
TG-GAN: Continuous-time Temporal Graph Generation with
Deep Generative Models

Liming Zhang
lzhang22@gmu.edu

George Mason University
Fairfax, Virginia, USA

Liang Zhao
lzhao9@gmu.edu

George Mason University
Fairfax, Virginia, USA

Shan Qin
qinshan2016@bupt.edu.cn

Beijing University of Posts and Telecommunications
Haidian District, Beijing, China

Dieter Pfoser
dpfoser@gmu.edu

George Mason University
Fairfax, Virginia, USA

Abstract
The recent deep generative models for static graphs that are now
being actively developed have achieved significant success in areas
such as molecule design. However, many real-world problems in-
volve temporal graphs whose topology and attribute values evolve
dynamically over time, including important applications such as
protein folding, human mobility networks, and social network
growth. As yet, deep generative models for temporal graphs are
not yet well understood and existing techniques for static graphs
are not adequate for temporal graphs since they cannot 1) encode
and decode continuously-varying graph topology chronologically,
2) enforce validity via temporal constraints, or 3) ensure efficiency
for information-lossless temporal resolution. To address these chal-
lenges, we propose a new model, called “Temporal Graph Genera-
tive Adversarial Network” (TG-GAN) for continuous-time temporal
graph generation, by modeling the deep generative process for trun-
cated temporal random walks and their compositions. Specifically,
we first propose a novel temporal graph generator that jointlymodel
truncated edge sequences, time budgets, and node attributes, with
novel activation functions that enforce temporal validity constraints
under recurrent architecture. In addition, a new temporal graph
discriminator is proposed, which combines time and node encoding
operations over a recurrent architecture to distinguish the gener-
ated sequences from the real ones sampled by a newly-developed
truncated temporal random walk sampler. Extensive experiments
on both synthetic and real-world datasets demonstrate TG-GAN
significantly outperforms the comparison methods in efficiency
and effectiveness.

1 Introduction
The domain of generative models for graphs has a long history and
over decades many prescribed models such as random graphs [1]
and stochastic blockmodels [2] have been proposed as the network
generation principles. These principles are typically predefined
by human heuristics and prior knowledge, which effectively ab-
stract the high-dimension problems down to manageable scale.
Such methods usually fit well towards the properties that have
been covered by the predefined principles, but not on those have
not been covered. However, in many domains, the network proper-
ties and generation principles are largely unknown yet. In recent
years, deep generative models for graphs such as GraphRNN [3]
and GraphVAE [4] have started to achieve significant success over

Figure 1: Real-world temporal graphs: a) a transport graph captur-
ing urbanmovementwith destinations of home, office, stores,metro,
and bus. Arrows indicate trips between locations at given times. b)
a user authentication graph to model cyber behavior. A user uses a
laptop to remotely connect different desktops, gate servers, produc-
tion servers, and data servers chronologically.

the traditional prescribed ones in more and more applications on
static graphs such as molecule design [4], thanks to their high ex-
pressiveness in learning underlying complex principles directly
from the data in end-to-end fashion without handcrafted rules.

However, many real-world graphs are actually temporal graphs
that dynamically evolve over time. Figure 1 illustrates a toy example
of a mobility network of a person, where each node is a spatial
location. A temporal edge between two nodes denote a travel move-
ment at some time. All the temporal edges and nodes in a time
period (e.g., a day) forms a continuous-time temporal graph that
reflects whether she is a commuter, traveler, or other behavior type.
Similarly there are many other examples such as that in Figure 1(b)
which shows an user authentication graph that reflects behavior
of an administrator in an enterprise computer network. Here each
node is a computer and each temporal edge is the “login” behavior
from one computer to another. Modeling temporal graphs have sig-
nificant meaning in network behavior synthesis and intervention,
brain network simulation, and protein folding. Given the underly-
ing complex unknown network process, this paper is interested in
highly expressive deep models that can distill and model the un-
derlying generative process for generating temporal graphs. This
topic goes beyond related domains such as representation learning
for dynamic graphs [5] and temporal link prediction [6, 7].

1

ar
X

iv
:2

00
5.

08
32

3v
2

 [
cs

.L
G

]
 9

 J
un

 2
02

0

Conference’17, July 2017, Washington, DC, USA Zhang et al.

However, deep generative models for temporal graphs have not
been well explored until now, due to several critical technical chal-
lenges that prevent current techniques for static graphs to be easily
applied: 1) Difficulty in ensuring temporal validity of the generated
graphs. The connectivity patterns of temporal graphs can be highly
different from those in static ones, due to the involvement of tempo-
ral dimension. For example, in temporal graph, if we want to pass
a message from a node a to node c via node b, we require not only
the existence of edges from a to b and b to c , but also that the edge
from b to c cannot disappear before the birth of the edge from a
to b. There are many such types of temporal validity requirements
in temporal graphs, which cannot been considered or ensured by
current static graph generation techniques. 2) Inefficiency in data
representation in both topological and temporal dimensions. In tem-
poral graphs, temporal edges usually exists with limited time spans.
This results in a highly sparse representation in a joint topological
and temporal high dimensional space, especially for graph repre-
sentation such as graph snapshots of adjacency matrices utilized by
most of the techniques for static and dynamic graphs. Hence it is
extremely memory- and computational-expensive to directly apply
current static graph generation methods to sequentially generate se-
quence of graph snapshots with highly enough temporal resolution
to capture dynamics in continuous time. 3) Difficulty in encoding
and decoding operations jointly for graph topological and temporal
information The node and edge patterns on temporal graphs are
simultaneously influenced by graph topology and temporal depen-
dency, which also mutually impact each other. The same path in
temporal graph may have different meaning if happening with dif-
ferent time, for example in Figure 1, traveling to downtown area
in the morning and midnight corresponds to different underlying
behaviors. It is difficult to learn underlying distribution that can
concisely represent the interaction between graph topology and
temporal dependency.

To address these challenges, we propose a new model, called
“Temporal Graph Generative Adversarial Network” (TG-GAN) for
continuous-time temporal graph generation. It treats temporal
graph generation as generation and assemble of truncated temporal
random walks and hence the proposed method is very efficient in
handling sparse and non-small graphs with continuous-time evo-
lution. We propose a novel temporal graph generator that jointly
model truncated edge sequences via novel recurrent-structured
model that enforces temporal validity constraints. We also propose
new encoder and decoder for modeling continuous time informa-
tion and discrete node and edge information. The major contribu-
tions of this paper can be summarized as follows:
• Propose a novel deep generative framework for temporal
graph generation. The proposed framework can efficiently and
effectively learn the underlying distribution of continuous-time
temporal graphs. It generates graphs with time-varying node
features while ensure temporal validity.
• Develop a new truncated temporal random walk genera-
tor. Encoders and decoders for both continuous-valued time
information and discrete-value node information have been pro-
posed. New time budgeting strategies and activation functions
have been proposed to ensure temporal validity.
• Propose a new truncated temporal graph discriminator. A
new truncated temporal random walk sampler with temporal

jumps is proposed to obtain real samples from observed temporal
graphs. A recurrent-architecture based discriminator is developed
to jointly examine the sequence patterns and time validity.
• Conduct extensive experiments on both synthetic and real-
world data The results demonstrate that the proposed TG-GAN
is capable of generating temporal graphs close to real graphs. It
significantly outperforms other models in several metrics by two
order of magnitude with outstanding scalability.

2 Related Work
Temporal graph generation Graph generative models have im-
portant applications in many domains. Conventional methods have
been proposed based on a prescribed structural assumptions like
probabilistic models [8], configuration models [9], and stochastic
block models [10]. These prescribed generative approaches capture
some predefined properties of a graph, e.g., degree distribution, com-
munity structure, clustering patterns, etc. Relevant extensions for
temporal graphs are based on these prescribed models and also in-
clude models with new designs. Stochastic block transition models
[11, 12] use a Hidden Markov along with Stochastic-Block-Model
(SBM) includin other variant like Temporal Stochastic Block Model
(TSBM) [13]. A critical limitation of these prescribed models is that
model assumptions can easily be violated in very big graph datasets,
like heavily-tailed degree distributions. Some recent works present
surprising properties of real-world large graph that deem prescribed
models to be insufficient. We point the reader to comprehensive
surveys such as [14, 15].

