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ABSTRACT
Vulnerability databases are vital sources of information on emergent

software security concerns. Security professionals, from system

administrators to developers to researchers, heavily depend on

these databases to track vulnerabilities and analyze security trends.

How reliable and accurate are these databases though?

In this paper, we explore this question with the National Vulner-

ability Database (NVD), the U.S. government’s repository of vulner-

ability information that arguably serves as the industry standard.

Through a systematic investigation, we uncover inconsistent or

incomplete data in the NVD that can impact its practical uses, affect-

ing information such as the vulnerability publication dates, names

of vendors and products affected, vulnerability severity scores, and

vulnerability type categorizations. We explore the extent of these

discrepancies and identify methods for automated corrections. Fi-

nally, we demonstrate the impact that these data issues can pose

by comparing analyses using the original and our rectified ver-

sions of the NVD. Ultimately, our investigation of the NVD not

only produces an improved source of vulnerability information,

but also provides important insights and guidance for the security

community on the curation and use of such data sources.
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1 INTRODUCTION
Securing computer systems in practice entails identifying, under-

standing, and remediating the stream of software security concerns
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that are continuously uncovered. To effectively do so, security pro-

fessionals and researchers depend on various sources of information

to inform them of new security issues. One vital source is vulner-

ability databases, which operate as a repository of vulnerability

information. However, is the information actually reliable?

In this work, we explore this question by identifying the limita-

tions of existing vulnerability datasets and their implications on real-

world security operations. While several vulnerability databases

exist, we focus on the one that is arguably the most widely used: the

National Vulnerability Database (NVD). This database, maintained

by the US government, strives to accurately document all publicly

known vulnerabilities, and effectively serves as the industry’s stan-

dard. Both commercial security services (e.g., Hakiri [12], Snyk [18],

and SourceClear [17]), and open-source security tools (e.g., Bundler-

audit [11], OWASP OSSIndex [16], and Dependency-check [13])

depend on the NVD’s vulnerability information to function effec-

tively. Furthermore, researchers [2, 3, 27] have used the NVD as a

core data source to shed light on aspects of the vulnerability dis-

covery and remediation process. Given the importance of the NVD,

it is crucial that we understand the quality of its data, lest some

incorrect information leads to a critical security lapse [5].

The prior work [19, 27, 28, 30] has investigated certain types of

data quality concerns in NVD. However, to the best of our knowl-

edge, there has not been a systematic and comprehensive analysis

of inconsistencies and incomplete data in the NVD to date. To close

this gap, in this paper, we perform an in-depth large-scale analysis

of the NVD, systematically evaluating each data field it contains. In

particular, we identify significant data issues with the vulnerabil-

ity publication date, affected vendor and product names, severity

scores, and vulnerability type. We quantify the scope of each is-

sue within the NVD, providing an understanding of each issue’s

ramifications. Then, we develop accurate and automated methods

of correcting the information, thus producing an improved and

more reliable NVD dataset for the security community to use. We

will be open-sourcing the tools we created for correcting the NVD

data quality concerns, as well as the rectified dataset itself. Finally,

we perform several analysis case studies using our improved NVD.

Beyond providing more reliable analysis results for core questions

on vulnerability discovery, disclosure, and remediation, our case

studies demonstrate how analysis conclusions and practical impli-

cations can greatly differ due to data quality issues. Ultimately, this

work will not only directly impact real-world security through an

improved dataset used in practice, but highlight common pitfalls
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that can affect other sources of vulnerability information, providing

lessons for improving them as well as their effective uses.

Applications and Implications. We show the pitfalls of using

NVD by highlighting NVD’s various inconsistencies and propose

methods to fix them. Overall, the study can be utilized by the NVD

towards the following end goals: (1) The estimated disclosure date

identification can enrich the vulnerability report for the end-user’s

perusal. (2) The vendor and product inconsistency finding tool can

be leveraged during the vulnerability reporting process to suggest

suitable vendor and product names to analysts. Moreover, the ob-

servations from our analyses and measurements can used as a best

practice when adding new vendors and product names in NVD.

(3) The deep learning-based CVSS v3 prediction engine can be

leveraged by NVD and security analysts alike for uniform severity

metric generation across the vulnerabilities in the database.

Contributions. (1) Through an extensive data-driven approach

backed byweb scraping,manual investigation, andmachine learning-

based automation, we assess the quality of NVD, identifying con-

cerns affecting each vulnerability data field. (2)We identify methods

to automatically remedy the data quality issues in NVD, providing

a more reliable source of vulnerability information. (3) As case

studies, we conduct several large-scale analyses of vulnerabilities,

providing the most accurate findings to several basic but core ques-

tions on vulnerability discovery, disclosure, and remediation. (4)

We shared the results of this work with the US National Institute of

Standards and Technology, which maintains the NVD. Following

that, NVD’s schemas have been updated to remove the free-form

vendor and product names that we identify as oft problematic [31].

Organization.We provide a review of the literature in section 2,

followed by an overview of the dataset in section 3. In section 4, we

present our main study, followed by case study analyses in section 5,

and a discussion in section 6. We conclude our work in section 7.

2 RELATEDWORK
Reliability of NVD. Quality issues in vulnerability databases, e.g.,

NVD, have been previously noted and studied. Nguyen and Mas-

saci [30] pointed out that the affected product versions in the NVD

are often incorrect, observing that roughly 25% of Google Chrome

CVEs had an incorrect Chrome version string. Christey and Mar-

tin [6] similarly explored issues in the NVD data and suggested

reporting biases as a root cause. Attila et al. [3] showed that CVSS

metrics are more suitable for enterprise software products than per-

sonal ones. Dong et al. [19] analyzed the inconsistencies in public

security vulnerability reports, including the NVD, and found over-

claims and underclaims in the affected software product versions.

While these studies call attention to certain inconsistencies, our

study stands out by providing a comprehensive and systematic in-

vestigation of incompleteness and inconsistencies across the NVD

data fields. In addition to identifying and quantifying the data qual-

ity issues therein, we also develop methods for correcting them.

Vulnerability Analysis. Our work provides vulnerability analy-

ses usingmore consistent vulnerability information, thus expanding

on the literature on vulnerability dynamics.

Previously, Shahzad et al. [39] analyzed the vulnerability life

cycle, and pointed out that remotely exploitable vulnerabilities rep-

resent 80% of all of them. Earlier, Clark et al. [7] outlined a relation

between a product’s familiarity and its first vulnerability disclosure:

a shorter time between product release and first vulnerability dis-

covery is shown for familiar products. Ozment and Schechter [36]

observed that 62% of vulnerabilities in the OpenBSD system were

foundational and took 2.5 years for them to be reported.

Stock et al. [41] and Li et al. [26] studied the vulnerability notifi-

cation channels and their significance. Zhao et al. [49] empirically

studied data from two web vulnerability discovery ecosystems for

trend analyses. Trinh et al. [44] studied vulnerabilities in web ap-

plications. Saha [38] extended an attack graph-based vulnerability

analysis framework to include complex security policies for effi-

cient vulnerability analysis. Zhang et al. [48] used data from NVD

to predict the time to next vulnerability, and argued that NVD

provides poor predictions while pointing out inconsistencies, e.g.,

missing version information, release time, and other obvious errors.

Votipka et al. [45] suggested integrating hackers and improved se-

curity training for testers in the vulnerability discovery. Xiao et
al. [47] detected vulnerability exploitation at a 90% rate. Sabottke et
al. [37] proposed a Twitter-based detector to identify vulnerabilities
likely to be exploited. Homaei and Shahriari [24] analyzed vulner-

ability reports between 2008 and 2014 and observed that security

professionals can prevent 60% of them by focusing on only seven

vulnerability categories. William et al. [46] proposed a framework

to discover evolutionary patterns in the vulnerabilities.

