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Graphs are important data representations for describing objects and their relationships, which appear in a
wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers
learning the distributions of given graphs and generating more novel graphs. Owing to its wide range of
applications, generative models for graphs have a rich history, which, however, are traditionally hand-crafted
and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models
for graph generation is an important step towards improving the fidelity of generated graphs and paves the
way for new kinds of applications. This article provides an extensive overview of the literature in the field of
deep generative models for graph generation. Firstly, the formal definition of deep generative models for the
graph generation as well as preliminary knowledge is provided. Secondly, two taxonomies of deep generative
models for unconditional, and conditional graph generation respectively are proposed; the existing works of
each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is
provided. Finally, the applications that deep graph generation enables are summarized and five promising
future research directions are highlighted.

Additional Key Words and Phrases: graph generation, graph neural network, deep generative models for
graphs.

1 INTRODUCTION
Graphs are ubiquitous in the real world, representing objects and their relationships such as social
networks, citation networks, biology networks, traffic networks, etc. Graphs are also known to
have complicated structures that contain rich underlying values [8]. Tremendous effort has been
made in this area, resulting in a rich literature of related papers and methods to deal with various
kinds of graph problems, which can be categorized into two types: 1) predicting and analyzing
patterns on given graphs. 2) learning the distributions of given graphs and generating more novel
graphs. The first type covers many research areas including node classification, graph classification,
link prediction, and community detection. Over the past few decades, a significant amount of work
has been done in this domain. More recently, representation learning methods, such as deep neural
networks for graphs, have also been applied to this aspect. In contrast to the first type, the second
type is related to graph generation problem, which is the focus of this paper.

Graph generation entails modeling and generating real-world graphs, and it has applications in
several domains, such as understanding interaction dynamics in social networks [47, 128, 129], link
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prediction [70, 113], and anomaly detection [109]. Owing to its many applications, the development
of generative models for graphs has a rich history, resulting in famous models such as random
graphs, small-world models, stochastic block models, and Bayesian network models, which generate
graphs based on apriori structural assumptions [98]. These graph generation models [1, 77, 111] are
engineered towards modeling a pre-selected family of graphs, such as random graphs [33], small-
world networks [132], and scale-free graphs [1]. However, they have limitations. First, due to their
simplicity and hand-crafted nature, these random graph models generally have limited capacity
to model complex dependencies and are only capable of modeling a few statistical properties of
graphs. For example, ErdosâĂŞRÃľnyi graphs do not have the heavy-tailed degree distribution that
is typical of many real-world networks. Second, the utilization of the apriori assumption limits
these traditional techniques from exploring more applications in larger scale of domains, where
the apriori knowledge of graphs are always not available.

Considering the limitations of the traditional graph generation techniques, a key open challenge
is developing methods that can directly learn generative models from an observed set of graphs.
Developing generative models that can learn directly from data is an important step towards
improving the fidelity of generated graphs, and it paves the way for new kinds of applications,
such as novel drug discovery [107, 142], and protein structure modeling [3, 5, 34]. Recent advances
in deep generative models, such as variational autoencoders (VAE) [68] and generative adversarial
networks (GAN) [43], indicate important progress in generative modeling for complex domains,
such as image and text data. Building on these approaches, a number of deep learning models for
generating graphs have been proposed, which formalized the promising area of Deep Generative
Models for Graph Generation, which is the focus of this survey.

1.1 Formal Problem Definition
A graph is defined asG(V, E, F ,E), whereV is the set of N nodes, and E ⊆ V ×V is the set ofM
edges. ei, j ∈ E is an edge connecting nodes vi ,vj ∈ V . The graph can be conveniently described
in matrix or tensor form using its (weighed) adjacency matrix A. If the graph is node-attributed
or edge-attributed, there are node attribute matrix F ∈ RN×D assigning attributes to each node or
edge attribute tensor E ∈ RN×N×K assigning attributes to each edge ei, j . K is the dimension of the
edge attributes, and D is the dimension of the node attributes.
Given a set of observed graphs G = {G1, ...Gs } sampled from data distribution p(G), where

each graph Gi may have different numbers of nodes and edges, the goal of learning generative
models for graphs is to learn the distribution of the observed set of graphs. By sampling a graph
G ∼ pmodel (G), new graphs can hence be achieved, which is known as deep graph generation, the
short form of deep generative models for graph generation. Sometimes, the generation process can
be conditioned on additional information y, such that G ∼ pmodel (G |y), in order to provide extra
control over the graph generation results. The generation process with such conditions is called
conditional deep graph generation.

1.2 Challenges
The development of deep generative models for graphs poses unique challenges. In order to address
these challenges, in recent years, numerous research works have been carried out to develop the
domain of deep graph generation. These challenges are mainly listed below.

Non-unique Representations. In the general deep graph generation, the aim is to learn the
distributions of possible graph structures without assuming a fixed set of nodes (e.g., to generate
candidatemolecules of varying sizes). In this general setting, a graphwithn nodes can be represented
by up ton! equivalent adjacency matrices, each corresponding to a different, arbitrary node ordering.
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Such high representation complexity is challenging to model, which makes it expensive to compute
and, thereafter, optimize objective functions, like reconstruction error, during training.

Complex Dependency. The nodes and edges of a graph have complex dependency and rela-
tionships. For example, in many real-world graphs two nodes are more likely to be connected if they
share common neighbors. Therefore, the generation of each node or edge cannot be modeled as an
independent event, but need to be generated jointly. One way to formalize the graph generation is
to make auto-regressive decisions, which naturally accommodate complex dependencies inside the
graphs through sequential formalization of graphs.

Large and Various Output Spaces. To generate a graph withn nodes the generative model may
have to output n2 values to specify its structure, which makes it expensive, especially for large-scale
graph. However, it is common to find graphs containing millions of graphs in real-world, such as
citation and social networks. Also, the numbers of nodes and edges vary between different graphs.
Consequently, it is important for generative models to scale to large-scale graphs for realistic graph
generation and to accommodate such complexity and variability in the output space.

Discrete Objects by Nature. The standard machine learning techniques, which were developed
primarily for continuous data, do not work off-the-shelf, but usually need adjustments. A prominent
example is the back-propagation algorithm, which is not directly applicable to graphs, since it works
only for continuously differentiable objective functions. To this end, it is usual to project graphs
(or their constituents) into a continuous space and represent them as vectors/matrix. However,
reconstructing the generated graphs from the continuous representations remains a challenge.

Conditional Generation. Sometimes, it is crucial to guide the graph generation process by
conditioning it on extra contextual information. For example, in Natural Language Processing
(NLP) domain, Abstract Meaning Representation (AMR) structures and dependency graphs [88,
145] are generated conditioning on an input sequence. The other example is about molecular
optimization [59], which generate the target graph conditioning on an input graph. Thus, the deep
graph generation problems can face a more challenging problem setting, which requires learning
the conditional distribution of the observed graphs given the condition.

Evaluation for Implicit Properties Evaluating the generated graphs is a very critical but
challenging issue, due to the unique properties of graphs which with complex and high-dimensional
structure and implicit features. Existing methods use different evaluation metrics. For example,
some works [51, 124, 142] compute the distance of the graph statistic distribution of the graphs in
the test set and graphs that are generated, while other works [34, 83] indirectly use some classifier-
based metrics to judge whether the generated graphs are of the same distribution as the training
graphs. It is important to systematically review all the existing metrics and choose the approximate
ones based on their strengths and limitations according to the application requirements.

Various Validity Requirements. Modeling and understanding graph generation via deep
learning involve a wide variety of important applications, including molecule designing [57, 107],
protein structure modeling [3], AMR parsing in NLP [88, 145], et al. These inter-discipline problems
have their unique requirements for the validity of the generated graphs. For example, the gener-
ated molecule graphs need to have valency validity, while the semantic parsing in NLP requires
Part-of-Speech (POS)-related constraint. Thus, addressing the validity requirements for different
applications is crucial in enabling wider applications of deep graph generation.

Black-box with Low Reliability. Compared with the traditional graph generation area, deep
learning based graph modeling methods are like black-boxes which bear the weaknesses of low
interpretability and reliability. Improving the interpretability of the deep graph generative models
could be a vital issue in unpacking the black-box of the generation process and paving the way
for wider application domains, which are of high sensitivity and require strong reliability, such as
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smart health and automatic driving. In addition, semantic explanation of the latent representations
can further enhance the scientific exploration of the associated application domains.

1.3 Our Contributions
Though recently emerged, deep graph generation has attracted great attentions. Various advanced
works on deep graph generation have been conducted, ranging from the one-shot graph gener-
ation to sequential graph generation process, accommodating various deep generative learning
strategies. These methods aim to solve one or several of the above challenges by works from
different fields, including machine learning, bio-informatics, artificial intelligence, human health
and social-network mining. However, the methods developed by different research fields tend to use
different vocabularies and solve problems from different angles. Also, standard and comprehensive
evaluation procedures to validate the developed deep generative models for graphs are lacking. A
comprehensive and systematic survey covering the research on deep generative models for graph
generation as well as its applications, evaluations, and open problems is imperative yet missing.

To this end, this paper provides a systematic review of deep generative models for graph gener-
ation. We categorize methods and problems based on the challenges they address, discuss their
underlying assumptions, and compare their advantages and disadvantages. The goal is to help
interdisciplinary researchers choose appropriate techniques to solve problems in their applications
domains, and more importantly, to help graph generation researchers understand the basic princi-
ples as well as identify open research opportunities in deep graph generation domain. As far as
we know, this is the first comprehensive survey on deep generative models for graph generation.
Below, we summarize the major contributions of this survey:

• We propose a taxonomy of deep generative models for graph generation categorized by
problem settings and methodologies. The drawbacks, advantages, relations, and difference
among different subcategories have been introduced.

• We provide a detailed description, analysis, and comparison of deep generative models for
graph generation as well as the deep generative models on which they are based.

• We summarize and categorize the existing evaluation procedures and metrics of deep genera-
tive models for graph generation.

• We introduce existing application domains of deep generative models for graph generation
as well as the potential benefits and opportunities they bring into the application domains.

• We suggest several open problems and promising future research directions in the field of
deep generative models for graph generation.

1.4 Relationship with Related Surveys
There are three types of related surveys. The first type mainly centers around the traditional graph
generation by classic graph theory and network science [13], which does not focus on the most
recent advancement in deep generative neural networks in artificial intelligence. The second type
is about representation learning on graphs [45, 135, 146]. This is a very hot domain in machine
learning, especially deep learning. It can benefit a number of downstream tasks including node and
graph classification, link prediction, and graph generation. This domain focuses on learning graph
embedding given existing graphs. Few works include a handful of deep generative models that
could be used for representation learning tasks. The last type is specific to particular applications
such as molecule design by deep learning, instead of for this generic technical domain. To the best
of our knowledge, there is no systematic survey on deep generative models for graph generation.

1.5 Outline of the Survey
The rest of this survey is organized as follows. In Section 2, we first introduce the preliminary of the
existing deep generative models that are used as the base model for learning graph distributions.
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Then we introduce the definitions of the basic concepts required to understand the deep graph
generation problem as well as its extensive problem, conditional deep graph generation. In the
next two sections, we provide the taxonomy of deep graph generation, and the taxonomy structure
is illustrated in Fig.1. Section 3 compares related works of unconditional deep graph generation
problem and summarizes the challenges faced in each. In Section 4, we categorize the conditional
deep graph generation in terms of three sub-problem settings. The challenges behind each problem
are summarized, and a detailed analysis of different techniques is provided. Lastly, we summarize
and categorize the evaluation metrics in Section 5. Then we present the applications that deep
graph generation enables in Section 6. At last, we discuss five potential future research directions
and conclude this survey in Section 7.

 

 

Fig. 1. Classification of deep generative models for graph generation problems

2 PRELIMINARIES KNOWLEDGE
In recent years, there has been a resurgence of interest in deep generative models, which have been
at the forefront of deep unsupervised learning for the last decade. The reason for that is because
they offer a very efficient way to analyze and understand unlabeled data. The idea behind generative
models is to capture the inner probabilistic distribution that generates a class of data to generate
similar data [103]. Emerging approaches such as generative adversarial networks (GANs) [43],
variational auto-encoders (VAEs) [68], generative recursive neural network (generative RNN) [126]
(e.g., pixelRNNs, RNN language models), flow-based learning [104], and many of their variants and
extensions have led to impressive results in myriads of applications. In this section, we provide a
review of five popular and classic deep generative models for learning the distributions by observing
large amounts of data in any format. They include VAE, GANs, generative RNN, flow-based learning,
and Reinforcement Learning, which also form the backbone of the base learning methods of all the
existing deep generative models for graph generation.