Deep generative models for graphs Deep graph generation
is based on the concept of unsupervised learning. Existing work
is based on deep structures like adverversarial network over ran-
dom walks (NetGAN [16]), variational autoencoders (GraphVAE
[4]), and recurrent networks (GraphRNN [3]). GraphVAE [4] is a
new and first-of-its-kind variational autoencoder for whole graph
generation, though it typically only handles very small graphs and
cannot scale well to large graphs in both memory and runtime.
GraphRNN [3] models a graph as a sequence of node generation
and edge generation that can be learned by autoregressive models.
It achieves a much better performance and scalability than Graph-
VAE. NetGAN [16] follow GAN model [17], and use a generator
to generate synthetic random walks while discriminates synthetic
walks from real random walks sampled from a real graph. Typically
these approaches can generate a synthetic static graph of good
quality. Although a popular generative approach, our literature
review has not revealed any deep network models for temporal
graph generation.

Random walk For static graphs, random walk is a powerful
and systematically examined representation. The random walk is a
diffusion model and its dynamicity provides fundamental hints to
the understanding of a whole class of diffusive processes in graphs.
Temporal graphs are basically time-dependent time-constraint, so
temporal random walks capture these dynamic aspects [18]. For
example, continuous-time networks are gradually activated by se-
quential link connections with start and end times [7]. It will not be
validated to activate certain sub-graphs as time evolves. Another
reason to use temporal random walk over adjacency matrix repre-
sentation is its linear running time O(l) with respect to the length
of walks. This makes it applicable for very large graphs. Temporal

2

TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative Models Conference’17, July 2017, Washington, DC, USA

Figure 2: A toy graph in: a) continuous time graph with non infor-
mation loss, length of a line is an edge’s contact time; and b) discrete-
time snapshot graph with information loss

random walk is used to learn representation in DeepWalk [19],
dynamic network embeddings [7], and dynamic representation
learning [20]. Those contributions cover continuous time represen-
tation and discrete time representation with a focus on either node
or edge representation. However, to the best of our knowledge,
no existing work try to learn the latent generative distribution for
temporal graph generation via temporal random walk.
3 Problem Definition
A temporal graph is a directed graph G = (V ,E,T), where V is
the set of nodes and E is the set of temporal edges, and T =
[0, tend],∀ tend ⊆ R+ is the time span of the temporal graph.
Given two nodes vi ∈ V and vj ∈ V , a temporal edge ei is de-
noted as ei = ui ,vi , ti ∈ E at time ti , where ui is the starting node
while vi is the end node. It can also be equivalently denoted as
a reversed-timestamp version such that ēi = ui ,vi , tend − ti ∈ E
where tend − ti is called the time budget at the edge ēi . Notice that
time budget is the residual time left after current temporal edge hap-
pens. A temporal random walk is defined as s = {e1, e2, · · · , eLs } =
{(u1,v1, t1), (u2,v2, t2), · · · , (uLs ,vLs , tLs)}, where Ls is the length
of this walk and vi = ui+1. An equivalent denotation is s =
{ē1, ē2, · · · , ēLs } where each ēi is defined with reversed timestamp
such that ēi = (ui ,vi , tend − ti).

The problem of deep generative modeling for temporal graphs is
to learn an underlying distribution p(G) of temporal graphs, such
that G ∼ p(G), namely each temporal graph is a sample from this
distribution. Therefore, the training process is to learn p(G) such
that the generated graphs minimize its divergence L() (e.g., adver-
sarial loss and reconstruction loss [17]) to the observed samples,
under possible temporal and topological constraints. Note that dif-
ferent samples of temporal graphs share the same time span while
they could have different numbers of nodes and edges.

Since the underlying distribution of an observed temporal graph
is unknown, it is prohibitive to directly utilize traditional prescribed
models such as temporal random graph and stochastic block mod-
els, which require predefined distributions. Therefore, this paper
focuses on more powerful models that are sufficiently expressive
to learn sophisticated distribution patterns of graph-structured
data, by extending the deep generative models for static graphs
to temporal graphs. However, though compelling, this research
has the following challenges: 1) avoid graphlets (aka. adjacency
matrix) to allow for efficient computation for very large graphs;
2) extremely dynamic distribution with temporal hard constraints;

and 3) the promise of permutation invariance of nodes like all graph
generation models.
4 Deep Generative Models for Temporal Graph

Generation
To model and generate temporal graphs and address the above chal-
lenges, we propose a new model called “Temporal Graph Genera-
tive Adversarial Network” (TG-GAN). In the following, we present
the overall TG-GAN framework and a brief complexity analysis,
introduce a novel temporal generator and describe the temporal
discriminator and other training strategies.
4.1 TG-GAN framework
Overall, the advantages of TG-GAN are 1) linear complexity in-
dependent of the number of nodes; 2) directly modeling temporal
dependency constraints; 3) solving graph generation through se-
quential models that do not have a permutation requirement.

A temporal graph can be considered as a distribution of a sam-
pled temporal random walks. In this paper, we propose TG-GAN,
a Temporal Graph generation framework based on Generative
Adversarial Networks, which captures the topological and tem-
poral patterns of temporal graphs by learning a distribution of
a temporal random walk. More concretely, TG-GAN consists of
two parts, which are a temporal random walk generator G and a
temporal random walk discriminator D. Generator G defines an
implicit probabilistic model for generating a set of temporal random
walks: G(zzz) that can assemble a temporal graph, where zzz ∼ p(zzz) fol-
lows a trivial distribution such as isotropic Gaussian. Note that the
generated temporal random walk G(zzz) must satisfy the temporal
constraint. All its valid solution is defined as C. Additionally, the
Discriminator D is developed to discriminate whether any tempo-
ral random walk is a “real” one from the desired temporal graph
or not. Overall, the objective function of TG-GAN with temporal
constraints is:

min
G

max
D

[
Es∼pdata (s)[loд(D(s)] + Ezzz∼p(zzz)[loд(1 − D(G(zzz))]

]
s .t . G(zzz) ∈ C,∀zzz ∼ p(zzz) (1)

where s is a real temporal random walk sampled from observed
temporal graphs. To successfully solve the training objective in
Equation (1) for TG-GAN required, we need to address the three
key components: 1) Temporal random walks typically are variable-
length and are sophisticated and have different characteristics that
are more sophisticated than conventional random walk. For ex-
ample, the edges are distinct and the start and end is dependent
on the start time and end times of the temporal graph as well
as its topology. Hence, temporal random walk inevitably have
variable lengths. So how to effectively generate such types of
walks is challenging and will be shown in Section 4.2.1. 2) Si-
multaneous generation of both continuous and discrete variables.
For each temporal edge, we need to jointly generate both discrete
nodes and continuous time, and at the same time consider their
co-evolving patterns. Section 4.2.2 gives details on how to achieve
this. 3) The generated walks must satisfy temporal validity con-
straints. For each temporal random walk s = {e1, e2, · · · , eLs } =
{(u1,v1, t1), (u2,v2, t2), · · · , (uLs ,vLs , tLs)}, we have a) t1 ≥ 0, b)
tLs ≤ tend , and c) ti ≤ tj ,∀i < j. However, the proposed method

3

Conference’17, July 2017, Washington, DC, USA Zhang et al.

En
co

de

Real

Fake

𝑡
𝑡

𝑡

Classifier

b) Discriminator

En
co

de

En
co

de

En
co

de

En
co

de

En
co

de

Temporal
random walk

……

Truncated

……

𝑶!!

...

Z

𝑣#
𝑢$ 𝑣$ #𝑡$

𝑂"

𝑢#𝑥 #𝑡#

𝑶#!

#𝑡%

𝑶!" 𝑶$!𝑶%

a) Generator

𝒄%
𝒉%

𝒂%

Encode
𝒉𝒙

𝒂!"

Encode
𝒉𝒕

Encode
𝒉𝒗

Encode
𝒉𝒗

Encode
𝒉𝒕

𝒂#! 𝒂$! 𝒂!!

