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Abstract

Trajectory data generation is an important domain that char-
acterizes the generative process of mobility data. Traditional
methods heavily rely on predefined heuristics and distribu-
tions and are weak in learning unknown mechanisms. In-
spired by the success of deep generative neural networks for
images and texts, a fast-developing research topic is deep
generative models for trajectory data which can learn expres-
sively explanatory models for sophisticated latent patterns.
This is a nascent yet promising domain for many applica-
tions. We first propose novel deep generative models factoriz-
ing time-variant and time-invariant latent variables that char-
acterize global and local semantics, respectively. We then de-
velop new inference strategies based on variational inference
and constrained optimization to encapsulate the spatiotempo-
ral validity. New deep neural network architectures have been
developed to implement the inference and generation models
with newly-generalized latent variable priors. The proposed
methods achieved significant improvements in quantitative
and qualitative evaluations in extensive experiments.

Introduction
Recent advances in Global Positional System (GPS), traf-
fic surveillance cameras, unmanned aerial vehicles (UAV),
and Radio-frequency identification (RFID) sensors embed-
ded in devices and cities have enabled an unprecedented
increase in the amount of location records of moving ob-
jects on earth, such as taxi GPS traces and tourist check-
ins. Such a series of temporally-ordered location points of
an object represents a trajectory. Mining trajectory data is
important to a broad range of applications such as location-
based social networks, intelligent transportation systems,
and urban computing (Zheng 2015). Trajectory data min-
ing involves two important tasks: 1) Trajectory representa-
tion learning, which aims at encoding trajectory data into
(low-dimensional) vector space; and 2) Trajectory gener-
ation, which reversely aims at constructing a trajectory-
structured data from low-dimensional space containing the
trajectory generation rules or distribution. Different from
trajectory representation learning which benefits the down-
stream tasks such as discriminative learning and clustering,
trajectory generation focuses on learning and interpreting
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Figure 1: (a) red crosses are points of a trajectory, while gray zone
are the probability density envelop that a deep learning model with-
out constraint has; (b) the probability density envelop (grey zone)
with roads as constraints; (c) for different time of a day, there could
be multiple choices of routing for the same start and end point in a
city. Start and end is determined by users which is static patterns,
but routing choices are dynamic patterns.

the underlying distribution and mechanism of the trajectory
generative process, which is crucial for tasks such as human
mobility simulation and privacy preservation of individual
traces (Wang et al. 2020). In this paper, we focus on the topic
of trajectory data generation.

Traditional models for trajectory generation typically rely
on are hand-crafted rules or prescribed distributions (Gian-
notti et al. 2005; Pelekis et al. 2013) which require extensive
human labors and domain knowledge yet still suffer from
the bias and limited knowledge of the sophisticated mech-
anisms in trajectory generation. To address these issues, a
fast-developing research topic is to extend deep generative
models toward trajectory data, which enables to learn ex-
pressively generative models that could learn the sophis-
ticated distributions based on a large amount of historical
data. This is inspired by the success of deep generative neu-
ral networks in images and texts. Although deep learning
has been widely used for other trajectory data mining tasks,
such as trajectory representation learning and prediction,
deep generative models for trajectory generation have not
been well explored as indicated in a recent survey (Wang
et al. 2020). This is a fast-growing domain, where existing
few relevant works for trajectory generation are based on
image-based Generative Adversarial Network (GAN) mod-
els (Ouyang et al. 2018; Smolyak et al. 2020) and sequential
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Variational Autoencoder (VAE) (Huang et al. 2019).
Despite the progress in this promising domain in recent

years, there are still several important challenges yet to be
addressed: Challenge 1: the necessity and difficulty in fac-
torizing semantic and spatiotemporal patterns in trajec-
tory generative modeling. Each trajectory typically comes
with an underlying purpose, such as “go working”, “wander-
ing in attractions”, or “picking-up people from the airport”.
This type of patterns is namely global semantic meaning that
do not change across different location points inside the tra-
jectory. In addition, trajectory naturally also comes with lo-
cal patterns that characterize the information for each loca-
tion inside it as well as their spatiotemporal dependencies.
Explicitly differentiating them has not been well explored
by the existing deep generative models, which has limited
the model interpretability and generalizability. Challenge 2:
Difficulty in jointly ensuring spatiotemporal-validity of
the generated trajectories. A generated trajectory is rea-
sonable only when it satisfies necessary geometrical, phys-
ical, social principles. For example, all the location points
should be on the roads and the movement speed should
be limited to a reasonable range. Although deep generative
models are good at learning expressive distributions from
data, the learned distributions are still smoothed distribution
over observations. Therefore, it is difficult yet imperative to
diminish the probabilistic density for the invalid patterns.
Challenge 3: More reasonable inductive bias upon the
prior distributions is needed. Existing deep trajectory gen-
erative models usually follow the conventional priors used
in deep generative models, which is to assume the indepen-
dency among the latent variables corresponding to different
locations. This, however, may not be ideal for trajectory gen-
eration because of the inherent dependence between the con-
secutive location points. How to design a new prior that goes
beyond the conventional priors (e.g., isotropic Gaussians) is
preferable yet challenging for trajectory generation.

