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Abstract

The problem of diffusion control on networks has been
extensively studied, with applications ranging from
marketing to controlling infectious disease. However,
in many applications, such as cybersecurity, an attacker
may want to attack a targeted subgraph of a network,
while limiting the impact on the rest of the network
in order to remain undetected. We present a model
POTION in which the principal aim is to optimize
graph structure to achieve such targeted attacks. We
propose an algorithm POTION-ALG for solving the
model at scale, using a gradient-based approach that

leverages Rayleigh quotients and pseudospectrum theory.

In addition, we present a condition for certifying that a
targeted subgraph is immune to such attacks. Finally, we
demonstrate the effectiveness of our approach through
experiments on real and synthetic networks.

1 Introduction

Many diverse phenomena that propagate through a
network, such as epidemic spread, cascading failures,
and chemical reactions, can be modeled by network
diffusion models [3, 5, 23, 41, 38]. The problem of
controlling diffusion has, as a result, received much
attention in the literature, with primary focus on two
mechanisms for control: the choice of initial nodes to
start the spread [14, 7, 43|, and the modification of
network structure [16, 33, 42, 34]. To date, most work
on diffusion control (either promotion or inhibition) has
considered diffusion over the entire network. However,
in many problems, the focus is instead on diffusion that
is targeted to a particular subgraph of the network. For
example, in cybersecurity, diffusion commonly represents
malware spread, but malware attacks are often targeted
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at particular subsets of critical devices [12], which should
be accounted for when modeling attacking behavior.
Congestion cascades of ground traffic or flight networks
are other examples, where the goal of resilience may be
to ensure that cascades concentrate on a subset of high-
capacity nodes that can handle them, limiting the impact
on the rest of the network [10, 9]. In another domain,
medical treatments for certain diseases such as cancer
may leverage a molecular signaling network, with the
goal of targeting just the pathogenic portion of it, while
limiting the deleterious effects on the rest [39].

We study the problem of targeted diffusion in which
an attacker! can modify the graph structure G =
(V, &) to achieve two goals: 1) maximize the diffusion
spread to a target subgraph Gg, and 2) minimize
the impact on the remaining graph G \ Gs. We
capture the first goal by maximizing a utility function
that incorporates spectral information of the adjacency
matrix of G, specifically its largest (in magnitude)
eigenvalue, eigenvector centrality, and the normalized
cut of the target subgraph. The second goal is achieved
by limiting the modifications made outside of the target
subgraph. We present a scalable algorithmic framework
for solving this problem. Our framework leverages a
combination of gradient ascent with the use of Rayleigh
quotients and pseudospectrum theory, which yields
differentiable approximations of our objective and allows
us to avoid projection steps that would otherwise be
costly and imprecise. Moreover, we derive a condition
that enables us to certify if a network is robust against
a broad class of targeted diffusion attacks. Finally, we
demonstrate the effectiveness of our approach through
extensive experiments.

In summary, our contributions are:

1. We propose POTION (oPtimizing graph structures
fOr Targeted diffusION): a model for targeted
diffusion attack by optimizing graph structures.

TThe attacker is the agent who initiates diffusion.
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2. We present POTION-ALG : an efficient algorithm to
optimize POTION by leveraging Rayleigh quotient
and pseudospectrum theory.

3. We describe a condition for certifying that a targeted
subgraph is immune to such attacks.

4. We demonstrate the effectiveness and efficiency of
POTION and POTION-ALG on synthetic and real-
world networks; and against baseline and competing
methods.?

2 Related Work

Various dynamical processes can be modeled as diffusion
dynamics on networks, including the spread of infectious
diseases [3, 5], cascading failures in infrastructure
networks [23, 41], and information spread (e.g., rumors,
fake news) on social networks [19, 20]. One line of
research assesses the impact of cascading failures. Yang
et al. [41] simulated cascading failures to quantify
the vulnerability of the power grid in North America.
Fleurquin et al. [10] studied the impact of flight delays
as a cascading failure diffusing through the network.
Motter and Lai [23] investigated the cascading failures
on a network due to the malfunction of a single node.
Another line of research concerns diffusion control, for
example, selecting a set of nodes such that if the
diffusion originated from them, it reaches as many
nodes as possible [14, 7, 43]; or modifying network
structures to increase or limit some diffusion [33, 28].
However, these lines of research do not differentiate
between targeted and non-targeted nodes. Ho et al. [13]
studied targeted diffusion controlled by changing nodal
status. We focus on the problem where an attacker
manipulates underlying network structures in order to
achieve targeted diffusion.

Another relevant research thread is network design,
which is the problem of modifying network structure
to induce certain desirable outcomes. Some prior work
[33, 42, 31] considered the containment of spreading
dynamics by adding or removing nodes or edges from
the network, while others [37, 29, 16, 6, 34] considered
limiting the spread of infectious disease by minimizing
the largest eigenvalue of the network. Kempe et al. [15]
studied modifying network structure to induce certain
outcomes from a game-theoretic perspective, but they
did not consider diffusion dynamics. Others have studied
the problem of manipulating node centrality measures
(e.g., eigenvector or PageRank centrality) [2, 1] or node
similarity measures (e.g., Katz similarity) [44] through

2The code to replicate the experimental results is at https:

//github.com/marsplus/POTION.

edge perturbation. All of these prior efforts focus on the
impact either at the network level or at the node-level
properties, while our focus is on the impact of diffusion
dynamics on a targeted subgraph of the network.

3 POTION : Proposed Model

We present a model for targeted diffusion through graph
structure optimization. We refer to the agent who
initiates diffusion as the attacker. We use cybersecurity
as a running example. Here the attacker initiates the
diffusion (e.g., the spread of malware) on a network of
computers. We define the impact of the diffusion as
the number of infected nodes (e.g., compromised with
malware). The attacker has two objectives: 1) she wishes
to maximize the impact of the diffusion on a targeted set
of nodes (e.g., computing nodes with access to critical
assets), and 2) to limit the impact on non-targeted nodes
to ensure stealth [12].