𝑦

……

Decode
𝑪(𝒈 𝒕)

Decode
𝑪(𝒈 𝒕)

𝒄#
𝒉#

𝒄*
𝒉*

𝒄+
𝒉+

𝒄,
𝒉,

𝒄-
𝒉-

𝒂&

Sampler𝒔𝒕𝒂𝒓𝒕

𝒆𝒏𝒅

𝒗𝟑
𝒗𝟏

𝒗𝟕

𝒗𝟐

𝒗𝟔 𝒗𝟖
𝒗𝟓

𝒗𝟒

Real Graph

.7s
2.3s

2.1s
.9s

1.1s
1.9s

2s
1s

𝒗𝟑𝒗𝟏

𝒗𝟕

𝒗𝟐

𝒗𝟔 𝒗𝟖
𝒗𝟓

𝒗𝟒

1.5s
1.5s

3s

2.3s

1.9s

1.9s

2.3s

Gumbel
𝒈𝒙

Gumbel
𝒈𝒗

Gumbel
𝒈𝒗

Gumbel
𝒈𝒚

Figure 3: The outline of the TG-GAN framework.

needs to satisfy the above constraints while maintaining the effi-
ciency of the generating process. A non-trivial exercise as shown in
Section 4.2.2. In this paper, the discriminator and generator directly
uses the WGAN framework [21] to measure the similarity between
the distribution of generated truncated temporal random walks
and that of actual ones. Autodiff with Adam optimizer is used to
optimize our model.

Complexity analysis:TG-GAN isO(Ls) because of non-parallel
generation of a whole sequence, where Ls is maximal length of
all temporal random walks. Memory complexity is O(|V | · L) for
storing logit vectors of sampling nodes, where L is the length of
truncated temporal random walks. Hence, our proposed model is
highly efficient in handling large graphs without any information
loss. This elucidates the obvious advantage of our temporal random
walk based method over other potential strategies using snapshots
and which require at leastO(|V |2 ·T) but still with information loss,
where T is the number of time snapshots.
4.2 Generator
We introduce the general architecture of the generator for the trun-
cated temporal random walk generation, and detail the operations
for sampling temporal edges.
4.2.1 Truncated temporal random walks with time budget .
For continuous-time temporal graphs, the temporal granularity can
be infinitely small and the lengths of temporal random walks vary
greatly, depending on a temporal process constrained by the start
and end time. Such phenomena raise very serious challenges wrt.
sequence generation methods such as Recurrent Neural Networks
(RNN) [22]. First, although modern operations (e.g., LSTM [22]
and Transformer [23]) and activation functions (e.g., ReLU [22])
have been proposed to remedy the gradient vanishing issues in
sequence learning, it is still highly challenging for backpropagation-
based methods to learn very long sequences [22]. Something that
applies to our problem. Second, directly learning variable-length
temporal edge sequences requires sequence learning methods to
jointly learn not only the distribution of nodes and timestamps,
but also the distribution of sequence lengths using the recurrent
module. Such multi-modal sophisticated tasks easily overwhelm
the model capability and lead to a failed learning task.

To address the challenge, we propose to learn whole (variable-
length) temporal random walks as concatenations of multiple trun-
cated temporal random walks under a time budget and of shorter
length. This is illustrated in upper right corner of Figure 3(b). When
learning the whole sequence (from start circle node to end triangle
node), the proposed sequential learning method only learns the
subsequence (colored ones) with a length equal to or smaller than
L with a little additional profile information for later-on concatena-
tion operation. More formally, a truncated temporal random walk
is defined as the follows.

Definition 4.1 (Truncated Temporal RandomWalks). A truncated
temporal random walk is defined as a sequence
s̄ = {c, ē1, ē2, · · · , ēL} happens within the temporal range of t0 ≥ 0
and tend . s̄ consists of its profile c and the temporal edges ēi , i =
1, · · · ,L, where L is equal to or less than a threshold defined as the
maximal length of a truncated temporal random walk. Here the
profile c = (x ,y, t̄0) includes x ∈ {0, 1} denoting whether s̄ is the
initial (= 1) or not (= 0) in a temporal randomwalk, whiley ∈ {0, 1}
denoting whether it is the end (= 1) or not (= 0). t̄0 = tend − t0 is
defined as the time budget of s̄ , where t0 = tend ,∀x = 1 for initial
truncated walks, or t̄0 = t̄Ls−1 ,∀x = 0, and t̄Ls−1 is time budget of
previous temporal edge in a whole walks.

For example, in Figure 3 (b), a temporal random walk with a
length of 3 has been concatenated as two truncated temporal ran-
dom walks, where the first one starting at u1 is shown as a purple
dashed line, hence, its profile time budget is t̄0 = tend = 3s and
its starting flag isx = 1. Raw time stamps are shown in italic. The
random walk has two edges, which are (u1, v6, 2.3s) and (u2, v3,
1.9s). since it is not the end of the temporal random walk, its end
flag is y = 0. 2.3s and 1.9s are the remaining time budget after
these edges are created at time 0.7s and 1.1s. The second truncated
temporal random walk (blue dashed line) starts at (u2,v3, 1.9s) with
a profile of x = 0, and t̄0 = 2.3s , here 2.3s comes from previous
edge (u1, v6, 2.3s). The second edge is (u5, v7, 1.5s), and finally,
y = 1 for this walk. Notice that the second edge could also be (u4,
v8, 1s) with y = 1 (orange line). However, if the first truncated
sequence is (u1,v6, 2.3s), (v5,v7, 1.5s), the other edges would not be
reachable since the whole walk ends with y = 1. This is an example
of variable-length temporal random walks aka. a time-dependent

4

TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative Models Conference’17, July 2017, Washington, DC, USA

graph topology. The corresponding detailed generation of these
walks is also found in Figure 4.

aaa0 = 000, mmm0 = h0(zzz), zzz ∼ U (000,111)
aaax = hx (x), x = дx (ooo1), (mmm1,ooo1) = fθ (mmm0,aaa0)

aaat̄0 = ht (t̄0), t̄0 = C(дt (ooo2)), (mmm2,ooo2) = fθ (mmm1,aaax)
aaau1 = hv (u1), u1 = дv (ooo3), (mmm3,ooo3) = fθ (mmm2,aaat̄0)
aaav1 = hv (v1), v1 = дv (ooo4), (mmm4,ooo4) = fθ (mmm3,aaau1)

aaat̄1 = ht (t̄1), t̄1 = C(дt (ooo5)), (mmm5,ooo5) = fθ (mmm4,aaav1)
. . .

y = дy (ooo3l+3), (mmm3l+3,ooo3l+3) = fθ (mmm3l+2,aaa3l+2)

(2)

To learn the generative process of temporal random walks, a
novel recurrent-architecture-based sequential model (abstracted
operations in Equation 2) is proposed here to characterize and
concatenate the truncated temporal random walks that compose
them. This sequential model learns x0, t̄0, ē1, ē2, · · · , ēL , and y0
sequentially, as shown in Figure 3. The length L is fixed to a small
value (e.g., 1 ≤ l ≤ 20) depending on the maximum length of the
whole temporal walks. With this efficient architecture for smaller
sequences, we can still preserve the temporal dependency across
different adjacent pieces, since such a dependency has been ef-
fectively encoded in each piece’s profile of x0, t̄0,y0. The encoded
profile information is absorbed into the first two and the last re-
current units, which can have substantial instructions to the next
ones. This addresses the first two challenges mentioned above re.
variable-length temporal random walks. The basic recurrent units
shown at the bottom of the generator in Figure 3 utilize an LSTM
model. We input a latent code vector zzz ∈ Rh into the first recurrent
unit, which can be sampled from some trivial distributions such
as a multivariate uniform distribution or Multivariate Gaussian.
In Equations 2, дy ,дx ,дt ,дv being different decoding operations,
hx ,ht ,hv are different encoding operations as detailed in 4.2.2. Be-
cause we focus on LSTM, a memory statemmmκ is composed of a cell
state cccκ and hhhκ .

Temporal randomwalk generation using the trained gen-
erator: Once the above generator has been trained, truncated
temporal random walks will be generated to compose the whole
temporal random walk. However, we found that simply generat-
ing truncated temporal random walks and then arbitrarily match-
ing and chronologically concatenating them is not effective, since
it does not preserve the temporal dependency of two consecu-
tive truncated walks. To address this, when generating each tem-
poral edge ēi , we need to maintain its conditional dependency
p(ēi ,y0 |ēi−1, ēi−2, ...ē1,x0, t0) over all the historical edges in this
temporal random walk. Therefore, as shown in Figure 4, we pro-
pose to first generate an initial truncated temporal random walk
and then incrementally append it with one additional temporal
edge ēi as well as an end status flag y0. This process re-uses the
same generator and ends when y = 1 is found.
4.2.2 Decoding and Encoding Operations for Time infor-
mation under Temporal Constraints .

