A−i)|+ 1 > B
]
P
(
|G(A−i)|+ 1 > B

)
+ EA−i

[
ψi(A′

∣∣|G(A−i)|+ 1 ≤ B
]
P
(
|G(A−i)|+ 1 ≤ B

))
In the above term, the probability of being audited is
broken into two terms conditioned on the number of
agents in G(A−i). The two events, |G(A−i)| + 1 ≤ B
and |G(A−i)| + 1 > B represent a partition on the
possible outcomes of A, meaning that ψ can be inde-
pendently defined for events in the first term and events
in the second term. The ability to define ψ indepen-
dently over these two events is of note due to the fact
that when |G(A−i)| + 1 ≤ B the principle has enough
resources to audit each agent reporting above the thresh-
old. Thus, it is feasible to audit each agent reporting
above the threshold, with probability 1, maximizes the term
EA−i

[
ψi(A ∪ {a′i}

∣∣|G(A−i)|+ 1 ≤ B
]
P
(
|G(A−i)|+ 1 ≤ B

)
.

This is identical to UNIFORM when |G(A−i)|+ 1 ≤ B.
It remains to be shown only that UNIFORM is the unique

maximizer of the term EA−i
[
ψi(A ∪ {a′i}

∣∣|G(A−i)|+ 1 >

B
]

Assuming D is discrete (an identical argument works
for continuous by replacing the sum with an integral), the
expected value can be further dissected as

EA−i
[
ψi(A ∪ {a′i}

∣∣|G(A−i)|+ 1 > B
]

=
∑

A∈(I
d×Is
n−1 ):G(A)+1>B

P(A−i = A)ψi(A ∪ {a′i}).

The expected value of lying is monotonically decreasing
with respect to the above term. To show the optimally of
UNIFORM consider any other policy ψ that differs from φ.
Since ψ is not UNIFORM, there must exist a set of reported
types and an agent in that set for which ψ and φ are differ-
ent. Since ai was chosen arbitrarily, suppose the agent type
is a′i and the realization is some A1 ∪ {a′i}. Then we can
express ψi(A1∪{a′i}) = φi(A1∪{a′i})+γi,1, for γi,1 > 0.
Thus, there must exist some other reported type a′j ∈ A1 for
which ψj(A1 ∪ {a′i}) = φj(A1 ∪ {a′i})− γj,1 for γj,1 > 0.
As shown previous, the expected value of lying is tight for

all agents, meaning ε is strictly greater than ε∗ if the term
ψj(A1 ∪ {a′i}) = φj(A1 ∪ {a′i}) − γj,1 is not offset in the
above equation, for any agent aj which is capable of report-
ing type a′j . Therefore, there must exist some other realiza-
tion A2, such that ψj(A2 ∪ {a′j}) = φj(A2 ∪ {a′j}) + γj,2
for γj,2 > 0. Continuing this line of reasoning, there must be
some other agent type in A2 which has a lower audit weight
under ψ than φ. This continues until we take weight from an
agent whose audit probability has been given greater weight,
i.e. an agent we have already seen before in this weight trans-
ferring process. This can be thought of as a weighted di-
rected graph, where the nodes are agents the edges represent
how much weight is shifted from one agent under a particu-
lar realization to another agent under that same realization.
By the previous reasoning, this graph has no edge whose tip
does not connect to the tail of another edge, i.e. all edges
are part of a cycle. Assume that a′i and a′j are part of a two
cycle, identical reasoning hold for any cycle length. We can
write the terms of the expected probability of being audited,
for types a′i and a′j which are affected by the weight shift as
follows, first for a′i
P(A−i = A1)ψi(A1 ∪ {a′i}) + P(A−i = A2)ψi(A2 ∪ {a′i})

=P(A−i = A1)
(
φi(A1 ∪ {a′i}) + γi,1

)
+ P(A−i = A2)

(
φi(A2 ∪ {a′i} − γi,2

) (3)

and for a′j

P(A−j = A3)ψi(A1 ∪ {a′i}) + P(A−j = A4)ψi(A2 ∪ {a′i})
=P
(
A−j = (A2 \ {a′j}) ∪ {a′j}

