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Abstract 
What affects whether one person represents an item in a similar 
way to another person? We examined the role of verbal labels 
in promoting representational alignment. Three groups of 
participants sorted novel shapes on perceived similarity. Prior 
to sorting, participants in two of the groups were pre-exposed 
to the shapes using a simple visual matching task and in one of 
these groups, shapes were accompanied by one of two novel 
category labels. Exposure with labels led people to represent 
the shapes in a more categorical way and to increased 
alignment between sorters, despite the two categories being 
visually distinct and participants in both pre-exposure 
conditions receiving identical visual experience of the shapes. 
Results hint that labels play a role in aligning people's mental 
representations, even in the absence of communication. 
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Introduction 
 
How similar is one person’s representation of an item to that 
of other people’s? The same items can be represented in 
many different ways and, as such, categories of items can also 
vary. However, in communication between individuals we 
need to align upon how we represent items and categories of 
items if we are to successfully communicate about things in 
the world (Markman & Makin, 1998; Pickering & Garrod, 
2004; Silvey, Kirby & Smith, 2019). Given the wide 
variability in how we can represent items, how is it that our 
representations align? 
Past research suggests that labels can promote the 

alignment of categories both with communication about 
category items (Markman & Makin, 1998), and without 
communication about category items (Suffill, Branigan & 
Pickering, 2016; 2019). But by what mechanism do labels 
increase category alignment across people? The label-
feedback hypothesis (Lupyan, 2012) predicts that perceptual 
input that has been previously associated with a label will 
automatically activate the label and the label will in turn 
selectively activate category-diagnostic features, causing the 
representation of the item to become more categorical.  

For example, after hearing basic color names such as “red” 
and “blue” people are more accurate in discriminating 
category members from non-members, and in discriminating 
typical members from atypical ones. While hearing a 
categorical color label affects discrimination, seeing a visual 
cue (e.g., a specific shade of red) does not (Forder & Lupyan, 
2019). Labels have also been found to influence visual search 
for numbers and objects (Lupyan & Spivey, 2010; Gilbert et 
al., 2008), perception of orientation (Smilek, Dixon & 
Merikle, 2006), and facial expressions (Roberson & 
Davidoff, 2000; Brook et al., 2016). In all these cases, the 
labels appear to induce a more categorical representation, in 
particular, a representation that emphasizes category 
diagnostic features of the named category – the features that 
most reliably distinguish category members from non-
members.  
One consequence of this increased categoricality may be 

greater alignment between people. For example, when a 
category label (“triangle”) is used as a cue, people appear to 
activate more typical equilateral triangles (Lupyan, 2015) 
compared to when they are cued by definitionally equivalent 
cues like “three-sided polygon”. Equilateral triangles are 
more similar to one another than those judged as less typical 
(e.g., scalene). And so, to the extent that “triangle” causes 
people to think about an equilateral triangle, the category 
label is, in effect, aligning people’s representations. Under 
the influence of the label, people’s representations of “a 
triangle” are thus more similar than they would be otherwise. 
In previous work, Suffill et al. (2016; 2019) have shown 

that when asked to group items into categories labeled with 
nonsense labels, people produce more similar groups than 
when asked to group the same items into unlabeled 
categories. Here, we test the hypothesis that exposure to 
labels promotes alignment in a more systematic way. 

Current study 
 
To examine whether labels promoted greater alignment 
between people by increasing the categoricality of their 
representations, we familiarized people with two visually 
distinct categories of novel shapes with the categories either 
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labeled or not, and then probed their representational 
similarity of the shapes using a sorting task (Goldstone, 1994; 
Malt, Sloman, Gennari, Shi & Wang, 1999). We predicted 
that although the structure of the categories made it plain that 
there were two distinct kinds, exposure to labels would cause 
people to represent the items in a more categorical way (i.e., 
emphasizing the category-diagnostic features if the shapes) 
and, as a result, would tend to help people align to a greater 
extent. 
 

Method 
 

Participants 
We recruited 129 (85 female) Psychology students at the 
University of Wisconsin-Madison, who took part for course 
credit. Ages: 18-22 years (x̅ = 18.77, SD = 0.68). Participants 
were randomly assigned to the “Baseline” (N = 45), “No 
Labels” (N = 43) or “With Labels” (N = 41) conditions1. 
 