To address the above issues, we proposes a new frame-
work of factorized deep generative models for trajec-
tory generation with spatiotemporal-validity constraints.
Through factorized latent variables, it speparates global se-
mantics as well as local spatiotemporal semantic. Newly-
generalized dependent priors for latent sequential variables
are proposed contrast to conventional independent priors in
sequential models. With a novel constrained optimization
solution, it reduces the probability of generating invalid sam-
ples. Extensive experiments with ablation study and qualita-
tive study showed the effectiveness of different latent vari-
ables and this constrained optimization.

Related Work
Trajectory Generation/Synthesis: This domain has a long
history, where the representative methods include Oporto
(Giannotti et al. 2005) based physical movement estima-
tion, or Hermoupolis (Pelekis et al. 2013) based on urban
points of interests. See (Wang et al. 2020) for a comprehen-
sive survey. Such conventional methods are hard to replicate
since it uses many ground features of a specific city, and
requires extensive programming efforts and domain knowl-
edge to implement. The current emerging trend for trajectory

generation is to use deep generative models in a data-driven
end-to-end fashion. Deep generative models for trajectory
generation are not widely explored until now (Wang et al.
2020). One type of works converted trajectories to images
first and applied GANs for generation tasks (Ouyang et al.
2018; Smolyak et al. 2020). Such an approach loses many
aspects of information including time, speed, and direc-
tions. Another work (Huang et al. 2019) utilize vanilla vari-
ational autoencoder scenarios by generating a whole trajec-
tory via variables from unit Gaussian, which cannot jointly
encode time-variant and -invariant information (Kingma and
Welling 2013). Deep generative models that can compre-
hensively take care of static and dynamic patterns in trajec-
tory while ensuring the spatiotemporal validity are seriously
under-explored yet imperative.

Spatially-valid constraints in trajectory: other stud-
ies on trajectories consider spatial-temporal-validity con-
straints, such as trajectory generation of vehicles (Choe et al.
2015), collisions avoidance (Mehdi, Choe, and Hovakimyan
2017), monitoring with turning constraints (Stephens et al.
2019), Trajectory tracking with velocity and heading rate
constraints (Ren and Beard 2004), bounded zoning con-
straints (Jorris 2007). Such constraints are not trivial to be
considered in deep generative models and raise a major ob-
stacle to generate realistic trajectory by neural networks.

Disentangled and factorized deep generative models:
Disentangled deep generative models are promising re-
search topic recently, especially for applications on image
data (Bang et al. 2019; Chen et al. 2018; Higgins et al.
2016; Kim and Mnih 2018). The notion of disentanglement
and factorization is to separate out the underlying explana-
tory factors responsible for variations of data. The generative
representation learned in this way have been relatively re-
silient to the complex variants involved (Bengio, Courville,
and Vincent 2013), and can be used to enhance interpretabil-
ity, generalizability, and robustness against adversarial at-
tack (Bang et al. 2019). Additional inductive bias could be
considered to further factorize by leveraging particular data
properties, such as factorizing graph data into the node and
edge patterns (Guo et al. 2020) and factorizing video data
into the object and motion patterns (Li and Mandt 2018).

Spatiotemporal-valid Trajectory Generation
We first introduce the Bayesian network of the proposed
generative model, followed by new model inference meth-
ods. Then spatiotemporal-validity constraints are described
and induced to the training objective. Finally, the model ar-
chitectures for the encoder and decoder are elaborated.

Generative model
First, we define a trajectory as a sequence of location points
{s1, s2, · · · , sT } at time points 1, 2, · · · , T . The proposed
method focuses on a new generative process of trajectories,
which factorizes the whole semantic meaning of a trajectory
into two parts: 1) the global semantics of the whole trajec-
tory as well as 2) local semantics that characterize the de-
pendencies among the neighborhood. The global semantics
cover the overall meaning of the trajectory including com-
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Figure 2: Plate notation of the proposed deep generative models
for generating N trajectories. The index of the variables for each
sample has been omitted for simplicity.