2.1 Variational Auto-encoders
VAE [68] is a latent variable-basedmodel that pairs a top-down generator with a bottom-up inference
network. Instead of directly performing maximum likelihood estimation on the intractable marginal
log-likelihood, training is done by optimizing the tractable evidence lower bound (ELBO). Suppose
we have a dataset of samples x from a distribution parameterized by ground truth generative latent
codes z ∈ Rc (c refers to the length of the latent codes). VAE aims to learn a joint distribution
between the latent space z ∼ p(z) and the input space x ∼ p(x).

Specifically, in the probabilistic setting of a VAE, the encoder is defined by a variational posterior
qϕ (z |x), while the decoder is defined by a generative distribution pθ (x |z), as represented by the two
orange trapezoids in Fig. 2(a). ϕ,θ are trainable parameters of the encoder and decoder. The VAE
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Fig. 2. Abstract architecture of deep generative models: (a) Variational auto-encoders; (b) Deep Q-network;
(c) Generative adversarial nets; (d) generative RNN.

aims to learn a marginal likelihood of the data in a generative process as:max
ϕ,θ
Eqϕ (z |x )[logpθ (x |z)].

Then the marginal likelihoods of individual data points can be rewritten as follows:

logpθ (x |z) = DKL(qϕ (z |x)| |p(z)) + L(ϕ,θ ;x , z), (1)

where the first term stands for the non-negative KullbackâĂŞLeibler divergence between the true
and the approximate posterior; the second term is called the (variational) lower bound on the
marginal likelihood. Thus, maximizing L(ϕ,θ ;x , z) is to maximize the lower bound of the true
objective:

L(ϕ,θ ;x , z) = Eqϕ (z |x )[logpθ (x |z)] − DKL(qϕ (z |x)| |p(z)). (2)

In order to make the optimization of the above objective tractable in practice, we assume a simple
prior distribution p(z) as a standard Gaussian N(0, I) with a diagonal co-variance matrix. Parame-
terizing the distributions in this way allows for the use of the âĂĲreparameterization trickâĂİ to
estimate gradients of the lower bound with respect to the parameter ϕ, where each random variable
zi ∼ qϕ (zi |x) is parameterized as Gaussian with a differentiable transformation of a noise variable
ϵ ∼ N(0, 1), that is, z is computed as z = µ + σ ⊙ ϵ , where µ and σ are outputs from the encoder.

2.2 Generative Adversarial Nets
GANs were introduced as an alternative way to train a generative model [43]. GANs are based on a
game theory scenario called the min-max game, where a discriminator and a generator compete
against each other. The generator generates data from stochastic noise, and the discriminator tries
to tell whether it is real (coming from a training set) or fabricated (from the generator). The absolute
difference between carefully calculated rewards from both networks is minimized so that both
networks learn simultaneously as they try to outperform each other.
Specifically, the architecture of GANs consists of two âĂŸadversarialâĂŹ models: a generative

model Gθ which captures the data distribution p(x), and a discriminative modelDϕ which estimates
the probability that a sample comes from the training set rather than Gθ , as shown in Fig.2(c).
Both Gθ and Dϕ could be a non-linear mapping function, such as a multi-layer perceptron [125]
parameterized by parameters θ and ϕ. To learn a generator distribution pmodel (x) of observed data
x , the generator builds a mapping function from a prior noise distribution pz (z) to data space as
Gθ (z). And the discriminator, Dϕ (x), outputs a single scalar representing the probability that the
input data x came form the training data rather than sampled from pmodel (x).
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The generator and discriminator are both trained simultaneously by adjusting the parameters of
pmodel (x) to minimize loд(1−Dϕ (Gθ (z)) and adjusting the parameters ofDϕ to minimize loдDϕ (x),
as if they are following the two-player min-max game with value function V (Gθ ,Dϕ ):

min
Gθ

max
Dϕ

V (Gθ ,Dϕ ) = Ex∼pmodel (x )[loдDϕ (x)] + Ez∼pz (z)[loд(1 − Dϕ (Gθ (z))], (3)

The training of the generator and discriminator is kept alternating until the generator can hopefully
generate real-like data that is difficult to discriminate from real samples by a strong discriminator.
In general, GANs show great power in generating data such as image [26, 43], audio [20], and

texts [97]. In contrast to VAE, GANs learn to generate samples without assuming an approximate
distribution. By utilizing the discriminator, GANs avoid optimizing the explicit likelihood loss
function, whichmay explain their ability to produce high-quality objects as demonstrated by Denton
et al. [26]. However, GANs still have drawbacks. One is that they can sometimes be extremely hard
to train in adversarial style. They may fall into the divergence trap very easily by getting stuck in a
poor local minimum. Mode collapse is also an issue, where the generator produces samples that
belong to a limited set of modes, which results in low diversity. Moreover, alternatively training
and large computation workloads for two networks can result in long-term convergence process.

2.2.1 Generative Recursive Neural Network. RNN [94] is a straightforward adaptation of the stan-
dard feed-forward neural network by using their internal state (memory) to process variable length
sequential data. At each step, the RNN predicts the output depending on the previous computed
hidden states and updates its current hidden state, that it, they have a âĂĲmemoryâĂİ that captures
information about what has been calculated so far. The RNNâĂŹs high dimensional hidden state
and nonlinear evolution endow it with great expressive power to integrate information over many
iterative steps for accurate predictions. Even if the non-linearity used by each unit is quite simple,
iterating it over time leads to very rich dynamics [126].

A standard RNN is formalized as follows: given a sequence of input vectors (x1, ...,xT ), the RNN
computes a sequence of hidden states (h1, ...,hT ) and a sequence of outputs (o1, ...,oT ) by iterating
the following equations from t = 1 to T :

ht = tanh(Uxt +Vht−1 + bh); ot =Wht + bo (4)

whereU ,V , andW are learning weight matrices; the vectors bh and bo are biases for calculating the
hidden states and output at each step, respectively. The expression Vht−1 at step t = 1 is initialized
by a vector, h0, and the tanh non-linearity activation function is applied coordinate-wise.
The RNN model can be modified to a generative model for generating the sequential data, as

shown in Fig. 2(d). The goal of modeling a sequence is to predict the next element in the sequence
given the previous generated elements. More formally, given a training sequence (x1, ...,xT ),
RNN uses the sequence of its output vectors (o1, ...,oT ) to parameterize a sequence of predictive
distributions p(xt+1 |x≤t ). The distribution type of p(xt+1 |x≤t ) need to be assumed in advance. For
example, to determine the category of the discrete data xt+1, we can assume a softmax distribution
as p(xt+1 = j) = exp(o(j)t )/∑K o(K )

t , where j refers to one of the categories of the object, o(j)t refers to
the j-th variable in the output vector ot and K refers to the total number of categories of the objects.
The objective of modeling sequential data is to maximize the total log likelihood of the training
sequence

∑T−1
t=0 logp(xt+1 |x≤t ), which implies that the RNN learns a joint probability distribution

of sequences. Then we can generate a sequence by sampling from p(xt+1 |x≤t ) stochastically, which
is parameterized by the output at each step.

2.3 Flow-based Learning
Normalizing flows (NFs) [27] are a class of generative models that define a parameterized invertible
deterministic transformation between two spaces z and x . z ∼ pz (z) is a latent space that follows
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distribution such as Gaussian, and x ∼ px (x) is a real-world observational space of objects such as
images, graphs, and texts. Let fθ : z −→ x be an invertible transformation parameterized by θ . Then
the relationship between the density function of real-world data x and that of z can be expressed
via the change-of-variables formula:

px (x) = pz (f −1θ (x))|det(∂ f −1θ (x)/∂x)|. (5)

There are two key processes of normalizing flows as a generative model: (1) Calculating data likeli-
hood: given a datapoint x , the exact density px (x) can be calculated by inverting the transformation
z = f −1θ (x); (2) Sampling: x can be sampled from the distribution px (x) by first sampling z ∼ pz (z)
and then performing the transformation x = fθ (z). To efficiently perform the above mentioned
operations, fθ is required to be invertible with an easily computable Jacobian determinant.
Autoregressive flow (AF), originally proposed in [104], is a variant of normalizing flow by

providing an easily computable triangular Jacobian determinant. It is specially designed formodeling
the conditional distributions in the sequence. Formally, givenx ∈ RD (D is the dimension of observed
sequential data), the autoregressive conditional probabilities for the d-th element in the sequence
can be parameterized as Gaussian:

p(xd |x1:d−1) = N(µd , (σd )2), where µd = дθ (x1:d−1), σd = дϕ (x1:d−1) (6)

whereдθ andдϕ are unconstrained and positive scalar functions of x1:d−1 respectively for computing
the mean and deviation. In practice, these functions can be implemented as neural networks. The
affine transformation of AF can be written as follows:

fθ (zd ) = xd = µd + σd · zd ; f −1θ (xd ) = zd = (xd − µd )/σd , (7)

where zd is the randomly sampled value from standard Gaussian. The Jacobian matrix here is
triangular, since ∂xi/∂zj is non-zero only for j ⩽ i . Therefore, the determinant can be efficiently
computed through

∏D
d=1 σd . Specifically, to perform density estimation, we can apply all individual

scalar affine transformations in parallel to compute the base density, each of which depends on
previous variables x1:d−1; to sample x , we can first sample z ∈ RD and compute x1 through the
affine transformation, and then each subsequent xd can be computed sequentially based on x1:d−1.

2.4 Reinforcement Learning and Deep Q-Network
Reinforcement learning (RL) is a commonly used framework for learning controlling policies by a
computer algorithm, the so-called agent, through interacting with its environment [118, 127]. Here,
we give a brief introduction of this learning strategy as well as its typical form deep Q-learning
networks (DQNs) [96] for data generation.
In RL process, an agent is faced with a sequential decision making problem, where interaction

with the environment takes place at discrete time steps. The agent takes action at at state st at
time t , by following certain policies or rules, which will result in a new state st+1 as well as a
reward rt . If we consider infinite horizon problems with a discounted cumulative reward objective
Rt =

∑∞
t ′=t γ

t ′−trt ′ (γ ∈ [0, 1] is the discount factor), the aim of the agent is to find an optimal
policy π : s −→ a by maximizing its expected discounted cumulative rewards. Q-Learning [131] is a
value-based method for solving RL problems by encoding policies through the use of action-value
functions:

Qπ (s,a) = Eπ [
∑∞

t=0
γ trt |s0 = s,a0 = a]. (8)

The optimal value function is denoted as Q∗(s,a) = max
π

Qπ (s,a), and an optimal policy π ∗ can
be easily derived by π ∗(s) ∈ argmaxaQ∗(s,a). Typically, Q-value function relies on all possible
state-action pairs, which are often impractical to obtain. One solution for addressing this challenge
is to approximate Q(s,a) using a parameterized function [127].
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Based on recent advances in deep learning techniques, Mnih et al. [96] introduced the DQN. The
DQN approximates the Q-value function with a non-linear deep convolutional network, which also
automatically creates useful features to represent the internal states of the RL, as shown in Fig. 2(b).
In DQN, the agent interacts with the environment in i discrete iterations, aiming to maximize its
long term reward. DQN has shown great power in generating sequential objects by taking a series
of actions [78]. A sequential object is generated based on a sequence of actions that are taken.
During the generation, DQN selects the action at each step using an ϵ-greedy implementation.

With probability ϵ , a random action is selected from the range of possible actions, otherwise the
action which results in high Q-value score is selected. To perform experience replay, the agentâĂŹs
experiences et = (st ,at , rt , st+1) at each time-step t are stored in a data set Dt = {e1,fi, et }. At
each iteration i in the learning process, the updates of the learning weights are applied on samples
of experience (st ,at , rt , st+1) ∼ U (D), drawn randomly from the pool of stored samples, with the
following loss function:

L(θi ) = E(st ,at ,rt ,st+1)∼U (D)[(rt + γmax
at+1

Q(st+1,at+1;θ−i ) −Q(s,a;θi ))2], (9)

where θi refers to the parameters of the Q-network at iteration i and θ−i refers to the network
parameters used to compute the target at iteration i . The target network parameters θ−i are only
updated with the Q-network parameters θi every several steps and are held fixed between individual
updates. The process of generating the data after training is similar to that of the training process.