)
ψj(A1 ∪ {a′i})

+ P
(
A−j = (A2 \ {a′j}) ∪ {a′j}

)
ψj(A2 ∪ {a′i})

=P
(
A−j = (A2 \ {a′j}) ∪ {a′j}

)(
φj(A1 ∪ {a′i})− γj,1

)
+ P

(
A−j = (A2 \ {a′j}) ∪ {a′j}

)(
φj(A2 ∪ {a′i}) + γj,2

)
=P(A−i = A1)

h(a′i)

h(a′j)

(
φj(A1 ∪ {a′i})− γj,1

)
+ P(A−i = A1)

P(a′i)

P(a′j)

(
φj(A2 ∪ {a′i}) + γj,2

)
=
h(a′i)

h(a′j)

(
P(A−i = A1)

(
φj(A1 ∪ {a′i})− γj,1

)
+ P(A−i = A1)

(
φj(A2 ∪ {a′i}) + γj,2

)) (4)

If ε > ε∗, then it must be the case that for a′i and a′j Equa-
tions 3 and 4 have greater value for some γi,1, γi,2 > 0, than
γi,1 = γi,2 = 0. Equivalently, it must be the case that

for a′i: P(A−i = A1)γi,1 − P(A−i = A2)γi,2 > 0

for a′j :

h(a′i)

h(a′j)

(
P(A−i = A1)(−γi,1)− P(A−i = A2)(−γi,2)

)
> 0

If the first condition holds true, then P(A−i = A1)γi,1 >
P(A−i = A2)γi,2. However, this would imply that the



second condition is false, meaning that no policy ψ an
strictly decrease EA−i

[
ψi(A ∪ {a′i}

∣∣|G(A−i)|+ 1 > B
]

when compared to φ. Therefore, when |G(A−i)| + 1 > B,
the maximum expected value of lying for any agent type
is achieved by φ and as shown in the other case, when
|G(A−i)|+ 1 ≤ B auditing each agent above the threshold
with probability 1 achieves maximum expected value of ly-
ing of 0. Therefore, UNIFORM is the optimal audit policy in
the sense that for no other policy ψ, the maximum expected
value of lying under ψ is lower than that of φ.

Proof of Theorem 3
This result is straightforward. To impalement UNIFORM on
any set of reports A′, the principal need only determine if
there exists an impossible type, and if no such type exists,
compute the set of suspicious reports in A′. Checking if
there exits and impossible type corresponds to checking if
for each a′i ∈ A′, that h(a′i) > 0. Suppose for any known
type x we can check if there exists a z such that h(x, z) > 0
and f(x, z) < θ in polynomial time. Then to check if a re-
port, say a′i, is suspicious the principal need only check the
existence of such a z for xi, and then check if h(a′i) > 0.
Each of these can be done in polynomial time and for any set
of reports A′ there are n such checks that need to be done.
Once the principal has checked each a′i ∈ A′, the set of sus-
picious agents has been determined and thus UNIFORM can
be implanted in polynomial time.

Proof of Theorem 4
This reduction will be from vertex cover. The crux of this
proof comes from the fact that for sufficiently small B and
c, the gain from lying will not be tight among agents. Sup-
pose agent 1 draws a type a1 which has very low probability
of being in the top-k, but can report a type a′1 which is al-
most certainly in the top-k. In contrast, suppose agent 2 has
slightly less than 1/2 chance of being in the top-k, but can
report a type which has only slightly more than 1

2 chance of
being in the top-k. Then, prior to auditing, the expected pay-
off of agent 1 is far greater than that of agent 2. If the princi-
pal has insufficient audit strength, i.e. small B and small c,
then the expected value of agent 1 may be greater than agent
2, even if agent 2 is never audited. We will show that identi-
fying agents similar to agent 2, those who are suspicious but
should never be audited, is hard

Given a graph G = (V,E), let agents be of the form
〈x1, . . . , x|V |,z1,z2〉 where attributes are binary. Let c =
1/|V |, n = 4, k = 2, B = 1, and D be uniform. Let

g(x) =
∧

(vr,vt)∈E

(xr ∨ xt).