muting from suburb to downtown, wandering inside down-
town, jogging in the trails, and so on. The local semantics
cover spatiotemporal autoregressive patterns such as how the
next location is dependent on the current locations. More-
over, instead of assuming that the local semantic variable
{z1, · · · , zT } must be all from identical and independent
prior distributions, here we allow their priors {Θ1, · · · ,ΘT }
to be conditional dependent with each other. When zt fol-
lows Gaussian distribution, Θt = {µt, σt} which are mean
and standard deviation. These conditional distributions in-
troduce more reasonable inductive bias and model expres-
siveness, by considering the dependencies among spatial
neighbors. Specifically, as also shown in Figure 2, our model
characterizes the following generative process:

• Draw a sequence of the priors {Θ1, · · · ,ΘT } for local
semantic status, based on conditional probability: Θt ∼
p(Θt|Θt−1), where p(Θ0) is a predefined distribution
such as a unit Gaussian.

• For each trajectory, draw a time-invariant variable f as the
global semantic from pθ(f) such as a unit Gaussian;

• For each trajectory, draw the local semantic variable z1
for the first time point t = 1 from Θ1.
– For each time point t ≥ 1, draw the underlying local

semantic variable zt with the conditional probability
zt ∼ p(zt|zt−1,Θt).

– For each t, draw the observed variable st ∼ p(st|zt, f).

A natural question is what the connection of our work and
previous works in trajectory generation is. It is found that if
µ1:T , σ1:T are generated from f instead of 000, our models col-
lapse to the baseline SVAE model in (Huang et al. 2019) and
zt, µt, σt would become internal parameters and states that
have no significant meanings. We also provide such ablation
study in later experiment sections to support the usage of
dynamic factors z1:T with its priors µ1:T , σ1:T .

Model Inference
Since the proposed generative model is intractable to infer,
we proposed to solve it based on variational inference used
for training variational autoencoder. This is achieved by first
establish an approximate posterior qφ(z1:T , f |s1:T ) in order
to approximate the original distribution p(z1:T , f |s1:T ), we
investigate two possible choices of qφ:

qφ(f, z1:T |s1:T ) =

{
qφ(f |s1:T )qφ(z1:T ,Θ1:T |s1:T ) (factorized)

qφ(f |s1:T )qφ(z1:T ,Θ1:T |f, s1:T ) (full)

where the level of variance of z1:T could change depending
on f in full model, for example, if most roads between home
and work are highways, then there is almost no variance for
routing choice, while the level of noise of z1:T in the factor-
ized model do not depend on f . Such modeling could reflect
on different road network layout of different cities.

Following β-VAE, the objective is as follows:

min
ψ,φ
L(pψ, qφ) = −Eqφ [log pψ(s1:T |z1:T , f,Θ1:T )] (1)

+βKL(qφ(z1:T , f,Θ1:T |s1:T )||pψ(z1:T , f,Θ1:T ))

where β is hyper-parameter to control disentanglement in
β-VAE,KL is shorten for KullbackLeibler divergence (Hig-
gins et al. 2016),ψ and φ are sets of parameters in neural net-
works. They could be the parameters of a predefined distri-
bution or deep generative neural networks. The first term is
typically used for minimizing the reconstruction loss while
the second one helps regularize the learned posterior close
to the prior distributions. More specifically, the second term
can be expanded as follows:

KL(qφ(z1:T , f,Θ1:T |s1:T )||pψ(z1:T , f,Θ1:T )) (2)

=KL

(
qφ(z1:T , f,Θ1:T |s1:T )||p(f)

T∏
t=1

p(zt|zt−1,Θt)p(Θt|Θ<t)

)
where the prior p(Θ0) follows an unit Gaussian distribution.

Spatiotemporal-validity constraints
Although the generative model learned by the Equation 2
could effectively characterize the underlying process of tra-
jectory generation, the trajectories sampled from the learned
generative model may not guarantee its validity and phys-
ical meaning in the real world. For example, the proba-
bilistic density of the trajectory usually is continuous in the
whole geographical space, leaving any location with non-
zero probability to be passed by the trajectory. However, a
trajectory needs to strictly follow spatial constraints. For ex-
ample, the trajectory of vehicles needs to be on the roads,
and hence its shapes and patterns should be constraints by
the geometry of the roads. This requires to diminish the
probabilistic density for the unfeasible trajectory patterns
such as “out of road” or “constantly back and forth”. Em-
bedding in such an inductive bias can effectively increase
the model generalizability and possibly strengthen the ro-
bustness against noise in training data due to the inaccuracy
of the sensing data (e.g., those from GPS). The notion of
spatial validity constraints can be leveraged our Equation 2,
by the newly extended objective:

The central contribution is imposing spatial validity con-
strains in optimizing generic VAE loss function L that we
have developed in Equation 2 as follows:

minψ,φ L(pψ, qφ), s.t.∀s1:T /∈ C : pψ(s1:T |z1:T , f,Θ1:T ) = 0
(3)

where C denotes the set of all the trajectory patterns that
satisfy the spatial validity constraint. The spatial valid-
ity constraint can be specified by the user based on the
practical need. For example, if the constraint says all the
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locations in the trajectory must be on the roads, then
C1 = {[x1, · · · , xT ]|xt ∈ R}, where R denotes the spa-
tial regions of the roads. The constraint could also be on
the first-order phenomena such as speed limit, meaning
the trajectory’s moving speed must be physically feasible
for the moving object. This could be denoted as C2 =
{[x1, · · · , xT ]||∆xt| ≤ S}, where |∆xt| denotes the ob-
ject’s speed at time t while S is the speed limit that this
object’s speed cannot exceed. Another pattern could be the
turning angles between two consecutive segments in the tra-
jectory, in many situations, it is unlikely to have many con-
secutive sharp turnings. To constrain this, we could have
C3 = {[x1, · · · , xT ]|

∑
t cos(xt−1 − xt, xt+1 − xt) < λ},

where cos(xt−1 − xt, xt+1 − xt) denotes the cosine simi-
larity of the two vectors each of which is the movement in
the 2D Euclidean surface. The spatial constraint C can also
be composed of the logical combinations among multiple
rules. For example, C = C2

⋂
(C1
⋃
C3).

Directly solving complex constrained problems using
conventional ways such as Lagrangian has been demon-
strated to be inefficient for deep neural networks. Here we
extend a recent deep constrained optimization framework
(Ma, Chen, and Xiao 2018) to handle our problem in Equa-
tion 3, which is reformulated as follows:

L̃(pψ, qφ, γ) = L(pψ, qφ) + γ [

∫
1(g(z1:T , f,Θ1:T ) /∈ C)

· pψ(z1:T , f,Θ1:T ) dz1:T df dΘ1:T ]
1
2 (4)

where C is the set of validity functions, and 1(·) is an indica-
tor function that output 1 if a generated trajectory is invalid,
otherwise 0. We can reduce the integral term with a com-
mon approach of Monte Carlo Sampling in VAE (Kingma
and Welling 2013). To allow gradient-flow over the regular-
ization term, constraint functions in C must have gradients.

Deep neural network architectures
In this section, we introduce the detailed architectures for
our proposed STG. Let a trajectory s1:T in our database
S, and st = 〈xt1, xt2〉 denotes the tth coordinate at time
step t. The abstracted operations are shown in Figure 3
with sub-modules. Our encoder is qφ(z1:T , f,Θ1:T |s1:T ) =
q(z1:TΘ1:T |f, s1:T )q(f |s1:T ), which can be decomposed
into two sub-encoders. 1) time-invariant encoder q(f |s1:T ),
which consumes the whole sequence that capture the
stochastic whole-sequence representation f detailed in up-
per left corner of Figure 3; 2) time-variant encoder, with
factorized modeling alternative q(z1:TΘ1:T |s1:T ) and full
modeling alternative q(z1:TΘ1:T |f, s1:T ), which takes each
coordinates step by step to generates a stochastic posterior
representation zt for each step detailed in lower left cor-
ner of Figure 3. Blue lines are for full modeling alternative;
3) joint-factor decoder for training pψ(s1:T |z1:T , f,Θ1:T )
during training phrase that combine sampled y and zt to
stochastically generate each coordinates st step by step, and
minimize our training loss, which is detailed in right part of
Figure 3. For joint-factor decoder for synthesis, joint-factor
decoder relies only on the sequential network to generate
prior means and variances of zt first without the need to use
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encoder. In the following, we use MLP∗(·) to denote dif-
ferent multi-layer perceptron, use BiLSTM∗ for different
bi-directional LSTM (Graves and Schmidhuber 2005), use
RNN∗ for vanilla RNN networks. In general, all the opera-
tions are as follows:

Time-invariant encoder:
mt+1
f ; ot+1 = BiLSTMf (MLPs(st),m

t
f , o

t)

µf = MLPµf (o1||oT ), σf = MLPσf (o1||oT ), y ∼ N (µf , σf )

Time-variant encoders:
(1) factorized: m̃t+1

z ; ãt+1 = BiLSTMz(MLPs(st), m̃
t
z, ã

t)

(2) full: m̃t+1
z ; ãt+1 = BiLSTMz(MLPs(st)||y, m̃t

z, ã
t)

mt+1
z ; at+1 = RNNz(m̃

t+1
z ,mt

z; a
t)