3 UNCONDITIONAL DEEP GENERATIVE MODELS FOR GRAPH GENERATION
The goal of unconditional deep graph generation is to learn the distribution pmodel(G) based on a
set of observed realistic graphs being sampled from the real distribution p(G) by deep generative
models. Based on the style of the generation process, we can categorize the methods into two main
branches: (1) Sequential generating: this generates the nodes and edges in a sequential way, one
after another, (2) One-shot generating: this refers to building a probabilistic graph model based
on the matrix representation that can generate all nodes and edges in one shot. These two ways
of generating graphs have their limitations and merits. Sequential generating performs the local
decisions made in the preceding one in an efficient way with time complexity of only O(N ), but it
has difficulty in preserving the long-term dependency. Thus, some global properties (e.g., scale-free
property) of the graph are hard to include. Moreover, existing works on sequential generating are
limited to a predefined ordering of the sequence, leaving open the role of permutation. One-shot
generating methods have the capacity of modeling the global property of a graph by generating
and refining the whole graph (i.e. nodes and edges) synchronously through several iterations, but
most of them are hard to scale to large graphs since the time complexity is not less than O(N 2).

Table 1. Deep Generative-based Methods for Unconditional Graph Generation

Generating Style Techniques Reference

Sequential Generating
Node-sequence-based Traversal-based [4, 23, 67, 107, 123, 142, 144]

Selection-based [66, 79, 82, 86]
Edge-sequence-based [5, 6, 11, 44]
Graph-Motif-sequence-based [48, 57, 81, 105]
Rule-sequence-based [22, 73]

One-shot Generating
Adjacency-based

MLP-based [3, 24, 34, 89, 106, 119]
Message-Passing-based [16, 36, 49, 101]
Invertible-transform-based [54, 92]

Edge-list-based Random-walk-based [11, 18, 38, 143]
Node-similarity-based [47, 69, 85, 113, 117, 150]
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3.1 Generating a Graph Sequentially
This type of methods treats the graph generation as a sequential decision making process, wherein
nodes and edges are generated one by one (or group by group), conditioned on the sub-graph already
generated. By modeling graph generation as a sequential process, these approaches naturally
accommodate complex local dependencies between generated edges and nodes. A graph G is
represented into a sequence of components S = {s1, ..., sN }, where each si ∈ S can be regarded as a
generation unit. The distribution of graphs p(G) can then be formalized as the joint (conditional)
probability of all the components in general. While generating graphs, different components will be
generated sequentially, by conditioning on the other parts already generated. One core issue is how
to break down the graph generation into sequential generation of its components. Thus, regarding
the formalization the unit si for sequentialization, there are four common ways: node-sequence-
based, edge- sequence-based, graph-motif-sequence-based and rule-sequence-based, as shown on Fig. 1
(left).

 

Fig. 3. Four categories in sequential generating: graph line refers to the immediate graph that are generated
per step; Sequence line refers to the sequence Si that is generated per step.

3.1.1 Node-Sequence-based. Node-sequence-based methods essentially generate the graph by
generating one node and its associated edges per step, as shown in Fig. 3 (a). Specifically, the
graph can be modeled by a sequence based on a predefined ordering π on nodes. Each unit si
in the sequence of components S is represented as a tuple si = (vπi , {ei, j }j<i ), indicating that at
each high-level step, the generator generates one node vπi and all its associated edges set {ei, j }j<i .
Here we omit the node and edge attribute symbol for clarity, but we should bear in mind that the
generated node and edges can all have attributes (i.e. type, label). Given a newly generated node
vπi , existing methods for the generation of its associated edges {ei, j }j<i can be grouped into two:
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1) traversal-based, where the edges are formed when traversing the newly generated node vi and
all the existing nodes, and 2) selection-based, which entails determining whether there is an edge
between the newly generated node vi and any of the existing nodes.

Traversal-based. When treating a graph as a sequence of node tuples each of which is denoted
as si = (vπi , {ei, j }j<i ), several approaches [23, 67, 107, 117, 123, 142, 144] represent each node’s
associated edges by the adjacent vector Aπi, · (we assume that the graph is undirected, without
the loss of generality), which covers all the potential edges from the newly added node vi to the
previously generated nodes. Thus, we can further represent each unit as si = (vπi ,Aπi, ·). And the
sequence can be represented as Seq(G,π ) = {(vπ1 ,Aπ1, ·), ..., (vπN ,AπN , ·)}. The aim is to learn the
distribution as:

p(Vπ ,Aπ ) =
∏n+1

i=1
p(vπi |vπ<i ,Aπ<i, ·)p(Aπi, · |vπ≤i ,Aπ<i, ·), (10)

wherevπ<i refers to the nodes generated beforev
π
i andAπ<i, · refers to the adjacent vectors generated

before Aπi, ·. Such joint probability can be implemented by sequential-based architectures such as
generative RNN models [83, 107, 142, 144] and auto-regressive flow-based learning models [117],
which are introduced subsequently.

In the generative RNN-based models, the node distributions p(vπi |vπ<i ,Aπ<i, ·) are typically as-
sumed as a multivariate Bernoulli distribution that is parameterized by ϕi ∈ RT , where T refers to
the number of node categories. The edge existence distribution p(Aπi, · |vπ≤i ,Aπ<i, ·) can be assumed
as the joint of several dependent Bernoulli distributions as follows:

p(Aπi, · |Aπ<i, ·) =
∏i−1

j=1
p(Aπi, j |Aπi,<j ,Aπ<i, ·), (11)

where p(Aπi, · |Aπ<i, ·) is parameterized by θi ∈ Ri−1 and the distribution of p(Aπi, j |Aπi,<j ,Aπ<i, ·) is
parameterized by each entry θi, j in θi . The architecture for implementing Eq. 10 and 11 can be
regarded as a hierarchical-RNN, where the outer RNN is used for generating the nodes and the
inner RNN is used for generating each node’s associated edges. After either a node or edge is
generated, a graph-level hidden representation of the already generated sub-graph is calculated
and updated through a message passing neural network (MPNN) [40]. Specifically, at each Step i , a
parameter ϕi will be calculated through a multilayer perceptron (MLP)-based function based on the
current graph-level hidden representation. The parameter ϕi is used to parameterize the Bernoulli
distribution of node existence, from which node vπi is sampled. After that, the adjacent vector Aπi, ·
is generated by sequentially generating each of its entry. Specifically, at each step j in generating
Aπi, ·, the edge A

π
i, j is generated by sampling based on the conditional parameter θi, j , which is also

calculated through a MLP-based function based on the current graph-level hidden representation.
In addition to RNN-based methods, now we introduce some representative works based on

auto-regressive flow-based learning models [117]. Shi et al. [117] achieved conditional generation
via the flow-based learning as introduced in Section 2.3. Based on the idea to first transform discrete
data into continuous data with real-valued noise and dequantization techniques [27], specifically,
the discrete unit si = (vπi ,Aπi, ·) is pre-processed into continuous data zi = (zFi , zAi ):

zFi = F πi + u; zAi, j = Aπi, j + u, u ∼ U [0, 1), (12)

where F πi refers to the category of nodevπi andU [0, 1) refers to a uniform distribution [71]. Then the
conditional distributions for the continuous data zFi and zAi, j are assumed as Gaussian distribution:

p(zFi |zF<i , zA<i, ·) = N(µFi , (σ F
i )2); P(zAi, j |zF≤i , zA<i, ·, zAi,<j ) = N(µAi, j , (σA

i, j )2), (13)

where the mean µFi , µ
A
i, j and standard deviation σ F

i , σ
A
i, j of the Gaussian distribution for node

and edge generation are calculated based on the MLP-based networks whose input is the hidden
representations of the already generated graph. The hidden representations of the graph are
typically calculated through MPNN.
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Several additional works are based on VAE, yet their latent representations are generated se-
quentially. Su et al. [123] propose a graph recurrent neural network with variational Bayes to
learn the conditional distributions. It uses the conditional VAE (CVAE) [120] and utilizes three
MLP-based networks for modeling three distributions of the generation process, namely prior
distribution p(zi |vπ<i ,Aπ<i ), node generation distribution p(vπi |zi ,vπ<i ,Aπ<i, ·), and edge generation
distribution p(Aπi, · |zi ,vπ≤i ,Aπ<i, ·). Here zi refers to the latent representation at Step i . During the
generation process, at each step i , the prior network is first used to draw samples zi from the learnt
prior distribution p(zi |vπ<i ,Aπ<i ), which is parameterized by the output of an MLP-based function
with the input of the already generated graph. Then the node vπi and its associated edges Aπi, · are
generated by sampling from p(vπi |zi ,vπ<i ,Aπ<i, ·) and p(Aπi, · |zi ,vπ≤i ,Aπ<i, ·), respectively, which are
parameterized by the outputs of two MLP-based functions with the input of zi and the already
generated graph.

Selection-based. The selection-based methods generate the nodes in the same way as the
traversal-based method, but have a different way of generating the associated edge set. Traversing
all the existing nodes to generate the associated edge set for each newly generated node vπi is time-
consuming and potentially low in efficiency, especially for sparse graphs. It is efficient to directly
generate the edge set {ei, j }j<i of vπi by only selecting the neighboring nodes from the already
generated nodes. Specifically, for each newly generated node vπi , the selection-based methods
generate its {ei, j }j<i relying on two functions: an addEdge function to determine the size of the
edge set {ei, j }j<i of node vπi and a selectNode function to select the neighboring nodes sequentially
from the partially generated graph [66, 79, 82, 86].
Specifically, at Step i , after generating a node vπi , an addEdge function is used to output a

parameter as faddEdдe (hπvi ), following a Bernoulli distribution indicating whether we want to add
an edge to the node vπi . Here h

π
vi refers to the node-level hidden states of vπi which is calculated

through a node embedding function, e.g., MPNN based on the already-generated parts of the graph.
If an edge is determined to be added, the next step is selecting the neighboring node vπj from the
existing nodes. To select this neighboring node, we can compute a scoremπj (as Eq.14) for each
existing node vπj based on selectNode function fselectNode , which is then passed through a softmax
function [10] to be properly normalized into a distribution of nodes:

mπi, j = fselectNode (hπvi ,h
π
vj ), wherej < i . (14)

p(ei, j |vπ<i , {e<i, j }j<i ) = so f tmax(mπi, j ). (15)

The MLP-based function fselectNode maps pairs of node-level hidden states hπvi and h
π
vj to a score

mπi, j for connecting node vπj to the new node vπi . This can be extended to handle discrete edge
attributes by makingmπi, j a vector of scores with the same size as the number of the edge attribute’s
categories, and taking the softmax over all categories of the edge attribute. Based on the aforemen-
tioned procedure, the two functions faddEdдe and fselectNode are iteratively executed to generate
the edges within the edge set {e<i, j }j<i of nodevπi until the terminal signal from function faddEdдe
indicates that no more edges for node vi are yet to be added.