Let G = (V, &) be a connected, weighted or unweighted,
undirected graph with no self-loops. Let n = |V| be the
number of nodes in G and A be its adjacency matrix.
Throughout this paper, the eigenvalues of A are ranked
in descending order A\;(A) > --- > A, (A). Suppose the
attacker targets a subgraph Gs where S C V is the node
set of Gs. Let &' =V \ S, and its induced subgraph
Gs/. Throughout the paper we assume G is connected,
and denote its adjacency matrix by As. To achieve her
objectives, the attacker modifies the structure of G. The
modified graph and targeted subgraph are represented by
G and Gg, respectively. Formally, the attacker’s action
is to add a perturbation A € R"*" to A, which results
in the perturbed adjacency matrix A = A + A. The
adjacency matrix of G is denoted by As.

3.1 Diffusion Dynamics The status of a node is
modeled by the well-known SIS (Susceptible-Infected-
Susceptible) diffusion dynamics, where it alternates
between “infected” and “susceptible”. 3 Due to the
malware spread by infected neighbors, a susceptible node
becomes infected with probability 5. An infected node
becomes susceptible again (e.g., malware is removed)
with probability ¢. Following Chakrabarti et al.[5], this
process is modeled by a nonlinear dynamical system.
Let m; be the probability of node ¢ becoming infected
(e.g., compromised with malware) in the steady state
of this dynamical system, with 7 the vector of these
probabilities. A key result in [5] is that when A\;(A) <
0/8 the system converges to the steady state w = 0,
which implies that the diffusion process quickly dies out.

3Due to brevity, a discussion on generalization of our approach

to other diffusion dynamics is at https://arxiv.org/abs/2008.
05589.
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However, when A\ (A) > 0/ the system converges to
another steady state w £ 0. We leverage this connection
between graph structure, dynamical model of epidemic
spread, and the epidemic threshold, in constructing our
threat model, as discussed next.

3.2 Threat Model Maximizing the Impact on
Gs: To maximize the impact of diffusion on Gg, the
attacker has two goals: 1) ensure that epidemics starting
in Gs spread rather than die out, and 2) ensure that
epidemics starting outside G g are likely to reach it. We
capture the first goal by maximizing the largest (in
modulus) eigenvalue of G's, A\ (As), which corresponds
to the epidemic threshold of the targeted subgraph.* The
second goal is captured by maximizing the normalized
cut of Gs, ¢(S), where § is the set of nodes in Gs and
S’ are the nodes in the remaining graph. The normalized
cut is formally defined as follows:

, 1 1
(3.1) ¢(S) = cut(&S ) (m + W) 5
where cut(S,S8’) is the sum of the weights on the edges
across S and S’ (unit weights for unweighted graphs),
and vol(S) (resp. vol(S’)) is the sum of degrees of the
nodes in § (resp. §’). The formal rationale for using
the normalized cut is based on Meila et al. [21], which
showed that increasing ¢(S) increases the probability
that a random walker transitions from S’ to S, if we
assume that G is smaller than Gg-.

Limiting the Impact on Gs/: Another important
objective of the attacker is to limit the impact on Gg/,
the non-targeted part of the graph. We capture this goal
in two different ways. First, by limiting the likelihood
of the epidemic spreading to G/, which we define as
minimizing the impact I(Gs:) = > ;. ™. Second, by
limiting the impact on the spectrum of A.

We now demonstrate that minimizing I(Gs/) is approx-
imately equivalent to minimizing the eigenvector cen-
trality of S’. Let P! be the global configuration of the
graph at time step t, where P! is the probability that
node i is infected (e.g., compromised with malware). Fol-
lowing Mieghem et al. [22] , ignoring higher-order terms
and taking the time step to be infinitesimally small, the

dynamics of P} is modeled as the following:

t
dP =Y BA, P — 5P}

JEV

(3.2)

Here, we can think of the two terms on the right side
as two competing forces. The first term is the force

4If G's is not connected, we may replace Al(As) by the largest
eigenvalue of the largest connected component of Gs.

contributed by the infected neighbors of node ¢ (which
increases P!), while the second term is the force due
to i’s self recovery (which decreases P!). Rewriting in
matrix notation yields:

dP?
dt

(3.3) = [BA - 81| P,

which gives a linear approximation to the non-linear
dynamical system proposed in [5]. The steady state
7 must satisfy [ﬁfi — 61} = 0, which is equivalent
to A = (6/B8)m. Suppose Ai(A) = 6/, and = is the
corresponding eigenvector. Let ©; be the unit eigenvector
associated with \;(A). Let o(S) = > jes V1lj] be the
eigenvector centrality of S. Noting that  may differ
from v, by up to a multiplicative constant ¢, the impact
on Gg: can be approximated as:

E WJNCE 1[4

jeS’ jes’

(34)  I(Gs) = =c(1-0(5)),

where the last equality is because S and S’ are disjoint
and v is an unit vector. Thus, minimizing the impact
on Gg is approximately equivalent to maximizing the
eigenvector centrality of S.

Recall that to have an epidemic spread, one needs
M(A) > §/B8. Here, we assumed A\ (A) = §/3. In
Section 6, we demonstrate that our analysis yields an
approach that is effective even when this assumption
fails to hold (i.e., when \;(A) > §/7).

Now we focus on limiting the impact on the spectrum
of A. 5 Let € > 0 be the attacker’s budget. Formally,
this notion is captured through the following constraints:
(3.5) Ni(A) = Xi(A)| <ei=1,...,n

In summary, the principal aims to (i) maximize the
impact on G through maximizing A\ (Ag) while (i)
limiting the impact on G/ by maximizing the eigenvec-
tor centrality o(S), and satisfying Eq. (3.5). Formally,
the principal aims to solve the following optimization

problem:
(3.6) )
mgx a1 (As) + a20(8S) + asp(S)

Ni(A) = Ni(A) <ei=1 ;
A=AT A;=0,Vi=1,...,n }
where the relative importance of the terms is balanced by
the nonnegative constants a, az, ag, and the restrictions
A=AT and A;;, = 0,Vi=1,...,n ensure that Aisa
valid adjacency matrix.

s.t. AEP—{

5In cybersecurity, there are natural interpretations of an
attack’s stealth. For further details, see the extended version

at https://arxiv.org/abs/2008.05589.
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4 POTION-ALG : Proposed Algorithm

To solve the optimization problem in Eq. (3.6), a natural
approach would be to use a form of projected gradient
ascent. There are, however, two major hurdles to this
basic approach: 1) the objective function involves terms
that do not have an explicit functional representation in
the decision variables, and 2) the projection step is quite
expensive, as it involves projecting into a spectral norm
ball, which entails an expensive SVD operation [17]. We
address these challenges in Algorithm 1, which is our
gradient-based solution to the attacker’s optimization
problem as described in Eq. (3.6).