i.e. g is an indicator of x representing a vertex cover. Let
f(x, z) = g(x)z1 + z2

Under this construction, agents can score values 0, 1, 2, 3.
Prior to auditing the agents with the most incentive to lie
will be of the form g(x) = 1, z1 = 0, z2 = 0, and these
agents’ highest utility report will be z1 = z2 = 1. Thus any
report with g(x) = z1 = z2 = 1 should have the highest
audit weight in any set of reports. Thus in some set of report

A′ = {a′1,a′2,a′3,a′4}, if a′1 and a′2 have g(x) = 1, z′ = 1,
but a′3 and a′4 have g(x) = 0, z′ = 1, the principal should
never audit a′3 and a′4 if a′1 and a′2 are higher utility reports.
For each of these type, the minimum type is z∗ = 0. Thus,
the increase in marginal gain, prior to auditing for agents 1
and 2 is Agents a′1 and a′2 have expected payoff proportional
to the probability that any other agent score a 3. This prob-
ability is itself directly proportional to the number of vertex
covers of G since P(f(a) = 3) = β/2|V |+2 where β is the
number of vertex covers. Thus determining the relationship
between the payoffs for agent’s 1, 2 and 3, 4 is equivalent
to determining if the given graph has more than 2|V | 1

(1+c)

vertex covers, for any c.

Proof of Theorem 6
Suppose the principal’s objective is to induce ε dominant
strategy incentive compatibility for the minimum value of
ε. Then for any type a1, the value of falsely reporting any
other type a′1, given any set of true types A−1 and reported
types A′−1 of the other n − 1 agents, must be at most ε.
Agent a1 knows the scores of each of the other agents’ re-
ports. As such, a1 knows the top-k scoring agents in A′−i,
and knows if their true type a1 or any false type a′1 will
score in the top-k. Thus, agent 1 has binary utility prior to
auditing, either they are in the top-k or they are not. In this
sense, similar to the threshold setting, all lies, barring au-
diting, have the same payoff. Thus the expected value of
putting forth any report a′1 that is in the top-k must have
the same payoff after auditing. Otherwise, using a similar
argument to the proof of Theorem 2, the audit weights could
be shifted from some less incentivized type, to some more
incentivized type. This would always result in a strict de-
crease in ε. Under UNIFORM-K all reports in the top-k have
the same expected payoff since UNIFORM-K treats all suspi-
cious reports in the top-k as being equal, regardless of their
actual score.

Proof of Theorem 7
Hardness is shown via a reduction from #VC, which is con-
cerned with counting the number of vertex covers of a given
graph G = (V,E). We first show this claim for discrete
agent features, and then show that the reduction can be triv-
ially extended to include continuous features.

Let D be uniform, B = 1 and agents be
a = 〈x1, ..., x|V |, z1〉, for x, z ∈ {0, 1}. Set

f(x, z) =

( ∧
(vr,vt)∈E

(xr ∨ xt)
)
∧ z1.

Thus an report a′ yields f(a′) = 1 if and only if the known
type x constitutes a vertex cover and z = 1. In both thresh-
old and top-k, any agent reporting a′ with f(a′) = 1 is sus-
picious.

First, suppose we are in the threshold setting with θ = 1
2 .

Let a1 = 〈1, . . . , 1, 0〉, then this agent can simply report
z = 1 to score above the threshold, and when doing so, the
expected marginal gain is

ε = 1− (1 + c)Ea2
[φ1({a′1,a2})]



Auditing over the set of reports {a′1,a2}, can be broken into
two cases. The first, f(a′1) = 1 and f(a2) = 0. In this case it
is optimal for the principal to audit agent 1 with probability
1. The second case is when f(a′1) = f(a2) = 1. In this case,
it is optimal to audit both agents with probability 1/2 since
both reports then have the same value of being misreports.
Thus, the utility of agent 1 reporting z = 1 is given by

ε = 1− (1 + c)
(
1− 1/2P(f(a2) = 1)

)
Let β be the number of vertex covers of G. Then falsely
reporting z = 1 is optimal for agent 1 when

