
FetchSGD: Communication-Efficient Federated Learning with Sketching

Daniel Rothchild∗ 1 Ashwinee Panda∗ 1 Enayat Ullah 2 Nikita Ivkin 3 Ion Stoica 1 Vladimir Braverman 2

Joseph Gonzalez 1 Raman Arora 2

Abstract

Existing approaches to federated learning suf-

fer from a communication bottleneck as well as

convergence issues due to sparse client participa-

tion. In this paper we introduce a novel algorithm,

called FetchSGD, to overcome these challenges.

FetchSGD compresses model updates using a

Count Sketch, and then takes advantage of the

mergeability of sketches to combine model up-

dates from many workers. A key insight in the

design of FetchSGD is that, because the Count

Sketch is linear, momentum and error accumu-

lation can both be carried out within the sketch.

This allows the algorithm to move momentum

and error accumulation from clients to the central

aggregator, overcoming the challenges of sparse

client participation while still achieving high com-

pression rates and good convergence. We prove

that FetchSGD has favorable convergence guar-

antees, and we demonstrate its empirical effec-

tiveness by training two residual networks and a

transformer model.

1. Introduction

Federated learning has recently emerged as an important set-

ting for training machine learning models. In the federated

setting, training data is distributed across a large number

of edge devices, such as consumer smartphones, personal

computers, or smart home devices. These devices have

data that is useful for training a variety of models – for text

prediction, speech modeling, facial recognition, document

identification, and other tasks (Shi et al., 2016; Brisimi et al.,

2018; Leroy et al., 2019; Tomlinson et al., 2009). However,

data privacy, liability, or regulatory concerns may make it

difficult to move this data to the cloud for training (EU,

*Equal contribution 1University of California, Berke-
ley, California, USA 2Johns Hopkins University, Baltimore,
Maryland 3Amazon. Correspondence to: Daniel Rothchild
<drothchild@berkeley.edu>.

Proceedings of the 37th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

2018). Even without these concerns, training machine learn-

ing models in the cloud can be expensive, and an effective

way to train the same models on the edge has the potential

to eliminate this expense.

When training machine learning models in the federated

setting, participating clients do not send their local data to

a central server; instead, a central aggregator coordinates

an optimization procedure among the clients. At each it-

eration of this procedure, clients compute gradient-based

updates to the current model using their local data, and they

communicate only these updates to a central aggregator.

A number of challenges arise when training models in the

federated setting. Active areas of research in federated learn-

ing include solving systems challenges, such as handling

stragglers and unreliable network connections (Bonawitz

et al., 2016; Wang et al., 2019), tolerating adversaries (Bag-

dasaryan et al., 2018; Bhagoji et al., 2018), and ensuring

privacy of user data (Geyer et al., 2017; Hardy et al., 2017).

In this work we address a different challenge, namely that of

training high-quality models under the constraints imposed

by the federated setting.

There are three main constraints unique to the federated set-

ting that make training high-quality models difficult. First,

communication-efficiency is a necessity when training on

the edge (Li et al., 2018), since clients typically connect to

the central aggregator over slow connections (∼ 1Mbps)

(Lee et al., 2010). Second, clients must be stateless, since

it is often the case that no client participates more than once

during all of training (Kairouz et al., 2019). Third, the data

collected across clients is typically not independent and

identically distributed. For example, when training a next-

word prediction model on the typing data of smartphone

users, clients located in geographically distinct regions gen-

erate data from different distributions, but enough common-

ality exists between the distributions that we may still want

to train a single model (Hard et al., 2018; Yang et al., 2018).

In this paper, we propose a new optimization algorithm for

federated learning, called FetchSGD, that can train high-

quality models under all three of these constraints. The crux

of the algorithm is simple: at each round, clients compute

a gradient based on their local data, then compress the gra-

dient using a data structure called a Count Sketch before

FetchSGD: Communication-Efficient Federated Learning with Sketching

sending it to the central aggregator. The aggregator main-

tains momentum and error accumulation Count Sketches,

and the weight update applied at each round is extracted

from the error accumulation sketch. See Figure 1 for an

overview of FetchSGD.

FetchSGD requires no local state on the clients, and we

prove that it is communication efficient, and that it con-

verges in the non-i.i.d. setting for L-smooth non-convex

functions at rates O
(

T−1/2
)

and O
(

T−1/3
)

respectively

under two alternative assumptions – the first opaque and the

second more intuitive. Furthermore, even without maintain-

ing any local state, FetchSGD can carry out momentum –

a technique that is essential for attaining high accuracy in

the non-federated setting – as if on local gradients before

compression (Sutskever et al., 2013). Lastly, due to prop-

erties of the Count Sketch, FetchSGD scales seamlessly

to small local datasets, an important regime for federated

learning, since user interaction with online services tends

to follow a power law distribution, meaning that most users

will have relatively little data to contribute (Muchnik et al.,

2013).