Algorithm 1 POTION-ALG
1: Input: A, e, {n;}i=1 > {n:i}i=1 is a schedule of step sizes
2: Initialize: i =1, Al =A,B;1 =0 > B;: the amount of
budget used just before step 4
3: while True do
Set A, to the gradient of a1 A1 (As)+a20(S)+azp(S)
w.r.t. to Al

>

5: Set the diagonal entries of A; to zeros

6: if ||A;|| = 0 then > a local optimum is found
7 return Al

8: end if

9: if B; +||niAill2 < e then > one-step look ahead
10: A1 =Ai+mAs, Biy1 = Bi+||n:iAill2, i = i+1
11: else

12: return Al

13: end if

14: end while

A key step of Algorithm 1 is line 4, where we compute the
gradient of the attacker’s utility function with respect
to A. This gradient involves terms that do not have an
explicit functional form in terms of the decision variable,
and we deal with each of these in turn.

First, consider the gradient of the normalized cut ¢(S)
w.r.t. A. Let zs be the characteristic vector of S, that is
zs[i] = 1iff i € S. Let D be the diagonal degree matrix
D, = Zj Aij, and let L = A — D be the Laplacian
matrix. Using D and L to express vol(S) and cut(S, S’),
respectively, we have:

(4.7)

1
= +
wgDms

~ 1
S)=alL = .
#(S) =zxs a:s( mg,Dw5/>

Clearly, Eq. (4.7) is a differentiable function of A. Com-
puting its gradient V ;¢(S) can then be handled by au-
tomatic differentiation tools such as PyTorch [26].

Next, we compute the gradient of A\;(Ag) w.r.t. A.

A standard way to compute A\1(Ag) is by using SVD.
However, this is both prohibitively expensive (O(n?)),

and does not provide us with the necessary gradient
information. Instead, we use the power method [11] to

compute A\ (As). Let vg be the eigenvector associated
with the largest eigenvalue A\;(As). Using Rayleigh
quotients [35], we can compute A;(As) as follows:

(4.8a) vs = argmaxx ' Asx
lzll2=1
(4.8b) M (As) = vd Asvs.

Thus, when vs is known, the computation of A;(Ag)
reduces to matrix multiplications. In addition, As
is usually sparse, so we can leverage sparse matrix
multiplication to speed up the computation.

The remaining challenge is that vs is an optimal solution
of an optimization problem, and we need an explicit
derivative of it. Fortunately, our problem has a special
structure that we exploit to obtain an approximation
of the derivative of vs. From our experiments we find
that G is nearly always connected. This means that
the largest cigenvalue of Ag is simple. In addition, due
to the Perron—Frobenius theorem, the absolute value
of the largest eigenvalue is strictly greater than the
absolute values of others, i.c., |A\1(As)| > |A\r(As)| for
all £ # 1. Under these conditions, we can use the
power method to estimate vs by repeating the formula:
6§+1) = As’bg)/HAg'ﬁg)Hg. The fo-norm distance
between % and vs decreases in a rate O(p¥) [11],
where p < 1. In our experiments we found k = 50
is enough to give a high-quality estimation for a graph
with 986 nodes. Intuitively, we are using a sequence
of differentiable operations to approximate the argmax
operation. Therefore the computation of V 41 (As) can
be handled by PyTorch.

We use the same machinery to compute V 40(S). First,
we write ¢(S) in matrix notation:

(4.9) o(S) =v ws,

where v is the unit eigenvector associated with A\;(A).
Then we apply the power method to compute v. Finally,
o(8S) is just a linear function of v. All of these operations
are differentiable, and the computation of V 40(S) is
handled by PyTorch.

We next address the challenge imposed by the constraints
(3.5), which can result in a computationally challenging
projection step which can also significantly harm solution
quality. We address this challenge as follows. Given a
real symmetric matrix X, let || X || denote its spectral
norm. To satisfy Eq. (3.5), we use the following result
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from pseudospectrum theory (see [36], Theorem 2.2):

(4.10) [Xi(A)=Xi(A)| <ei=1,...

n o= [[A—Al2 <

Since A = A— A is real and symmetric, we have | Aljy =
max{|A1(A)],|An(A)]} and =\, (A) = A\ (—A), which
leads to:

(4.11)
A satisfies Eq. (3.5) <= max{|Ai(A)],|M(-A)[} <e

This equivalence allows the attacker to check
whether she is within budget simply by evalu-
ating max{|A;(A)], |\ (=A)[}, i.e., computing the
largest eigenvalue of a real symmetric matrix, which
can be computed efficiently using, e.g., the power
method [11].

Our algorithm leverages this connection as follows.
Line 9 in Algorithm 1 is a one step look-ahead, which
ensures that the perturbation A; is only added to A,
when there is enough budget. Recall from Section 3.2
that [|A;]l2 = max{|A1(A;)[,|A\1(=A;)|}. Thus this
step requires us to compute A1 (A;) and A\ (—A;), using
again the power method. Line 10 tracks the amount of
budget used so far. We now show that the output of
Algorithm 1 always returns a feasible solution. Suppose
Algorithm 1 terminates after k& > 1 iterations. This
means By, + ||[nxAgll2 > € and By < e. In other words
B, = Zf:_ll lm:As|l2 < e. Note that the total amount

of perturbation added to A is A = Zi:ll 7;;. The
triangle inequality implies ||A||2 < e.

For each iteration of Algorithm 1, the most computa-
tionally expensive components are the power method
and matrix multiplication. Let m be the number of
nonzeros in A;; if the graph is unweighted then m is
the number of edges at this iteration. By leveraging the
sparseness exhibited in A;, the power method runs in
O(m) and the matrix multiplications cost O(mn). Thus,
the time complexity of each iteration is O(mn), which
significantly improves the O(n?) time complexity of SVD
that would otherwise be needed.