To generate valid time information under temporal constraints,
the output oooκ from the recurrent unit of each time step needs to
be decoded into a real value under validity constraints. The critical
challenges include learning the arbitrary underlying distribution

𝑦 = 0

𝑦 = 1
Newly Generated

%𝑡'=𝑡()*
𝑢,𝒔𝒕𝒂𝒓𝒕

| Step 1:

𝒗𝟐

𝒗𝟔

𝑥=1

𝑣6
𝑢7 %𝑡7𝑣8

%𝑡'=%𝑡,𝑥=0

𝑢9 %𝑡8𝑣:

%𝑡,

𝑢7 %𝑡7𝑣8

%𝒕𝟏

%𝒕𝟐

𝒆𝒏𝒅

| Possible Step 2:

𝑦 = 1
Newly Generated

%𝑡'=%𝑡,𝑥=0

𝑢? 𝑡8@𝑣A

𝑢7 %𝑡7𝑣8

| Possible Step 2:

𝒗𝟏
𝒗𝟑

𝒔𝒕𝒂𝒓𝒕 𝒗𝟐

𝒗𝟔%𝒕𝟏

%𝒕𝟐
𝒗𝟏

𝒗𝟑
𝒗𝟓%𝒕𝟑

𝒗𝟕

𝒆𝒏𝒅

𝒔𝒕𝒂𝒓𝒕 𝒗𝟐

𝒗𝟔%𝒕𝟏

%𝒕𝟐
𝒗𝟏

𝒗𝟑
𝒗𝟒
%𝒕𝟑
𝒗𝟖

Figure 4: A toy example for non-parallel generation of temporal ran-
dom walks through truncated temporal random walks. Step 1): gen-
erate two temporal edges (blue squares) with x = 1, t̄0 = tend as
inputs; Step 2): using Step 1 generate only one additional edge and
y profile. Two possible outputs can be achieved with different prob-
abilities so as to capture the randomness in temporal graphs.

of time while ensuring the temporal validity of temporal graphs.
For, we propose the following.

Non-parametric time distribution inference The time of each
temporal edge is assumed to be sampled from underlying distri-
butions, which could be simply assumed as a Gaussian, Gamma,
or Beta distribution. Then a dense layer is established to map oooκ
to a sufficient statistic. For example, assuming a Gaussian distri-
bution, then two neural networks can be built to map oooκ to the
mean µ and σ of the distribution, respectively. However, when
training the model, since backpropagation cannot handle uncertain
parameters, the re-parameterization trick will be adopted to move
the non-differentiable sampling operations from the sufficient sta-
tistics parameters (e.g., mean and variance of Gaussian) to a unit
Gaussian N(0, 1) (cf. [24]). Such distributions are called parametric
distributions [25] (Equation 3 shows an example for a Gaussian
distribution).

µ = Dense(oooκ), σ = Dense(oooκ)
t ′i ∼ N(0, 1), ti = µ + σt ′i

(3)

In many situations, the real time distribution cannot be simply
fit to an existing simple parametric distribution since they are non-
parametric. For example, the time of a trip from one location to
another might be specific to each commuter when consider traffic
and job requirements and we cannot simply assume a Gaussian or
Gamma distribution since the underlying distribution is unknown.
Therefore, it is highly desired for the model to identify and fit such
unknown distributions. Here we propose a novel non-parametric
time distribution inference method named Deep Temporal Ran-
dom Sampler as illustrated in Figure 5. It consists of two modules:
1) a time decoder, which is a series of deconvolutional layersDeconv
that can project an initial variableoooκ ∈ RHo to a matrixRRR ∈ RD1×D2

of larger dimensions. 2) a time sampler, which uniformly selects
one or multiple rows RRRi, from RRR and then averages the selected
ones. This averaged vector R̄RRi, is mapped to t̄i through another
Dense layer, i.e., t̄i = OneHot(R̄RRi,). Finally, there is an encoding

5

Conference’17, July 2017, Washington, DC, USA Zhang et al.

Deconv

𝑶𝜿

Average

Dense

#𝒕𝒊

0

0

1

0

0

1

0

0

Time
Decoder

Time
Sampler

𝑹 𝑹𝒊,

Dense

𝒂)𝜿

Encoding
Time: 𝒉𝟐

𝑪

Decoding Time: 𝒈𝟐

Figure 5: Deep Temporal Random Sampler for non-parametric dis-
tributions of continuous time

operation, another Dense layer that maps the generated time back
to hidden vectors by aaaκt = Dense(t̄i), which is then input into the
recurrent unit as shown in Figure 5 and Equation 4.

Temporally-valid activations for ensuring time constraints
Different from conventional randomwalks, temporal randomwalks
require that the temporal edges also satisfy various time constraints
depending on specific applications [18]. With the nature of time, the
time budget t̄i , (i = 0, 1, · · ·) will always be at least non-negative.
Moreover, for each truncated temporal random walk, the time bud-
gets of all temporal edges should be no less than 0 and monoton-
ically non-increasing t̄0 ≥ t̄1 ≥ t̄2 ≥ · · · ≥ 0. Sometimes the time
budget in contiguous edges cannot be equal, such as in human
mobility networks, where a user cannot appear in two locations
at the same time, ti , ti−1, ∀ti ≤ tend . The time values can be
normalized to a range between 0 and 1 by scaling tend down to
1, which can be easily recovered back to the original scale when
needed. For ease of analysis, in the following all the time values
are normalized ones.

It is usually highly difficult for backpropagation methods to en-
sure all the above constraints, which are typically non-differentiable
and mutual dependent. To address various temporal constraints,
we essentially need to provide both lower- and upper-bounds for
all the time values that have been sampled. To achieve this, we
propose the following time value bounding methods: 1) Clipping,
which clip the generated time to boundary values if it is outside
the range, similar to image generation [26]; 2) Nested Relu Bound-
ing to ensure 0 ≤ t̄i ≤ t̄i−1, which uses two nestedRelu functions
t̄i = Relu(t̄i) − Relu(t̄i − t̄i−1); 3) Minimax Bounding, which uses
a scaling based on “min” and “max” values within the sampled
set of truncated sequences {s̄} for each training epoch (called a
training mini-batch in other literatures). It obtains a minimum
value from this set first, min({t̄i }). Then, if min({t̄i }) ≤ ϵ , then
t̄i = t̄i −min({t̄i }), otherwise, go to next step. Here, ϵ is a hyper-
parameter with a small value (e.g. ϵ < 1e−3) to prevent a zero value
for t̄i . Next, maximum value of a mini-batchmax({t̄i }) is got. Then,
if max({t̄i }) > 1, then, ti = t̄i/max({t̄i }), otherwise, nothing is
done. This is actually a similar operation like Batch Normalization
[27]. In Equation 1, different types of constraining operations are
represented as the function C.

RRR = Deconv(oooκ), R̄RRi, =
1
n

n∑
i=1

RRRi∼Cat (1
D1
),∀1≤i≤D1

t̄i = C
(
Dense(R̄RRi,)

)
, aaaκt = Dense(t̄i)

(4)

Decoding and Encoding Operations for Categorical Data. As
shown in Figure 3(a), categorical data includes nodes, starting flags,
and ending flags. Each of them share the same encoding and decod-
ing procedure for each step in the sequence. Take the operations

for a node as an example, specifically, first fθ produces one out-
put vector oooκ ∈ RH from the recurrent hidden unit (e.g., each
LSTM unit). Here H ≪ |V | is the dimension of the embedding
space of a node from V . So oooκ is a highly concise representation
that largely reduces the computing overhead especially for large
graphs. Then oooκ is projected by the function дv,up (oooκ) upscale to
another vector qqqκv ∈ R |V | , which is a logit parameter of a cate-
gorical distribution for sampling a node vi ∼ Cat(qqqκv). The pro-
jection function дv,up (oooκ) is defined as an affine transformation
дv,up (oooκ) =Wupooo

κ + bup . The procedures for starting and ending
flags are the same as the above except that the dimension of the
decoded value is two, namely qqqκx ,qqqκy ∈ R2, and hence the sampling
of the starting and ending flags can be denoted as x ∼ Bern(qqqκx) or
y ∼ Bern(qqqκy), where Bern denotes the Bernoulli distribution [25].
x ,y,vi are one-hot vectors in this context.