3 DATASET
We study the National Vulnerability Database (NVD) [33], the U.S.

government’s repository of public vulnerability information, ac-

tively maintained by the National Institute of Standards and Tech-

nology (NIST). While there are other databases, we focused on the

NVD because it is widely used (in part because it is public and

free), and arguably serves as the industry standard for tracking

vulnerabilities. Nonetheless, our exploration of the NVD can pro-

vide insights into using other vulnerability databases. For the NVD,

reported vulnerabilities are analyzed and added in a standardized

format. Specifically, NVD entries contain the following. (1) A Com-

mon Vulnerability Exposure (CVE) ID number [8] that uniquely

identifies the vulnerability. (2) The vulnerability entry’s publication

date. (3) The vulnerability type/category, as classified by the Com-

mon Weakness Enumeration (CWE) [29]. (4) The severity, as rated

by the Common Vulnerability Severity Score (CVSS) [34]. Note that

there are two CVSS versions, the historical CVSS v2 (v2) and the

modern CVSS v3 (v3) [20], both on a scale from 0 to 10. Table 1

shows the CVSS severity level thresholds. Note that the v3 intro-

duces a critical level of severity. (5) A list of vendors and products

affected, as classified under the Common Platform Enumeration

(CPE) [35]. (6) Free-form vulnerability descriptions. There can be

multiple descriptions, although the typical one explains the secu-

rity concern. Another common description is a comment by the

CVE entry evaluator. (7) Optionally, reference URLs (e.g., security

advisories) are sometimes listed, providing vulnerability details.

NVD Scale. We use a snapshot of NVD captured on May 21, 2018.

This snapshot includes 107.2KCVEs added toNVDover two decades

(1998–2018). These vulnerabilities are categorized into 453 CWE

types, affecting 18.9K vendors and 46.6K products. We observe that
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Table 1: Score thresholds of v2 & v3 CVSS severity levels.

Label Abbreviation v2 v3
None – – 0.0

Low (L) 0.0–3.9 0.1–3.9

Medium (M) 4.0–6.9 4.0–6.9

High (H) 7.0–10.0 7.0–8.9

Critical (C) – 9.0–10.0

37.5K recent CVEs have the modern v3 severity label, in addition

to v2 labels, while the remaining CVEs only have v2 labels.

4 INCONSISTENCIES AND IMPROVEMENTS
The quality of data in a vulnerability database can heavily impact

vulnerability tracking and trend analyses. Prior work by Mu et
al. [28] already identified that crowd-sourcing vulnerability infor-

mation has limitations. In this section, we analyzed the NVD CVE

entries for inconsistencies and explored methods for rectifying

them. We focused on assessing the standardized non-free-form

fields, specifically the vulnerability’s publication date, CWE class,

CVSS rating, and the affected CPE. The remaining NVD fields (the

vulnerability description and reference URLs) are free-form with-

out a standardized structure, making it challenging to conceptually

define and identify inconsistencies, which we leave for future inves-

tigation. Note that we focused on data consistency issues, not data

error problems. We assumed that the data in the NVD is correct but

perhaps represented inconsistently, such that one could identify

the correct information without resorting to investigation beyond

what is provided through the NVD.

4.1 Publication Dates
Incompleteness. Vulnerability analysis often depends on tracking

when vulnerabilities became public. For example, security analysts

must consider how long a vulnerability has been public when prior-

itizing patching, calculating windows of exposure, or investigating

incidents (such as in log analysis). NVD records have a publication

date, but this date only indicates when the entry was added to the

database. We observed cases where the NVD publication date does

not give a clear picture of vulnerability. For example, CVE-2011-

0700 is a WordPress XSS vulnerability with an NVD publication

date of March 14, 2011. However, the CVE entry includes a refer-

ence URL for a public security advisory disclosing the vulnerability

over a month earlier on February 7, 2011.

Identification and Improvement.We attempted to identify dis-

closure dates by leveraging the reference URLs. Li and Paxson [27]

and Anwar et al. [2] previously suggested approximating the dis-

closure date by mining these references, as many are web pages

about the vulnerability and its publication date.

We first extracted the domains from the URL references, finding

that the 591.4K URLs in our data corresponded to 5,997 domains.

We focused on the top 50 domains, covering more than 85% of all

URLs (we observed diminishing returns from considering additional

domains). These top domains fall into three high-level categories:

(1) other vulnerability databases (e.g., SecurtiyFocus), (2) bug reports
or email archives threads (e.g., Bugzilla), and (3) security advisories

(e.g., cisco.com). Note that some domains are not in English (e.g.,

jvn.jp is in Japanese). Each of the webpages may have a different
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Figure 1: CDF of vulnerability lag times. Lag time is the number

of days after our estimated disclosure date when a vulnerability

enters into the NVD. Note, ≈38% of the vulnerabilities have no lag.

structure. Thus, we built a separate crawler for each domain to ex-

tract the relevant publication date for the vulnerability information

(if any). We note that 14 domains are no longer responsive (e.g.,

osvdb.org shut down in 2016). For a given CVE, we approximated

its public disclosure date as the minimum of the dates extracted

from the reference URLs or the NVD publication date.

Improvement Impact. We evaluated how many days the CVE

published date preceded our estimated disclosure date, which we

call the lag time. Figure 1 plots the percentage of CVEs within

a lag time. Notice that ≈38% of the vulnerabilities have a lag of

zero days. The growth of vulnerabilities by lag time slows after

accounting for the vulnerabilities with a lag of ≤ 6 days (≈70%). We

observed that ≈ 28% of the vulnerabilities have a lag of more than

a week. Moreover, we distributed the lag among the v2 labels and

observed that we improved on the publication date for only 37%

of low severity vulnerabilities, in comparison to 41% medium and

65% high severity vulnerabilities. This observation is particularly

interesting as vulnerability tracking and analysis of high severity

vulnerabilities are likely most valuable and can be most affected by

this inconsistency.

4.2 Vendor and Product Names
Inconsistencies. Practitioners depend on lists of vendors and prod-
ucts affected by a CVE to identify vulnerabilities affecting software

they use [40], or to monitor the security trends of various software

systems. We observed inconsistencies in these vendor and prod-

uct names. For example, BEA Systems (vendor) is labeled as both

bea (171 associated CVEs) and bea_systems (14 different associated
CVEs). Similarly, we observedAVG’s anti-virus product hasmultiple

names, including antivirus and anti-virus. Thus, those monitoring

for vulnerabilities by vendor or product names will obtain incorrect

results unless carefully accounting for these inconsistencies.

Product Version Inconsistency. The NVD is also subject to in-

consistent product versions, as demonstrated by Nguyen and Mas-

saci [30]. Dong et al. [19] leveraged NLPmethods to find and correct

inconsistencies in product versions through mining the NVD refer-

ence URLs. Thus, we did not investigate product versions further.

Identification and Improvement. Initially, we lack a general

understanding of the nature of the vendor and product name in-

consistencies. Thus, we resorted to manually analyzing name pairs

to determine if both names represent the same entity (which we

will call matching pairs). However, the manual analysis does not
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Table 2: Common inconsistency patterns in vendor naming.

Category Tokens Length(Longest Substring Match)≥ 3 Length(Longest Substring Match)<3
#MP = 0 #MP = 1 #MP > 1 Pref PaV #MP = 0 #MP = 1 #MP > 1 Pref PaV

Possible 260 (524) 78 (155) 319 (608) 6 (11) 293 (566) 5 (10) 223 (381) 658 (1151) 18 (33) 2 (4) 2 (4)

Confirmed 260 (524) 52 (103) 295 (561) 4 (7) 266 (513) 3 (6) 53 (76) 201 (341) 11 (20) 2 (4) 2 (4)

1
The numbers outside the parentheses are unique vendor pairs, while the numbers inside are the names associated with them.

2
Considered inconsistency patterns: (1) identical names except for special characters (labeled as Tokens); (2) vendor names associated with identical

product names (labeled as #MP=X, where X is the number of matching product names), (3) one vendor name is a product of the other vendor name

in the pair (labeled as PaV), and (4) one name is a string prefix of the other name (labeled as Pref).