Recall that our model for targeted diffusion is applicable
to both weighted and unweighted graphs. For weighted
graphs, the attacker modifies the weights on existing
edges. For unweighted graphs, the attacker adds new
edges or deletes existing edges from the graph. The
main difference between the two settings is that the
latter needs a rounding heuristic to convert a matrix
with fractional entries to a binary adjacency matrix. We
discuss this heuristic below.

After running Algorithm 1, we obtain a perturbed matrix
A with fractional entries. For unweighted graphs, a
rounding heuristic is needed to convert A to a valid
adjacency matrix. Let D = {(i,7)|A;; # A;;} be the
set of candidate edges that will be added or deleted
from G. For each edge (i,j) € D define the score
S(i4) = \flm» — A j|. Intuitively, s(; ;) indicates the
impact that adding or deleting the edge has on the
principal’s utility. Next, we iteratively modify G, by
adding or deleting edges in D, starting with the one
with the largest s(; ;). The modification process stops
when the budget is exhausted, which results in the
desired binary adjacency matrix. For weighted graphs,
let C = max; ; A;; and normalize each entry by C, that is
A;;/C. We run Algorithm 1 on the normalized adjacency
matrix, which results in A. The desired adjacency matrix
is obtained by multiplying each flij by C, C’/L-j. If
integer weights are desired (e.g., the number of packages
transmitted between two computers), a final rounding
step is applied. Our experimental results show that the
rounding heuristic is effective in practice.

5 Certified Robustness

This section addresses the following question: what
are the limits on the attacker’s ability to successfully
accomplish her attack? More precisely, we now seek to
identify necessary conditions on the attack budget € so
the attack succeeds; conversely, we can view a given
graph to be certified to be robust to attacks that use a
smaller budget than the one required.

Let TargetDiff(S, G, €) be an instance of the targeted
diffusion problem with target subset S, underlying graph
G and budget €. The attacker is successful on an instance
TargetDiff(S, G, e) if she is able to modify G into G
within budget € such that I(Gs) > I(Gs). We now
derive a necessary condition for successful attacks, in
the form of a lower bound on e.

To derive the necessary condition on e, we use our
experimental observation that in successful attacks the
degrees of nodes in the targeted subgraph Gs always
increase. This is intuitive: a denser subgraph Gs will
tend to increase the propensity of the diffusion (e.g., of
malware) to spread within it, which is one of our explicit
objectives. Let d; (resp. Jl) be the degree of node
before (resp. after) graph modification. We assume if
an attack is successful, the degrees of nodes in Ggs are

increased, i.e., d; > d; for i € S.

Now, observe that computing the exact value of I(Gs)
is intractable, since the exact computation of m; is
prohibitive (see, e.g., [22], Section IV.B). Mieghem
et al. [22] proposed a simple yet effective estimator

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



for m; to be 1 — ¢/(Bd;). The estimator works in
the regime 6/8 < dpmin, Where dp,;, is the minimum
degree of G. Consequently, an estimator for I(Gg) is
1(Gs) = Y ics 1 —6/(Bd;). We focus on the setting
where the estimation error is bounded by a small number,
ie., |I(Gs)—I(Gs)| < 7. Note that 7 can be estimated
from historical diffusion data. The formal statement of
the necessary condition is in Theorem 5.1. 6

THEOREM 5.1. Given an instance TargetDiff (S, G, e€),
I(Gs) is estimated by 1(Gs) = ) ;cs1—0/(8d;).
Suppose we have an upper bound |I(Gs) — I(Gs)| <,

the degrees of modes in S are increased, i.e., d; >
d; fori € S, and 6/8 < dmin- In order to have

I(Gs) — I(Gs) > 27, the budget € must satisfy:

(5.12) €>

151 <Ziesd? -

(Ciesd)”)"”
n |S| ’

Bls

The quantity inside the square root is always nonnegative
due to Jensen’s inequality. The lower bound involves
only structural properties of the graph (node degrees and
the size of S) and thus can be easily computed given an
arbitrary graph. As mentioned above, we can view this
lower bound as a robustness certificate, or guarantee for
the given graph. It guarantees, in particular, that when
the budget is below the lower bound, the total probability
of “infection” (e.g., malware infection) in Gs cannot be
increased by more than 27. In the special case of perfect
estimation (7 = 0), it implies impossibility of increasing
the susceptibility of Gs to targeted diffusion.

The proof of Theorem 5.1 does not depend on the specific
objective function proposed in this paper. Consequently,
the certificate is not specific to our particular objective
function. Further, the lower bound is independent of the
values of 0 and 3, as long as §/8 < dmnin-

We briefly discuss the settings where the robustness
guarantee is most applicable. First, the estimation
for the infected ratio on Gg is accurate, i.c., [[(Gs) —
I(Gs)| < 7 and 7 is small. According to Mieghem et al.
[22], this usually happens on graphs with small degree
variation. Another setting is where the degrees of nodes
in Gs increase as a result of the attack, which is both
natural and empirically founded, as we mentioned earlier.
We provide experimental results on synthetic networks
to verify the robustness guarantee in Section 6.

5Due to brevity the proof is in Appendix C at https://arxiv.

org/abs/2008.05589.

6 Experiments and Discussion

This section presents experimental results on three real-
world datasets: an email network, an airport network,
and a brain network. 7

For each network we run POTION with hyper-
parameters «; = as = a3 = 1/3, which encodes that
the attacker’s objectives are equally important. To
study how the attacker’s effectiveness changes with re-
spect to her budget, we set ¢ = yA;1(A) and vary  from
10% to 50%. A single initially infected node is selected
uniformly at random.

Recall we use G and G to denote the original and the
modified graphs, respectively. We simulate the spreading
dynamics 2000 times on both G and G. For unweighted
graphs the recovery rate § and transmission rate 3 are
set to 0.24, 0.06, resp.; for weighted graphs we set
0 = 0.24 and 8 = 0.2. The spreading dynamics converges
exponentially fast to the steady state: empirically, we
found 30 time steps to be enough to reach the steady
state in most cases. When the simulation finishes, we
extract the number of nodes that are “infected”. We
use Ioriginal and Imodified to represent the fractions of
infected nodes on G and G, resp.