0 < 1− (1 + c)
(
1− 1/2P(f(a2) = 1)

)
=⇒ P(f(a2) = 1) >

1

2
− 1

2 + 2c

=⇒ β

2|V |+1
>

1

2
− 1

2 + 2c

=⇒ β > 2|V |
(
1− 1

1 + c)
)

Thus, ε > 0 when β > 2|V |
(
1− 1

1+c) ). Note that for c = 0

the inequality always holds, and never holds for c = 2|V |.
Thus, if there existed a polynomial time algorithm to deter-
mine if ε > 0, then it determining if β > 2|V |

(
1 − 1

1+c) )

could also be done in polynomial time. If such an algorithm
existed, then using binary search over c ∈ {1, . . . , 2|V |}, the
value of β, i.e. the number of vertex covers, could be found
in polynomial time.

Next, we show that in the top-k a similar argument holds.
The key difference is that the expected value of lying is
slightly altered. Let k = 1. When B = 1, n = 2 and
f is binary, auditing can be considered in 3 cases. If both
agents report f(a)1 then both should be audited with proba-
bility 1/2. If only one agent reports f(a) = 1, then that agent
should be audited exclusively. Lastly, when both agents re-
port f(a) = 0 both are guaranteed to be truthful, and audit-
ing is not necessary. Assuming that ties for the resource are
broken uniformly at random, the expected marginal gain of
agent 1 falsely reporting z = 1 is given by

ε = P(f(a2) = 1)
3(1− 2c)

4
− 1

2
=

β

2|V |
3(1− 2c

4
− 1

2

and we can again use a similar searching technique over c to
find the value of β.

In the case of continuous agent features, we can modify f
such that feature values are “binned”. For example, suppose
that D is uniform over [0, 1]d+s. Then we can define a trun-
cation function, g(a) = 〈bx1 + 0.5c, ..., bzs + 0.5c〉. Then
defining a new score function f1 to be f1(a) = f(g(a)), the
problem is identical to the discrete version.

Proof of Theorem 9
Suppose for some Id × Is, B, f , D, c, θ, and n, there exists
a polynomial time algorithm that can compute the minimum
ε such that the problem instance is ε-BNIC. Then this al-
gorithm can be used to construct an optimal audit policy,
specifically UNIFORM, in polynomial time. To see this we
can make use of Theorem 3, which states that UNIFORM is

tractable if and only if for any known-type x, the correspond-
ing minimum-type (x, z∗) can be determined to have scored
below the threshold. Thus, for any set of reports A′, we can
determine how to audit each (xi, z

′
i) ∈ A′ by determining if

their minimum-type scores below the threshold.
Computing this indicator can be accomplished by defin-

ing a new problem instance given by the same agent domain
Id × Is with D̂ = D, n̂ = n, and θ̂ = θ. Further, set
B̂ = 1, ĉ = 0, and f̂(x, z) = f(x, z)I[x = xi]. Under
this score function, the only agents with possible incentive
to lie will be those will known-type xi. When auditing, the
principal must consider the incentive to lie of the minimum-
type. More precisely, the for a given known-type x, the agent
with the most incentive to lie will be, by definition, be of
the form (x, z∗) where z∗ is the minimum-self-reported-type
with respect to the known-type x. Thus for any given domain
of agent types, the incentive to lie is ultimately determined
by the known-type. In the constructed problem instance, the
only agents with an incentive to lie are those with known-
type xi. Thus if ε > 0 for the constructed instance, then
the minimum type of xi has incentive to lie and any report
(xi, z) with f(xi, z) ≥ θ should be audited.

As outlined in the proof of the optimality of UNIFORM,
one need only determine the set of agents which are to be
audited for any given set of reports A′, rather than over the
set of all possible sets of reports. Thus, when determining
which agents to audit, the principal would only need to run
the verification algorithm on at most n constructed instances
(one for each of the unique x’s in A′). Thus if verification
could be done in polynomial time for a given instance, opti-
mal auditing could also be done in polynomial time for that
instance.

Proof of Theorem 10
For a given agent ai, with f(a′i), the expected value of
falsely reporting some a′i with f(a′i) is given by

ui = 1− E[φi(A′)]− cE[φi(A′)].