µzt = MLPµzt (a
t), σzt = MLPσzt (a

t), zt ∼ N (µzt , σzt)

Joint-factor decoder for training:

mt+1
s ; bt+1 = BiLSTMs(y||zt,mt

s, b
t), ŝt = MLPs(b

t)

Joint-factor decoder for synthesis:

mt+1
µ ; bt+1

µ = BiLSTMµ(000,mt
µ, b

t
µ), µt = MLPµ(btµ)
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mt+1
σ ; bt+1

σ = BiLSTMσ(000,mt
σ, b

t
σ), σt = MLPσ(btσ)

zt ∼ N (µt, σt)

mt+1
s ; bt+1 = BiLSTMs(y||zt,mt

s, b
t), ŝt = MLPb(b

t)

where || is the concatenation operation of vectors, ∼ is
the sampling operation which use the re-parameterization
trick (Kingma and Welling 2013) to allow gradient back-
propagation. m∗ are different latent states vectors, and o∗,
a∗, b∗ are outputs for either BiLSTM∗ or RNN∗ modules.

Experiments
In this section, both quantitative and qualitative results
are reported to show the performance of STG with abla-
tion study and comparisons to previous methods over four
datasets. All experiments are conducted on a 64-bit machine
with a NVIDIA 1080ti GPU.

Datasets
Real-world datasets The first dataset is collected from
442 taxi at Porto, Portugal describing a complete year (from
01/07/2013 to 30/06/2014) 1. Data do not have time-stamps
but with a fixed 15 second sampling interval. The second
dataset is T-Drive data that collect continuous GPS points of
10,357 taxis in one week with real timestamps 2. Preprocess-
ing steps are used to clean the data, including Noise Filtering
and Stay Point Detection (Zheng 2015). The third real-world
dataset is human check-ins collected from a location-based
website Gowalla 3, for which only the dense region at Dallas
metropolitan from original global data is selected. All points
are projected to a local geographic coordinate system in me-
ters and convert to a 1000-meter unit.

Synthetic dataset We generated a synthetic dataset for
10,000 students living on a university campus from a
location-based simulator (Kim et al. 2020). The student
agents mimic real-world contacting and check-ins patterns
based on predefined living and social preference settings in
agent-based simulation.

We convert all datasets to Euclidean space using geo-
graphically projection based on the original earth projection
system used in data. We split raw data with 0.9/0.1 ratios for
training and testing subsets.

Constraints settings
Physics-induced constraint: Many constraints can be
developed from physics law and engineering of a car. Since
sampling time intervale e is small (15 seconds), a constraint
is that if the average speed γt = ||st−st−1||2

e is higher than
a threshold γ̄ = 60Km/h, it is impossible for a car to
make an sharp turn, so we can not observe a preceding an-
gle ηt (in cosine value) smaller than a threshold η̄. And,
ηt = (st−st−1)·(st−1−st−2)

||st−st−1||2||st−1−st−2||2 . This regularization only im-
pose penalties over a case that the angle is smaller than
threshold ηt > η̄ when a segment is larger than threshold
γt > γ̄ at the same time. We show such patterns in Porto

1www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
2www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
3snap.stanford.edu/data/loc-Gowalla.html

dataset (red dashed region in second row) in Figure 5 which
is formulated as follows:
λ

N

∑J ∑T

t=2
c(t, s1:T ) =

λ

N

∑J ∑T

t=2
(γt − γ̄)+(ηt − η̄)+

where st is treated as a vector, and λ is a hyper-parameter
because there is only one constraint function. Notice that
total T − 2 constraints for each trajectory are possible.

Behavior-induced constraints: Behavioral constraints
come from behaviors which are abnormal to human, even
though these behaviors did not validate the physics laws. For
example, in two consecutive segments with a high GPS sam-
pling rate like 5 second, it is abnormal to have two U-Turns
(turn to opposite direction), in other words, two consecu-
tive angles could not both be very sharp (less than 30 de-
grees). Such constraint can be shown in the Beijing dataset
(red dashed regions in first row) in Figure 5. This regulariza-
tion penalizes the case that first angle is smaller than a sharp
threshold ηt > η̄ when its preceding angle is also very sharp
ηt−1 > η̄. Its formula is as follows:

λ

N

∑J ∑T

t=3
c(s1:T ) =

λ

N

∑J ∑T

t=3
(ηt − η̄)+(ηt − η̄)+

where η is also the cosine value of angles. Notice that total T − 3
constraints for each trajectory are possible.

Competing methods and Ablation study
Here, we introduce competing methods. Since some com-
peting methods also belong to the ablation study, we also
introduce the ablation study models simultaneously.

LSTM: a basic LSTM model that can take any start point
as input and output a sequence of points.