Stimuli 
We generated a prototype shape for each of the two 
categories (i.e., generically named category “A” and “B”; 
Fig. 1). Our aim was to create two categories that were 
visually distinct but for which these distinctions were 
difficult to label, in order to avoid simple linguistic 
distinctions like ‘smooth’ versus ‘pointy’. To create category 
members with a family resemblance structure, we generated 
distortions by adding varying amounts of random gaussian 
noise to the coordinates of the prototypes. We generated an 
additional 18 shapes per category by adding noise at three 
different thresholds to produce category members that were a 
“low” (N = 6; x̅ distance = .21), “medium” (N = 6; x̅ distance 
= .30) or “high” (N = 6; x̅ distance) = .40) level of distortion 
from their prototype (as measured by Euclidean distance). 
This resulted in 19 shapes (including the prototype) per 
category. The labels were two nonsense words (“talp” and 
“gek”) recorded by an American English speaker. To equate 
auditory exposure, participants in the “No Labels” condition 
heard length and volume-normalized white noise in place of 
the labels. 
 
Procedure 
Pre-exposure. Participants assigned to the “With Labels” or 
“No Labels” conditions began by completing a delayed 
match-to-sample task that served to familiarize people with 
the visual stimuli and, for the “With Labels” condition, 
expose people to the labels (Fig. 2). On each trial, participants 
saw one of the shapes (sample) which was either labeled or 
not depending on condition. After a delay, participants saw 
two shapes and had to indicate which one matched the 
sample. There was a total of 243 trials (3 blocks of 9 shapes 
from each of the two categories, paired with 9 shapes from 

 
1 We excluded 39 participants who did not move items during the 
free sort as analyses required all items to be meaningfully sorted 
by perceived similarity (i.e., instead of being left in random 

the other category. Category prototypes were omitted. 
Importantly, the two shapes presented side-by-side were 
always from different categories, thus giving participants 
from the “With Labels” and “No Labels” conditions equal 
experience with making between-category discriminations. 
The display remained visible until a response was made. The 
correct response was counterbalanced across left and right 
positions. Errors were signaled with a buzzing sound. 
 

 
 

 
 

Figure 1: Category A (Top) and B (Bottom) prototypes with 
“low”, “medium” and “high” distortion. Shape position 

within sections is random. 

starting positions). We subsequently modified the instructions to 
emphasize that all items had to be moved. 
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Figure 2: Schematic of delayed match-to-sample task used 
for pre-exposure (“With Labels” condition). Participants 
responded with which shape matched the sample. A/B 
category labels are shown for illustration only. 

 
Free sort. Participants were presented with 20 shapes (i.e., 
10 A category shapes; 10 B category shapes), including the 
previously unseen prototype shape, six further novel shapes 
and three previously seen shapes for each category. Shapes 
were initially displayed around the four edges of the screen, 
and participants were asked to drag the shapes into any 
number of categories on the basis of similarity. We did not 
provide predefined spaces for the formation of categories: 
Instead, participants were able to place the shapes into any 
number of categories by spatially clustering the shapes 
together. Shapes were allowed to overlap. Participants were 
instructed to move all of the shapes during sorting, in order 
to ensure that the final positions of shapes were meaningful 
to each sort (i.e., so that the final position of a shape was not 
simply its random starting location). We also tested 7 of the 
participants in the “With Labels” condition for label 
retention, i.e., whether they accurately remembered which 
shapes were ‘talps’ and which were ‘geks’ following the Free 
sort phase. Average accuracy was .87 (SD = .19), suggesting 
that participants tended to remember the labels despite their 
incidental nature. 