3
For cases (2)–(4), the longest common substring (LCS) between names is used as a signifier ( |LCS | ≥ 3 v. |LCS |< 3).

4
Pairs with (#MP=0 ∧ |LCS |= 0 ∧ not Pref) are not included in this table, as they do not meet our vendor matching heuristics.

Table 3: Vendor and product name inconsistencies in NVD, Securi-

tyFocus (SF), and SecurityTracker (ST).

Database Vendor Product
# #imp. #con. # #imp. #ven.

NVD 18,991 1,835 871 46,685 3,101 700

SF 24,760 2,094 878 - - -

ST 4,151 110 53 - - -

1
For both vendors and products, we list the number (#) of distinct names

and # impacted by a discrepancy (#imp).
2
For vendors, we list the number

of consistent vendor names that map to inconsistent vendor names (#con).

3
For products, we list the number of vendors affected by inconsistent

product names. We only investigated produce names for the NVD.

scale to the number of unique name pairs. To reduce the scale to a

manageable level, we used heuristics to filter pairs down to those

that are likely matching (i.e., related to the same entity yet with

inconsistent names). We recognized that these heuristics should

provide broad coverage but may not be truly comprehensive.

Vendor Names. Informed by manual exploration, we developed

three heuristics to identify likely matching vendor name pairs.

• Vendor name pairs share characters in common. This ac-

counts for various scenarios such as where one name is

misspelled (e.g., microsoft and microsft), represented in a

different format (e.g., avast and avast!), abbreviated (e.g.,

lan_management_system and lms), or a strict substring of
another (e.g., lynx and lynx_project).

• A product name is used as a vendor name (e.g., microsoft
and windows both appearing as vendors).

• Vendor pairs share the same product name.

We filtered out vendor name pairs that do not satisfy any of

these heuristics, and manually investigated each remaining pair

by researching their products, developers, and associated organi-

zations. For each group of matching name pairs that represent the

same vendor, we created a mapping of vendor names to consoli-

date those representing the same vendor under a consistent name.

Note that there may be multiple matching pairs associated with the

same vendor, indicating multiple inconsistent names. For the names

associated with a vendor, we considered the one with the most as-

sociated CVEs as the consistent name, and remapped inconsistent

vendor names in the NVD using our mapping.

To shed light on common patterns in inconsistent vendor nam-

ing, in Table 2, we listed those common patterns, as well as how

likely those patterns signals a matching pair. We observed that 260

name pairs were identical except for the inclusion of special char-

acters (e.g., ! or _), and all were matching vendor name pairs. For

other name pairs, when the longest substring match was at least 3

characters, the majority (at least 60%) of name pairs were matching

under the other patterns. Notably, when the two vendor names in

the pair were both associated with the same product name, or when

one vendor name was a string prefix of the other, the pair were

matched in over 90% of cases. When the longest substring match

was less than 3 characters, only a minority of name pairs were still

matching under the different patterns.

Product Names. After consolidating vendor names (above), we

identified likely matching product names under the same (consoli-

dated) vendor using two heuristics, and then manually evaluated

the pairs. For the first heuristic, we tokenized product names by

splitting by white spaces and special characters, and considered a

product name pair as likely matching if the two tokenized names

are identical. This captures cases such as internet-explorer, inter-
net_explorer, and internet explorer. For the second heuristic, if one

product name in the pair is tokenized into multiple components and

the other is a single component, we concatenated the first charac-

ter of the multi-component name, and compared the concatenated

string with the other product name. This captures abbreviations,

such as with internet-explorer and ie. Next, we investigated replac-

ing, adding, and swapping of characters. We did so by determining

the edit distance between product pairs. This is followed by manual

verification of the pairs. The product names varying by charac-

ters can be different products altogether, e.g., cisco’s ucs-e160dp-
m1_firmware and ucs-e140dp-m1_firmware have an edit distance

of one, but are different products. With our analysis, we focused

on pairs that can be a result of human error, e.g., nativesolutions’s
tbe_banner_engine and the_banner_engine. As with vendor names,

we mapped inconsistent product names to a consistent name based

on the name associated with the most CVEs, and remapped product

names in the NVD based on this mapping. Table 3 depicts that we

found over 3K products inconsistently named affecting 700 vendors.

We note these two heuristics are more limited than those consid-

ered for vendor names, as we found that product names are often

quite similar without representing the same product. For example,

we explored using substring matching heuristics (as with vendor

names), but found the number of pairs flagged for analysis to be

too large and with many false positives (i.e., non-matching pairs).

Improvement Impact. Table 3 lists the extent of the vendor and
product naming inconsistencies we identified. The NVD includes

≈19K distinct vendors, and about 10% of them were impacted by

vendor naming inconsistencies. These ≈1.8K vendor names could

be consolidated under 871 vendor names, thus removing ≈5% of

distinct vendors. Inconsistencies similarly affected 6% of distinct
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Table 4: Transformation from v2 to v3 in numbers.

H
HHHHv2

v3 L M H C
# % # % # % # %

L 363 9.53 3,211 84.30 235 6.17 0 0.00

M 242 1.07 10,589 46.88 11,136 49.30 621 2.75

H 0 0.00 549 4.96 5,293 47.80 5,232 47.24

NVD product names, and consolidating names would reduce the

number of product names also by about 5%. Thus, inconsistencies

affect a non-trivial fraction of vendors and products. These num-

bers are lower bounds on the extent of vendor and product name

inconsistencies in the NVD, since our identification and correction

method relied on heuristics that may not be all-encompassing.

We also explored vendor naming inconsistencies in two other

vulnerability databases with this information, SecurityTracker [14],

and SecurityFocus [15]. We used the same vendor name mapping

that we generated (above) for correcting to consistent names, and

applied it to the vendor strings in these two databases. As a result,

we found as shown in Table 3 that 3% and 8% of vendor names

were inconsistent for SecurityTracker and SecurityFocus, respec-

tively. Exploration of these databases specifically will likely yield

further inconsistencies, highlighting that this data quality issue is

prominent in vulnerability database generally, and our approach

for rectifying the NVD could be used for our datasets as well.

We note that Dong et al. [19] also investigated product names

specifically, where their heuristic was to split product names by

white spaces into words, and label two products as matching if they

shared words. In comparison, their method does not account for

abbreviations or special character separators, and yield false posi-

tives when different products share similar words (e.g., Microsoft’s

Internet Explorer and Internet Information Services products).

4.3 Severity Scores
Inconsistencies. NVD uses the CVSS standard for rating sever-

ity [34]. However, CVSS has had multiple versions, with the modern

v3 addressing limitations of prior versions. As v3 was only released

in 2015, only a third of the CVEs in our NVD dataset have v3 scores.

Security analysts monitoring vulnerabilities over time must either

rely on v2 and its limitations (e.g., inaccurate security ratings), or

evaluate a subset of the NVD data. Vulnerabilities pre-dating the

release of v2 are still relevant, as age-old vulnerabilities are often

still used in active attacks. For example, CVE-2011-0997 (a DHCP

client vulnerability) was disclosed in 2011 yet could be used to

target Avaya desk and IP conference phones in 2019 [4]. Similarly,

CVE-2004-0113 is a medium severity vulnerability under v2 that

was actively exploited in 2018 (over 14 years after disclosure) to

exploit hosts and install crypto-mining malware [21]. Thus, we

would ideally be able to backport v3 scores throughout the NVD,

providing a more modern security rating for all vulnerabilities.

Identification and Improvement. Identifying CVEs with only v2
is straightforward, as NVD entries list the CVSS version associated

with a score. The challenge is then improving the NVD by auto-

matically assigning v3 scores to all CVEs. Both CVSS versions are

calculated from a weighted aggregation of an input set of feature

values, with v3 providing additional features and refined weight-

ing. Thus, our approach is to develop a machine learning model

that inputs v2 features, as well as other CVE entry information,

and outputs meaningful v3 scores (despite lacking explicit features

that normally are input into the v3 calculations). To evaluate the

accuracy, we aimed not to necessarily produce identical severity

scores as v3 would output, but predict the correct severity category

(low, medium, high, critical) as the v3 score, which is commonly

used for vulnerability prioritization [34]. We specifically applied

a machine and deep learning approaches to model the potentially

complex weighting and interactions between different features.