We empirically validate our method with two image recog-

nition tasks and one language modeling task. Using models

with between 6 and 125 million parameters, we train on

non-i.i.d. datasets that range in size from 50,000 – 800,000

examples.

2. Related Work

Broadly speaking, there are two optimization strategies that

have been proposed to address the constraints of federated

learning: Federated Averaging (FedAvg) and extensions

thereof, and gradient compression methods. We explore

these two strategies in detail in Sections 2.1 and 2.2, but as a

brief summary, FedAvg does not require local state, but it

also does not reduce communication from the standpoint of

a client that participates once, and it struggles with non-i.i.d.

data and small local datasets because it takes many local

gradient steps. Gradient compression methods, on the other

hand, can achieve high communication efficiency. However,

it has been shown both theoretically and empirically that

these methods must maintain error accumulation vectors on

the clients in order to achieve high accuracy. This is ineffec-

tive in federated learning, since clients typically participate

in optimization only once, so the accumulated error has no

chance to be re-introduced (Karimireddy et al., 2019b).

2.1. FedAvg

FedAvg reduces the total number of bytes transferred dur-

ing training by carrying out multiple steps of stochastic

gradient descent (SGD) locally before sending the aggre-

gate model update back to the aggregator. This technique,

often referred to as local/parallel SGD, has been studied

since the early days of distributed model training in the data

center (Dean et al., 2012), and is referred to as FedAvg

when applied to federated learning (McMahan et al., 2016).

FedAvg has been successfully deployed in a number of

domains (Hard et al., 2018; Li et al., 2019), and is the most

commonly used optimization algorithm in the federated set-

ting (Yang et al., 2018). In FedAvg, every participating

client first downloads and trains the global model on their

local dataset for a number of epochs using SGD. The clients

upload the difference between their initial and final model

to the parameter server, which averages the local updates

weighted according to the magnitude of the corresponding

local dataset.

One major advantage of FedAvg is that it requires no lo-

cal state, which is necessary for the common case where

clients participate only once in training. FedAvg is also

communication-efficient in that it can reduce the total num-

ber of bytes transferred during training while achieving the

same overall performance. However, from an individual

client’s perspective, there is no communication savings if

the client participates in training only once. Achieving high

accuracy on a task often requires using a large model, but

clients’ network connections may be too slow or unreliable

to transmit such a large amount of data at once (Yang et al.,

2010).

Another disadvantage of FedAvg is that taking many local

steps can lead to degraded convergence on non-i.i.d. data.

Intuitively, taking many local steps of gradient descent on

local data that is not representative of the overall data dis-

tribution will lead to local over-fitting, which will hinder

convergence (Karimireddy et al., 2019a). When training a

model on non-i.i.d. local datasets, the goal is to minimize

the average test error across clients. If clients are chosen

randomly, SGD naturally has convergence guarantees on

non-i.i.d. data, since the average test error is an expectation

over which clients participate. However, although FedAvg

has convergence guarantees for the i.i.d. setting (Wang

and Joshi, 2018), these guarantees do not apply directly

to the non-i.i.d. setting as they do with SGD. Zhao et al.

(2018) show that FedAvg, using K local steps, converges

as O (K/T) on non-i.i.d. data for strongly convex smooth

functions, with additional assumptions. In other words, con-

vergence on non-i.i.d. data could slow down as much as

proportionally to the number of local steps taken.

Variants of FedAvg have been proposed to improve its per-

formance on non-i.i.d. data. Sahu et al. (2018) propose

constraining the local gradient update steps in FedAvg by

penalizing the L2 distance between local models and the cur-

rent global model. Under the assumption that every client’s

loss is minimized wherever the overall loss function is mini-

mized, they recover the convergence rate of SGD. Karim-

FetchSGD: Communication-Efficient Federated Learning with Sketching

Cloud

rL
<latexit sha1_base64="s6bWdfygh8s4atZE+zILdGqj8S0=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiRV0GXRjQsXFewDmlBuptN26GQSZiZiCfkVNy4UceuPuPNvnLRZaOuBgcM593LPnCDmTGnH+bZKa+sbm1vl7crO7t7+gX1Y7agokYS2ScQj2QtAUc4EbWumOe3FkkIYcNoNpje5332kUrFIPOhZTP0QxoKNGAFtpIFd9QQEHLAXgp4Q4OldNrBrTt2ZA68StyA1VKA1sL+8YUSSkApNOCjVd51Y+ylIzQinWcVLFI2BTGFM+4YKCKny03n2DJ8aZYhHkTRPaDxXf2+kECo1CwMzmUdUy14u/uf1Ez268lMm4kRTQRaHRgnHOsJ5EXjIJCWazwwBIpnJiskEJBBt6qqYEtzlL6+STqPuntcb9xe15nVRRxkdoxN0hlx0iZroFrVQGxH0hJ7RK3qzMuvFerc+FqMlq9g5Qn9gff4A4fmUVw==</latexit>