3.1.2 Edge-Sequence-based. Edge-sequence-based methods represent the graph as a sequence of
edges and generate an edge as well as its two related nodes per step, as shown in Fig. 3 (b). It defines
an ordering of the edges in the graph and also an ordering function α(·) for indexing the nodes.
Then the graphG can be modeled by a sequence of edges [5, 6, 44] and each unit in the sequence is
a tuple represented as si = (α(u),α(v), Fu , Fv ,Eiu,v ), where each element of the sequence consists of
a pair of nodes’ indexes α(u) and α(v) for nodeu andv , node attribute Fu , Fv , and the edge attribute
Eiu,v for the edge at Step i . The edge-sequence-based methods usually employ two parallel networks
for generating two related nodes of the edge respectively. The key problem in generating graphs by
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a sequence of edges is to pre-define the ordering index function α(·) for nodes; thus, based on the
index of the generated nodes, the graph can be constructed from the generated sequence of edges.
Goyal et al. [44] used depth first search (DFS) algorithm [137] as the ordering index function

α(·) to construct graph canonical index of nodes by performing a DFS. The conditional distribution
for generating each edge in graph G can be formalized as follows:

p(si |s<i ) = p(α(u)|s<i )p(α(v)|s<i )p(Fu |s<i )p(Fv |s<i )p(Eiu,v |s<i ), (16)

where s<i refers to the already generated edges and nodes. A customized long short-term memory
(LSTM) is designed which consists of a transition state function ftrans for transferring the hidden
state of the last step into that of the current step (in Eq.17), an embedding function femb for
embedding the already generated graph into latent representations (in Eq. 17), and five separate
output functions for the above five distribution components (in Eq 17 to Eq. 20). It is assumed that
the five elements in one tuple are independent of each others, and thus the inference is operated as:

h(i)G = ftrans(h(i−1)G , femb(si−1)) (17)

α(u) ∼ Cat(θα (u)); θα (u) = fα (u)(h(i)G ); α(v) ∼ Cat(θα (v)); θα (v) = fα (v)(h(i)G ) (18)

Fu ∼ Cat(θFu ); θFu = fFu (h
(i)
G ); Fv ∼ Cat(θFv ); θFv = fFv (h

(i)
G ) (19)

Eiu,v ∼ Cat(θEiu,v ); θEiu,v = fEiu,v (h
(i)
G ), (20)

where si−1 refers to the generated tuple at Step i − 1 and is represented as the concatenation of
all the component representations in the tuple. h(i)G is a graph-level LSTM hidden state vector that
encodes the state of the graph generated so far at Step i . Given the graph state h(i)G , the output of
five functions fα (u), fα (v), fFu , fFv , fEu,v model the categorical distribution of the five components
of the newly formed edge tuple, which are paramerized by five vectors θα (u), θα (v), θFu , θFv , θEu,v
respectively. Finally, the components of the newly formed edge tuple are sampled from the five
learnt categorical distributions.
In contrast to the methods mentioned above, which assume that the elements in each tuple

si = (α(u),α(v), Fu , Fv ,Eiu,v ) are independent of each other, Bacciu et al. [5] assume the existence
of node dependence in a tuple. This method deals with homogeneous graphs without considering
the node/edge categories, by representing each tuple in the sequence as si = (α(u),α(v)) and
formalizing the distribution as p(si |s<i ) = p(α(u)|s<i )p(α(v)|α(u), s<i ). Then, the first node is
sampled in the same way as in Eq. 18, while the second node in the tuple is sampled as follows:

α(v) ∼ Cat(θα (v)); θα (v) = fα (v)(h(i)G ,дemb(α(u))), (21)

where the function дemb is used for embedding the index of the first generated node u in the pair.

3.1.3 Graph-motif-sequence-based. Several methods [48, 57, 81, 105] are proposed to represent a
graph G as a sequence of graph motifs as Seq(G) = {C1, ...,CM }, where a block of nodes and edges
that constitute each graph motif Ci are generated at each step, as shown in Fig. 3 (c). The varying
size of graph motif(i.e. the number of nodes in a graph motif) along with the sampling overlap size
(i.e. the overlap between two graph motifs) can allow for the exploration of the efficiency-quality
trade-off of the generation model. A key problem in graph motif-based methods is how to connect
the newly generated graph motif to the graph portion that has already been generated, considering
that there are many potential ways in linking two sub-graphs. This is mainly depends on the
definition of the graph motifs. Currently, there are two ways to solve this problem.

One of the ways is designed for generating general graphs; it is similar to the traversal-based node-
sequence generation by generating the adjacent vectors for each edge, such as the GraphRNN [142],
except for the generation of several nodes instead of one per step. As described in Section 3.1.1, a
graphG is represented as a sequence of node-based tuples asG = {s1, ..., sN }, where si = (vπi ,Aπi, ·)
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is generated per step. Based on this node sequence, Liao et al. [81] (GRANs) regard every B recursive
nodes tuples as a graph motifCi and generates each block per step. In this way, the generated nodes
in the new graph motif follow the ordering of the nodes in the whole graph and contain all the
connection information of the existing and newly generated nodes. To formalize the dependency
among the existing and newly generated nodes, GRANs proposes anMPNN-basedmodel to generate
the adjacent edge vectors. Specifically, for the t-th generation step, a graph Gt that contains the
already-generated graph with B · (t − 1) nodes and the edges among these nodes, as well as the B
nodes in the newly generated graph motif is constructed. For these new B nodes, edges are initially
fully added to connect them with each other and the previous B · (t − 1) nodes. The node-level
hidden states of the newly added B nodes are all initialized with 0. Then an MPNN-based graph
neural network (GNN) [115] on this augmented graph is used to update the nodes’ hidden states
by encoding the graph structure. After several rounds of message passing implementation based
on a GNN, the node-level hidden states of both the existing and newly added nodes are used to
infer the final distribution of the newly added edges as follows:

p(Ct |C<t ) =
∏

B(t−1)<i≤B

∏
1≤j≤i

p(Aπi, j |C<t ) = β
∏

B(t−1)<i≤B

∏
1≤j≤i

θi, j , (22)

θi, j = Siдmoid(MLPθ (hvi − hvj )), (23)

where θi, j parameterizes the Bernoulli distribution for the edge existence through the MLP-based
functionMLPθ , which takes the node-level hidden states as input.
The definition of graph motifs can also involve domain knowledge, such as in the situation of

molecules (i.e., graph of atoms) [57, 105], where the sequence of the graph motifs is generated
based on an RNN model. Jin et al. [57] propose the Junction-Tree-VAE by first generating a tree-
structured scaffold over chemical substructures, and then combining them into a molecule with an
MPNN. Specifically, a Tree Decomposition of Molecules algorithm [110] tailored for molecules to
decompose the graph G into several graph motifs Ci is followed, and each Ci is regarded as a node
in the tree structure T . To generate a graph G, a T is first generated and then converted into the
final graph. The decoder for generating a T consists of both topology prediction function and label
prediction function. The topology prediction function models the probability of the current node to
have a child, and the label prediction function models a distribution of the labels of all types of Ci .
When reproducing a molecular graph G that underlies the predicted junction tree T , since each
motif contains several atoms, the neighboring motifs Ci and Cj can be attached to each other as
sub-graphs in many potential ways. To solve this, a scoring function over all the candidates graphs
is proposed, and the optimal one that maximizes the scoring function is the final generated graph.
Podda et al. [105] also deal with the molecule generation problem but with a different way of

defining the graph motifs. To break a molecule into a sequence of fragments Ci , they leverage the
breaking of retrosynthetically interesting chemical substructures (BRICS) algorithm [25], which
breaks strategic bonds in a molecule that matches a set of chemical reactions. Specifically, their
fragmentation algorithm works by scanning atoms in a sequence from left to right in the order
imposed by the simplified molecular input line entry system (SMILES) encoding [133]. As soon as
a breakable bond (according to the BRICS rules) is encountered during the scanning process, the
molecule is broken into two at that bond. After that, the leftmost fragment is collected, and the
process repeats on the rightmost fragment in a recursive fashion. Since the fragment extraction is
ordered from left to right according to the SMILES representation, it is possible to reconstruct the
original molecule from a sequence of fragments. In this way, they successfully represent a molecule
as a sequence, and view a sequence of fragments as a âĂĲsentenceâĂİ; in addition they learn to
generate the sentence similar to the work proposed by Bowman et al. [15] based on skip-gram
embedding methods [75] and gated recurrent units (GRUs) [21].
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3.1.4 Rule-Sequence-based. Several methods [22, 73] chose to generate a sequence of production
rules or commands, guided by which graph can be constructed sequentially. There are some
structured data that often come with formal grammars (e.g. molecule), which results in strict
semantic constrain. Thus, to enforce the semantic validity of the generated graphs, graph generation
is transformed into generating their parse trees that are derived from context free grammar (CFG),
while the parse tree can be further expressed as a sequence of rules based on a pre-defined order.

Kusner et al. [73] propose generating a parse tree that describes a discrete object (e.g. arithmetic
expressions and molecule) by a grammar; they also proposed a graph generation method named
GrammerVAE. An example of using the parse tree for molecule generation: to encode the parse tree,
they decompose it into a sequence of production rules by performing a pre-ordered traversal on its
branches from left-to-right, and then convert these rules into one-hot indicator vectors, where each
dimension corresponds to a rule in the SMILES grammar. The deep convolutional neural network is
then mapped into a continuous latent vector z. While decoding, the continuous vector z is passed
through an RNN which produces a set of unnormalized log probability vectors (or âĂŸlogitsâĂŹ).
Each dimension of the logit vectors corresponds to a production rule in the grammar. The model
generates the parse trees directly in a top-down direction, by repeatedly expanding the tree with its
production rules. The molecules are also generated by following the rules generated sequentially, as
shown in Fig. 3 (d). Although the CFG provides a mechanism for generating syntactic valid objects,
it is still incapable of guaranteeing the model for generating semantic valid objects [73]. To deal
with this limitation, Dai et al. [22] propose the syntax-directed variational autoencoder (SD-VAE),
in which a semantic restriction component is advanced to the stage of syntax tree generator. This
allows for a the generator with both syntactic and semantic validity.

3.2 Generating a Graph in One Shot
These methods learn to map each whole graph into a single latent representation which follows
some probabilistic distribution in latent space. Each whole graph can then be generated by directly
sampling from this probabilistic distribution in one step. The core issue of these methods is usually
how to jointly generate graph topology together with node/edge attributes (if at all). Considering
that the graph topology can usually be represented in terms of adjacency matrix and edge list,
the existing methods can be categorized as adjacency-based and edge-list based. The former one
focuses on directly generating the whole adjacency matrix, while the latter generates the graph
topology by examining the existence of edges corresponding to different pairs of nodes.
3.2.1 Adjacency-based. Adjacency one-shot method assumes complex dependence among the
graphs and generates the whole graph in one step but considering the interactions among nodes
and edges. Adjacency one-shot method varies based on the decoding techniques where the adjacent
matrix Aπ or edge attributes tensor Eπ and node attribute matrix F π are jointly generated from
a graph-level latent representation z. The main challenge is how to ensure correlation among
elements of a graph in order to pursue of global properties. In terms of the techniques to tackle this
challenge, there are three categories of adjacency one-shot methods elaborated as follows.

MLP-based methods. Most of the one-shot graph generation techniques involves simply con-
structing the graph decoder д(z) using MLP [3, 24, 34, 89, 106, 119], where the models’ parameters
can be optimized under common frameworks such as VAE and GAN. The MLP-based models ingest
a latent graph representation z ∼ p(z) and simultaneously output adjacent matrix Aπ and node
attribute F π , as shown in Fig. 4 (a). Specifically, the generator д(z) takes D-dimensional vectors
z ∈ RD sampled from a statistical distribution such as standard normal distribution and outputs
graphs. For each z,д(z) outputs two continuous and dense objects: Ãπ , which defines edge attributes
and F̃ π , which denotes node attributes through two simple MLPs. Both Ãπ and F̃ π have a probabilis-
tic interpretation since each node and edge attribute is represented with probabilities of categorical

, Vol. 1, No. 1, Article . Publication date: July 2020.



16 Xiaojie Guo and Liang Zhao

 

Fig. 4. Three common techniques for adjacent-based one-shot generation

distributions of types. To generate the final graph, it is required to obtain the discrete-valued objects
Aπ and F π from Ãπ and F̃ π , respectively. The existing works have two ways to realize this step
detailed as follows.

In the first way, the existing works [3, 89, 119] use sigmoid activation function to computeAπ and
F π during the training time. At test time, the discrete-valued estimate Aπ and F π can be obtained
by taking edge- and node-wise argmax in Ãπ and F̃ π . In the other way, existing works [24, 34, 106]
leverage categorical reparameterization with the Gumbel-Softmax [55, 91], which is to sample
from a categorical distribution during the forward pass (i.e., F πi ∼ Cat(F̃ πi ) and Aπi j = Cat(Ãπi j ))
and the original continuous-valued Ãπ and F̃ π in the backward pass. In this way, these methods
can perform continuous-valued operations during the training procedure and do the categorical
sampling procedure to finally generate the F and A.