Features. While most parameters required for the severity scores

remain the same as in v2, the parameters in v3 capture an annotated

impact by the vulnerability. For example, “access vector” in v2 was

transformed into “attack vector” in v3 with the specific effect of

vulnerability into Physical (P), Network (N), Adjacent (A), and Local

(L) impacts.Where v2 considered P attacks as L, v3 divides the scores

and introduces a new scope parameter, for vulnerabilities impacts

beyond the exploitable system. The access complexity in v2 was

divided into attack complexity and user interaction in v3, although

the influence of the temporal metric is decreased in v3. To this

end, we used the following v2 parameters as features to extrapolate

v3 scores: access vector and complexity, authentication, integrity,

availability, all privilege, user privilege, and other privilege flags.

Holm and Afridi [23] studied CVSS reliability by surveying 384

experts and 3,000 vulnerabilities, concluding the reliability depends

on the vulnerability type. Thus, we add CWE-ID to our features.

Ground Truth Dataset. For ground truth, we need a mapping

of v2 to v3 scores (or categories). As such, we used the recent

CVEs in the NVD with both CVSS versions (≈37K CVEs). We note

that changes in the v3 score emphasize a better expressiveness for

vulnerabilities’ impact. The effect of these changes on the vulner-

abilities is summarized in Table 4, with no significant change in

population, i.e., no vulnerability moves from Low in v2 to Critical

in v3 and no vulnerability moves from High in v2 to Low in v3.

Model’s Training. Using the aforementioned features, we pre-

dicted the v3 base scores for vulnerabilities that do not have the

v3 metrics. We began by splitting the ground truth data into 80%

training and 20% testing datasets evenly distributed among classes.

Additionally, we observe non-linear patterns among the v2 and v3

relation (see A.1 for details). We then applied a range of machine

and deep learning prediction algorithms to predict the v3 scores:

(1) Linear Regression (LR), (2) Support Vector Regression (SVR),

(3) Convolutional Neural Networks (CNN), and (4) Deep Neural

Networks (DNN). Linear regression finds the linear relationship

between a target and one or more features. In addition, we used

Support Vector Machine (SVM) as a regression method to predict v3

base score; we conducted the prediction using various combinations

of parameters and report the best performing model (kernel type

= rbf (radial basis function), kernel coefficient = 0.1, and penalty

parameter = 2). We leveraged different deep learning techniques

to extract deep feature representations for the vulnerabilities. We

implemented a CNN model consisting of four consecutive convo-

lutional layers. The first two layers consist of 64 filters and the

remaining layers consist of 128 filters with a filter size of 3 × 3. The

convolutional layers are followed by a flattening operation and a

fully connected layer with 512 neurons. Next, a single neuron with

a sigmoid activation function is used to output the prediction of the

model. The sigmoid activation function is defined as f (x ) = 1

1+e−x .

Similarly, we implemented a DNN model consisting of four fully
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Table 5: Prediction results: Average error (AE) and AE Rate (AER).

Algorithm LR SVR CNN DNN
AER (%) 12.16 12.63 9.62 11.61

AE 0.73 0.82 0.54 0.65

connected layers with size of 128, 128, 256, and 256, respectively.

The fully connected layers are followed by a single neuron with a

sigmoid activation function to output the prediction of the model.

We trained the deep learning models over 100 epochs using mean

squared error loss function,
1

N
∑N
i=0(y(xi ) − f (xi ))

2
, and Adam op-

timizer with a learning rate of 0.001. For evaluation, we defined

the average error (AE) as [

∑N
i=0Abs(y(xi ) − f (xi ))]/N , where xi is

the ith sample of the testing dataset, y(∗) is the v3 severity score of

the sample, f (∗) is the predicted value of v3 severity score of the

sample, and N is the size of the testing dataset. Similarly, we defined

the average error rate (AER) as [

∑N
i=0Abs(y(xi ) − f (xi ))/y(xi )]/N .

Model Learning Results. Table 5 shows the average error and

error deviation for different machine learning algorithms. The table

shows that CNN has the lowest error rate and average error. Table 7

shows the overall accuracy of our prediction engine. The overall

accuracy of 86.29% means that our model cannot predict the v3

scores correctly for 13.71% of the vulnerabilities. These 13.71%

vulnerabilities were not correctly characterized by the v2 but are

correctly characterized by v3. Moreover, we translated the v3 base

scores to their respective severity labels according to the ranges in

Table 1. Table 7 lists the accuracy per input class, and we found that

the model performs best for the input class High, i.e., with 93.55%

accuracy, and performs worst for target class Low, i.e., with 82.84%

accuracy. However, we also observed that DNN performs slightly

better than CNN for the input class Low. Furthermore, we also tried

other machine learning algorithms, and found that deep learning-

based models (CNN and DNN) outperformed those alternatives.

Given that the CNN-based model outperforms DNN-based model

by ≈2%, overall, we chose the CNN-based model for prediction.

Improvement Impact. With our model, we can assign v3 scores

and severity levels to all vulnerabilities in the NVD. For over 74K

CVEs with only v2 scores, Table 6 depicts their severity categories

under v2 and our predicted v3. We observed that 48K CVEs change

severity levels under v3, with 29K CVEs changing severity cate-

gories if we consider v2 High and v3 Critical to be equivalent (as

v2 lacks a Critical level). Thus, nearly 40% of CVEs have different

severity once the severity score is updated to v3. Overall, the change

skews towards high severity ratings. We hypothesized this is be-

cause v3 was designed in part to account for the scope of software

affected, which can elevate the severity of a vulnerability when

other sensitive systems are involved beyond the system immedi-

ately vulnerable. As a result, users of the NVD can prioritize better

the vulnerabilities that they analyze and address.

The most impacted vulnerabilities by v3 do not adhere to any

patterns, as confirmed from the prediction results, highlighting the

power of our learning techniques in capturing complex mappings

(see Appendix A.1 for detailed analysis). Note that both old vulner-

abilities mentioned earlier that are still exploited are more properly

categorized as critical severity under our model (whereas one was

medium severity and the other was high severity, with v2 labels).

Johnson et al. [25] assessed the credibility of CVSS scoring using
a Bayesian method and found that, except for a few dimensions,

Table 6: The v2 and v3, where v3 labels are predicted by our model.

H
HHHHv2

v3 L M H C
# % # % # % # %

L 183 3.42 5,160 96.43 8 0.15 0 0.00

M 1 0.00 15,272 39.79 23,107 60.21 0 0.00

H 0 0.00 490 1.64 10,135 33.89 19,281 64.47

Table 7: Prediction accuracy. The overall accuracy of our prediction

engine, and its accuracy by input class.

Accuracy Overall By input (v2) class (%)
(%) L M H

LR 83.14 82.58 79.31 91.14

SVR 66.46 82.97 71.15 51.21

CNN 86.29 82.84 83.31 93.55
DNN 84.41 83.10 80.67 92.48

CVSS is reliable. By analyzing five databases, they argued that NVD

is the most reliable with respect to CVSS quality. In conducting our

v3 extrapolation, we also argued that the predicted labels will help

users prioritize vulnerabilities better. In particular, we found that

the confidentiality, base score, and integrity are important features

that impact the performance of our prediction model, i.e., the degree

of information disclosure, the cumulative score of the vulnerability,

and the degree of impact on the integrity of the victim.

Allodi et al. [1] evaluated information affecting severity assess-

ment. Our work extends their findings by showing which features

determine the CVSS severity v3 score of a vulnerability.

4.4 Vulnerability Types
Inconsistencies. In the NVD, a CVE should be assigned a vulnera-

bility type under the CWE classification [29] to provide users with

an overview of the vulnerability nature and risk. Security analysts

and developers leverage the vulnerability type to understand attack

vectors that may impact their software, types of defenses to deploy,

and track shifts in security concerns over time [9]. However, we

identified that the CWE field for CVEs is not consistently populated

correctly with a CWE-ID value.