Figure 3(a) shows the encoding operations for categorical data.
Beside memory states, the decoded categorical data (i.e., either
node vi or starting flag x) in last time step is also used as input
to the LSTM unit. Specifically, to convert categorical data includ-
ing x ,vi , embedding layers are used. The two embedding matri-
cesWx,down ∈ R2×Hx ,Wv,down ∈ R |V |×Hv ,Hv ≪ |V | are used.
Hv ,Hx are the dimensions of the embedded vectors. All nodes share
the same embedding layer. Embedded vectors are passed to two
different dense layers дx,down ,дv,down and generate input vectors
aaaκ for the next LSTM unit as follows:

aaaκv = Dense(Wv,downv), aaaκx = Dense(Wx,downx) (5)

Gumbel-Max re-parameterization to generate categorical val-
ues. Sampling values from categorical (or Bernolli) distributions
pose significant challenges for backpropagation training, which
inherently requires differentiable objective functions to work. To
address this issue, we leverage a reparametrization trick based on
Gumbel-Max [28] Specifically, we create v ′κ = tanh((qqqκ + ддд)/τ),
where τ is so-called “temperature” hyper-parameter. Each value
дi in ддд is an independent and identically distributed (i.i.d.) sample
from standard Gumbel distribution [28]. We generate a one-hot
representation vκ , whose i ′th element is one and all the others are
zeros, where i ′ = arg maxi v ′κ . In this way, gradients can be back-
propagated through v ′κ . The same approach is also used for x ,y
sampling. Notice that the larger τ , the more uniformly regulated
with more stable gradient flow are the sampled values. The typical
approach is to decrease τ as training continues and we can adopt a
decrease strategy similar to [28] (Equations 6).

for nodes vi , qqqκv =Wv,upooo
κ + bv,up

v ′κ = tanh
(
(qqqκv +дддv)/τ

)
,vκ = OneHot(arg maxv ′κ)

for start indicator x , qqqκx =Wx,upooo
κ + bx,up

x ′κ = tanh
(
(qqqκx +дддx)/τ

)
,xκ = OneHot(arg maxx ′κ)

for end indicator y, qqqκy =Wy,upooo
κ + by,up

y′κ = tanh
(
(qqqκy +дддy)/τ

)
,yκ = OneHot(arg maxy′κ)

(6)

4.3 Discriminator via temporal random walks
sampler

Since TG-GAN iteratively generates and discriminates truncated
temporal random walks, the discriminator needs new techniques

6

TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative Models Conference’17, July 2017, Washington, DC, USA

Algorithm 1: Truncated temporal random walks sampler
Data: E = {Ed }, ∀Ed = {ēi (ui , vi , t̄i)}, tend , L
Result: a set of truncated sequences: {(x, t0, ē1, . . . , ēL, y)}

1 initialize t̄i ← t̄i /tend
2 sample d ∼ Unif orm(1/ |E |), and get Ed
3 ēi0 (vi0, ui0, t̄i0) ∼ K(Ed)
4 if i == 1 then x ← 1, t̄0 ← 1 else x ← 0, t̄0 ← t̄i−1
5 i ← i0
6 while i ≤ i0 + L do
7 ēi+1(ui+1, vi+1, t̄i+1) ∼ H(ēi)
8 i ← i + 1
9 end

10 if i == |Ed | then y ← 1 else y ← 0

to sample truncated temporal random walks from real temporal
graphs and also sequence classifiers that can classify such truncated
temporal edge sequences.
4.3.1 Truncated temporal randomwalks sampler . In the case
of a temporal graph, a time-variant graph topology changes dy-
namically and a variable-length walk sequence can be sampled. If
we truncate this variable-length sequences to small fixed-length
sequences, there are two challenges: 1) Different sub-sequences of
a temporal sequence contain more information, but are more chal-
lenging to finding patterns, for most cases, earlier parts are more
difficult. 2) Sparse connections of different sub-graphs in a whole
graph prevent the learning of global information. In the extreme
case, walkers could be stuck in a sub-graph with no out-links to
the whole graph. This is referred to as the “SpaderTrap” problem in
graph data mining [29].

As such, to address the above challenges, we propose a novel
sampling method for truncated temporal random walks, which first
determines the starting edge of the walk and then samples the next
edges sequentially following a temporal process. The proposed
truncated temporal random walk sampler is shown in Algorithm
1. Line 1 is to normalize time so that tend = 1. Line 2 states the
selection of a graph sample, Lines 3-10 are used to sample the profile
and walk sequences. The details of the starting edge samplerK and
next edge samplerH are elaborated in the following.

Starting edge sampler K: Several alternatives could be used,
such as a uniform distribution: pK (e) = 1/|E |. However, more
reasonable ways could be a distribution biased towards the start
time, i.e., starting edges that happen earlier have a higher proba-
bility. To achieve this, we could leverage a linearly-biased distri-
bution: pK (e) = ti/

∑
ei ∈E ti or exponential distribution: pK (e) =

exp(ti)/
∑
ei ∈E exp(ti).

Descendant edge sampler H with temporal jumps: A de-
scendant edge following the current edge could be selected among
all its adjacent edges either uniformly or considering time decay. By
extending the notion of jumps, we propose temporal jumps, which
should help achieve “smoothness” in temporal random walks. For
example, in human mobility in metro networks can be modeled as a
temporal graph in which a traveler could do temporal walks across
different metro stations along the transport network (i.e., temporal
edges). Temporal jumps occur when a traveler uses intermittently
other modes of transport, e.g., walking, taxis, etc. To provide for
more robust and flexible modeling, we propose the use of “teleport
temporal edges” with monotonically-increasing time stamps, by

adopting Bayesian prior into temporal graphs. This teleport tem-
poral edges is a Bayesian prior-enhanced categorical distribution
Cat(pH) with a probability of selecting the next edge according
to time, is implemented with an exponential time decaying func-
tion and a uniform distribution over all the other nodes except the
current node.

ei ∼ H(ei |mmm), mi = α

(
exp(ti)/

∑ |E |
j=i

exp(tj) + 2ϵ/(|V | − 1)
)

where α is a normalization term to make sure all probabilities sum
up to 1, ϵ is a very small teleport probability over all the other nodes
except the current node.
4.3.2 Classifier designs . The discriminator D is based on the
recurrent architecture where the recurrent units could adopt units
such as LSTMs. Each input is namely a truncated temporal random
walk s̄ , which consists of x , t̄0, ē1, ē2, · · · , y sequentially. We can
directly leverage their encoders introduced in Section 4.2 to encode
them and input into each LSTM unit. After processing the entire
temporal edge sequence, the discriminator outputs a single score
from the last LSTM unit as the probability of a truncated temporal
random walks reflecting an actual walk. Training stopping cri-
teria: TG-GAN uses an early-stopping mechanism that relies on
a specific MMD distance (e.g., MMD in Average Degree) to save
time for the case of large graphs. The competitor methods use their
default training mechanism.
5 Experiments
In this section, performances of TG-GAN framework are evaluated
using three synthetic datasets and two real-world datasets. Section
5.1 introduces the experimental setup. The performance of TG-
GAN in terms of Maximum Mean Discrepancy (MMD) in different
graph measures is then evaluated against existing deep generative
models and a prescribed model in Section 5.2. Finally, the visual
qualitative analysis on generated graphs are examined. All the
experiments were conducted on a 64-bit machine with a 10-core
processor (i9@3.3GHz), 64GB memory, and Nvidia 1080ti GPUs.
5.1 Experimental Settings
5.1.1 Synthetic datasets3 synthetic datasets with increasing com-
plexity are from scale-free random graphs [8]. As a widely adopted
random graph model, a scale-free graph is a static graph whose
degree distribution follows a power law and it is constructed by
progressively adding nodes to an existing network and introducing
links to existing nodes with preferential attachment such that the
probability of linking to a given node i is proportional to the number
of existing links ki that node has. We modify this step by adding
a time-dependent step (details in supplement A.1. This method
was used to generate 3 synthetic datasets with different numbers
of nodes, {100, 500, 2500}. For each dataset, different iterations of
simulation (a graph sample), i.e., {200, 100, 100}, are used.
5.1.2 Real-world datasets . a) User authentication graph includes the
authentication activities of 97 users on their accessible 27 comput-
ers or servers (nodes in graph) in an enterprise computer network
during a 485h period [30]. For this work, we choose a single user
profile. Each hour is treated as a temporal graph sample. All times
are normalized a range of [0, 1]. b) Public transport graph data cap-
ture by farecard records from the Washington D.C. metro system
(91 stations as graph nodes) includes million of users‘ trips records.