By definition, this reported type is suspicious. Under UNI-
FORM the audit probability on agent i’s suspicious report,
in a given set of reports A′, is φi(A′) = min

(
1, B
|G(A′)|}

)
where G(A′) is the set of all suspicious reports inA′. Thus,

ε∗ =
(
1− E

[
min(1− B

|G(A′)|
])
− cE

[
min(1− B

|G(A′)|
]

By theorem 2, we know that not only is UNIFORM opti-
mal, but all agents with a nonzero value of lying, have the
exact same value of lying. Thus, the identity of the suspi-
cious agent (agent i) does not matter, and so we can write
|G(A′)| = |G(A−i)|+ 1 SinceA−i is drawn in accordance
with D, we can sample this set as a random variable from
D. Moreover, since the minimum type of any agent can be
computed in polynomial time, we can compute G(A−i) in
polynomial time as well. This is due to the fact that any
suspicious report in A−i will have a minimum type which
scores below the threshold.

Thus, the audit probability on agent i, i.e.
min

(
1, B
|G(A−i|+1

)
, can be sampled by simulating the



truthful type of n − 1 agents, in accordance with D, and
counting the fraction of agents that spawn in G(A′).

Let γ ∈ Θ(1) and let φ̄ be the empirical average of
min

(
1, B
|G(A′|

)
after nγ samples. Then, Hoeffding’s in-

equality yields,

P
(∣∣φ̄− E

[
min

(
1,

B

|G(A′)|
)]∣∣ ≤ 1√

nγ−1

)
≥1− 2e−n

γ 1

nγ−1 = 1− 2e−2n ≥ 1− 1

n2

Thus, by taking the sample average, φ̄ as an approximation
of min

(
1, B
|G(A′|

)
, we obtain

|ε′ − ε∗|

=
∣∣(1− E

[
min

(
1,

B

|G(A′)|
)]
− cE

[
min

(
1,

B

|G(A′)|
)]

− (1− φ̄)− cφ̄
∣∣

=(1 + c)
∣∣(E[min

(
1,

B

|G(A′)|
)]
− φ̄

)∣∣ ≤ (1 + c)
1√
nγ−1

with probability at least 1− 1
nγ .

As stated previously, if c ≥ n, the mechanism is trivially
0-BNIC. For 0 < c < n the dependency of c in the run-time
can be removed. Therefore, we have that

(1 + c)
1√
nγ−1

≤ 1 +
√
n2√

nγ−1
= Θ

( 1√
nγ−3

)
Thus the additive difference in the approximation of ε∗ is at
most Θ

(
1√
nγ−3

)
, with probability at least 1− 1

n2 .

Proof of Corollary 1
We first show this result for linear functions, i.e. m = 1.
For linear f , we can write f(x, z) = w1x + w2z for
some weight vectors w1,w2. We omit the bias term for
simplicity but it does not effect the analysis. When f is of
this from a report a′ = (x, z′) is suspicious if f(x, z′) =
w1x + w2z

′ ≥ θ and there exists some z with h(x, z) > 0
and f(x, z′) = w1x + w2z < θ. Thus, independent of h,
we know any true type x with w1x ≥ θ − w2z

∗, where
z∗ = argminzf(x, z) is non-suspicious. Since the value of
θ − w2z

∗ is independent of x, the set of reports which are
guaranteed to be non-suspiciousare given by a separating hy-
perplane. We will deal with the case of h(x, z) = 0 later. Let

G = {(x, z′) ∈ Id × Is : f(x, z′) ≥ θ and ∃z s.t. f(x, z) < θ}
Then G is the set of all reports that would be suspicious
when h > 0. Using Theorem 11, the expected value of any
suspicious agent is given by

1− (1 + c)

n−1∑
`=0

(
n− 1

`

)
p`U (1− pU )n−`−1 min

(
1,B/`+1)

where pU is the probability that any agent drawn from D is
U , the set of suspicious types. Thus, all that is required is to
compute pU . To do this, we will first compute pG = P(a ∈
G) and then show that a ∈ G \ U can be computed in an
equivalent way. Thus giving pU = P(a ∈ G)− a ∈ G \ U.