IGMM-GAN: a GAN-based model with a new Dirichlet
Process Mixture Model for latent noise input. It processes a
trajectory as an image not a sequence (Smolyak et al. 2020).

SVAE-y: it used a static latent variable for a whole
sequence, firstly developed in (Huang et al. 2019). This
method can be also treated as an ablation study for our model
that we use y without z1:T .

SVAE-z: this ablation model uses only z1:T without y.
Disentangled SVAE (DSVAE): this is for the full model

with both y and z1:T and each zt is dependent on y.
Factorized Disentangled SVAE (FDSVAE): this is for the

factorized alternative that each zt is independent on y.
Also, to provide ablation study to our other contribution,

for each of the variantional based model (namely SVAE-
y, SVAE-z, DSVAE, FDSVAE), we implement another ver-
sion with spatial constraints namely SVAE-y-S, SVAE-z-S,
DSVAE-S, FDSVAE-S. For human check-in trajectories, we
do not do experiments with spatial constraints since such
constraints do not hold for our datasets. Any other potential
constraints are left to future works.

Evaluation metrics:
Mean Distance Error (MDE) in Haversine Distance or Eu-
clidean distance is the most used metric in current works
(Ouyang et al. 2018; Huang et al. 2019; Smolyak et al.
2020), defined as 1

n

∑N
i ||si − ŝi||2, where || · ||2 denotes

L2 norm. Since MDE only compute a reconstruction loss,
we proposed to directly evaluate spatial feature distributions
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Figure 5: Spatial constraint results of Beijing and Porto datasets with red-dashed area for violation zone.

in “Maximum Mean Discrepancy (MMD)”, a sophisticated
distance function used in recent approaches in image (Zhang
et al. 2020), text (Guo, Pasunuru, and Bansal 2020), and
graph (You et al. 2018). A trajectory could have a feature
vector d1:T−1, and an original feature set is represented as
D ∈ RN×T , and D̃ for a generated feature set. Function
MMD(D, D̃) 7→ [0, 1] has output value between 1 for least
similarity and 0 for two exactly same distributions. The cho-
sen spatial features include angles, segment lengths, total
lengths, point counts of cells in a grid.

Violation Score (VS) is used to evaluate spatial constraint
results. It’s a ratio of violation case number over the total
number of all cases. The lower the VS value is, the better a
model outputs spatial-temporal-valid results. The formula is
as follow:

V S =

∑N
i

∑T
t=t∗

111c(t, s
(i)
1:T )

N × (T − t∗)
,111c(·) :=

{
1 if c∗(·) ∧ . . .
0 else

where t∗ is the start step defined for c∗(·), for example,
t∗ = 2 for segment length, while t∗ = 3 for the angle of
consecutive segments.

Evaluation results
General performances: The performances of previous
methods, our proposed STG methods, and ablated methods
are presented in Table 1. It gives the MDE score between a
real trajectory and its reconstructed trajectory and compares
angle distribution, segment length distribution, total length
distribution, and grid point count distribution in MMD be-
tween real trajectory sets and synthetic sets.

For the two taxi trajectory datasets, our STG outper-
formed other competing and ablated methods in most met-
rics. The margin of improvement of VAE-based models and
IGMM-GAN compared to LSTM is huge. It is caused by the
lack of randomness in vanilla LSTM. VAE-based models are
overall preferred in MMDs. Specifically, comparing simple
SVAE-y and SVAE-z to our proposed DSVAE and FDSVAE
in Table 1, DSVAE is the best in MDE for both taxi dataset.
The spatial constraint versions normally improve over non-
constraint ones, so DSVAE-S and FDSVAE-S gained the
best performances in most metrics except SVAE-z-S method
achieve slightly better in angles for Porto and in total lengths
and grid points in MMD for Beijing. The overall grid point
distributions in Figure 6 also shows that all VAE-like mod-

dataset
Method

Metrics
MDE Angles

in
MMD

Segment
lengths in
MMD

Total
lengths in
MMD

Grid point
counts in
MMD

Porto

LSTM 13.6525 0.5243 0.4976 0.4136 0.1135
IGMM-GAN 11.1488 0.0772 1.0 0.3779 0.0429
SVAE-y 1.2422 0.0430 0.0034 0.0655 0.0244
SVAE-z 1.73782 0.0081 0.0069 0.3303 0.0279
DSVAE 0.9018 0.0649 0.0041 0.2439 0.0208
FDSVAE 1.7415 0.0380 0.0019 0.0497 0.0294
SVAE-y-S 1.9755 0.0795 0.1009 0.6947 0.0647
SVAE-z-S 1.1896 0.0054 0.0055 0.2593 0.0106
DSVAE-S 0.8059 0.0628 0.0032 0.2133 0.0208
FDSVAE-S 1.2281 0.0273 0.0004 0.0495 0.0105