7

Conference’17, July 2017, Washington, DC, USA Zhang et al.

Real TG-GAN U
ser A

uthentication
M

etro Transport
10

0
 Scale Free

Time snapshots Time snapshots

N
od

es
 in

de
x

N
od

es
 in

de
x

N
od

es
 in

de
x

N
od

es
 in

de
x

N
od

es
 in

de
x

N
od

es
 in

de
x

Figure 6: Comparisons of real graphs (left most column) and TG-
GAN generated graphs (right column) for different datasets

The trip record is in the form <user id, entry station, timestamp,
exit station, timestamp>. The dataset captures all trips during a
period of three months (123 days) from May 2016 to July 2016. Each
day is treated as a temporal graph sample. Since metro operations
stops at 1am, we shift all the timestamps by one hour to adhere to
a 24h interval. All timestamp are converted to [0, 1] interval. All
the datasets used are split into a 80% training and 20% test dataset.
For the traditional model, which uses considerable main memory,
sparser graph samples are used to adhere to memory limits.
5.1.3 MetricsMaximum Mean Discrepancy (MMD) [31] is chosen
to evaluate the distances of graph samples generated from differ-
ent generative models to real graph samples. MMD is more chosen
today (cf. [3, 32]) instead of KullbackâĂŞLeibler divergence and oth-
ers [22] for similarity of high-dimensional distributions. To ensure
a fair comparison, both continuous-time measures and snapshot
measures are used. The continuous-time measures include Aver-
age Degree, Mean of Average Degree, Group Size, Average Group
Size, Mean Coordination Number, Mean Group Number, and Mean
Group Duration. The snapshot measures includes Betweenness
Centrality, Broadcast Centrality, Bursiness Centrality, Closeness
Centrality, Node Temporal Correlation, Receive Centrality, and
Temporal Correlation. The lower the MMD value, the better a gen-
erative model performs.
5.1.4 Competing methodsThis experiment utilizes 4 comparison
methods: GraphRNN [3], NetGAN [16], GraphVAE [4], and a pre-
scribed method, Dynamic-Stochastic-Blocks-Model (DSBM) [10].
We first create snapshots for these methods, train the models, and
recover the continuous time from the generated snapshots (Supple-
ment A.2). Necessary parameter-tuning is done first to ensure that
TG-GAN performs as expected (Supplement A.4).
5.2 Quantitative performance
What follows is a discussion of the performance of TG-GAN in
relation to its comparison methods. Given its scalability (or lack
thereof) of different methods, GraphVAE is omitted for the 2500-
node dataset, and DSBM is omitted for the 500-node and 2500-node
datasets. − indicates that programs could not finish running within
a reasonable amount of time during our experiments.

5.2.1 Performance on synthetic datasets . Tables 2 and 3 contain
MMD distances for different graph measures and the 3 synthetic
datasets (indicated as 100, 500, 2500 in the first column). The lower
the values are, the better the respective performance. The proposed
TG-GAN consistently outperform the other methods. Several met-
rics, like Average Degree, Average Group Size, Mean Coordination
Number achieve a two orders of magnitude improved performance.
This shows how much information loss a discrete-time snapshot
could have no matter what basic model it uses. Another observation
is that TG-GAN, GraphRNN and GraphVAE, generally achieve a
lower value than DSBM. It indicates that deep generative methods
have a better performance than prescribed model.

For discrete-time snapshot graph measures, the competitive ad-
vantage of TG-GAN is not that considerable. In some cases (Be-
tweenness Centrality, Receive Centrality for 100-node graphs),
DSBM shows better performance that deep generative methods.
TG-GAN outperforms the other two deep generative methods for
100-node graphs. However, the advantage of TG-GAN is not that
significant for the 500-node graph. We can see that, TG-GAN still
shows the best performance for several measures including Be-
tweenness Centrality, Broadcast Centrality, Receive Centrality, and
Temporal Correlation. The lower advantage for larger synthetic
graphs could be result of our early-stopping mechanism, which has
the potential of better training.
5.2.2 Performance on real-world datasets . Table 1 shows the mean
values of distributions for some selected graph measures. The closer
a value is to actual temporal graphs, the better the models are.
We can see that TG-GAN is the closest to real datasets except
Mean Degree. DSBM performs poorly in all cases. Tables 2 and 3
demonstrate the effectiveness of the proposed TG-GAN framework
for real-world datasets (identified as Auth. and Metro in the first
column). The overall performance characteristics are comparable
to the the synthetic datasets. Our analysis here focuses more on
how effective TG-GAN is for different graph sparsities. The metro
transport graph is an extremely sparse graph (typically 1-3 trips
per day per traveler). We can see for the discrete-time measures
in Table 3 that GraphRNN and GraphVAE have NaN values for
Node Temporal Correlation and Temporal Correlation, since they
fail to model empty graphs for most temporal snapshots (no trips
happened during that snapshot). This can be found in the qualitative
visualization in Supplement A.5.
5.3 Qualitative analysis
We demonstrates a visualization (Figure 6) for three datasets: user
authentication graphs, metro transport graphs, and 100-node scale-
free graphs. The y axis is the index of all nodes. x axis is index
of time snapshots. The arc between two nodes is a temporal edge.
The darker an edge is, the more graph samples it exists. Qualitative
visualizations for all the other competing methods are given in Sup-
plementA.5. It shows that TG-GAN indeedly capture the temporal
patterns of real graphs.
6 Conclusions
To effectively model generative distributions of temporal graphs
and retain continuous-time information, we propose the first-of-its-
kind TG-GAN framework. It learns the representation of temporal
graphs via temporal randomwalks, which includes a novel temporal
generator to model truncated temporal random walks with profile

8

TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative Models Conference’17, July 2017, Washington, DC, USA

Table 1: Continuous-time measures

data Method
Metrics Mean

Degree

Average
Group
Size

Average
Group
Number

Mean
Coordi-
nation
Number

Auth.

GraphRNN 0.0205 1.1154 24.2373 0.5856
GraphVAE 0.0204 1.1156 24.2360 0.5938
DSBM 0.1918 0.9999 27.0000 2.2204
TG-GAN 2.89e-05 1.0184 26.5156 0.0359
Real 0.0166 1.0276 26.2911 0.0959

Metro

GraphRNN 0.0026 1.0109 90.0176 0.0239
GraphVAE 0.0026 1.0109 90.0160 0.0240
DSBM 0.2544 0.9999 91.0000 2.22e-16
TG-GAN 0.00077 1.0072 90.3523 0.01425
Real 0.00065 1.0077 90.3012 0.0154

Table 2: MMD distances for continuous-time measures

data Method
Metrics Average

Degree

Mean Av-
erage De-
gree

Group
Size

Average
Group
Size

Mean
Coordi-
nation
Number

Mean
Group
Num-
ber

Mean
Group
Dura-
tion

Auth.