Message-passing-based methods. Message-passing-based methods generate graphs by itera-
tively refining the graph topology and node representations of the initialized graph through the
MPNN. Specifically, based on the latent representation z sampled from a simple distribution (e.g.,
Gaussian), we usually first generate an initialized adjacent matrix A0 and the initialized node latent
representations H 0 ∈ RN×L , where L refers to the length of each node representation (here we omit
the node ordering symbol π for clarity). Then A0 and H 0 are updated though MPNN with multiple
layers for generating the final graph, as shown in Fig. 4 (c). Existing methods leverage common
generative frameworks such as VAE and GANs [16, 36, 49], or have a plain framework based on
the score-based generative process [101].
For works utilizing common generative frameworks such as VAE and GAN, the decoder is

implemented as follows [16, 36, 49]. Normally, the first step is about projecting the initial latent
representation z from the fixed dimensional latent space to an initial state h0i for each node through
MLP-based or RNN-based networks. A fully-connected graph is also initialized with the same latent
values of each entry A0

i, j in A0. Next, using the initialized graph we can perform message passing
on both the node and edge representations for updating Al+1

i, j and hl+1i at layer l + 1 as:
Al+1
i, j = Al

i, j + ReLu(ν1Al
i, j + ν2h

l
i + ν3h

l
j ); hl+1i = hli + ReLu(w1h

l
i +

∑N

j
ηi, jw2h

l
j ), (24)

where v1, v2, v3,w1 andw2 are trainable parameters. Finally, after T layers’ updating, the outputs
ATi, j and FTi are used to parameterize the categorical distributions of each edge and node, based on
which each edge Ai, j and node Fi are generated through categorical sampling introduced above.
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For the score-based generative modeling process, the core is to design a plain graph generation
framework based on score function [101]. Specifically, existing methods usually first sample N ,
which is the number of nodes to be generated, from the empirical distribution of the number of
nodes in the training dataset. Then they sample the adjacent matrix A with annealed Langevin
dynamics [121]. Specifically, they first initialize the adjacent matrix as A0 with each element
following a Normal distribution. Then, they update the adjacent matrix by iteratively sampling
from a series of trained conditional score models {sθ (A;σi )}Ki=1 (i.e. a function parameterized by θ )
using Langevin dynamics. Here {σi }Ki=1 is a sequence of noise levels and K refers to the number of
noise levels. To implement the score function sθ (A;σi ), MPNN-based score networks, as described
in Eq. 24 are introduced. Formally, the output of the score function is given:

Âi, j = Concate(A(l+1)
i, j |l = 0, ...,T ); sθ (A;σi ) = ReLu((WÂ + b)αi + βi ) (25)

where T is the number of MPNN layers of the score function network, and αi and βi are learnable
parameters of MLP-based output layer for each noise level σi as σi = (αi , βi ).W and b are shared
weights and bias respectively of the output layers of all score function models. Concate in the above
equation refers to the operation that concatenates all A(l+1)

i, j into a vector.
Invertible-transform-based methods Flow-based generative methods can also do one-shot

generation, by a unique invertible function between graph G and the latent prior z sampling
from a simple distribution (e.g., Gaussian), as shown in Fig. 4 (b). Based on vanilla flow-based
learning techniques introduced in Section 2.3, special forward transformationG −→ z and backward
transformation z −→ G needs to be designed.

Madhawa et al. [92] propose the first flow-based one-shot graph generation model called Graph-
NVP. To get z = (zF , zA) from G = (A, F ) in the forward transformation, they first convert the
discrete variable A and F into continuous variable A′ and F ′ by adding real-valued noise (same as
that in Eq. 12), which is known as dequantization. Then two types of reversible affine coupling
layers: adjacency coupling layers and node attribute coupling layers are utilized to transform
the adjacency matrix A′ and the node attribute matrix F ′ into latent representations zA and zF ,
respectively. The lth reversible coupling layers are designed as follows:

zlF [i] = zl−1F [i] ⊙ exp(sF (zl−1F [i],A)) + tF (zl−1F [i],A) (26)

zlA[i, j] = zl−1A [i, j] ⊙ exp(sA(zl−1A [i, j])) + tA(zl−1A [i, j]) (27)

where z0F = X ′ and z0A = A′. zlF [i] refers to the ith entry of zlF ; ⊙ denotes element-wise multiplication.
Functions sA(·) and tA(·) stand for scale and translation operations which can be implemented based
on MPNN, and sF (·), tF (·) can be implemented based on MLP networks. To get G = (F ,A) from
z = (zF , zA) in the backward transformation, the reversed operation is conducted based on the above
forward transformation operation in Eq. 26 and 27. Specifically, after drawing random samples
zA and zF , a sequence of inverted adjacency coupling layers is applied on zA for a probabilistic
adjacency matrix Ã, from which a discrete adjacency matrix A is constructed by taking node-wise
and edge-wise argmax operation. Next a probabilistic feature matrix F̃ is generated given the
sampled zF and the generated adjacency matrix A through a sequence of inverted node attribute
coupling layers. Likewise, the node-wise argmax of F̃ is used to get discrete feature matrix F .

Honda et al. [54] propose a graph residual flow (GRF) with more flexible and complex non-linear
mappings than the above mentioned coupling flows in GraphNVP. The forward transformation is
designed as follows:

zlF = zl−1F + Rl
F (zl−1F ,A); zlA = zl−1A + Rl

A(zl−1A ), (28)

where Rl
F and Rl

A are the residual blocks for node attribute matrix F and adjacency matrix A at lth
layer. The residual block is implemented based on GCNs [70] and is proved to be invertible. The
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backward transformation process is similar to the GraphNVP except for the computation of the
inverse of the zA and zF by the fixed-point iteration [9] based on the invertible residual.

3.2.2 Edge-list-based. This category typically requires a generative model that learns edge proba-
bilities, based on which all the edges are generated independently. These methods are usually used
in learning from one large-scale graph and learning to generate the synthetic one given the known
nodes. In terms of how the edge probability are generated, existing works are further categorized
into two, namely random-walk-based [11, 18, 38, 143] and node-similarity-based [47, 69, 85, 113, 150].

Random-walk-based. This type of methods generate the edge probability based on a score
matrix, which is calculated by the frequency of each edge that appears in a set of generated
random walks. Bojchevski et al. [11] propose NetGAN to mimic the large-scale real-world networks.
Specifically, at the first step, a GAN-based generative model is used to learn the distribution of
random walks over the observed graph, and then it generates a set of random walks. At the second
step, a score matrix S ∈ RN×N is constructed, where each entry denotes the counts of an edge
that appears in the set of generated random walks. At last, based on the score matrix, the edge
probability matrix Ã is calculated as Ãi, j = Si, j/

∑N
u,v Su,v , which will be used to generate individual

edge Ai, j , based on efficient sampling processes.
Following this, some works propose improving the NetGAN, by changing the way to choose

the first node in starting a random walk [18] or learning spatial-temporal random walks for
spatial-temporal graph generation [143]. Gamage et al. [38] generalize the NetGAN by adding
two motif-biased random-walk GANs. The edge probability is thus calculated based on the score
matrices from three sets of random walks (i.e. S (1), S (2), and S (3)) that are generated from the three
GANs. To sample each edge, one view S (k ) is randomly selected from the three scores matrices.
Based on S (k ), edge probability Ãi, j is calculated as Ãi, j = S (k )i, j /

∑N
u,v Su,v .

Node-similarity-based. These methods generate the edge probability based on pairwise rela-
tionships between the given or sampled nodes’ embedding (as in [69]). Specifically, the probability
adjacent matrix Ã is generated given the node representations Z ∈ RN×L , where Zi ∈ RL refers
to the latent representation for node vi . Ã will be used to generate individual edge Ai, j , based on
efficient sampling processes. Existing methods differ on how to calculate Ã.
Several works [47, 69, 150] compute Ãi, j based on the inner-product operations of two node

embedding Zi and Z j . This reflects the idea that nodes that are close in the embedding space
should have a high probability of being connected. These works require a setting where node set
is pre-defined and the node attribute F is known in advance. Specifically, by first sampling node
latent representation Zi from the standard normal distribution, Kipf and Welling [69] calculate the
probability adjacent matrix as Ã = Sigmoid(ZZT ). The adjacent matrix A is then sampled from Ã
which parameterizes the Bernoulli distribution of the edge existence, as similar to work by Zou
and Lerman [150]. To further consider the complex dependence among generated edges, Grover
et al. [47] propose an iterative two-step approach that alternates between defining an intermediate
graph and then gradually refining the graph through message passing. Formally, given a latent
matrix Z and an input feature matrix F , they are iterated over the following sequence of operations:

Â = (ZZT )/∥ Z ∥2 +11T ; Z ∗ = GNN (Â,Cancate(Z ,X ))), (29)
where the first step constructs an intermediate weighted adjacency matrix Â by operating an
inner-product and adding an additional constant vector of value(i.e., 1) to ensure that entries are
non-negative; the second step performs a pass through a parameterized graph neural network
(GNN) (as shown in Eq. 29). The above sequence is repeated to gradually refine the node attribute
matrix Z ∗. The distribution of the individual edge Ai, j is also assumed as a Bernoulli distribution,
which is parameterized by the value calculated through Sigmoid(Z ∗

i Z
∗
j ).
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Other works [85, 113] compute Ãi, j bymeasuring the closeness of two node latent representations
with the ℓ2 norm. Specifically, Liu et al. [85] propose a decoder for calculating Ãi, j as:

Ãi, j = 1/(1 + exp(C(∥ Zi − Z j ∥22 −1))), (30)
where C is called a temperature hyperparameter. Salha et al. [113] propose a gravity-inspired
decoding schema in the generative model as follows:

Ãi, j = Sigmoid(mj − loд ∥ Zi − Z j ∥22 ), (31)
wheremj is the gravity scale of node vj learned from the input graph by its featured encoder.

Shi et al. [117] propose computing the probability adjacent matrix Ã by generating the triad edges
among three nodes together based on the well-known triadic closure property which is exhibited
in many real-world networks: for any three nodes vi , vj and vk in a graph, if there are edges
between vi , vj and vk , vi , it is likely that an edge also exists between vk and vj . When generating,
they first randomly sample N node representations from normal distribution. Then K triads are
randomly sampled from these node representations. Finally, the predictions are averaged over all K
triads. Specifically, to sample a triad, first, a node vi is randomly selected from the node set. With a
predefined probability p, the next node vj is randomly selected from Ne(i) (neighbors of node vi
based on the current generated graph), and with a probability 1 − p, vj is randomly selected from a
far-away node not in Ne(i). Likewise, the third node vk is sampled based on node vj . After getting
a triad, a triad decoder is used to predict the elements in Ã corresponding to the three constituent
edges. The triad decoder f (·) consists of fully connected layers and the classic convolution layers
with inputs of Zi , Z j and Zk . The output of the decoder is finally merged with the three inner
products constructed from Zi , Z j and Zk as follows:

[Ãi, j , Ãi,k , Ãj,k ] = Sigmoid(f (Zi ,Z j ,Zk ) + [ZiZT
j ,ZiZ

T
k ,Z jZ

T
k ]). (32)

4 CONDITIONAL DEEP GENERATIVE MODELS FOR GRAPH GENERATION
The goal of conditional deep graph generation is to learn a conditional distribution pmodel(G |y)
based on a set of observed realistic graphsG along with their corresponding auxiliary information,
namely a condition y by deep generative models. The auxiliary information could be category
labels, semantic context, graph from other distribution spaces, etc.

Compared with unconditional deep graph generation, in addition to the challenge in generating
graphs, conditional generation needs to consider how to extract the features from the given
condition and integrate it into the generation of graphs. Thus, to systematically introduce the
existing conditional deep graph generative models, we mainly focus on describing how these
methods deal with the condition information. Since the conditions could be any form of auxiliary
information, we categorize the problem in terms of types of conditions, including graphs, sequence,
and semantic context, shown as the yellow parts of the taxonomy tree in Fig. 1.

Table 2. Deep Generative-based Methods for Conditional Graph Generation

Conditioning objects Techniques of encoding conditions References

Graphs
Edge Transformation Adjacent-based edge convolution [28, 39, 51, 147]

Node-edge Co-transformation Embedding-based [59, 62, 93, 124]
Editing-based [58, 140, 148]

Sequence RNN-based encoding [19, 84, 130, 139]
Context Semantics Concatenation with latent representation [60, 79, 80, 138]

4.1 Conditioning on Graphs
The problem of deep graph generation conditioning on another graph can also be called as deep
graph transformation (also known as deep graph translation) problem [51]. It aims at translating
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an input graph GS in the source domain to the distribution of corresponding output graphsGT in
the target domain based on deep graph generative models. Considering the entities that are being
transformed during the translation process, there are two categories of works in the domain of deep
graph generation conditioning on graphs: edge transformation and node-edge-co-transformation1.

4.1.1 Edge Transformation. The problem of edge transformation is to generate the graph topology
and edge attributes of the target graph conditioning on the input graph. It requires the edge set E
and edge attributes E to change while the graph node set and node attributes are fixed during the
translation process as: T : GS (V, ES , F ,ES ) −→ GT (V, ET , F ,ET ). The edge transformation problem
has a wide range of real-world applications, such as modeling chemical reactions [140], protein
folding [3] and malware cyber-network synthesis [51]. Existing works adopt different frameworks
to model the translation process.