Beijing

LSTM 16.0594 0.4005 0.6447 0.4080 0.3717
IGMM-GAN 0.9577 0.0556 0.7280 0.1052 0.003
SVAE-y 0.6073 0.3844 0.3563 0.1409 0.1360
SVAE-z 0.9849 0.0178 0.0074 0.0437 0.0005
DSVAE 0.5916 0.1310 0.0788 0.1448 0.1040
FDSVAE 1.1136 0.3635 0.0076 0.7308 0.1594
SVAE-y-S 1.5179 0.4316 0.3456 0.1288 0.1207
SVAE-z-S 0.9138 0.0200 0.0079 0.0436 0.0002
DSVAE-S 0.5130 0.0047 0.0087 0.0852 0.0088
FDSVAE-S 0.6118 0.0088 0.0018 0.0610 0.0660

POL

LSTM 34.5681 0.5921 0.9292 0.9915 0.9835
IGMM-GAN 0.8872 0.1957 0.0003 0.0004 0.0023
SVAE-y 10.6391 0.2107 0.6874 1.0067 0.4426
SVAE-z 6.1959 0.1629 0.0044 0.0012 0.0480
DSVAE 8.5842 0.1012 0.0030 0.0003 0.0463
FDSVAE 7.2282 0.0935 0.0094 0.0009 0.0456

Gowalla

LSTM 629.07 0.0325 NaN NaN NaN
IGMM-GAN 101.32 0.0351 0.1015 0.0431 0.0163
SVAE-y 90.292 0.0111 0.0430 0.0017 0.0030
SVAE-z 40.2241 0.0067 0.0328 0.0002 0.0026
DSVAE 2.7645 0.0065 0.0196 0.0002 0.0036
FDSVAE 1.7714 0.0102 0.0144 0.0001 0.0025

Table 1: Experiment results.

els with/without constraints are generally better than LSTM
and IGMM-GAN.

For two check-in datasets in Table 1, FDSVAE is pre-
ferred, except that IGMM-GAN is the lowest in MDE, seg-
ment length, and grid point of POL dataset. This might re-
sult from the relatively small sample size of POL. For the
Gowalla dataset, FDSVAE won in almost all metrics, except
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dataset Method VS Method VS

Porto

plain LSTM 0.045219 - -
IGMM-GAN 0.02624 - -
SVAE-y 0.034881 SVAE-y-S 0.004960
SVAE-z 0.018214 SVAE-z-S 0.002749
DSVAE 0.027971 DSVAE-S 0.003682
FDSVAE 0.021269 FDSVAE-S 0.001180
Raw data 0.001718 - -

Beijing

plain LSTM 0.004753 - -
IGMM-GAN 0.055332 - -
SVAE-y 0.008197 SVAE-y-S 0.033250
SVAE-z 0.009581 SVAE-z-S 0.006895
DSVAE 0.010779 DSVAE-S 0.003263
FDSVAE 0.054197 FDSVAE-S 0.007847
Raw data 0.003395 - -

Table 2: Violation score Experiment results.

SVAE-z won in angles. By showing grid point density in
Figure 7, it is also confirmed that DSVAE, FDSVAE, and
SVAE-z captured a similar pattern to real datasets.

Constraint performances: By comparing models with-
out constraints with models with constraints in Table 2, pro-
posed spatial regularization terms help to generate much
fewer violation cases for all models since VS consistently
decrease after adding constraints. In the plotted distribution
of related features in Figure 5, there is much more white
space (indicating zero number of samples) in red dashed re-
gions after adding constraints.

Disentanglement analysis
In this part, we demonstrate a qualitative analysis to show
that the factorization of time-variant and time-invariant fac-
tors achieved better interpretability in Figure 8. We use
FDVAE-S model with Porto dataset as an example. Along
x-axis, the sampled z1:T vectors’ second dimension is re-
placed with values from 1 to 9. Along y-axis, we randomly

Figure 8: Disentangled factors studies. x axis is to change time-
variant zt factors, y axis is to change time-invariant y factor. This
experiment used Porto dataset with FDVAE-S model.

sampled 9 different y vectors from distribution N (000,111). We
can see that y controls the overall trend of trajectories since
trajectories in the same row present highly similar patterns.
The zt injected different noises to each step of trajectories,
since trajectories in the same row show small variances. For
the same column, it shows that zt might control some high-
dimensional geometric dynamics, though it is hard to visu-
ally conclude any specific geometric factor that zt controls.