We use two other algorithms as baselines for comparison,
which we call deg and gel. The two algorithms work
by alternating between modifying Gs and modifying
Gs/ until the budget is spent. When modifying Gg,
deg chooses the edge (i, 7) with the maximum value of
d; +d;. Algorithm gel is based on [32], and chooses the
edge (i,7) with maximum eigenscore, defined as u[é]v[j],
where u, v are the left and right principal eigenvectors of
A, respectively. This edge is chosen from among those
edges that are absent (if the graph is unweighted) or
present (if the graph is weighted). When modifying Gs,
these baselines choose an existing edge of to remove (if
unweighted) or decrease its weight (if weighted) with the
highest value of d; 4+ d; or u[i]v[j], respectively.

Unweighted Graphs: We consider (the largest
connected component of) an email network [18] that has
986 nodes. An edge (i, 7) indicates that there were email
exchanges between nodes ¢ and j. This data set contains
ground-truth labels to indicate which community a node
belongs to. We pick a community with 15 nodes as
S; the results for communities with other sizes are
similar.

The overall effectiveness of our approach is shown in

Figure 2, top. The difference Iiodified — Joriginal Of the

Due to brevity, additional results on real and synthetic
networks are at https://arxiv.org/abs/2008.05589.
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impact on the modified and original graphs is shown for
Gs (red line) and G/ (purple line), respectively. As v
gets larger, the impact on G g increases, while the impact
on Gg/ is under control, which demonstrates that the
proposed approach is highly effective at both increasing
the impact of diffusion on the targeted subgraph, and at
the same time preventing the impact on the remaining
graph.

Weighted Graphs: We consider an airport network
and a brain network. The airport network [24] was
collected from the website of Bureau of Transportation
Statistics of the U.S., where the nodes represent all of
the 1572 airports in the U.S. and the weights on edges
encode the number of passengers traveled between two
airports in 2010. We scaled the weights on the airport
network to [0,1]. The targeted set S was chosen by first
sampling a node 7 uniformly at random, and then setting
S to be i and all its neighbors. We report experimental
results for an S with 60 nodes. The brain network [§]
consists of 638 nodes where each node corresponds to
a region in human brain. An edge between nodes i
and j indicates that the two regions have co-activated
on some tasks. The weight on the edge quantifies the
strength of the co-activation estimated by the Jaccard
index. The weights on edges lie in [0, 1]. The 638 regions
are categorized into four areas: default mode, visual,
fronto-parietal, and central. Each area is responsible for
some functionality of human. We select 100 nodes from
the central area as the targeted set S. The results for
the airport (resp. brain) network are at the center (resp.
right) column of Figure 2. The overall trend is similar
to that of the email network.

Comparison against Baselines: The comparisons
against the baselines are shown in Figure 2, middle and
bottom rows. The moddle row shows the infectious
ratios within the targeted subgraphs. It is clear that our
algorithm is more effective at increasing the infectious
ratios than the baselines. The bottom row shows the
infectious ratios within the non-targeted subgraphs. The
magnitudes of the differences are negligible, although in
some cases our algorithm is significantly better than the
baselines (e.g., on airport network when v = 0.4).

Verify the Certified Robustness: We run experi-
ments on synthetic networks to verify the certified ro-
bustness; the synthetic networks include Barabasi-Albert
(BA) [4], Watts-Strogatz [40], and Block Two-level Erdés-
Rényi (BTER) networks [30]. We use the same exper-
imental setup as described above. Fig. 1 shows the
difference of infectious ratios on the modified and origi-
nal graphs (within targeted subgraphs), as a function of
the attacker’s budget €. The vertical dashed lines are the

15% A

BTER
—e— WS

10% 1

5% A

Imodified - Ior/‘gina/

0% 1
0.0

Figure 1: Certified robustness results. Dashed lines mark
the lower bounds from Eq. (5.12). Solid lines represent
infectious ratios within targeted subgraphs.
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Figure 2: POTION effectively achieves targeted diffusion

(top) in Gs (red line) without affecting Gs» (purple); higher
is better. Comparison against deg and gel baselines in Gg
(middle; higher is better) and Gg/ (bottom; lower is better).

lower bounds on the budget computed using Eq. (5.12).
Note that when the budget is less than the lower bound,
the differences are close to zero, which means that the
network is robust against targeted diffusion.

Running Time: The running time of Algorithm 1 on
the three real-world networks is showed in Figure 3. Each
point in the figure is the average running time over 10
trials. Intuitively, as the budget v increases the attacker
needs to search a larger space, therefore the running
time increases. The numbers of nodes and edges of the
three networks are in Table 1.

—8— Airport
Brain
—o— Email

seconds

Figure 3: Running time on the real-world networks.
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Email Airport Brain
#nodes 986 1572 638
#edges 16064 17214 18625

Table 1: Statistics of the real-world networks.

7 Conclusion

Diffusion control on network has attracted much atten-
tion, however, most studies focus on diffusion over the
entire network. We address the problem of targeted dif-
fusion attack on networks. We present a combination
of modeling and algorithmic advances to systematically
address this problem. On the modeling side, we present
a novel model called POTION that optimizes graph
structure to affect such targeted diffusion attacks, which
preserves structural properties of the graph. On the
algorithmic side, we design an efficient algorithm named
POTION-ALG by leveraging Rayleigh quotients and
pseudospectrum theory, which is scalable to real-world
graphs. We also derive a condition to certify whether
a network is robust against a broad class of targeted
diffusion. Our experiments on both synthetic and real-
world networks show that the model is highly effective
in implementing the targeted diffusion attack.
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Appendix

A  Generalization to Other Diffusion

Dynamics

In this section we discuss generalization of the targeted
diffusion model, i.e., Eq. (3.6), to other common diffusion
dynamics. The fundamental question is: does the heuristic
encoded by the model apply to other scenarios with different
diffusion dynamics (e.g., SIR or SEIR)?