We found CVEs without CWE values, as well as those with their

CWE entry as NVD-CWE-Other. By itself, this is missing data—

rather than inconsistent, and out of the scope of our investiga-

tion (although worth noting for those analyzing NVD vulnerability

types). However, we observed that the free-form CVE description

(particularly the description provided by one of the vulnerabil-

ity’s evaluators) often contains the CWE-ID. For example, CVE-

2007-0838 lists NVD-CWE-Other as its CWE-ID, while its evaluator

description includes “CWE-835: Loop with Unreachable Exit Condi-

tion (’Infinite Loop’)”. We also observed CVEs that list additionally

relevant CWE-IDs in the description beyond those listed in the

CWE field. In these cases, the CWE information is accessible in the

CVE entry, but inconsistently provided.

Identification and Improvement. The CWE-ID follows a stan-

dard and distinct format that allows us to easily identify IDs in

description strings through a regular expression (i.e., CWE-[0-9]*).
For all CVEs, we applied this regular expression to the description

strings to extract any CWE-IDs and add them to the set of CWE-IDs

listed in the CWE field, if any. From this set of CWE-IDs, we filtered

any CWE-ID values that indicate missing or non-specific CWEs

(e.g., NVD-CWE-Other). In theory, descriptions could list CWE-IDs
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that are not relevant to the CVE (e.g., if discussing another vulnera-

bility). However, through manually inspecting a random sample,

we did not observe any erroneous cases where the CWE-ID in the

description is not correct. Evidently, the CVE description outlines

the traces of a vulnerability, which can be used to determine the

type of vulnerability. We, therefore, investigated the capability of

the CVE descriptions to extrapolate their corresponding types. We

did so by utilizing different Natural Language Processing, machine

learning, and deep learning techniques.

The crowd-sourced nature of the vulnerabilities devoid the de-

scriptions of a standard descriptive pattern. Therefore, we began by

preprocessing the data. Particularly, we unified the cases (convert

text to lower case), removed the stop words and special charac-

ters (commonly used words that do not affect the meaning of the

sentence, e.g., This capability can be accessed is changed to capa-
bility access), replaced contractions (e.g., identifier’s is changed to

identifier), and tense (past tense is changed to present tense, e.g.,

used is changed to use). Then, Universal Sentence Encoder [22], a
pre-trained transformer that is used to transform the text into high

dimensional vector representation depending upon the semantic

similarities and clustering, is utilized to represent the descriptions

as vectors of size 1 × 512. The encoded vectors are then used to

train and evaluate several machine learning and deep learning tech-

niques, namely, k-Nearest Neighbor (k-NN), CNN, and DNN. We

observed that k-NN (k = 1) provides the best results, predicting 151

different types with 65.60% accuracy. While the results seem high

considering the number of target classes, they cannot be reliably

used given the criticality of the application.

Improvement Impact. By applying our CWE-ID extraction from

CVE descriptions and matching CWE-ID name from the CWE list

from their website [10], we correct the CWE field for 2,456 vulner-

abilities that do not have their types labeled. These vulnerabilities

also include those that already have types assigned. Statistically,

the existing database includes 26,312 vulnerabilities with NVD-

CWE-Other label, 7,566 with NVD-CWE-noinfo label, and 1,293

with no assigned label, aggregating to ≈31% of all the vulnerabili-

ties. Additionally, we observed that most of the affected CVEs after

our inconsistency fixes are those of type NVD-CWE-Others. Our

analysis finds appropriate labels for 1,732 of the NVD-CWE-Other

vulnerabilities and 14 of both the NVD-CWE-noinfo and unassigned

vulnerabilities, making up for ≈5% of those vulnerabilities.

5 CASE STUDIES
With an improved and more consistent NVD, we conduct several

vulnerability analyses as case studies on the impact of our NVD

corrections. For each analysis, we describe what questions are being

asked, how the answers might be valuable in practice, the results

from the analysis using both the original and rectified NVD data,

and the impact of our improvements on the analysis outcome.

We recognize that there are a variety of potential analysis di-

rections. This subset is by no means comprehensive, but rather

involves informative questions one might reasonably ask when us-

ing the CVE fields we investigated from the NVD. While we believe

the results of our analysis are useful for the security community, the

ultimate goal of these case studies is to demonstrate how analysis

results can be affected by the NVD data issues that we correct.

Table 8: Top 10 dates with the most vulnerabilities by CVE publica-

tion and our estimated disclosure dates (EDD). Day of week (DoW)

and percent of that year’s vulnerabilities reported on date are used.

CVE Date DoW Vulns EDD DoW Vulns
# % # %

12/31/04 F 1,098 44.8 09/09/14 T 384 5.1

05/02/05 M 816 16.6 07/09/18 M 359 2.4

12/31/02 T 441 20.5 04/02/18 M 344 2.3

12/31/03 W 407 26.7 07/05/17 W 313 2.4

07/09/18 M 423 2.8 01/19/16 T 295 4.6

12/31/05 Sa 384 7.8 07/18/17 T 275 2.2

02/15/18 Th 340 2.3 07/14/15 T 268 3.7

09/09/14 T 326 4.1 05/02/05 M 256 5.4

08/08/17 T 316 2.2 01/17/17 T 251 2.0

04/18/18 W 281 1.9 07/17/18 T 245 1.7
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Figure 2: The number of CVEs disclosed per day of the week (using

our estimated disclosure dates) and published to the NVD.

5.1 Vulnerability Disclosures
Question. When are vulnerabilities most frequently disclosed?

Analysis Value: Understanding the times associated with high

levels of vulnerability disclosures could shed light on underlying

decisions in the disclosure process, as well as the impact of those

decisions. For example, hypothetically, vendors could opt to dis-

close vulnerabilities at the end of the week or near holidays. As

many people (including those working for media organizations)

are off of work during subsequent periods, the vulnerabilities may

draw less negative attention. As a consequence though, vulnera-

bility remediation may be substantially delayed. It is important to

understand if this indeed happens frequently.

Analysis Results: Table 8 shows the top 10 dates in terms of

the number of vulnerability disclosures (based on our estimated

disclosure date), as well as the day of the week for each date. When

considering US holidays, we do not notice any particular pattern of

pre-holiday disclosures. Rather, several of these top dates are within

a couple of weeks after a US holiday, such as Independence Day

(7/9/18, 7/5/17, 7/18/17, 7/14/15, and 7/17/18), Labor Day (9/9/14),

and New Year’s Day (1/17/17 and 1/19/16). Additionally, we note

that these dates are primarily on Mondays and Tuesdays. To inves-

tigate this observation more broadly, Figure 2 shows the number

of vulnerabilities disclosed on each day of the week. We find that

beyond the top 10 dates, vulnerabilities are most frequently dis-

closed in the first half of a week (with fewer disclosures on Friday

or over the weekend). In this analysis, we consider US holidays as

most vendors in the NVD are US-based companies. However, we

recognize that other nations celebrate many other holidays, and

leave a more detailed global analysis for future work. We note that
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most vulnerabilities are disclosed during reasonable periods, where

security professionals can obtain and act on information promptly.

Impact of NVD Data Issues: For top CVE publication dates

from Table 8, we observe New Year’s Eve as four of the top 10

most active days, whereas it does not appear anywhere among

the top 10 dates by our estimated disclosure dates. Most notably,

on 12/31/2004, over 1K CVEs were added to the NVD, accounting

for over 44% of CVEs for that year. Yet according to our estimated

disclosure date, only 175 were publicly disclosed that day. This

discrepancy suggests an NVD artifact where a large number of

CVEs may be added to the database before a new year arrives, or

backdated to the last day of a prior year, rather than a more fun-

damental aspect of vulnerability reporting. Using the raw NVD

data for vulnerability frequency analysis could produce inaccurate

conclusions such as high vulnerability reporting during holidays.

Similarly, Figure 2 indicates a more equal distribution of CVE publi-

cation dates throughout the week, which would incorrectly suggest

many CVEs are indeed disclosed near weekends.