The value of pG =
∫
G
h(x, z)dxz can be computed

as follows. Let (x∗, z∗) = argmax{f(x, z) : (x, z) ∈
Id × Is}. Note that (x∗, z∗) must be in G. Moreover,
the region we need to integrate over can be defined
as G = [a, b]d+s ∩ {(x, z) ∈ Rd+s : f(x, z) ≥ 0}. The set
R = {(x, z) ∈ Rs+d : f(x, z) = wT (x, z) = 0} defines a
separating hyperplane. For any dimension of the vector
(x, z) say t, and WLoG assume dimension t is associated
with the x component of the vector. Then we know that
the bounds of integration of integration over dimension t
will have either upper bound b or lower bound a, since
x∗t ∈ {a, b} by the monotonicity of f . Suppose we know the
lower bound is x∗t = b, then the upper bound will be either
x̂t = b, or x̂t ∈ R. The particular value of x̂t depends on the
the value of the other variables. As such, we can express the
bounds for the tth dimensions as x∗t = a and x̂t = min(b, b̂t)

where b̂t = 1
wt

(
∑
` 6=t w`x` +

∑s
`=1 w`z`). Symmetric def-

initions are given for ât are given when the upper bound of
integration is guarantied to be b. Therefore the bounds of
integration for each dimension are given by intervals of the
form [x∗t , x̂t] = [a,min(b, 1

wt
(
∑
6̀=t w`x` +

∑s
`=1 w`z`)]

or [x̂t, x
∗
t ] = [max(a, 1

wt
(
∑
` 6=t w`x`+

∑s
`=1 w`z`), b]. For

each dimension the integral can be split on the min or max,
yielding a linear function. This split will yield at most d+ s
rectangular regions and one region which is defined entirely
by bounds of the form [a+γt,

1
wt

(
∑
` 6=t w`x`+

∑s
`=1 w`z`)]

or [ 1
wt

(
∑
` 6=t w`x` +

∑s
`=1 w`z`), b− γt] for some constant

γt which is given by the boundary of the rectangular regions.
Therefore, the integral of h over any of the t dimensions is
computable andG is able to be broken down into s+d+1 re-
gions which each contain s+d simple integrals and therefore
the integral over the region G is computable in polynomial
time. Hence the maximum expected value of lying for any
agent can be computed as

ε = 1−(1 + c)

n−1∑
`=0

(
n

`+ 1

)(∫
G

h(x, z)d(x, z)

)`+1

(
1−

∫
G

h(x, z)d(x, z)

)n−`−1
min

(
1,

B

`+ 1

)
when h > 0. However, there may be some polynomial num-
ber of intervals [a1, a2]d+s over which h = 0. In this case, if
[a1, a2]d+s∩{(x, z) : f(x, z) < θ}, then the setGmay have
non-suspicious types and we have over counted the value of
pU . However, since these areas where h = 0 are given in in-
tervals. The sets over which we have miscounted pU are also
in intervals. As such we can use the exact technique used to
find pG to find pG\U by integrating h over each such inter-
val. Thus we can find pU = pG − pG\U for linear f . For
linear f .

To generalize this result to piece-wise linear functions we
show that the above process for linear functions can be per-
formedm number of times, wherem is the number of piece-
wise regions over which f is defined. For each Lt ∈ P ,
define f

∣∣
Ls

as fs, with the understanding that fs is only ap-
plied to elements in Lt. Determining the minimum value of
ε such that UNIFORMis ε-BNIC is equivalent again to deter-



mining the measure of G = {(x, z) ⊂ Id × Is : f(x, z) ≥
0} with respect to h. The expected value of lying for any
agent whose true type scores below the threshold is again
The value of