rL
<latexit sha1_base64="s6bWdfygh8s4atZE+zILdGqj8S0=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiRV0GXRjQsXFewDmlBuptN26GQSZiZiCfkVNy4UceuPuPNvnLRZaOuBgcM593LPnCDmTGnH+bZKa+sbm1vl7crO7t7+gX1Y7agokYS2ScQj2QtAUc4EbWumOe3FkkIYcNoNpje5332kUrFIPOhZTP0QxoKNGAFtpIFd9QQEHLAXgp4Q4OldNrBrTt2ZA68StyA1VKA1sL+8YUSSkApNOCjVd51Y+ylIzQinWcVLFI2BTGFM+4YKCKny03n2DJ8aZYhHkTRPaDxXf2+kECo1CwMzmUdUy14u/uf1Ez268lMm4kRTQRaHRgnHOsJ5EXjIJCWazwwBIpnJiskEJBBt6qqYEtzlL6+STqPuntcb9xe15nVRRxkdoxN0hlx0iZroFrVQGxH0hJ7RK3qzMuvFerc+FqMlq9g5Qn9gff4A4fmUVw==</latexit>

rL
<latexit sha1_base64="s6bWdfygh8s4atZE+zILdGqj8S0=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiRV0GXRjQsXFewDmlBuptN26GQSZiZiCfkVNy4UceuPuPNvnLRZaOuBgcM593LPnCDmTGnH+bZKa+sbm1vl7crO7t7+gX1Y7agokYS2ScQj2QtAUc4EbWumOe3FkkIYcNoNpje5332kUrFIPOhZTP0QxoKNGAFtpIFd9QQEHLAXgp4Q4OldNrBrTt2ZA68StyA1VKA1sL+8YUSSkApNOCjVd51Y+ylIzQinWcVLFI2BTGFM+4YKCKny03n2DJ8aZYhHkTRPaDxXf2+kECo1CwMzmUdUy14u/uf1Ez268lMm4kRTQRaHRgnHOsJ5EXjIJCWazwwBIpnJiskEJBBt6qqYEtzlL6+STqPuntcb9xe15nVRRxkdoxN0hlx0iZroFrVQGxH0hJ7RK3qzMuvFerc+FqMlq9g5Qn9gff4A4fmUVw==</latexit>

Gradient

Sketches

Local

Gradients
1

2

+ +

Sketch Aggregation

= =ρ
<latexit sha1_base64="fHI6E2fAL/A/wOg1jTmjLU1riE4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4rmLbQhrLZbtqlm92wuxFK6G/w4kERr/4gb/4bN20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjpapItQnkkvVC7GmnAnqG2Y47SWK4jjktBtO73K/+0SVZlI8mllCgxiPBYsYwcZK/kBNZGVYrbl1dwG0TryC1KBAe1j9GowkSWMqDOFY677nJibIsDKMcDqvDFJNE0ymeEz7lgocUx1ki2Pn6MIqIxRJZUsYtFB/T2Q41noWh7YzxmaiV71c/M/rpya6CTImktRQQZaLopQjI1H+ORoxRYnhM0swUczeisgEK0yMzScPwVt9eZ10GnXvqt54aNZat0UcZTiDc7gED66hBffQBh8IMHiGV3hzhPPivDsfy9aSU8ycwh84nz9WsY5f</latexit>

+

Momentum Accum.3 4 6

= +

Error Accum.5
TopK

Unsketch

7 Broadcast

Sparse Updates

Edge

Figure 1. Algorithm Overview. The FetchSGD algorithm (1) computes gradients locally, and then send sketches (2) of the gradients to

the cloud. In the cloud, gradient sketches are aggregated (3), and then (4) momentum and (5) error accumulation are applied to the sketch.

The approximate top-k values are then (6) extracted and (7) broadcast as sparse updates to devices participating in next round.

ireddy et al. (2019a) modify the local updates in FedAvg to

make them point closer to the consensus gradient direction

from all clients. They achieve good convergence at the cost

of making the clients stateful.

2.2. Gradient Compression

A limitation of FedAvg is that, in each communication

round, clients must download an entire model and upload an

entire model update. Because federated clients are typically

on slow and unreliable network connections, this require-

ment makes training large models with FedAvg difficult.