5.2 Vulnerability Severity
Question. What is the severity distribution of vulnerabilities?

Analysis Value: As thousands of vulnerabilities are identified
annually, it is vital that security practitioners can prioritize the

most severe ones first. Furthermore, understanding what fraction of

vulnerabilities receives each severity label allows them to identify

how many vulnerabilities they may need to contend with. For

the security community, it is also valuable to understand whether

disclosed vulnerabilities skew towards low or high severity ones,

shedding light on the nature of vulnerabilities being uncovered.

Analysis Results: Recall that in Section 4.3, we augmented the

NVD by automatically applying accurate v3 severity ratings to all

CVEs, rather than just relying on the most recent CVEs reported

since v3 became standard. In Table 9, we present the distribution of

CVE severity (across all CVEs in the NVD) for both v2 and our pre-

dicted v3. In total, 8.25% of all CVEs are low severity under v2, with

the majority as medium severity. In contrast, under our predicted

v3, less than 2% are low severity, and the severity distribution is

skewed towards the higher end, with the majority of vulnerabilities

as high or critical severity. From both the v2 and v3 distributions,

the small proportion of low severity vulnerabilities suggests some

bias against discovering, reporting, or disclosing less urgent secu-

rity concerns. However, v3’s skew towards high severity ratings

could spur different vulnerability remediation behavior, as many

vulnerabilities rated as medium under v2 but higher under v3 might

have been ignored by security practitioners earlier.

Figure 3 further breaks down the yearly distribution of CVEs

across different severity categories, for v2, v3, and our predicted

v3. Using our predicted v3 severity scores, we observe a decreasing

trend in the proportion of critical severity CVEs over the years. For

example, from 2011 onwards, less than 20% of each year’s CVEs

were critical, compared to the early 2000s where nearly 30-40%

were likewise. This change indicates that the severity distribution

of vulnerabilities is shifting over time. While we are uncertain of

the cause of this shift, one hypothesis is that the increasing use

of program analysis and fuzzing tools may be producing larger

vulnerability populations than before, but the number of critical

Table 9: CVSS severity score distributions over all CVEs.

Label v2 (%) Predicted v3 (%)
Low 8.25 1.62

Medium 54.83 38.30

High 36.92 44.48

Critical N.A. 15.60

ones remains similar, thus resulting in a smaller proportion. Future

work could investigate this phenomenon in more depth.

Table 10: Top 10 vulnerability types by the number of critical or

high severity CVEs using v2, v3, and our predicted v3 (pv3) scores.

v2 v3 pv3
High Critical High Critical High

Type # Type # Type # Type # Type #

BO
1

6935 BO
1

1221 BO
1

3025 SQLI
2

3420 BO
1

4078

SQLI
2

4115 SQLI
2

673 PM
3

1497 BO
1

1783 PM
3

2096

PM
3

2581 IV
4

323 IV
4

1291 CI
5

766 CR
18

1802

IV
4

2070 UaF
7

271 AC
11

955 PM
3

601 IV
4

1749

CI
5

1463 AC
11

247 IE
14

683 IV
4

447 RM
6

1426

RM
6

1416 PM
3

232 IO
15

680 PT
9

364 IE
14

1180

UaF
7

712 IA
10

190 CSRF
16

671 AC
11

362 PT
9

1173

NE
8

702 CD
12

125 UaF
7

443 RM
6

341 CI
5

1168

PT
9

672 CMD
13

114 BoR
17

414 NE
8

295 CSRF
16

984

IA
10

666 CI
5

108 PT
9

360 UaF
7

224 NE
8

777

1
Buffer Overflow,

2
SQL Injection,

3
Permission Management,

4
Input Validation,

5
Code Injection,

6
Resource Management,

7
Use-after-Free,

8
Numerical Error,

9
Path Traversal,

10
Improper Authorization,

11
Access Control,

12
Credentials,

13
Command,

14
Information Exposure,

15
Integer Overflow,

16
Cross-Site Request Forgery,

17
Buffer Over Read.

Impact of NVD Data Issues: In NVD, all CVEs since 2017 are

assigned v3 scores. However, no CVE before 1999 has an assigned

v3 score, and before 2013, no more than 35 CVEs each year have a v3

score retroactively labeled (as v3 was officially released at the end

of 2015 [32]). This minority of CVEs with assigned v3 scores is too

limited for many analyses. For example, as seen in Figure 3, CVEs

with assigned v3 scores in certain years are unrepresentative of the

likely real severity distribution. In 2000-2002, 2004-2006, and 2009,

only one severity level appears for all CVEs with assigned v3 scores.

While security analysts could rely on v2 instead, v3 was explicitly

designed to overcome limitations of v2. Thus, our predicted v3

affords comprehensive severity analysis across the entire NVD

dataset. This historical perspective is particularly important as

vulnerabilities remain viable for years after disclosure [21].

5.3 Vulnerability Types
Question.Which vulnerability type has most critical vulnerabilities?

Analysis Value: Understanding which vulnerabilities are as-

sociated with the most critical CVEs is useful for both security

practitioners and researchers, allowing them to prioritize which

tools or defense systems to invest in or investigate.

Analysis Results: Our analysis involves the CWE and CVSS

severity fields. In table 10 we list the top 10 CWE categories by the

number of high/critical severity CWEs, using v2, v3, and pv3 sever-

ity scores. By both correcting CWE labels and using our predicted

v3 scores, we identify that SQL injection has the most critical CVEs,

with almost twice as many as the next vulnerability type (buffer

overflows). Meanwhile, for high-but-not-critical CVEs, buffer over-

flows are most common, and SQL injection does not appear within

the top 10. This suggests that when SQL injection vulnerabilities

are identified, they are typically of the utmost severity.
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Figure 3: CVEs Distribution across severity categories over the years with different severity scoring methods; v2, v3, and pv3 (our predicted

v3 scores applied to all CVEs in the NVD; §4.3). Recall that v3 was only released in 2015, and all CVEs after 2017 were labeled with v3 scores.

However, a subset of CVEs before 2017 was retroactively labeled with v3 scores.

Impact of NVDData Issues: Buffer overflow and SQL injection

are consistently the most frequent types under v2, v3, and our PV3.

However, we note that overall, the top 10 CWE types for our PV3

more closely resembles that of v2, compared to v3. For example,

access control, command injection, and hard-coded credentials are

in the top 10 v3 critical CVEs, but not in v2 or our PV3. Thus,

our corrected NVD results appear more consistent than using the

original CWE and v3 NVD labels.

5.4 Vendor and Product Names
Question. Which vendors have most CVEs or vulnerable products?

Analysis Value: Analysts may inform their operation using the

vulnerability impact information across vendors, e.g., which ven-

dors to track for new vulnerabilities, or which products to analyze.

Analysis Results: Table 11 shows the top 10 vendors per the

associated CVEs and affected products, as a count and a fraction of

all CVEs and affected products associated with each vendor. The

statistics are presented for before and after our NVD corrections,

but we will use the post-correction values for our analysis.

We observe that the top vendors represent a significant fraction

of all CVEs and products. The top 10 vendors account for about

36% of all CVEs and 22% of all products. Thus, the impact of CVE

vulnerabilities is concentrated on a small set of vendors, with a long-

tail of the remaining less-impact ones. It is also interesting to note

that the top vendors by CVE count are quite different than those by

the product count, with only 4 common vendors. This difference

suggests that the concentration of CVEs among top vendors is not

simply due to these vendors supporting a wide number of products.

Impact of NVDData Issues: The impact of product and vendor

name inconsistencies is less dramatic for this analysis, as ultimately

the order of top vendors remains the same before and after correc-

tions. However, the changes in vulnerability counts can be notable.

For example, Oracle had over 100 more associated CVEs after our

naming fixes, and Debian had 95 more CVEs.

Table 11: Top 10 vendors per the number of associated CVEs and

affected products, after and before name corrections (# is a count

and % as a percent of CVEs or products associated with that vendor).