Conclusion
We develop a novel STG framework for deep genera-
tive models with spatiotemporal-validity constraints, which
achieved better performance not only in the conventional
MDE metric but also over feature distribution in MMD met-
rics and violation score. It shows that the effectiveness of
factorizing time-variant and time-invariant factors, sequen-
tial priors over each time step, and constrained optimiza-
tion. Even though taxi GPS trajectories and check-ins tra-
jectory are selected, our STG framework can be also applied
for other similar data mining tasks, and in other domains
like animal migration trajectory, ant movement trajectory,
and sport trajectory, which are left to the future works.
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Neural network details
We introduce details of neural networks, especially num-
ber of neurons. For Porto and Beijing dataset, the MLPs(·)
is multiply layers with [48, 16]. For all BiLSTM∗ and
RNN∗ modules, the dimensions of the hidden states (not
shown in our paper) are set to 512. For the BiLSTMf of
static pattern, the dimension of recurrent input ot is 16. The
MLPµf andMLPσf with inputs of 512×2 dimension, and
with output dimension of 256. For the BiLSTMz of dy-
namic patterns, the dimension of input ãt is 16. The second
RNNz module takes forward and backward hidden states
as an input, whose dimension is 512 × 2. The hidden state
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of RNN is with 512 dimension. MLPµzt and MLPσzt
is set to have one layer of 64 neurons. The priors Θ in-
cludes µt and σt, whose decoding modules BiLSTMµ and
BiLSTMσ have the same design ofBiLSTMz . The differ-
ence is that its input is a 000 vector with dimension of 16. The
MLPµ and MLPσ have the same number of 64 neurons.
The f ||zt input’s dimension is 256+64 for the decoder mod-
ule BiLSTMs. The MLPs has one internal layer of 128
neurons and a last layer of two neurons for two coordinate
values in st.

There are a few differences for POL and Gowalla data.
The MLPs(·) is multiply layers with [48, 32]. For all
BiLSTM∗ and RNN∗ modules, the dimensions of the hid-
den states (not shown in our paper) are set to 512. For
the BiLSTMf of static pattern, the dimension of recur-
rent input ot is 32. The MLPµf and MLPσf with inputs
of 512 × 2 dimension, and with output dimension of 256.
For the BiLSTMz of dynamic patterns, the dimension of
input ãt is 32. The second RNNz module takes forward
and backward hidden states as an input, whose dimension
is 512 × 2. The hidden state of RNN is with 512 dimen-
sion. MLPµzt and MLPσzt is set to have one layer of 32
neurons. The priors Θ includes µt and σt, whose decoding
modules BiLSTMµ and BiLSTMσ have the same design
of BiLSTMz . The difference is that its input is a 000 vec-
tor with dimension of 32. The MLPµ and MLPσ have the
same number of 32 neurons. The f ||zt input’s dimension is
256 + 32 for the decoder module BiLSTMs. The MLPs
has two internal layer of [64, 32] neurons and a last layer of
two neurons for two coordinate values in st.

Other parameter tuning
Except changing different neural networks architectures,
there are several hyper-parameters to be tuned, including:
1) β parameter for β-VAE to enhance disentangling. We test
values in [1, 10, 100]. 100 is chose for the model in our pa-
per; 2) γ parameter for regularization of constraints. We test
values in [1, 10, 100]. 1 is chose for the presented model in
the paper; 3) other conventional parameters. Learning rate
is set to be 0.0002 for Porto, 0.0002 for Beijing, 0.0002 for
POL, and 0.002 for Gowalla. The training epoch are all set
to be 100. The batch size is set to 128 for all datasets and
models.

Additional experiment results
In this part, we did extensive case studies for different
datasets so as to illustrate the effectiveness of our factoriza-
tion approaches. Each row is generated with a fixed f , and
each column is generated with a fixed z1:T sequence. We can
see that for both taxi trajectories and check-in trajectories f
controls a static pattern (similar patterns in each row), while
zt control the variances for each trajectory in such a row.
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Figure 9: Case studies of f and zt over Porto dataset

10



Figure 10: Case studies of f and zt over Beijing dataset
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Figure 11: Case studies of f and zt over POL dataset
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Figure 12: Case studies of f and zt over Gowalla dataset

13


	Introduction
	Related Work
	Spatiotemporal-valid Trajectory Generation
	Generative model
	Model Inference
	Spatiotemporal-validity constraints
	Deep neural network architectures

	Experiments
	Datasets
	Constraints settings
	Competing methods and Ablation study
	Evaluation metrics:
	Evaluation results
	Disentanglement analysis

	Conclusion
	Neural network details
	Other parameter tuning
	Additional experiment results