GraphRNN 1.68e-05 1.42e-05 0.8053 0.0077 0.1829 0.9114 0.0654
GraphVAE 1.70e-05 1.41e-05 0.8030 0.0077 0.1819 0.9083 0.0658
DSBM 0.0002 0.0304 0.6344 0.0007 0.0087 0.2782 0.9315
TG-GAN 3.38e-09 2.94e-09 0.1187 0.0004 0.0047 0.1035 0.1974

Metro

GraphRNN 5.92e-06 3.82e-06 0.1826 1.00e-05 7.31e-05 0.0745 1.0376
GraphVAE 5.88e-06 3.84e-06 0.1831 1.02e-05 7.54e-05 0.0754 1.0320
DSBM 0.0004 0.0634 1.2656 5.99e-05 0.0002 0.4198 0.8011
TG-GAN 2.86e-08 1.45e-08 0.0065 2.92e-07 1.10e-06 0.0020 0.0910

100

GraphRNN 4.80e-05 8.16e-06 1.4152 0.0012 0.0019 1.4899 0.0342
GraphVAE 7.72e-05 6.10e-06 1.4155 0.0012 0.0022 1.4933 0.0317
DSBM 0.0083 0.0488 0.9932 1.8548 1.1320 1.0690 0.0020
TG-GAN 6.46e-07 1.35e-06 1.24 0.0004 0.0005 1.3419 0.0041

500
GraphRNN 7.42e-06 3.03e-06 1.3557 0.0001 1.17e-05 1.4287 0.0615
GraphVAE 6.96e-06 2.46e-06 1.2291 0.0002 0.0002 1.2982 0.0227
TG-GAN 1.10e-06 2.10e-06 0.8000 0.2312 1.8727 0.0800 0.2032

2500 GraphRNN 1.80e-06 9.33e-07 1.0961 0.0002 0.0002 1.1154 0.78380
TG-GAN 4.78e-07 2.57e-07 1.1189 0.0002 0.0002 1.1292 0.0377

(a) Running time V.S. Number of nodes

(b) Running time V.S. Number of snapshots

Figure 7: Running time experiments

Table 3: MMD distances for discrete-time snapshot graph measures

Nodes Method
Metrics Betweenness

Centrality

Broadcast
Cen-
trality

Burstiness
Centrality

Closeness
Centrality

Nodes’
Temporal
Correla-
tion

Receive
Cen-
trality

Temporal
Correla-
tion

Auth.

GraphRNN 4.41e-06 0.3071 0.2090 0.0223 0.0057 0.3072 8.26e-06
NetGAN 4.40e-06 0.5996 0.0302 0.8119 0.0056 0.5971 8.27e-06
GraphVAE 4.41e-06 0.3999 0.1718 0.0390 0.0057 0.3973 8.26e-06
DSBM 0.9943 0.3598 0.0326 0.1016 0.0594 0.3628 0.0013
TG-GAN 5.05e-05 0.1468 0.0020 6.97e-04 0.0036 0.1365 5.23e-06
Wenbin 1.0 1.0568 0.0194 7.65e-07 1.9917 1.1609 0.3952

Metro

GraphRNN 0.0815 0.7316 0.0031 2.54e-04 NaN 0.7351 NaN
NetGAN 0.0829 0.5946 0.0244 0.0166 NaN 0.5811 NaN
GraphVAE 0.0829 0.7509 0.0030 1.99e-04 NaN 0.7374 NaN
DSBM 0.7880 1.1403 0.0228 0.0164 0.0223 1.0444 2.01e-04
TG-GAN 0.0120 0.0257 0.0026 8.36e-06 2.86e-05 0.0266 4.95e-09
Wenbin 0.7880 1.5623 0.0241 1.79e-05 1.9943 1.5471 0.5078

100

GraphRNN 0.9567 0.1658 0.3790 5.89e-04 0.0011 0.3023 1.81e-06
NetGAN 0.6497 0.7058 0.0092 0.2073 0.0014 0.2878 7.31e-07
GraphVAE 0.9567 0.2167 0.4138 5.37e-04 0.0011 0.3539 1.81e-06
DSBM 0.0020 0.4016 0.0526 0.01666 0.0183 0.1317 1.33e-04
TG-GAN 0.5606 0.2100 0.0026 0.0015 0.0010 0.2181 1.10e-06

500
GraphRNN 0.7912 0.1556 0.1621 - 0.0049 0.4241 1.75e-07
NetGAN 0.7928 0.3253 0.0415 - 0.0049 0.0948 1.75e-07
GraphVAE 0.7928 0.0871 0.1921 - 0.0049 0.2858 1.75e-07
TG-GAN 0.7231 0.2878 0.0842 - 0.0048 0.2087 1.75e-07

2500 GraphRNN 0.8802 1.0239 9.65e-07 - 0.0044 1.2410 1.00e-08
NetGAN 0.8801 0.1200 0.0169 - 0.0044 0.0965 1.00e-08
TG-GAN 0.8245 0.1549 0.4296 - 0.0043 0.1979 9.76e-09

information considering time dependency and time constraint. A
new temporal discriminator train the temporal generator with real
training data from a novel walk sampler. Extensive experiments
with synthetic and real-world datasets demonstrate advantages of
TG-GAN model over existing deep and prescribed models.
References
[1] P ERDdS and A R&wi. On random graphs i. Publ. Math. Debrecen, 6(290-297):18,

1959.
[2] Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, Edoardo M Airoldi, et al.

A survey of statistical network models. Foundations and Trends® in Machine
Learning, 2(2):129–233, 2010.

[3] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec.
Graphrnn: Generating realistic graphs with deep auto-regressive models. arXiv
preprint arXiv:1802.08773, 2018.

[4] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of
small graphs using variational autoencoders. In International Conference on
Artificial Neural Networks, pages 412–422. Springer, 2018.

[5] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding
method for dynamic graphs. arXiv preprint arXiv:1805.11273, 2018.

[6] Min Yang, Junhao Liu, Lei Chen, Zhou Zhao, Xiaojun Chen, and Ying Shen. An
advanced deep generative framework for temporal link prediction in dynamic
networks. IEEE Transactions on Cybernetics, 2019.

[7] Giang H Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee
Koh, and Sungchul Kim. Dynamic network embeddings: From random walks to
temporal random walks. In 2018 IEEE International Conference on Big Data (Big
Data), pages 1085–1092. IEEE, 2018.

[8] Albert-László Barabási, Réka Albert, and Hawoong Jeong. Mean-field theory for
scale-free random networks. Physica A: Statistical Mechanics and its Applications,
272(1-2):173–187, 1999.

[9] Edward A Bender and E Rodney Canfield. The asymptotic number of labeled
graphs with given degree sequences. Journal of Combinatorial Theory, Series A,
24(3):296–307, 1978.

[10] Kevin S Xu and Alfred OHero. Dynamic stochastic blockmodels for time-evolving
social networks. IEEE Journal of Selected Topics in Signal Processing, 8(4):552–562,
2014.

[11] Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, and Rong Jin. Detecting
communities and their evolutions in dynamic social networksâĂŤa bayesian
approach. Machine learning, 82(2):157–189, 2011.

[12] Kevin Xu. Stochastic block transition models for dynamic networks. In Artificial
Intelligence and Statistics, pages 1079–1087, 2015.

[13] Marco Corneli, Pierre Latouche, and Fabrice Rossi. Exact icl maximization in a
non-stationary temporal extension of the stochastic block model for dynamic
networks. Neurocomputing, 192:81–91, 2016.

[14] Petter Holme. Modern temporal network theory: a colloquium. The European
Physical Journal B, 88(9):234, 2015.

9

Conference’17, July 2017, Washington, DC, USA Zhang et al.

[15] Polina Rozenshtein and Aristides Gionis. Mining temporal networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3225–3226. ACM, 2019.

[16] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Gün-
nemann. Netgan: Generating graphs via random walks. arXiv preprint
arXiv:1803.00816, 2018.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Advances in neural information processing systems, pages 2672–2680, 2014.

[18] Till Hoffmann, Mason A Porter, and Renaud Lambiotte. Random walks on
stochastic temporal networks. In Temporal Networks, pages 295–313. Springer,
2013.

[19] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[20] Hooman Peiro Sajjad, Andrew Docherty, and Yuriy Tyshetskiy. Efficient rep-
resentation learning using random walks for dynamic graphs. arXiv preprint
arXiv:1901.01346, 2019.

[21] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

[22] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[24] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[25] Larry Wasserman. All of statistics: a concise course in statistical inference. Springer
Science & Business Media, 2013.

[26] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. A neural algorithm of
artistic style. arXiv preprint arXiv:1508.06576, 2015.

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

[28] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with
gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[29] Z Bahrami Bidoni, R George, and KA Shujaee. A generalization of the pagerank
algorithm. ICDS, 2014.