First, the feasible region of the model is independent of
the diffusion dynamics, as it is only related to the spectral
properties of the underlying graph. Thus, the structural
(i.e., spectra, degree sequence, and triangle distribution)
preserving properties of the diffusion model generalize to
other diffusion dynamics. Next, recall that the objective
function of the model is the following

Q1A (As) + aza(S) + Ot3(;5(8)

The third term is the normalized cut, which only depends
on structural properties of the underlying graph, so it
generalizes to any other diffusion dynamics. The first
term also generalizes to many common diffusion dynamics,
including SIR and SEIR, as their epidemic thresholds are
known to also be determined by the largest eigenvalue of the
underlying adjacency matrix [27]. The only exception is
the second term o(S), that is, limiting the impact on non-
targeted subset through maximizing the eigencentrality of the
targeted subset. This is because the rationale of maximizing
o(S) depends on the steady state of the diffusion dynamics.
Here, the steady state is where in the long run a constant
(in average) fraction of infected nodes exist. However, both
SIR and SEIR have been shown without a steady state, as
in the long run all nodes will be in the recovered state (i.e.,
immune to the diffusion) [25].

Finally, the certified robustness in Section 5 generalizes to
other diffusion dynamics, as its proof only depends on the
spectral properties of the underlying graph.

B Degree Sequence and Triangles

We now show that satisfying the restrictions Eq (3.5) implies
that certain structural properties of the graph will be
perturbed by only a small amount.

Indeed, the principal’s action has mild impact on the degree
sequence of G. Let d = A1 be the vector whose i-th entry
is the degree of the i-th node in the original graph, and

similarly, let d = Al be the degree sequence after the
perturbation.

ProprosITION B.1. The degree sequence of G before and
after the perturbation satisfies:

(2.13) |d — dl|2 < V/ne.

Proof.
(2.14)

; i (@)
ld—d|2 = [|A1 - Al|z = [|AL[]2 = [[A(1/vR)1Vn]2
< x/ﬁHmIﬁgHAwlh

b
EAVATN]S
< Ve,

where (a) is due to the fact that A — A = A, and (b) comes
from the definition of spectral norm. O

A direct corollary of Proposition B.1 concerns the average
degree of G.

COROLLARY B.1. The average degree of G after the pertur-
bation is within € of the average degree before the perturbation:

(2.15)

davg (G A) — duvy (G A)‘ <e

Proof. Note that dayy(G) = %‘i and davg(G) = lTTd. Thus
we have:
‘le/n . 1Td/n’ 1/n) (1T(d— d)]

= (
(2.16) < (1/n)|[1]lz - [|d - d]|2

O

Next, we perform a similar analysis for the number of triangles
before and after the perturbation.

ProprosITION B.2. Assume G is unweighted with m edges
and T triangles. Suppose the number of triangles after the
perturbation is T'. Then we have

(2.17) T —T| < em,
where the estimate is correct up to a first order approximation.

Proof. Since G is unweighted, we have T' = Tr (AS) /6, where
Tr is the trace operator. The restrictions Eq. (3.5) guarantee
that we can write \;(A) = \; (A) 4 n;¢, where 7; € [—1,1].
Thus,
(2.18)

n

67 = X(A%) =D X(A)® =D (M(A) +nie)’.
Expanding the cube and neglecting the terms of higher order
in n;, we have
(2.19)

67 ~ > Xi(A)*+3e> Ni(A)’n; = 6T +3e» _ \i(A)’n,.

And thus

S ezn:)\l(A)Z

=eTr(A%).

AT —T| ~ €

Z Xi(A)*n;

(2.20)
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Since A is symmetric and binary, we have Tr(A?) = 2m,
where m is the number of edges in G. 0

In what follows we present experimental results to show that
the spectra and degree sequences do not change a lot due to
the targeted diffusion. The spectra and degree sequences of G
and G are showed in Figure 4, in which the top row presents
the spectra with the eigenvalues as ranked in descending
order, and the bottom row presents the degree sequences.
The three columns (from left to right) correspond to the
email network, the airport network, and the brain network,
respectively. The parameter - is set to 0.5, the most powerful
principal.

The Email Network: From Figure 4 (top row), the
eigenvalues with large value admit the largest deviation,
while the bottom row of that figure shows that the degree
sequence is not significantly affected by the targeted diffusion.
In fact, the change to the original degree sequence is mild,
and a student’s t-test cannot differentiate the modified degree
sequence from the original one (p-value=0.081).

The Airport and The Brain Networks: The airport
network is directed and each node pair is associated with
two edges in opposite directions. We convert the network
to an undirected one by substituting an undirected edge for
the two edges. The weight of the undirected edge is the
sum of the weights on the two edges. The spectra and
degree sequences of G and G are showed in the last two
columns of Figure 4. As we can see from Figure 4 (top row),
the graph spectrum is again nearly preserved, except the
eigenvalues with small values admit some deviation. Similarly,
the modified degree sequences cannot be differentiated from
the original one by student’s t-tests (airport: p-value=0.4969,
brain: p-value=0.9919).

g g g
=} l — -+ modified =] 5 ! —-- modified 34 ! —-- modified
g 50 | original g | original g | original
c \ =0} 1 S — 227\

I 3 S L e S — S
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Figure 4: Spectra (top) and degree sequences (bottom)
for the left: the email network; middle: the airport
network; and right: the brain network. The hyper-
parameters are set to oy = e = a3 = 1/3.

C Proof of Theorem 5.1

Proof. From the discussion in the main paper, an instance
TargetDiff (S, G, €) can be encoded by the following meta

model:

max I(Gs) - I(Gs)

(3.21) A
s.t.

AcP.

As discussed in [22] (see Section IV.B), computing the exact
value of I(Gs) is intractable, since the exact computation
of m; is challenging. Our model Eq. (3.6) can be thought
of as a tractable proxy to the meta model. An estimation
to I(Gs) is given in [22], i.e., I(Gs) = Dies 1 —0/(Bd:),
where d; is the degree of node i in G. The estimator works in
the region §/8 < dmin, where dpmirn is the minimum degree
of G. When the estimation is reasonably good, that is
|I(Gs) — I(Gs)| < 7, we have the following relation:

(3.22)

I(Gs) = I(Gs) > 21 = (I(Gs)+7)— (I(Gs) —7) > 21

— [(Gs) —I(Gs) > 0.