Vendor
# of CVEs

After Before
# % # %

Microsoft 6,602 6.16 6,597 6.15

Oracle 5,650 5.27 5,526 5.15

Apple 4,574 4.26 4,574 4.26

IBM 4,160 3.88 4,160 3.88

Google 3,934 3.67 3,933 3.67

Cisco 3,674 3.43 3,674 3.43

Adobe 2,869 2.68 2,869 2.68

Linux 2,275 2.12 2,254 2.10

Debian 2,275 2.12 2,180 2.03

Redhat 2,161 2.01 2,144 2.00

Vendor
# of Products

After Before
# % # %

HP 3,067 6.73 3,083 6.60

Cisco 1,821 4.00 1,839 3.94

IBM 926 2.03 926 1.98

Axis 808 1.77 808 1.73

Intel 721 1.58 723 1.55

Huawei 701 1.54 707 1.51

Lenovo 579 1.27 579 1.24

Oracle 553 1.21 546 1.17

Siemens 510 1.12 534 1.14

Microsoft 489 1.07 486 1.04

Table 12: CVEs with mislabeled vendors/products by severity levels

using v2 labels and our predicted v3 (pv3) labels.

Mislabeled Vendor Mislabeled Product
v2 pv3 v2 pv3

Low 275 10 27 4

Medium 2,033 1,101 196 105

High 1,206 1,484 159 205

Critical NA 919 NA 68

Even when the number of CVEs with a mislabeled vendor or

product is small, the security risk can be high. In Table 12, we con-

sider all CVEs with the corrected vendor or product label, and break

down their severity levels using v2 and our predicted v3. While

only several thousand CVEs were mislabeled and subsequently

corrected, over a third are high severity under v2 and a quarter

are critical under our predicted v3. In total, nearly 1000 mislabeled

CVEs are critically severe. A security analyst tracking a particular

product or vendor could easily miss relevant severe vulnerabilities,

putting their systems at risk. (After all, it only takes one missed vul-

nerability to permit a security situation, such as with Equifax [42].)
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6 DISCUSSION
The Need for a Reliable Vulnerability Database. Given the wide

range of applications of vulnerability databases, in both the indus-

try and the research community, the reliability of the information

present in them is of the utmost importance. However, some of

the key takeaways of this work show that the information in NVD

is inconsistent, as demonstrated by the associated quantification,

thereby raising questions on NVD’s reliability. The inconsistencies

are shown to vary, including the delay between a vulnerability’s

disclosure and its publish date in the NVD, to its vendor and product

name, to its severity metrics, to the vulnerability type. With this

work, by identifying the inconsistencies, we highlight the pitfalls of

using NVD. Given the non-uniform state of the vulnerable systems,

inconsistencies in them require manual effort. We conducted a man-

ual investigation and then utilized the efforts to build an automated

system to identify inconsistencies. For others, we built automated

tools that can be used to recover consistency.

While the estimated disclosure date in this study fundamentally

questions the completeness of the NVD, other fixes address NVD’s

inconsistency. It is argued that the reports listed in the reference

links in NVD might not be public or known at the time of their

insertion into the NVD. In addition, the vulnerability information

can be modified multiple times, as it is the practice with incremental

vulnerability reporting. The proposed approach can therefore be

utilized to change the estimated disclosure date of the vulnerability

during a modification, given such practices and operational caveats.

Root Cause of Inconsistencies. Understanding the root causes

of the inconsistencies in NVD can help eliminating them. Our anal-

yses provide various plausible explanations for the root causes of

inconsistencies. For vendor/product inconsistencies, we noticed

that they were clearly due to the incorrect naming conventions,

using developers as vendors, due to vendor acquisitions, and ty-

pos by analysts. Among those root causes, the acquisitions are a

dynamic root cause, and therefore are difficult to mitigate, while

other causes can be addressed by standardizing a nomenclature.

The reason behind the inconsistencies in the v3 severity is the

adoption of a new severity scoring system, which was not in ex-

istence at the time of scoring the severity of older vulnerabilities.

Given the absence of the parameters that differentiate between v3

and v2, v3 was not generalized for those vulnerabilities, although

such generalization was done by NVD when adopting v2 through-

out with a considerable accuracy. Similarly, by leveraging the deep

learning-based algorithms, we determined the v3 labels from the v2

labels. We investigated the severity of the vulnerabilities with a lag

between the estimated disclosure date and the NVD date. Figure 4

shows the average lag, in days, by the different severity levels in

the v3, and we observe that the average among the various severity

levels ranges between 47.6 days to 66.8 days, thereby demonstrating

that the delay in the insertion of vulnerability into the NVD has no

relationship with the severity of the vulnerability.

Applications. This work highlights inconsistencies in the NVD

data fields, and proposes methods to fix them. The diversified incon-

sistencies warrant multiple tools, dealing with one at a time. As a

result, this study can be utilized by the analysts at NVD towards the

following goals: (1) The estimated disclosure date identification can

enrich the vulnerability report for the end-user’s perusal. The tool
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Figure 4: Average lag time by v3 severity level.

enables the analysts to scrape through the different vulnerability

reports and disclosures from the reference links of the recently

added vulnerabilities and notify them of the disclosure date. (2) The

vendor and product inconsistency finding tool can be leveraged

during the vulnerability reporting. The individual reporters can en-

ter the vendor and product name according to their perception, and

the tool will suggest the suitable vendor and product name from

the generated consistent database. The reporter will then choose

the consistent vendor and product name if available. Additionally,

the NVD analysts can use the tool to re-assess the vendor and prod-

uct names towards the generation of CPE URI (both 2.2 and 2.3).

Moreover, for new vendor and/or product names, our observed

inconsistencies and the root causes can help control the inconsis-

tencies in the future (see Appendix A.3 for details). (3) Our tool

to determine the CVSS v3 metrics can be leveraged for a uniform

severity metric across vulnerabilities in the database. Moreover, it

can be used by the users of NVD to prioritize their patching.

Leveraging the improved NVD, we formulate analysis questions

as case studies to understand the impact of our corrective measures.

Although there were numerous analyses that we came up with,

we present the questions that a user might have when using the

corrected fields. We observe that while public disclosures happen

in the early days of the week, the inclusion of them in the NVD

happens on the latter days. Additionally, the high reportage of CVEs

on the last day of a year can be due to their retroactive inclusion

when only the year was known. The temporal analysis of software

weakness can help understand the trends to understand the up and

the coming vulnerabilities. These emerging software weaknesses

may be a result of a recently found attack vector. These can be

utilized during the software product development and can help

prioritize patching processes, and to emphasize upon, during the

various phases of the software development life cycle. A consis-

tent database would give a better picture of the trends, including

their exploitation window (depending upon the disclosure date of

a vulnerability and the date it is discovered on a host computer).

Limitations. To estimate the disclosure date, we consider the do-

main names representing 85% of the URLs. The reduction of cover-

age by 15% may lead to an imprecise estimation of the disclosure

date. Moreover, vendor and product inconsistency numbers present

a lower bound on inconsistencies that NVD may have. We would

not group the vendors if another vendor acquired a probable incon-

sistent vendor. An approach to improve the bounds would require

determining the date of acquisition of the probable inconsistent

vendor and then correlating it with their estimated disclosure date.
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7 CONCLUSION
Given the importance of such a database as NVD for security op-

erations, identifying, measuring, and fixing the inconsistencies is

essential, which we pursue through various tools, including multi-

sourcedweb scraping, manual vetting, and deep learning algorithms

for the publication date, vendor names, product names, severity

categories, and vulnerability types inconsistency remedies. The

inconsistency fixed database revealed exciting insights about the

NVD and vulnerability reporting in general, and how basing the

analysis on the current NVD leads to different conclusions than

on the fixed one. The frequent days in estimated public disclosure

and published date shows the prevalence of early days in the week

(Monday and Tuesday) among disclosure dates and the latter days

among publication date in the NVD. The fixed vendor names show

decreasing inconsistencies over time, while product names need

more attention for better resolution. The v3 fix reveals a better

distribution of the v3 metric and the vulnerability type fix identifies

additional types, other than the ones listed in the NVD.
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A APPENDIX
A.1 Feature Pattern
Vulnerabilities switch severity labels across versions due to the in-