Results 
 
Analytic Approach 
For Pre-exposure, we examined differences in accuracy and 
reaction time in the match-to-sample task for the “No Labels” 
and “With Labels” conditions. For the Free sort, we first 
assessed the average Euclidean distances for between- and 
within-category items to check whether participants across 
all conditions were sensitive to the visual differences across 

the categories (“Within versus between category distances"). 
We then assessed how participants sorted the items across 
conditions: we examined the tendency for participants to use 
different numbers of clusters in their solutions (“Number of 
clusters”); the properties of the clusters (“Cluster 
properties”); and finally how similar participants’ sorts were 
across participants (“Effects of labels on alignment”). 
We used mixed effects linear models for continuous output 

variables and logistic regression for discrete variables, as 
implemented in R’s lme4 package v. 1.1-21 (Bates et al., 
2015). Predictors were center-coded. Models included by-
subject random intercepts and random-slopes for within-
condition factors unless doing so prevented convergence. All 
reported models were a significantly better fit of the data than 
null models (p < .05). 
 
Pre-exposure phase 
Average accuracy. Average accuracy on the delayed match-
to-sample task was x̅ = 0.98 (SD = 0.13) for the “No Labels” 
condition nearly identical, x̅ = 0.98 (SD = 0.14) for the “With 
Labels” condition. There was no significant difference in 
accuracy between any of the conditions (p = .81).  
Average reaction time. Average reaction times (trimmed 

to exclude RTs > 2 SD from the overall mean) for correct 
responses were marginally faster for the “No Labels” 
condition (x̅ = 648 ms, SD = 543 ms) compared to the “With 
Labels” condition (x̅ = 731 ms, SD = 1736 ms) (b = -54.13, 
SE = 27.70, t = -1.95, p = .05). 
 
Free sort phase 
Next, we examined how people subsequently sorted new 
and previously experienced shapes, including the category 
prototypes (see Fig. 3 for an example sorting solution). 

 
Figure 3: Example of a sorting solution from a participant in 
the “Baseline” condition. Category identity (A/B) and 

prototypes (in red) are for illustration only. 
 

Within versus between category distances. We 
computed the Euclidean distance (in pixels) between each 
pair of sorted shapes within-category (e.g., every A1-A2, A2-
A3, B1-B2) and compared the mean distances to between-
category pairs (A1-B1, A1-B2, etc.). 
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Figure 4: Average Euclidean distance (in pixels) between 
pairs of shapes that span a category boundary (between-
category) vs. not (within-category). Error bars denote the 

standard error of the mean. 
 

Figure 4 shows a strong main effect of comparison-type: 
all groups placed between-category items farther apart than 
within-category items (b = -169.11, SE = 13.55, t = -12.48, p 
< .001). That participants in the “Baseline” condition were 
able to make the within vs. between-category distinction 
demonstrates that people could distinguish the two categories 
even without pre-exposure. The difference was significantly 
more pronounced in the “With Labels” condition compared 
to both the “Baseline” (b = -64.65, SE = 7.75, t = -8.35, p < 
.001) and “No Labels” (b = -59.44, SE = 7.43, t = -8.00, p < 
.001) conditions. The “Baseline” and “No Labels” conditions 
did not significantly differ from one another in the difference 
between within- and between-category distances (p = .51). In 
sum, the results show that labels lead to more categorical item 
placement while pre-exposure on its own does not. 
Number of clusters. We used the “pamk” function (“fpc” 

package; Hennig, 2019) to group each person’s final item 
locations into medoid-based clusters2. Participants in the 
“With Labels” condition (x̅ = 3.10, SD = 1.60) formed 
significantly fewer clusters than participants in the “No 
Labels” (x̅ = 4.07, SD = 2.00) (t(79.47) = 2.47, p = .02) and 
“Baseline” (x̅ = 3.93, SD = 1.50) conditions (t(82.01) = 2.50, 
p = .01). The number of clusters in the “Baseline” condition 
did not significantly differ from the “No Labels” condition (p 
= .72). We also assessed how likely participants were to use 
two clusters. “With Labels” participants were significantly 
more likely to use a 2-category solution (N = 22/41), 
compared to participants in the “Baseline” condition (N = 
9/45) (X2(1) = 9.13, p = .003). There was no significant 

 
2 A medoid is the item within a cluster for which the average 
distance between it and all other cluster members is smallest 
(Kaufman & Rousseeuw, 1990). 