Some works utilize the encoder-decoder framework by learning abstract latent representation of
the input graph through the encoder and then generating the target graph based on these hidden
information through the decoder [39, 51]. Guo et al. [51] propose a GAN-based model for graph
topology transformation. The proposed GT-GAN consists of a graph translator and a conditional
graph discriminator. The graph translator includes two parts: graph encoder and graph decoder.
A graph convolution neural net [65] is extended to serve as the graph encoder in order to embed
the input graph into node-level representations while a new graph deconvolution net is used as
the decoder to generate the target graph. Specifically, the encoder consists of edge-to-edge and
edge-to-node convolution layers, which first extracts latent edge-level representations and then
node-level representations {Hi }Ni=1, where Hi ∈ RL refers to the latent representation of node vi .
The decoder consists of node-to-edge and edge-to-edge deconvolution layers to first get each edge
representations Êi, j based on Hi and Hj , and then the final edge attribute tensor E based on Ê. They
also leverage the skip-net structure [112] between the encoder and decoder so that the sample-
specific representations in the encoder can be directly passed over through skip connection to the
decoderâĂŹs layers while the sample invariant mapping will be learned in the encoder-decoder
structure. To further handle the situation when the pairing information of the input and output is
not available, Gao et al. [39] utilize the same encoder and decoder in GT-GAN and propose dealing
with the unpaired graph transformation problems based on Cycle-GAN [149].

Zhou et al. [147] propose modeling the underlying distribution of graph structures of the input
graph at different levels of granularity, and then âĂĲtransferringâĂİ such hierarchical distribution
from the graphs in the source domain to a unique graph in the target domain. The input graph is
characterized as several coarse-grained graphs by aggregating the strongly coupled nodes with a
small algebraic distance to form coarser nodes. Overall, the framework can be separated into three
stages. At the first step, the coarse-grained graphs atK levels of granularity are constructed from the
input graph adjacent matrix AS . The adjacent matrix of the coarse-grained graph A(l )

S ∈ RN (l )×N (l )

at the kth layer is defined as follows:
A(k )
S = P (k−1)T ...P (1)TASP

(1)...P (k−1), (33)
where P (k ) ∈ RN (l )×N (l ) is a coarse-grained operator for the kth level and N (l ) refers to the number
of nodes of the coarse-grained graph at level l . In the next stage, each coarse-grained graph at each
level k will be reconstructed back into a fine graph adjacent matrix A(k )

T ∈ RN (l )×N (l ) as follows:
A(k )
T = R(1)T ...R(k−1)TA(k )

S R(k−1)...R(1), (34)
where R(k ) ∈ RN (l )×N (l ) is the reconstruction operator for the kth level. Thus all the reconstructed
fine graphs at each layer are in the same scale. Finally, these graphs are aggregated into a unique
1Node transformation is not the focus of our survey since the graph topology has not been changed. That domain is highly
related to node embedding using techniques such as graph convolution neural networks [40, 70]
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one by a linear function to get the final adjacent matrix as follows: AT =
∑K

k=1w
kA(k )

T + b
k , where

wk ∈ R and bk ∈ R are weights and bias.
Do et al. [28] propose a plain transformation framework named graph transformation policy

network (GTPN) for the chemical reaction prediction by formalizing the graph transformation
process as a Markov decision process and modifying the input source graph through several
iterations. Thus, given a graph of reactant molecule as input graph,GS , they predict a set of reaction
triples that transforms GS into a graph of product molecule GT . This process is modeled as a
sequence consisting of tuples like (ζ t ,vti ,vtj ,bt ) where vti and vtj are the selected nodes from node
set at step t whose connection needs to be modified; bt is the new edge type of (vti ,vtj ), and ζ t is a
binary signal that indicates the end of the sequence. At every step of the forward pass, the GTPN
model performs seven major steps: 1) computing the atom representation vectors through MPNN,
2) computing the most possible K reaction atom pairs, 3) Predicting the continuation signal ζ , 4)
predicting the reaction atom pair (vi ,vj ), 5) predicting a new bond type bt of this atom pair, 6)
updating the atom representations, and 7) updating the recurrent state.

4.1.2 Node-edge Co-transformation. The problem of node-edge co-transformation (NECT) is gener-
ating the node and edge attributes of the target graph conditioning on those of the input graph. It re-
quires that both the nodes and edges can vary during the transformation process between the source
graph and the generated target graph as follows: T : GS (VS , ES , FS ,ES ) −→ GT (VT , ET , FT ,ET ). In
terms of the techniques on how the input graph is assimilated to generate the target graph, there
are two categories: one is embedding-based and the other is editing-based.

 

Fig. 5. Embedding-based NECT vs Modification-based NECT

Embedding-based NECT. The embedding-based NECT normally encodes the source graph into
latent representations containing higher-level rich information of the input graph by an encoder,
which is then decoded into the target graph by a decoder, as shown in Fig. 5 (a) [58, 59, 62, 93, 124].
These methods are usually based on conditional VAEs [120] and conditional GANs [95].

Kaluza et al. [62] propose exploring the latent spaces of directed acyclic graphs (DAGs) and
develops a neural network-based DAG-to-DAG translation model, where both the domain and the
range of the target function are DAG spaces. The encoderMencode is borrowed from the deep-gated
DAG recursive neural network (DG-DAGRNN) [2], which generalizes stacked RNNs on sequences
to DAG structures. Each layer of the DG-DAGRNN consists of gated recurrent units (GRUs), which
are repeated for each node vi . The encoder outputs an embedding h = Mencode(GS ), which serves
as the input of the DAG decoder. The decoder follows the local-based node-sequential generation
style as described in Section 3.1.1. Specifically, first, the number of nodes N of the target graph
is predicted by an MLP network with the input of h. Also, the hidden state of the target graph is
initialized with h. Then at each step, a node vi as well as its corresponding edge set {ei, j }j<i are
generated based on the hidden state at each step until an end node is added to the graph or the
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number of nodes exceeds a predefined threshold. Sun and Li [124] propose a general graph-to-graph
model by first formalizing the graph into a DAG without loss of information and utilize recurrent
based model to translate this DAG. They embeds the topology of the input graph into the node
representations by exerting a topology constraint, which results in a topology-flow encoder. Their
decoder follows the same node sequential-based generation as proposed by You et al. [142].

There are also some embedding-based graph translation methods that represent the graph as a
set of graph motifs, which are usually targeted for the task of molecule optimization [59, 93]. Jin
et al. [59] extend the junction-tree variational auto-encoder (JT-VAE) [57] to an encoder-decoder
architecture for learning graph-to-graph mappings. In terms of model architecture, the encoder is
a graph message passing network that embeds nodes in both the tree and graph into continuous
vectors. The decoder consists of a tree-structured decoder for predicting junction trees, and a graph
decoder that learns to combine clusters in the predicted junction tree into a molecule. Their key
departures from JT-VAE include a unified encoder architecture for trees and graphs, along with an
attention mechanism in the tree decoding process. Maziarka et al. [93] also employ the encoder
and decoder mechanism of the JT-VAE, but build these components on the CycleGAN [149].

Editing-based NECT. Different from the encoder-decoder framework, modification-based
NECT directly modifies the input graph iteratively to generate the target graphs [52, 140, 148], as
shown in Fig. 5 (b). There are two ways to realize the process of editing the source graph. One
is utilizing an RL agent to sequentially modify the source graph based on a formulated Markov
decision process[140, 148] as described in Section 2.4. The modification at each step will be selected
from the defined action set, including “add nodeâĂĲ, “add edge”, “remove bonds” et al. The other is
to update nodes and edges from the source graph synchronously in a one-shot manner through the
MPNN using several iterations [52].
You et al. [140] propose the graph convolutional policy network (GCPN), a general graph

convolutional network based model for goal-directed graph generation through reinforcement
learning. The model is trained to optimize the domain-specific property of the source molecule
through policy gradient, and acts in an environment that incorporates domain-specific rules. They
define a distinct, fixed-dimension and homogeneous action space amenable to reinforcement
learning, where an action is analogous to link prediction. Specifically, they first define a set of
scaffold subgraphs {C1, ...,Cs } based on the source graph. This set acts as a subgraph vocabulary
that contains the subgraphs to be added into the target graph during graph generation. Given the
modified graph Gt at step t , they define the corresponding extended graph as Gt ∪Ci . Based on
this definition, an action can either correspond to connecting a new subgraphCi to a node inGt or
connecting existing nodes within graph Gt .
Zhou et al. [148] also present a framework, named molecule deep Q-networks (MolDQN), for

molecule optimization by combining domain knowledge of chemistry and state-of-the-art reinforce-
ment learning techniques (double Q-learning and randomized value functions). They directly define
modifications of molecules, thereby ensuring 100% chemical validity. Intuitively, their modification
or optimization of a molecule can be done in a step-wise fashion, where each step belongs to
one of the following three categories: (1) atom addition, (2) bond addition, and (3) bond removal.
Specifically, in the action of atom addition, they first define an empty set of atomsVT for the target
molecule graph. Then they define a valid action as adding an atom in VT and also a bond between
the added atom and the original molecule wherever possible. In the action of bond addition, a bond
is added between two atoms inVT . If there is no bond between the two atoms, the actions between
them consist of adding a single, double, or triple bond. If there already exist a bond, additional
action changes the bond type by increasing the index of the bond type by one or two. In the action
of bond removal, they define the valid bond removal action set as the actions that decrease the
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bond type index of an existing bond. The transitions include: (1) Triple bond −→ {Double, Single,
No} Bond, (2) Double bond −→ {Single, No} Bond, and (3) Single bond −→ {No} Bond.
Guo et al. [52] follow the second way which edits the source graph iteratively, through the

generation process similar to the MPNN-based adjacency-based one-shot method in Section 3.2.1
and Fig. 5 (c) for unconditional deep graph generation, except for taking the graph in the source
domain as input instead of the initialized graph. The transformation process is modeled by several
stages and each stage generates an immediate graph. Specifically, at each stage t , there are two
paths, namely node translation and edge translation paths. In node translation path, an MLP-based
influence-function is used for calculating the influence I (t )i on each node vi from its neighboring
nodes, and another MLP-based updating-function is used for updating the node attribute as F (t )i

with the input of influence I (t )i . The edge translation path is constructed in the same way as the
node translation path, where each edge is generated by the influence from its adjacent edges.

4.2 Conditioning on Sequence
The problem of deep graph generation conditioning on a sequence can be formalized as the deep
sequence-to-graph transformation problem. It aims to generate the target graph GT conditioning
on an input sequence X . The deep sequence-to-graph problem is usually observed in domains such
as NLP [19, 130] and time series mining [84, 139].
The existing methods handle the semantic parsing task [19, 130] by transforming a sequence-

to-graph problem into a sequence-to-sequence problem and utilizing the classical RNN-based
encoder-decoder model to learn this mapping. Chen et al. [19] propose a neural semantic parsing
approach named Sequence-to-Action, which models semantic parsing as an end-to-end semantic
graph generation process. Given a sentence X = {x1, ...,xm}, the Sequence-to-Action model gener-
ates a sequence of actions Y = {y1, ..,ym} for constructing the correct semantic graph. A semantic
graph consists of nodes (including variables, entities, types) and edges (semantic relations), with
some universal operations (e.g., argmax, argmin, count, sum, and not). To generate a semantic graph,
they define six types of actions: Add Variable Node, Add Entity Node, Add Type Node, Add Edge,
Operation Function and Argument Action. In this way, the generated parse tree is represented as a
sequence, and the sequence-to-graph problem is transformed into a sequence-to-sequence problem.
Then the attention-based sequence-to-sequence RNN model [7] with an encoder and decoder is
utilized, where the encoder converts the input sequenceX to a sequence of context sensitive vectors
{b1, ...,bm} using a bidirectional RNN and a classical attention-based decoder generates action
sequence Y based on the context sensitive vectors. Wang et al. [130] also represent the generation
of parse tree as a sequence of actions and borrow the successful idea from the Stack-LSTM neural
parsing model [30], They present two non-trivial improvements, namely Bi-LSTM subtraction and
incremental tree-LSTM, to better learn a sequence-to-sequence mapping.