∫
G
h(x, z)dG, can again be computed by ex-

pressing the boundary conditions ofG as simple limits of in-
tegration. The key difference in the setting of piecewise lin-
ear functions is thatG is no longer contiguous and thus must
first be broken down into contagious regions before integrat-
ing. For each of the partitions Ls ∈ P we can again have a
separating hyperplane Rs = {(x, z) ∈ Rd+s : f(x, z) =
wT (x, z) = 0}. Over each of these regions we again know
that the set value (x∗, z∗)s = argmax(x,z)∈Lsf(x, z) is in
Ls ∩Rs. From here, since each partition is a rectangular re-
gion. Which will gives an efficient method to compute each
integral of the form

∫
G∩Ls h(x, z)d(x, z).∫

G

h(x, z)d(x, z) =

m∑
s=1

∫
G∩Ls

h(x, z)d(x, z)

As per the linear case, we have again over counted the set of
suspicious types asG. But using an identical argument to the
linear case, we can again construct some polynomial number
of intervals which constitute the setG\U . Integrating h over
each of these regions gives us the difference in the measure
of G and U . Thus we can compute pU = pG − pG\U , and
by Theorem 11, we have that ε can be computed efficiently.

Proof of Corollary 2
This proof follows a similar line of reasoning to the proof
of Theorem 11. As discussed previously, when (1+c)B

k ≥ 1
UNIFORMis BNIC for all agents types independent of f and
D. So assume that (1+c)B

k < 1 Let Tk be the set of the
highest k scoring agents, then the expected value of an agent
with true type ai, misreporting type a′i under UNIFORM can
be expressed as

EA−i [αi(f,A′)(1− φi(A′))− cφi(A)′ − αi(f,A)]

=P(a′i ∈ Tk)(1− (1 + c)
B

k
)− P(ai ∈ Tk)

For any reported type a′i the value of P(a′i ∈ Tk) can treated
as the CDF of a binomial random variable. For simplic-
ity, suppose agents assume worst case tie-breaking, iden-
tical analysis holds for other simple tie breaking schemes
such as random, and best case, tie breaking. If ties are bro-
ken in the worst case for agents, then an a′i receives the re-
source if there are at most k − 1 agents with scores at least
f(a′i). Thus P(a′i ∈ Tk) is associated with a binomial ran-
dom variable with n − 1 trials and probability of success
equal to P(f(x, z) ≥ f(a′i)). This mirrors the technique
used in threshold allocation and we use an identical tech-
nique to compute those probabilities.

Once the value of P(a′i ∈ Tk) and P(ai ∈ Tk) are known
we need only determine which agents has the highest in-
centive to lie. Since f is linear we can write f(x, z) =
wT

1 x + wT
2 z. The domain of agent types is bounded and

thus there exists xmax = maxx w
T
1 and xmin = minx w

T
1 x.

More over there also exists zmax = maxz w
T
2 z and

zmin = minz w
T
2 z. Since D is uniform the P((x1, zmax) ∈

Tk) − P((x1, zmin) ∈ Tk) = P((x2, zmax) ∈ Tk) −
P((x2, zmin) ∈ Tk) for any x1,x2. More over, since f is
continuous, P((x, zmax) ∈ Tk) − P((x, zmin) ∈ Tk) will
take on all values in the interval[

P((xmax, zmax) ∈ Tk)− P((xmax, zmin) ∈ Tk)

P((xmin, zmax) ∈ Tk)− P((xmin, zmin) ∈ Tk)
]
.

We are interested in finding the agent type (x, zmin) which
has the the most incentive to lie. i.e. the largest gain for sub-
mitting (x, zmax). We can express the value of this type as
v1(1−(1+c)Bk )−v2 Since this value is linear, and f (which
determines v1, and v2 is linear) this value is maximized at
one of the extremes. Thus v1 = P((xmax, zmax) ∈ Tk) and
v2 = P((xmax, zmin) ∈ Tk), or v1 = P((xmin, zmax) ∈ Tk)
and v2 = P((xmin, zmin) ∈ Tk). Each of these val-
ues are computable in polynomial time, by directly
taking the ideas in the proof of Corollary 1 and inte-
grating the measure of h over the set G = {(x, z′) :
f(x, z′) ≥ θ and ∃z s.t. f(x, z) < θ}, where θ ∈
{f(xmax, zmax), f(xmax, zmin), f(xmin, zmax), f(xmin, zmin}
Once pG is computed for each value. We know the prob-
ability that that each of these types scores in the top-k,
via a binomial CDF with n − 1 trials, and success rate
pG. Thus we have the values of v1, v2, which give us the
expected value of lying for the most incentivzed agent, i.e.
v1(1− (1 + c)Bk )− v2.