difference between the “With Labels” and “No Labels” (N = 
14/43) conditions (p = .08), or between the “No Labels” and 
“Baseline” conditions (p = .27). 
Cluster properties. We next examined the kinds of items 

participants clustered together. The first property we 
examined was cluster purity. A cluster had a purity of 1 if all 
the shapes were from the same category and a purity of .50 if 
it contained an equal number of A and B category shapes. 
Because cluster purity is inversely correlated with the number 
of items in a cluster, we used a weighted regression where 
purity was weighed by cluster size. There were no differences 
in purity between “Baseline” (x̅ = .86, SD = .17) and “No 
Labels” (x̅ = .90, SD = .16) (p = .28) or “With Labels” (x̅ = 
.88, SD = .17) (p = .31). There was also no significant 
difference in purity between “No Labels” and “With Labels” 
(p = .96). We next examined purity more selectively (see Fig. 
5)3: looking specifically at the clusters that contained the A 
or B prototype. This revealed that clusters containing the A 
or B prototypes had greater purity in the “With Labels” 
condition, than the “Baseline” (b = 0.73, SE = 0.20, t = 3.57, 
p < .001) and “No Labels” (b = 1.10, SE = 0.43, t = 2.55, p = 
.01) conditions (see within-category vs. between-category 
comparison in Fig. 6). That is, participants in the “With 
Labels” condition were more likely to put A items in a cluster 
containing the A prototype (and vice versa), than were 
participants in the other conditions. There was no significant 
difference in prototype cluster purity between the “Baseline” 
and “No Labels” conditions (p = .25). 

 

 
 

Figure 5: Composition of clusters containing prototypes for 
“Within” (e.g., A item + A prototype) and “Between” (e.g., 
A item + B prototype) category comparisons. Error bars 

denote the standard error of the mean. 

3 For this analysis, we removed data that clustered both prototypes 
into one cluster. Adjusted N: “Baseline”: 29/45; “No Labels”: 
34/43; “With Labels”: 28/41. 
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Figure 6: Average likelihood of clustering within-category 
“low”, “medium” and “high” distortion items (i.e., A-A; B-
B) versus all between-category items (A-B) with the 

prototypes. Error bars denote the standard error of the mean. 
 
We also examined how likely participants were to sort 

“low”, “medium” and “high” distortion items into the same 
clusters as the prototype (see clustering of “low” vs. 
“medium” vs. “high” distortion items for within-category 
comparisons in Fig. 6). There was a significant effect of 
Distortion, such that participants were less likely to cluster 
more distorted items with the prototype, compared with less 
distorted items (b = -0.35, SE = 0.07, t = -4.82, p < .001). 
 
Effects of labels on alignment. Having shown that 

exposure to labels results in more categorical sorting 
solutions, we can now ask whether labels also led people to 
form more similar sorts (i.e., whether labels led to greater 
alignment). We coded whether participants put each possible 
pair of shapes (20 x 19/2 = 190 shape pairs) into the same 
cluster. If a participant placed two shapes into the same 
cluster, that shape pair was coded as 1; if not, it was coded as 
0. We then compared each pair of participants within a 
condition on how often they matched in categorizing shape 
pairs (i.e., if they were both assigned a 1 for a shape pair, they 
both received a match for that shape pair)4. We repeated this 
for all shape pairs, and used this to compute a proportional 
score of alignment for each participant pair (e.g., if a pair of 
participants matched on all 190 shape pairs, they would 
receive an alignment score of 1; if they matched on 50 shape 
pairs they would receive an alignment score of 50/190 = 0.26) 
(see Fig. 7 for average alignment scores by participant and 

 
4 While this measure is similar to the Rand Index (Rand, 1971), 
alignment between two participants increases only when both 

condition). We took every participant from the “Baseline” 
condition and compared their data to every other participant 
from the “Baseline” condition to get each pair’s alignment as 
a proportion; we repeated this process for the “No Labels” 
and “With Labels” conditions separately. Average alignment 
across the conditions was x̅ = 0.10 (SD = 0.06) for the 
“Baseline” condition, x̅ = 0.13 (SD = 0.09) for the “No 
Labels” condition, and x̅ = 0.20 (SD = 0.11) for the “With 
Labels” condition. 
 

 
 

Figure 7: Average of alignment by Condition. Points 
represent the average of each participant’s alignment score 

with every other participant within the condition. 
 