[30] Alexander D. Kent. Cybersecurity Data Sources for Dynamic Network Research.
In Dynamic Networks in Cybersecurity. Imperial College Press, June 2015.

[31] Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex J
Smola. A kernel method for the two-sample-problem. In Advances in neural
information processing systems, pages 513–520, 2007.

[32] Wacha Bounliphone, Eugene Belilovsky, Matthew B Blaschko, Ioannis
Antonoglou, and Arthur Gretton. A test of relative similarity for model selection
in generative models. arXiv preprint arXiv:1511.04581, 2015.

[33] Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan. Directed
scale-free graphs. In Proceedings of the fourteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 132–139. Society for Industrial and Applied
Mathematics, 2003.

A Supplements
A.1 Temporal scale-free random graph

simulation
A directed scale-free graph [33] create a new edge from a new
in-node, an existing node, or a new out-node by sampling a multi-
normial distribution of three probabilites ⟨α , β ,γ ⟩,∀α + β + γ = 1,
which is adopted in Networkx 1 library. We modify this edge gener-
ation procedure to a temporal dependent generation. The general
idea is to append a continuous-time value to generated edge in each
constructing step. First, a uniform distribution within [0, 1] is used
to sample a time value, t ∼ Uni f orm(). And, we know that Unifrom
distribution output value from 0 to 1. By comparing t with cumula-
tive probability ⟨α ,α + β , 1⟩, if t ∈ [0,α] a new in-node indexed as
|V |+1 is added and an exiting node is chosen fromV with probabil-
ity p(v = vi) as an out-node, where din is the function to get degree
of vi , δin is a hyper-parameter, r is a uniformly random generated
real number. A temporal edge is created for them with time-stamp
t . If t ∈ (α ,α + β], two existing nodes ui and vi are chosen, and a
1https://networkx.github.io/documentation/stable/index.html

temporal edge is created with time t . If t ∈ (α + β, 1], a new out-
node is got, and a temporal edge to a chosen exiting node is created
with time t . The choice of existing in-node p(u = ui) = din (ui)+δin

|E |+δinr ,
where din is the function to get normalized in-degree of ui , δin is a
hyper-parameter, r is a uniformly-random-generated real number.
The choice of existing out-node p(v = vi) = dout (vi)+δout

|E |+δout r , where
dout is the function to get normalized out-degree of vi , δout is a
hyper-parameter, r is another uniformly-random-generated real
number. For more details, check [33]. After each constructing step,
the ellapsed time is cumulated. This process is terminated untill
either number of edges is equal to number of nodes, or a preseted
maximum time range is reached. And, we borrow part of the codes
from Networkx 2 library‘s original Scale-free graph codes.
A.2 Competing methods details
Modifications of adapting competing methods developed for static
graphs to temporal graphs are described as follows:

GraphRNN. This is a recent state-of-the-art deep generative
method. It is developed for a set of static graph samples. And, it
is scalable to very large graphs. We use the default parameters
provided in the GraphRNN code.

GraphVAE. This is also a secent development deep generative
method. It is also targeted for static graphs. Its complaxity analysis
makes it only runnable for small graphs. The original paper do not
have a published code, so the code in GraphRNN paper is used.
Also, default parameters are used.

DSBM. It is most recent development of prescribed models for
dynamic graphs based on Stochastic Blocks Models. It utilizes a
Markovian transition to model the dynamic in temporal graphs.

Our models can adapt to start-time and end-time easily by adding
additional LSTM cell for each temporal edge, if other applications
need end-time evaluation. The performance of our new TG-GAN
framework was compared with the above models. Another question
in those three models is how to convert the snapshots back to
continuous time. We simply choose the middle point of time in each
snapshot as the real time of a generated temporal edge. Also, notice
that temporal edges are modeled as a time point for all the datasets
and generated data. For continuous-time measures, the existing
of temporal edges have a start time and end time. For simplicity,
we assume a constant time for all temporal edges to exist. This
assumption is also true for real-world authentication graph which
only has one timestamp for each edge. For transport graph, the
existing time of a temporal edge is the travel time from one station
to another station, which is almost fixed in metro schedules and
relatively small compared to a whole 24 hours. It is also a reasonable
assumption to use the same small edge existing time.
A.3 MMD
In short, MMD measures how the distribution of one set of samples
is similar to another set of samples. Given XXX ∈ Rn×k , each row
XXX i, is a sampled vector from a unknown distribution. There is an-
otherXXX ′ ∈ Rn′×k , each rowXXX ′i, is a sampled vector from another
unknown distribution. We have MMD(XXX ,XXX ′) as a distance mea-
surement of these two sample sets. MMD(XXX ,XXX ′) = 0 means two
sets are exactly the same. In this experiment, different empirical
graph measures are chosen forXXX . For example, the continuous-time
2https://networkx.github.io/documentation/stable/index.html

10

TG-GAN: Continuous-time Temporal Graph Generation with Deep Generative Models Conference’17, July 2017, Washington, DC, USA

average degree distribution of one graph sample isXXX i, ∈ R1×|V | ,
where |V | is the number of nodes. We can computeMMD(XXX ,X̂XX) to
see if graphs samples generated from a trained modelXXX is close to
real graph samples X̂XX .
A.4 Parameter-tuning
These includes a set of hyper-parameters that can be tuned for TG-
GAN to achieve the best performance. Here are the list: learning rate
[0.003, 0.003], generator node embedding size [node number / 2],
discriminator node embedding size [node number / 2], L2 penalty
of discriminator [5e−5], L2 penalty of generator [1e−7], up-project
of x ,y [16-64], up-project of t [32-128], up-project of node v [32-
128], generator LSTM cell state c,h [[100, 20], [50, 10], [100], [50]],
discriminator LSTM cell state c,h [[80, 20], [40, 10], [80], [40]], start
temperature of gumbel-max [5], wasserstein penalty [1, 10], time
decoding methods [Gaussian, Gamma, Beta, Deep random time
sampler], time constraint activation methods [Minmax, clipping,
Relu], initial noise type [Uniform, Gaussian]. More potential hyper-
parameter are released in github in the future.
A.5 Additional experimental results analysis
Figure 8 shows qualitative visualizations for the various methods
and datasets. The small dots on each column represent nodes. The
dots repeat across all temporal snapshots. The arc lines are edges.

The figures are created by first, converting each graph sample to
snapshots, and then, for each snapshot, summing up counts of an
edge in all graph samples. The more counts an edge receives, the
darker the edge is shown.

For user authentication graphs, we observe that this graph is
densely connected in sub-regions of the whole graph. TG-GAN
mimics the real graph topology quite well. GraphRNN and Graph-
VAE show a trend towards similar topology. More training could
potentiall result in better performance. DSBM does not create a
graph close to the actual topology.

For the metro transport graph,a good example of an extremely
sparse graph, typically one edge has only one snapshot. Most of
the temporal edges happen in one or two snapshots. We can see
that TG-GAN is the only model to capture this challenging sparse
graphs.

For 100-node scale-free synthetic graph, we can see that edges are
connected increasingly as time grows. First, it did agree with typical
scale-free graph pattern though it is a time-dependent growth.
Then, TG-GAN performs the best to mimic this growing connection
pattern. GraphRNN and GraphVAE also capture the overall trends.
Probabily, more training would improve their performance. DSBM
do not perform well too.

11

Conference’17, July 2017, Washington, DC, USA Zhang et al.

Time Time Time Time Time Time

Real TG-GAN GraphRNN NetGAN GraphVAE DSBM

N
od

e
In

de
x

N
od

e
In

de
x

N
od

e
In

de
x

Auth.
Graphs

Metro.
Graphs

Scale-free
Graphs [100]

Figure 8: Comparison of the real graphs (left), TG-GAN and four comparison methods for three different datasets

12

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Deep Generative Models for Temporal Graph Generation
	4.1 TG-GAN framework
	4.2 Generator
	4.3 Discriminator via temporal random walks sampler

	5 Experiments
	5.1 Experimental Settings
	5.2 Quantitative performance
	5.3 Qualitative analysis

	6 Conclusions
	References
	A Supplements
	A.1 Temporal scale-free random graph simulation
	A.2 Competing methods details
	A.3 MMD
	A.4 Parameter-tuning
	A.5 Additional experimental results analysis