Other methods handle the problem of Time Series Conditioned Graph Generation [84, 139]: given
an input multivariate time series, the aim is to infer a target relation graph to model the underlying
interrelationship between the time series and each node. Yang et al. [139] explore GANs in the con-
ditional setting and propose the novel model of time series conditioned graph generation-generative
adversarial networks (TSGG-GAN) for time series conditioned graph generation. Specifically, the
generator in a TSGG-GAN adopts a variant of recurrent neural network called simple recurrent
units (SRU) [76] to extract essential information from the time series, and uses an MLP to generate
the directed weighted graph.

4.3 Conditioning on Semantic context
The problem of deep graph generation conditioning on semantic context aims to generate the
target graph GT conditioning on an input semantic context, which can be usually represented as
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additional meta-features. The semantic context can refer to the category, label, modality or any
additional information that can be intuitively represented as a vector C . The main issue is deciding
where to concatenate or embed the condition representation into the generation process. As a
summary, the conditioning information can be added in terms of one or multiple of the following
modules: (1) the node state initialization module, (2) the message passing process for MPNN-based
decoding, and (3) the conditional distribution parameterization for sequential generating.

Yang et al. [138] propose a novel unified model of graph variational generative adversarial nets,
where the conditioning semantic context is inputted into the node state initialization module.
Specifically, in the generation process, they first model the embedding Zi of each node with
separate latent distributions. Then, a conditional graph VAE (CGVAE) can be directly constructed
by concatenating the condition vector C to each node latent representation Zi to get the updated
node latent representation Ẑi . Thus, the distribution of the individual edge Ai, j is assumed as
a Bernoulli distribution, which is parameterized by the value Âi, j and is calculated as Âi, j =

Sigmoid(f (Ẑi )T f (Ẑ j )), where f (·) is constructed by a few fully connected layers. Li et al. [79]
propose a conditional deep graph generative model that adds the semantic context information
into the initialized latent representations Zi at the beginning of the decoding process.

Li et al. [80] add the context information C into the message passing module in its MPNN-based
decoding process. Specifically, they parameterize the decoding process as a Markov process and
generate the graph by iteratively refining and updating from the initialized graph. At each step
t , an action is conducted based on the current node hidden states H t = {ht1, ...,htN }. To calculate
hti ∈ RL (L denotes the length of the representation) for node vi in the intermediate graph Gt after
each updating of the graph, they utilize message passing network with node message propagation.
Thus the context information C ∈ RK is added to the operation of the MPNN layer as follows:

hti =Wht−1i + Φ
∑

vj ∈N (vj )
ht−1j + ΘC, (35)

whereW ∈ RL×L , Θ ∈ RL×L and Φ ∈ RK×L are all learnable weights vectors and K denotes the
length of the semantic context vector.
Jonas [60] adds the semantic context as one of the inputs for calculating the conditional distri-

bution parameter at each step during the sequential generating process. The aim is to solve the
molecule inverse problem, namely inferring the chemical structure conditioning on the formula
and spectra of a molecule, which provide a distinguishable fingerprint of its bond structure. The
problem is framed as an MDP and molecules are constructed incrementally one bond at a time
based on a deep neural network, where they learn to imitate a “subisomorphic oracle" that knows
whether the generated bonds are correct. The context information (i.e. spectra) works in two places.
Specifically, they begin with an empty edge set E0 and sequentially update the edge set to Ek at
each step k by adding an edge sampling from p(ei, j |Ek−1,V,C). V denotes the node set that is
defined in the given molecule formula. The edge set keeps updating until the existing edges satisfy
all the valence constraints of a molecule. The resulting edge set EK serves as the candidate graph.
For a given spectraC , the process is repeatedT times, generatingT (potentially different) candidate
structures, {E(i)

K }Ti=1. Then based on a spectra prediction function f (·), the quality of these candidate
structures are evaluated by measuring how close their predicted spectra are to the condition spectra
C and the optimal generated graph is finally selected according to argmin

i
∥ f (E(i)

K ) −C ∥2.

5 EVALUATION METRICS FOR DEEP GRAPH GENERATION
Evaluating the generated graphs as well as the learnt distribution of graphs are challenging and
critical tasks for deep generative models in graph generation problem due to two major reasons: 1)
Different from conventional prediction problems where merely deterministic predictions need to be
evaluated, deep graph generation requires the evaluation of the performance of graph generation,
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which involves stochastic outputs and additional aspects. 2) Graph structured data is much more
difficult to evaluate than simple data with matrix/vector structures or semantic data such as images
and texts. Thus, we summarize the typical evaluation metrics in evaluating deep generative models
for graph generation as follows. We first summarize the general metrics that can be used for both
unconditional and conditional deep graph generation, and then introduce the additional metrics
that are specially designed for conditional deep graph generation.

5.1 General Evaluation for Deep Graph Generation
To evaluate the quality of the generated graphs, existing literature covers three categories of
evaluation metrics, namely statistics-based, classifier-based, and self-quality-based evaluations.
The first two evaluation categories require comparison between the generated graph set and test
set, while the self-quality evaluation directly evaluates the generated graph set’s properties.

5.1.1 Statistics-based. In statistics-based evaluation, the quality of the generated graphs is accessed
by computing the distance between the graph statistic distribution of the graphs in the test set and
graphs that are generated. We first introduce seven typical graph statistics that measure different
properties of graphs and, thereafter introduce the metrics that measure the distance between two
distributions regarding different graph statistics.

There are seven typical graph statistics that are used in existing literature, which are summarized
as follows: (1)Node degree distribution: the empirical node degree distribution of a graph, which could
encode its local connectivity patterns. (2) Clustering coefficient distribution: the empirical clustering
coefficient distribution of a graph. Intuitively, the clustering coefficient of a node is calculated as the
ratio of the potential number of triangles the node could be part of to the actual number of triangles
the node is part of. (3) Orbit count distribution; the distribution of the counts of node 4-orbits of a
graph. Intuitively, an orbit count specifies how many of these 4-orbits substructures the node is
part of. This measure is useful in understanding if the model is capable of matching higher-order
graph statistics, as opposed to node degree and clustering coefficient, which represent measures of
local (or close to local) proximity. (4) Largest connected component: the size of the largest connected
component of the graphs. (5) Triangle count: the number of triangles counted in the graph. (6)
Characteristic path length: the average number of steps along the shortest paths for all node pairs
in the graph. (7) Assortativity: the Pearson correlation of degrees of connected nodes in the graph.

The first three graph statistics are about distributions of each graph and are always represented
as a vector, while the last four graph statistics are represented as scalar values of each graph.
Therefore, to evaluate the distance between two sets of graphs in terms of the above distribution
statistics, two major metrics are usually utilized in existing literature, which are introduced as
follows.

Average Kullback-Leibler Divergence. Considering that each graph set has a set of distributions in
terms of a graph property x , we first need to calculate the average distribution of the whole set. To
get the average distribution of a graph set, the vectors of counts of the property x of all the graphs
in the set are first concatenated. Then the probability densities of the graph property x is calculated
based on this concatenated vector for the average node degree distribution of the whole set. Fianlly,
the Kullback-Leibler divergence (KL-D [72]) between the average node degree distribution of the
generated graph set Pave(x) and that of the real graph set Qave(x) is calculated as:

KL − D(Pave,Qave) = −
∑

x∼Pave
Pave(x)loд(Qave(x)/Pave(x)). (36)

Maximum Mean Discrepancy (MMD) [46]. First, the squared MMD between the graph statistics
distribution of the generated graph set P and that of the real graph set Q can be derived as:

MMD(P ,Q) = Ex,y∼P [k(x ,y)] + Ex,y∼Q [k(x ,y)] − 2Ex∼P,y∼Q [k(x ,y)], (37)
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where x , y refer to the graph statistics that are sampled from the two distributions. The kernel k(∗)
is designed as follows:

k(x ,y) = exp(W (x ,y)/2σ 2), (38)
where σ refers to the standard deviation of P or Q . Considering the sampled graph statistics x , y
are also two distributions; thus,W (x ,y) is defined as the Wasserstein distances (WD):

W (x ,y) = in f γ ∈∏(x,y) E(i, j)∼γ [∥ i − j ∥], (39)

where
∏(x ,y) is the set of all measures whose marginals are x and y respectively.

Distancemetrics for scalar-valued statistics. The calculation of distance between two sets of
graphs in terms of the scalar-valued statistic is much easier than that of distribution statistics. There
are two major ways: (1) calculating the difference between the averaged value of the scalar-valued
statistic of the generated graph set and that of the real graph set; (2) calculating the distance
between the distribution of the scalar-valued statistic of the generated graph set and that of the
real graph set. Many distance metrics can be used, such as KL-D, Jensen-Shannon distances (JS),
the Hellinger distance (HD), and WD.

5.1.2 Classifier-based. Classifier-based evaluation typically utilizes a graph classifier to evaluate
whether the generated graphs follows the same distribution as the real graphs without explicitly
defining the graph statistics. Typically, a classifier is trained on the set of real graphs and is tested
on the set of generated graphs. It only could be utilized when multiple graph generative models
are trained for generating multiple types of graphs, respectively. Here we introduce two existing
classifier-based evaluations [83] that are based on graph isomorphism network (GIN) [136]:

Accuracy-based. First, a GIN is pre-trained on the training set consisting of multiple types of
graphs previously used for training the generative model. Then for each type of generated graph,
the classification accuracy of classifying this type of generated graphs based on the trained GIN is
the final evaluation metric.

FrÃľchet Inception Distance (FID)-based. FID computes the distance in the embedding space
between two multivariate Gaussian distributions fitted to a generated set and a test set. A lower FID
value indicates better generation quality and diversity. For each type of graph, first, the generated
and real graphs in the testing set are inputted into the pre-trained GIN to get the graph embeddings.
Then the means µG and covariance matrices

∑
G of the embeddings of the generated graph set, and

the means µR and covariance matrices
∑

R of real graphs in the testing set are estimated. Finally,
the FID metric for this type of graphs is computed as follows:

FID =∥ µG − µR ∥22 +Tr(
∑

G
+
∑

R
−2(

∑
G

∑
R
) 12 ), (40)

where Tr(·) refers to the trance of a matrix.

5.1.3 Self-quality-based. Besides the evaluation by measuring the similarity between the real
and generated graphs, there are three additional metrics that directly evaluate the quality of the
generated graphs: the validity, uniqueness and novelty of the generated graphs.

Validity. Since sometimes the generated graphs are required to preserve some properties, it is
straightforward to evaluate them by judging whether they satisfy such requirements, such as the
following: (1) Cycles graphs/Tree graphs: Cycles and trees are graphs that have obvious structural
properties and the validity is calculated as what percentage of generated graphs are actually cycles
or trees [79]. (2) Molecule graphs: Validity for molecule generation is the percentage of chemically
valid molecules based on some domain specific rules [107].

Uniqueness. Ideally, high-quality generated graphs should be diverse and similar, but not
identical. Thus, uniqueness is utilized to capture the diversity of generated graphs [6, 44, 79, 92,
107]. To calculate the uniqueness of a generated graph, the generated graphs that are sub-graph
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isomorphic to some other generated graphs are first removed. The percentage of graphs remaining
after this operation is defined as Uniqueness. For example, if the model generates 100 graphs, all of
which are identical, the uniqueness is 1/100 = 1%.

Novelty. Novelty measures the percentage of generated graphs that are not sub-graphs of the
training graphs and vice versa [6, 44, 92]. Note that identical graphs are defined as graphs that are
sub-graph isomorphic to each other. In other words, novelty checks if the model has learned to
generalize unseen graphs.
5.2 Evaluation for Conditional Deep Graph Generation
In addition to the above general evaluation metrics for graph generation, for conditional deep
generative models for graph generation, some additional evaluation metrics can be involved,
including: graph-property-based and mapping-relationship-based evaluations.
5.2.1 Graph-property-based. Considering that each of generated graph can have its associated real
graph as label in the conditional graph generation task, we can directly compare each generated
graph to its label graph by measuring their similarity or distance based on some graph properties
or kernels, such as the following: (1) random-walk kernel similarity by using the random-walk
based graph kernel [63]; (2) combination of Hamming and Ipsen-Mikhailov distances(HIM) [61];
(3) spectral entropies of the density matrices; (4) eigenvector centrality distance [12]; (5) closeness
centrality distance [37]; (6) Weisfeiler Lehman kernel similarity [116]; (7) Neighborhood Sub-graph
Pairwise Distance Kernel [44] by matching pairs of subgraphs with different radii and distances.

5.2.2 Mapping-relationship-based. Mapping-relationship-based evaluation measures whether the
learned relationship between the conditions and the generated graphs is consistent with the true
relationship between the conditions and the real graphs.