We took the alignment scores for every possible participant 
pair within the three conditions and analyzed this by 
Condition with random intercepts by participant for each 
participant pair (i.e., arbitrarily participant 1 and participant 
2). As the alignment score is proportional, we log-
transformed alignment scores. The number of clusters each 
participant used can affect the chance alignment between a 
pair of participants (e.g., if participants in a pair both formed 
two clusters, their chance alignment would be .25; but if one 
participant used two clusters and the other used three, their 
chance alignment would be .17). To ensure that any condition 
differences in alignment did not simply reflect condition 
differences in cluster number, we statistically controlled for 
chance-level performance for each unique participant 
pairing. There were effects of Condition: Alignment was 
significantly higher in the “With Labels” condition compared 
to the “Baseline” condition (b = 0.45, SE = 0.11, t = 4.20, p 
< .001). And, more importantly, alignment was significantly 
higher in the “With Labels” condition, than in the “No 
Labels” condition (b = 0.31, SE = 0.11, t = 2.80, p = .01). The 

place a given item pair in the same cluster, but not when both 
place an item pair into different clusters. 

Within 
Category 
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“Baseline” and “No Labels” conditions did not significantly 
differ in alignment (p > .05). 
 
 

Discussion 
 

We examined whether novel labels promote greater 
alignment between people by increasing the categoricality of 
their representations. Despite the two categories being highly 
discriminable (because they were generated by perturbing 
two rather differently shaped prototype shapes) and despite 
people having had the same amount of visual exposure to the 
categories, those who experienced the shapes alongside 
redundant non-word labels had more categorical 
representations of both novel and previously experienced 
shapes. Those who were exposed to labels during the pre-
exposure phase (the “With Labels” condition) clustered items 
from the same category closer to one another and were more 
likely to group category prototypes with items from the same 
category. And, critically, these participants were more 
aligned with one another as demonstrated by more similar 
sorting solutions, than participants from the other two 
conditions. 
Including the “Baseline” condition along with the two pre-

exposure conditions allowed us to compare the effect of the 
presence of incidental labels while keeping visual and 
categorization experience constant – that is, the contrast 
between the “No Labels” vs. “With Labels” conditions – to 
the effect of the pre-exposure phase (243 trials of a delayed 
match-to-sample task) – that is, the contrast between the 
“Baseline” and “No Labels” conditions. The data show that 
for nearly all the analyses, it is the presence of labels that 
makes the larger difference to categoricality and alignment 
than the pre-exposure phase. 
Together, these findings suggest that participants who were 

exposed to the shapes with labels produced more categorical 
representations of the shapes than did participants who 
received identical visual exposure to the category structure. 
We suggest that the informationally redundant novel labels 
caused people to form more categorical representations 
(Lupyan, 2012). Crucially, the category-diagnostic features 
in these representations are those most likely to be sensible to 
the majority of people (Suffill et al., 2019). The selection of 
category-diagnostic features subsequently results in greater 
alignment, compared with participants who received equal 
visual experience with the categories, but for whom the 
shapes remained unlabeled. 
Our use of sorting as a way of measuring representational 

similarity has some notable limitations. Although it allows us 
to measure the similarity in cluster composition between 
people, it does not reveal the internal structure of each cluster 
(as intended by the sorter). And although we measure 
distance between items as analogous to the similarity of the 
items as perceived by the sorter, there is individual variation 
in whether participants treat item distance as a continuous 
measure of similarity or just arrange items into discrete 
“clumps” (Goldstone, 1994). One way to overcome these 

limitations in future work may be to emphasize that distance 
between both items and clusters should correspond to 
perceived similarity and to ask participants to place the item 
that is most characteristic of each cluster centrally within the 
cluster. 
Our results show that even when people’s perceptual 

experience is equated (as it is in the “No labels” and “With 
Labels” conditions), brief and incidental exposure to novel 
category labels can promote more categorical representations 
as evidenced by the larger separation between A and B 
category items in the Free sort solutions and the greater 
likelihood of grouping items with their category prototypes. 
Labels also promoted greater alignment as evidenced by 
“With Labels” participants having more similar Free sort 
solutions to one another, than participants in the “No Labels” 
or “Baseline” conditions. Even when people’s perceptual 
experiences are equated, exposure to novel category labels 
appears to make people’s representations more calibrated. 
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