Thus, in what follows we focus on deriving the necessary
condition for I(Gs) — I(Gs) > 0, which directly translates
to the necessary condition for I(Gs) — I[(Gs) > 27.

Suppose there exists an adjacency matrix A* € P such that
I(Gs) — I(Gs) > 27. This indicates that the corresponding
instance TargetDiff (S, G, ¢) is successful. Consequently, it
follows that I(Gs)—1(Gs) > 0. Recall that I(Gs)—I(Gs) =
%Zies (d% — d%) Let ds € RIS! represent the degree
sequence of nodes in §. Due to Proposition B.1 we have
llds — ds||3 < ||d — d||3 < ne®. Consider the optimization
problem in Eq. (3.23), where the objective function is
I(Gs) — I(Gs) (up to a multiplicative factor). The last
constraint follows from the assumption that for a successful
instance the degrees of nodes in S increase. The fact that
f(és) — f(Gs) > 0 implies that the optimal solution of
Eq. (3.23) exists and the associated objective value is greater
than zero.

1 1
max —_— — =
(3.23) 5 2 2
lds — dsl|3 < ne

ds = ds.

s.t.

Denote the feasible region of the above optimization problem
as M. Note that M is a convex set since it is the intersection
of two convex sets.

The objective function is concave in ds, since it is twice
differentiable on the feasible region M and the Hessian matrix
is negative definite; the Hessian matrix is a diagonal matrix
with the i-th diagonal element being —2/d?. Thus, Eq. (3.23)
is a convex optimization problem. Note that the Slater’s
condition is satisfied (e.g., with ds = ds), which indicates
that strong duality holds. Thus, the KKT conditions are
satisfied at any primal and dual optimal solutions.
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For convenience, in what follows we use d; (resp. d;) to
represent the degree of a node i € S before (resp. after)
graph modification. The Lagrange function of Eq. (3.23) is:
(3.24)

oldsin) =Y (=7 ) + 3 (0 - 1ds - ds1)

i€s
+87 (cis - ds) )

where A > 0 and 8 > 0 are Lagrangian multipliers. Recall
that the degrees of nodes in S are increased, i.e., CZZ > d;
for all i € S. Note that for a node i € S such that d; = d;,
we let the corresponding 3; = 0. Thus, by complementary
slackness, we have 5; = 0 for all ¢ € §. The gradient of
C(Js,)\,,@) w.r.t. d; becomes:

oL 1 ~
— = — —2)d; + B; =
od; d? &

1 27d;.
&2

7

Setting the gradient to zero leads to:

y 1\ /3
di:(5> ,VieS.

Since the optimal solution exists, we have A # 0. By
complementary slackness we have A (ne2 — ||lds — ds ||§) =0,
which indicates:

ne? = ||¢is — dng.

Expand the above equation:

ne’ = ||ds — ds|f3
~ 2
=S (di—d,
- 2 ()

Substitute ()"

equation:

% with a variable x and re-arrange the above

2 2
2 QZiesdier Dics di —ne

=0.
S| S|

T

According to vieta theorem, a necessary condition that we
can solve for z € R from the above equation is:

2Z.esdi)2 Sies i —né’
e R e ()
( S| [S] -

which leads to:

s m(ziesd? .

n S|

(Ciesd)”)"”
|S|? '

D Additional Results on Real Networks

We run three experiments to show the effectiveness of each
term in the objective function of POTION . The results are
showed in Figure 5. The three rows (from top to bottom)
correspond to experimental results on the email, airport and
brain networks.

The first column corresponds to the first experiment, which
is to show that maximizing A\ (As) leads to higher infected
ratios. The hyper-parameters are set to a1 = 1/3,a2 = 0,
and as = 1/3 (the hyper-parameters do not need to sum
to one). The labels of the y-axis become IS dified — Ifriginal,
which highlights that the infected ratios are for the targeted
subgraph Gs (the higher the better). Note that ao is set to
zero in order to avoid the coupling between the eigenvector
centrality of S and A\i(As). From the plot it is clear that
maximizing A\ (As) is important to increase the infected
ratios within Gs (the blue line). Note that solely maximizing
the normalized cut of S may backfire (the red line), as a large
portion of edges are deleted from Gs when +y increases.

The second column is to show the effectiveness of limiting the
impact on Gs/ by maximizing the eigenvector centrality of
S. The y-axis represents If,;diﬁed - Ifr’iginah which highlights
that the infected ratios are for the non-targeted subgraph
Gs (the lower the better). The plot shows that the impact
on Gg is well limited; the effectiveness is most significant
when v > 40%.

The last column is to show the effectiveness of maximizing
the normalized cut of S. We set ao = 0 to avoid the effect
of maximizing the eigenvector centrality of S. Observe that
maximizing the normalized cut of S is effective in increasing
the infected ratio within G's only for the email network. This
suggests that on weighted graphs normalized cut might not
be a good heuristic to increase the centrality of S.

E Additional
Networks

In this section we show experimental results on synthetic
unweighted graphs with 375 nodes. We focus on three
classes of networks: Barabasi-Albert (BA), Watts-Strogatz,
and BTER [30]. BA is characterized by its power-law
degree distribution [4]. Watts-Strogatz is well-known for
its local clustering in a way as to qualitatively resemble real
networks [40]. BTER are generative network models that
can be calibrated to match real-world networks, in particular,
to reproduce the community structures [30].

Results on Synthetic

The experimental setup is similar to the setup for the email
network, except for a few changes. First, the experimental
results for each class of the synthetic networks are averaged
over 30 randomly generated network topologies. Another
difference lies in how the targeted set S is selected. For each
randomly generated network, the targeted set S is selected
as the node whose degree is the 90 percentile of the degree
sequence, and its neighbors. Some statistics of the synthetic
networks are summarized in Table 2. Recall that 6 = 0.24 and
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Figure 5: Experiments showing the model’s effectiveness.

Top: the email network; Middle: the airport network;
Bottom: the brain network. The three columns (from left
to right) show the effectiveness of: 1) maximizing A\ (As); 2)
Maximizing the eigenvector centrality of S; 3) maximizing
the normalized cut of S.

B = 0.06. The experimental results are showed in Figure 6.