troduction of new parameters as well as the use of different weights

to existing parameters. Given that v2 and v3 capture behavioral

aspects of vulnerabilities, we investigated if the added parameters

in v3 depend on the v2 metrics. To enrich the investigation for this

extrapolation, we also used the vulnerability type information of

every vulnerability. Then, we explored the patterns within a v2

label that lead to a change in severity. To visualize the patterns, we

began by applying the Principal Component Analysis (PCA) as a

feature reduction technique. PCA is a linear dimensionality reduc-

tion technique using the Singular Value Decomposition (SVD) of

the data to project it to a lower-dimensional space [43], reducing the

13-dimensional feature vector to a three-dimension space. Figure 5

shows the features in a 3D space. We utilize the 3-D representation

because the 2-D representation had overlapping severity labels,

thereby making it difficult to distinguish the different patterns. For

example, the figure shows the different v3 labels a High (v2) severity

vulnerability has moved to. While the vulnerabilities in v2 Low are

scattered in the space, High and Medium in v2 have followed spe-

cific and clear patterns. This means that vulnerabilities with Low

v2 severity scores were the most affected by the v3 transformation.

These patterns indicate that the added parameters in the v3 severity

calculation can be extrapolated from the existing v2 parameters.

Moreover, the scattered distribution of vulnerabilities with Low

severity in v2 highlights the fundamental changes applied in v3.

Table 13: Ground truth - prediction results

H
HHHHv2

v3 L M H C

# % # % # % # %

L 3 0.08 3823 98.76 45 1.16 0 0.00

M 0 0.00 9724 42.77 13010 57.23 0 0.00

H 0 0.00 320 2.87 5438 48.70 5409 48.43

A.2 Prediction Performance
In table 4, we observed that the movement of v2 vulnerabilities

with High severity level is ≈equally split between High and Critical

severity levels when transformed to v3. However, the prediction

results of the vulnerabilities with no v3 severity in table 6 shows

that the split of v2 vulnerabilities with High severity that transform

to critical severity level is ≈twice the number of vulnerabilities that

transform to High severity in v3. To ensure the performance of

our prediction, we check the behavior of the model for the ground

truth dataset. We begin by using our model to predict for the vul-

nerabilities that have v3 labeled. Table 13 shows the results of this

experiment. Recall from Table 4 that only 1% of v2-medium and

9.5% v2-low vulnerabilities transformed to low severity level in v3.

We, therefore, see less number of vulnerabilities in the v3 low sever-

ity level. Considering that this experiment includes the training

dataset, which makes 80% of our overall dataset, we now look into

only the testing dataset, removing possible biases. Table 14 shows

the actual representation of the ground truth-testing dataset, while

table 15 shows the movements of the same vulnerabilities by our

prediction model. Notice that low severity vulnerabilities in v2 are

Table 14: Test dataset - ground truth data

H
HHHHv2

v3 L M H C

# % # % # % # %

L 104 13.42 644 83.10 27 3.48 0 0.00

M 84 1.85 2,368 52.08 1,974 43.41 121 2.66

H 0 0.00 85 3.80 950 42.52 1,199 53.67

only 10% of the total testing dataset, out of which, only 1.38% of the

samples remain in low in v3, leading to most of the low vulnerabili-

ties in v2 moving to medium severity level in v3. Observe that in

the tables, 13, and 15, we see that the v2-high vulnerabilities have

proportionally transformed to v3-high and v3-critical. Considering

these the only explanation for the presence of ≈twice the number of

transformed v3-critical vulnerabilities than v3-high (from v2-high)

is the nature of their feature space than possible aberration in our

model.

Table 15: Test dataset - prediction results

H
HHHHv2

v3 L M H C

# % # % # % # %

L 6 0.77 765 98.71 4 0.52 0 0.00

M 0 0.00 2128 46.80 2419 53.20 0 0.00

H 0 0.00 58 2.6 933 47.76 1243 55.64

A.3 Impact: Vendor and Product Consistency
Recall that in section 4.2, we identify, quantify, and remedy the

inconsistencies in vendor and product names in NVD. The vulner-

abilities corresponding to the inconsistent vendor names are as-

signed to the consistent vendors (identified by vulnerability count).

What type of vulnerabilities are impacted by such inconsistencies?

Are they unimportant so that they can be considered as those that

may not have much impact on host systems and can thus be ig-

nored? To answer these questions, we consider the vulnerabilities

that have inconsistent vendor or product names. Among those that

are corresponding to well-known vendors, we select 10 CVEs ran-

domly, shown in Table 16. To evaluate their impact, we focus on

their severity and vulnerability type. Notice that all except one

(CVE-2006-6601) are of High severity (v2). This CVE-2006-6601 vul-

nerability is in windows media player though of Medium severity,

which can be exploited by a crafted header of .MID (MIDI) file to

and cause a DoS attack. Among the other nine vulnerabilities, four

can be exploited remotely. Additionally, CVE-2018-16983, a vulner-

ability in tor browser, can be exploited by an attacker to bypass by

using text/html;/json Content-Type, which can pose to be a privacy

risk.

These analyses show that the vulnerabilities corresponding to the

inconsistent vendor names are impacting, severe, and thus cannot

be ignored. Additionally, it exhibits the importance of having a

consistent vendor/product name.

A.4 Observations: Inconsistent Vendor and
Product

From our analysis, we observed several interesting naming pat-

terns that reflect the complex software ecosystem and highlight

difficulties that can arise in managing vendor and product names.
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Figure 5: Vulnerabilities from Low, High, and Medium severity in CVSS v2 that transformed into different severity levels in v3. A non-linear

pattern can be observed among the vulnerabilities that were assigned respective v3 severity.

Table 16: Case study: A sample of vulnerabilities corresponding

to known vendors. These vendors were mislabelled, meaning that

they have another instance of its own. For example, the dominant

instance of microsft is microsoft. We uniform the dominant instance

as the consistent vendor name. Most of these vulnerabilities give

remote access to the adversary.

CVEs Vendor Severity (v2) Description

CVE-2017-7689 schneider_electric High Command injection

CVE-2006-6601 windows Medium Malformed header (DoS)

CVE-2008-4019 microsft High Remote code execution

CVE-2008-3471 microsft High Remote code execution

CVE-2014-0754 chneider_electric High Directory traversal

CVE-2009-1185 kernel High Privilege escalation

CVE-2018-16983 torproject High Bypass script blocking

CVE-2008-0166 openssl_project High Crypto keys-based attack

CVE-2017-5005 quick_heal High Remote code execution

CVE-2017-8774 quick_heal High Memory corruption

For example: 1 In the NVD, various entities may be deemed the

vendor. Interestingly, a primary software developer is sometimes

listed as a vendor, and different maintainers over time may list the

same product. For example, Igor Sysoev was the original author of

nginx, which is now maintained by nginx.inc, and both of them are

listed as vendors with nginx as a product. Additionally, developers

can be referenced with variations of their real name, leading to

inconsistency (e.g., provos and neilsprovos). Acquired companies

can also be listed as products under the acquiring vendor (e.g., ICQ
and AOL). Note that our vendor heuristics allow us to select these

vendor pairs for manual analysis. 2 A vendor could be a parent

company while the product is the subsidiary. Here, the subsidiary

can be both a vendor (listing its own software) as well as a product,

which is also detected by our vendor heuristics. 3 A vendor could

change name (e.g., cat became quickheal). We note that our vendor

heuristics may catch this if the old and new vendor names share

characters or product names, but may miss cases otherwise.

Thus, the NVD would benefit from defining consistent rules for

vendor and product naming, such as on the use of white spaces,

special characters, and abbreviations. One path forward would be

to require vulnerability reporters to check their name submissions

against a tool or online interface that searches existing names that

likely match, perhaps using an approach such as our identification

method.
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