Explicit mapping relationship. Considering the situation where the true relationship between
the input conditions and the generated graphs is known in advance, the evaluation can be conducted
as follows: (1) When the condition is the category label of the graph, we can examine whether
the generated graph falls into the conditional category by utilizing a graph classifier to classify a
generated graph to a category [34, 124]. Specifically, the real graphs are used to train a classifier
and the classifier is used to classify the generated graphs. Then the accuracy is calculated as the
percentage of the predicted categories that are the same as the input conditional category. (2) When
the condition is a graph in the source domain, where the task is to change some properties of the
input graph, we can quantitatively compare the property scores of the generated and input graphs to
see if the change indeed meets the requirement. For example, one can compute the improvement of
logP scores from the input molecule to the optimized molecule in molecule optimization task [140].

Implicit mapping relationship. Regarding the deep graph translation problem, which is
introduced in Section 4.1, sometimes, the underlying patterns of the mapping from the input graphs
to the real target graphs are implicit and complex to define and measure. Thus, a classifier-based
evaluation metric can be utilized [51]. By regarding the input and target graphs as two classes,
it assumes that a classifier that is capable of distinguishing the generated target graphs would
also succeed in distinguishing the real target graphs from the input graphs. Specifically, a graph
classifier is first trained based on the input and generated target graphs. Then this trained graph
classifier is tested to classify the input graph and real target graphs, and the results will be used as
the evaluation metrics.

6 APPLICATIONS
Deep generative models for graph generation is a very promising domain that has a continously
increasing number of applications including molecule optimization and generation in molecular
chemistry, semantic Parsing in NLP, code modeling, and pseudo-industrial SAT instance generation.
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6.1 Applications in Molecular Chemistry
There are numerous works applying deep generative models for graph generation in the domain of
molecular chemistry, especially in the aspect of molecule generation and optimization.

Molecule generation is a fundamental problem in drug discovery and material science; its aim
is to design novel molecules under a range of chemical properties. This is a highly challenging
mathematical and computational problem with combinatorial nature. Any small perturbation in
the chemical structure may result in a large variation in the desired molecular property. Besides,
the space of valid molecules quickly becomes prohibitively huge and complex as the number of
combinatorial permutations of atoms and bonds grows. Currently, most drugs are hand-crafted by
human experts in chemistry and pharmacology. The recent advances of deep generative models
for graph generation has opened a new research direction by treating the molecule as a graph
with atoms as nodes and bonds as edges, with the potential to learn these molecular’ generative
representation for novel molecule generation without hand-crafting them. Early works on deep
graph generativemodels formolecule generation [22, 73] instantiated the decoder with syntactic and
semantic constraints of SMILES string by context free and attribute grammars, but these grammars
do not fully capture chemical validity. Very recently, Simonovsky and Komodakis [119] propose the
generation of molecular graphs by predicting their adjacency matrices, and Li et al. [79] generated
molecules node by node. Thenmore andmore deep graph generativemodels formolecule generation
are proposed in an attempt to ensure chemical validity and efficiency [24, 57, 82, 107, 114, 144].

Molecule Optimization means optimizing the drug-like molecules to adhere to the desired
activity profile, the physicochemical, and pharmacokinetic properties. The task is challenging
since the chemical space is vast and difficult to navigate. Based on the recent development of
deep graph generation, two categories of methods based on deep graph generative models are
proposed for molecule optimization. One prevalent strategy is to build a graph generative model,
that maps a particular molecule structure down to low-dimensional latent space, and then performs
search or optimization in the latent space to find the optimized molecules [22, 57, 73, 79, 114].
These approaches based on this strategy can only indirectly optimize molecular properties in the
learned latent embedding space before decoding to a molecule. Another strategy is to formalize the
molecule optimization as a graph-to-graph translation. Given a corpus of molecule pairs, the goal is
to learn to translate the input molecule graphs into graphs with the properties closer to the desired
ones. Thus, some works [58, 59, 93, 140, 148] propose graph translation models through supervised
learning by exploring the relationships between the input and output molecule graphs.

6.2 Protein Structure Modeling
Proteins are massive molecules that can be characterized as one of the multiple long chains of amino
acids. Analyzing the structure and function of proteins is a key part of understanding biological
properties at the molecular and cellular level. Protein structure modeling is highly important in
two critical problems of biological molecules including protein structure prediction and protein
design. Current computational modeling methods for protein design are slow and often require
human oversight and intervention, which are often biased and incomplete. Inspired by recent
momentum in deep graph generative models, some works [3, 42, 50, 87] demonstrate the potential
of deep graph generative modeling for fast generation of new, viable protein structures. Specifically,
in these methods, the contact map/distance matrix of a protein molecule is treated as a graph,
while each amino acid molecule in the protein is regarded as a node and their pairwise contacts or
distance are edge weights. A graph generative model is then utilized to model and generate the
contacts/distances between each pair of amino acids. Finally, 3D structure recovery is utilized to
recover the protein structures from the generated pairwise distance contact maps. Deep generative
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models for graph generation are deemed to explore the latent distribution of the protein structures
in an efficient way that is invariant to rotational and translational symmetry.
6.3 Semantic Parsing
Semantic parsing problem is about mapping the natural language information to its logical forms,
namely abstract meaning representation (AMR), which is a graph-based formalism used for captur-
ing sentence-level semantics. Traditional semantic parsers are usually based on compositionally
and manually designed grammar to create the structure of AMR, and used lexicons for semantic
grounding, which is time-consuming and heuristic. Recent years have witnessed a surge of interests
in developing neural semantic parsers with sequence-to-sequence models [29, 56]. However, these
methods only consider the word sequence information and ignore other rich syntactic information
such as parse tree and knowledge graph. Because AMR are naturally structured objects (e.g. tree
structures), semantic AMR parsing methods based on deep graph generative models are deemed as
promising [19, 35, 88, 130, 145]. These methods represent the semantics of a sentence as a semantic
graph (i.e., a sub-graph of a knowledge base) and treat semantic parsing as a semantic graph
matching/generation process. These end-to-end deep graph generation techniques for semantic
parsing show powerful ability in automatically capturing semantic information.

6.4 Code Modeling
Code modelling considers both hard syntactic and semantic constraints in generating natural
programming code, which can make the development of source code easier, faster, and less error-
prone. Early works in this area have shown that approaches from natural language processing can
be applied successfully to the source code, whereas the programming languages community has
had successes in focusing exclusively on formal semantics. However, though these methods are
successful at generating programs that satisfy some formal specifications, they cannot generate
realistic-looking and valid programs. Since program graphs have been shown to have the ability to
encode semantically meaningful representations of programs, deep graph generative models have
shown promising capability in modeling small but semantic programs generation [17, 22, 90, 100].
Specifically, the code is represented as an abstract syntax trees (AST). Then, an AST is generated by
expanding one node at a time using production rules from the underlying programming language
grammar. This simplifies the code generation task to a sequence of sampling problems, in which an
appropriate production rule has to be chosen based on the partial AST generated so far.

6.5 Pseudo-industrial SAT Instance Generation
The problem of pseudo-industrial Boolean Satisfiability (SAT) instance generation is about generat-
ing artificial SAT problems that display the same characteristics as their real-world counterparts.
Generating large amounts of SAT instances is important in developing and evaluating practical
SAT solvers, which historically relies on extensive empirical testing on a large amount of SAT
instances. Prior works addressing this problem relied on hand-crafted algorithms, focusing on
capturing one or two of the graph statistics exhibited by real-world SAT formulas, but they are
heavily hand-crafted and have difficult in simultaneously capturing a wide range of character-
istics exhibited by real-world SAT instances [41, 99]. Since deep generative models for graphs
demonstrated their ability to capture many of the essential features of real-world graphs, it is
promising to represent SAT formulas as graphs, thus recasting the original problem as a deep graph
generation task. Existing works [134, 141] developed a graph generative model by representing
the SAT formula as a Literal-Clause Graph (LCG) or Literal-Incidence Graph (LIG). In LCG, a node
refers to each literal and each clause, with an edge denoting the occurrence of a literal in a clause.
In LCG, a node refers to each literal and two literals have an edge if they co-occur in a clause. The
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generated SAT formulas could closely resemble given real-world SAT instances as well as be used
to improve SAT solver performance on real-world benchmarks.

7 CONCLUSION AND OPPORTUNITIES
To the best of our knowledge, our work provides the first systematic review of deep generative
models for graph generation. We present a taxonomy of deep graph generative models based on
problem settings and techniques details, followed by a detailed introduction, comparison, and
discussion about them. We also conduct a systematic review of the evaluation measures of deep
graph generative models, including the general evaluation metrics for both unconditional and
conditional graph generation. After that, we summarized popular applications in this domain.
As a fast-developing, promising domain, there are still many open challenges in the domain of

deep generative models for graph generation. Thus, we would like to highlight a number of open
challenges for further research in scalability, validity constrain, interpretability, graph editing, and
special graphs such as temporal graphs.

Scalability. Existing deep generative models typically have super-linear time complexity to
the number of nodes and cannot scale well to large networks. Only few methods have linear time
complexity of O(N ) [5, 44, 83, 117, 142] and O(M) [114], where N is the number of nodes and
M is the number of edges. Consequentially, most existing works merely focus on small graphs,
typically with dozens to thousands of nodes [24, 34, 47, 79, 113, 119, 140]. However, many real-world
networks are large, with millions to billions of nodes [44], such as the Internet, biological neuronal
networks, and social networks. It is important for any generative model to scale to large graph.

Validity Constraint. Many real-world networks are constrained by specific validity require-
ments [89]. For example, in molecular graphs, the number of bonding-electron pairs cannot exceed
the valency of an atom. In protein interaction networks, two proteins may be connected only
when they belong to the same or correlated gene ontology terms. Many real-world geographical
networks (e.g., river networks and transportation networks) are planar graphs whose topology
follows Euler formula [31, 32]. Graph-topological constraints are challenging to enforce during the
model training process. Intuitive ways include designing heuristic and customized algorithms to
ensure the validity of generated graphs. For example, Kusner et al. [73] propose the use of SMILES
grammar to generate a parse tree, which in turn is flattened as a SMILES string. This approach
guarantees the syntactic validity of the output, but semantic validity is still questionable. Dai et al.
[22] further apply attribute grammar as a constraint in the parse-tree generation, a step toward
semantic validity. Jin et al. [57] exploits the fact that molecular graphs may be turned into a tree
by treating the rings as super nodes. However, they are restricted to domain-specific applications.
Some recent works started to construct a more generic framework under constrained optimization
scenario, which minimizes training loss under graph validity constraints [89]. However, as such
constraints are typically discrete and non-differentiable, they need to be approximated with a
smooth relaxation which introduces errors and cannot preclude all the invalid topologies.

Interpretability. When we learn the underlying distribution of complex structured data, i.e.
graphs, learning interpretable representations of data that expose semantic meaning is very impor-
tant [74]. For example, it is highly beneficial if we could identify which latent variable(s) control(s)
which specific properties (e.g., molecule mass) of the generated graphs (e.g., molecules). It is also
useful to disentangle local generative dependencies among different subgraphs. However, exist-
ing works on this topic only focus on graph embedding (which is a new topic by itself) but not
generation [14, 102]. For example, Stoehr et al. [122] demonstrates the potential of latent variable
disentanglement in graph deep learning for unsupervised discovery of generative parameters of
random and real-world graphs. Investigations on graph decoding and generation are still open
problems without existing works except one very recently published one [53].
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Beyond Training Data. Deep generative models are data-driven models based on training data.
The novelty of the generated graphs are highly desired yet usually restricted by training data
and model properties (e.g., mode collapse of generative adversarial nets). To address such issues,
attempts in the domain of images modified the attribute of a generated image by adding a learned
vector on its latent code [108] or by combining the latent code of two images [64]. Additional works
have been developed for inserting extra control in the image generation [108] with additional labels
corresponding to key factors such as object size and facial expression. However, works on graph
generation that could require very different technique sets than image generation are lacking.

Dynamic Graphs. Existing deep graph generative models typically focus on static graphs but
many graphs in the real-world are dynamic, and their node attributes and topology can evolve over
time, such as social network, mobility network, and protein folding. Representation learning for
dynamic graphs is a hot domain, but it only focuses on graph embedding instead of generation.
Modeling and understanding the generation of dynamic graphs have not been explored. Therefore,
additional problems such as jointly modeling temporal and graph patterns and temporal validity
constraints need to be addressed.
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