The conclusion derived from Figure 6 is similar to that of
the email network. It is worth pointing out that maximizing
the normalized cut of S is effective on BA networks, while
for other network it may backfire.

BA  Watts-Strogatz BTER

|S| 17.5 12 20.03

dmin 9.86 10 11.69
density 0.02 0.03 0.03
average degree 9.87 10 11.5
average clustering coeff.  0.08 0.35 0.05

Table 2: Statistics of synthetic networks.

F Additional Results for Different Values of §
and f

In the main paper, § = 0.24 and S = 0.2 for the airport

and brain networks, while § = 0.24 and 8 = 0.06 for the

email network. The ratio §/8 is 1.2 for the former two

networks, while 4 for the latter. In what follows we explore

the effectiveness of our model in different regimes of 6/8.

For the airport and brain networks, we present results for

(6 =0.5,=0.1) and (§ = 0.3,8 = 0.5). The former (resp.
latter) corresponds to the regime above (resp. below) 1.2.

The results for the airport network are showed in Figure 9,
and the results for the brain network are in Figure 10. For
the email network we present results for (6 = 0.5,8 = 0.1)
and (6 = 0.3, 3 = 0.5), also corresponds to the regime above
and below the original ratio respectively. The results are
showed in Figure 11. The conclusions are consistent with
that presented in the main paper.

G Results for Random Walk Based Spreading
Dynamics

We simulate random walk based spreading dynamics on the
original and the modified networks. Although POTION is
motivated from the analysis of SIS spreading dynamics, the
simulation results show that it is capable of achieving targeted
diffusion when the underlying spreading dynamics is based
on random walk. Random walk has extensive use in machine
learning, data mining, security, ranking, etc. [? 7 7 7 7 |.
We focus on two variants of random walks: random walk with
restart (RWR, a.k.a. personalized PageRank) and PageRank.
The former has been widely used in data mining and security
applications [? 7 |. The latter is a powerful tool to measure
the “importance” of nodes in a network [? |. We run POTION
on the Airport, Brain, and Email networks, with the same
targeted subgraphs as in previous experiments. The trade-off
parameters are set to (aq = 1/3,a2 =1/3,a3 = 1/3).

For the RWR dynamics, the starting node of a random walk is
picked uniformly at random from the non-targeted subgraph
Gs:. The restart probability c is set to 0.05 — i.e., at each
time step the RWR restarts from the starting node with
probability 0.05. The RWR dynamics is simulated until
convergence,® which gives us a rank vector r € R} over
the nodes for the given starting node. The sum of the sub-
vector r[S] (resp. r[S']) is the probability that a random
walk lands in the targeted subgraph Gs (resp. non-targeted
subgraph Gs/), which quantifies the impact on Gs (resp.
Gs). Figure 7 shows the experimental results here. The left
column represents the landing probability on the targeted
subgraph Gs. It is clear that the probability is higher when
the underlying graph is modified by POTION (although
the difference is only statistically significant on the Email
network). The right column is the landing probability on
the non-targeted subgraph Ggs:. The probability does not
increase, which is desired as we would like to limit the impact
on Gsl.

For the PageRank dynamics, the starting node is picked from
the node set V uniformly at random. The restart probability
cis set to 0.1 —i.e., at each time step the PageRank dynamics
restarts with probability 0.1 from a node (not necessarily the
starting node) picked from V uniformly at random. When the
simulation is finished the PageRank gives a vector r € R}
indicating how “important” each node is. Intuitively, »
specifies a ranking of the nodes in V —i.e., a node i € V is
ranked higher when r[i] is larger. We use the sum of the sub-
vector 7S] (resp. r[S’]) to quantify the impact on Gs (resp.
Gs). Other experimental setup is the same as the setup for
the RWR dynamics. Figure 8 shows these results. The left
column indicates the ranking of the nodes in Gs. It is clear
that the ranking is boosted and the increase is statistically
significant. The right column shows that the ranking of the
nodes in G is not increased, as desired.

8We are guaranteed convergence since the Markov transition

matrix of the network is stochastic, irreducible, and aperiodic.
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Figure 6: Experimental results on synthetic networks.
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Figure 7: Landing probability on (left) the targeted
subgraph Gs and (right) the non-targeted subgraph G .
Modifications by POTION increase the probabilities of
landing in the targeted subgraph Gs (left column) and
do not increase the probabilities of landing in the non-
targeted subgraph G/ (right column), as desired. Top:
Email; Middle: Brain; Bottom: Airport.

Figure 8: Ranking of the nodes in (left) the targeted
subgraph Gs and (right) the non-targeted subgraph Gs-.
Modifications by POTION increase the probabilities of
landing in the targeted subgraph Gs (left column) and
do not increase the probabilities of landing in the non-
targeted subgraph G (rightt column), as desired. Top:
Email; Middle: Brain; Bottom: Airport.
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Figure 9: Experimental results for different § and /3 values on the airport network. Top: § = 0.5, 3 = 0.1; Bottom:
0 =0.3,8=0.5.

5 3% = 2.00% 5 2.00% 5 2.00%
H + 6 H ESroom) g ESymEren) g = oo
S 2%1 % & s ENTERT 5 00% E P S 1.50%1{ £ an.0.0
5 6 5 1.009 s 0§
Sl 25 1.00% o 25 0w
i I 1 0.00% ]
H b b 5 0.50%
2 € 0.00% g g
3 3 5 Loo% 5 0.00%
£ 25 .1.00% 25 2.00% 25 .0.50%
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
= 5 5.00% 5 0.40% 5 2.50%
: 5 ooonls—e—e—m—r| 5o 2o
3 o 2S o0% 25 1.50%
5 ! 5.00% " ! 100%
3 2 §-020% 2 0.50%
£ £ -10.00% { Z 4013 S 0.40%] = ansm S oo T anom
g g F 0o g E amo.i g o ERTXT
Saw 28 .15.00% 25 0.60% 25 0.50%
10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Figure 10: Experimental results for different § and S values on the brain network. Top: § = 0.5, 5 = 0.1; Bottom:
0 =0.3,8=0.5.
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Figure 11: Experimental results for different § and S values on the email network. Top: § = 0.5, 5 = 0.1; Bottom:
6 =0.3,8=0.5.
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