Proof of Corollary ??
This result follows directly from the proof of Corollary 1 and
Theorem 11. The key difference being that agents are now
scored via a sigmoid function, rather than a linear function.
However, since allocation decisions are made via a thresh-
old, i.e. f(x, z) ≥ θ, sigmoid functions are equivalent to
linear functions in the following sense

θ = f(x, z) =
1

ewT (x,z) + 1
⇐⇒ wT (x, z) = log(1/θ − 1)

Thus, we can map any problem instance with a sigmoidal
scoring function and threshold θ, to a problem instance with
a linear scoring function and threshold log(1/θ − 1) Which
again give the same hyper plane as in Corollary 1 and the
proof follows identically from there.

Proof of Corollary ??
This is a direct result of the proofs from Corollary 2 and ??.

Proof of Theorem 12
As shown in several of the other proofs, the expected value
of any agent is either 0 or is given by a the term

ε∗ = 1− (1 + c)

n−1∑
`=0

(
n− 1

`

)
p`U (1− pU )n−`−1 min(1,B/`+1)

= 1− (1 + c)

( B∑
`=0

(
n− 1

`

)
p`U (1− pU )n−`−1

+

n−1∑
`=B+1

(
n− 1

`

)
p`U (1− pU )n−`−1

B

`+ 1

)



If not from the multiplicative term B
`+1 , the summa-

tion would constitute s a binomial sum, which would
sum to 1. Using this fact, the complementary term∑n−1
`=B+1

(
n−1
`

)
p`U (1−pU )n−`−1 `+1−B

`+1 can be used to sim-
plify ε∗ to

1− (1 + c)

(
1−

n−1∑
`=B+1

(
n− 1

`

)
p`U (1− pU )n−`−1

`+ 1−B
`+ 1

)

≥ 1− (1 + c)

(
1 +

n−B
n

n−1∑
`=B+1

(
n− 1

`

)
p`U (1− pU )n−`−1

)
Using the standard technique of mapping a binomial CMF
to a beta CDF, by taking the derivative of a binomial CDF
w.r.t. pU , and then reintegrating (via integration by parts),
we can rewrite this term again as

1− (1 + c)

(
1 + (n−B)

(
n− 2

B − 1

)∫ pU

0

xB−1(1− x)n−B
)

Once in this form, suppose we have a numerical error in our
calculation of pU , say ±γ. In the case when γ is positive,
the negative case follows symmetrically, we can write ε′, the
approximation of ε∗, as

1− (1 + c)

(
1 + (n−B)

(
n− 2

B − 1

)(∫ pU

0

xB−1(1− x)n−B

+

∫ pU+γ

pU

xB−1(1− x)n−B
))

Thus we can write

|ε′ − ε∗|

≤(1 + c)(n−B)

(
n− 2

B − 1

)(∫ pU

0

xB−1(1− x)n−B

+

∫ pU+γ

pU

xB−1(1− x)n−B
)

− (1 + c)(n−B)

(
n− 2

B − 1

)∫ pU

0

xB−1(1− x)n−B

=(1 + c)(n−B)

(
n− 2

B − 1

)∫ pU+γ

pU

xB−1(1− x)n−B

≤(n−B)

(
n− 1

B − 1

)∫ pU+γ

pU

xB−1(1− x)n−B

Where the finally inequality comes from the assumption that
B(c + 1) < n, since otherwise incentive compatibility is
trivially achieved by auditing all agents uniformly.

Thus, the additive error in ε′, when pU has additive error
γ, is no more than (n−B)

(
n−1
B−1

) ∫ pU+γ

pU
xB−1(1− x)n−B .

Although this error is not given in the most compact manner,
it does offer some intuition as to the relative size of the error
with respect to γ. The error term is roughly the the probabil-
ity that a random beta variable is between pU and pU + γ.