Uploading model updates is particularly challenging, since

residential Internet connections tend to be asymmetric, with

far higher download speeds than upload speeds (Goga and

Teixeira, 2012).

An alternative to FedAvg that helps address this problem

is regular distributed SGD with gradient compression. It

is possible to compress stochastic gradients such that the

result is still an unbiased estimate of the true gradient, for

example by stochastic quantization (Alistarh et al., 2017)

or stochastic sparsification (Wangni et al., 2018). However,

there is a fundamental tradeoff between increasing compres-

sion and increasing the variance of the stochastic gradient,

which slows convergence. The requirement that gradients re-

main unbiased after compression is too stringent, and these

methods have had limited empirical success.

Biased gradient compression methods, such as top-k spar-

sification (Lin et al., 2017) or signSGD (Bernstein et al.,

2018), have been more successful in practice. These meth-

ods rely, both in theory and in practice, on the ability to

locally accumulate the error introduced by the compression

scheme, such that the error can be re-introduced the next

time the client participates (Karimireddy et al., 2019b). Un-

fortunately, carrying out error accumulation requires local

client state, which is often infeasible in federated learning.

2.3. Optimization with Sketching

This work advances the growing body of research applying

sketching techniques to optimization. Jiang et al. (2018) pro-

pose using sketches for gradient compression in data center

training. Their method achieves empirical success when gra-

dients are sparse, but it has no convergence guarantees, and

it achieves little compression on dense gradients (Jiang et al.,

2018, §B.3). The method also does not make use of error

accumulation, which more recent work has demonstrated

is necessary for biased gradient compression schemes to be

successful (Karimireddy et al., 2019b). Ivkin et al. (2019b)

also propose using sketches for gradient compression in data

center training. However, their method requires a second

round of communication between the clients and the param-

eter server, after the first round of transmitting compressed

gradients completes. Using a second round is not practical

in federated learning, since stragglers would delay comple-

tion of the first round, at which point a number of clients

that had participated in the first round would no longer be

available (Bonawitz et al., 2016). Furthermore, the method

in (Ivkin et al., 2019b) requires local client state for both

momentum and error accumulation, which is not possible

in federated learning. Spring et al. (2019) also propose

using sketches for distributed optimization. Their method

compresses auxiliary variables such as momentum and per-

parameter learning rates, without compressing the gradients

themselves. In contrast, our method compresses the gradi-

ents, and it does not require any additional communication

at all to carry out momentum.

Konecny et al. (2016) propose using sketched updates to

achieve communication efficiency in federated learning.

However, the family of sketches they use differs from the

techniques we propose in this paper: they apply a combina-

tion of subsampling, quantization and random rotations.

FetchSGD: Communication-Efficient Federated Learning with Sketching

3. FetchSGD

3.1. Federated Learning Setup

Consider a federated learning scenario with C clients. Let

Z be the data domain and let {Pi}C
i=1 be C possibly un-

related probability distributions over Z . For supervised

learning, Z = X × Y , where X is the feature space and

Y is the label space; for unsupervised learning, Z = X is

the feature space. The ith client has Di samples drawn i.i.d.

from the Pi. Let W be the hypothesis class parametrized

by d dimensional vectors. Let L : W ×Z → R be a loss

function. The goal is to minimize the weighted average Ê

of client risks:

f (w)= Ê fi(w)=
1

∑
C
i=1 Di

C

∑
i=1

Di E
z∼Pi

L(w, z) (1)

Assuming that all clients have an equal number of data

points, this simplifies to the average of client risks:

f (w) = Ê fi(w) =
1

C

C

∑
i=1

E
z∼Pi

L(w, z). (2)

For simplicity of presentation, we consider this unweighted

average (eqn. 2), but our theoretical results directly extend

to the the more general setting (eqn. 1).

In federated learning, a central aggregator coordinates an

iterative optimization procedure to minimize f with respect

to the model parameters w. In every iteration, the aggre-

gator chooses W clients uniformly at random,1 and these

clients download the current model, determine how to best

update the model based on their local data, and upload a

model update to the aggregator. The aggregator then com-

bines these model updates to update the model for the next

iteration. Different federated optimization algorithms use

different model updates and different aggregation schemes

to combine these updates.

3.2. Algorithm

At each iteration in FetchSGD, the ith participating client

computes a stochastic gradient gt
i using a batch of (or all

of) its local data, then compresses gt
i using a data structure

called a Count Sketch. Each client then sends the sketch

S(gt
i) to the aggregator as its model update.

A Count Sketch is a randomized data structure that can com-

press a vector by randomly projecting it several times to

lower dimensional spaces, such that high-magnitude ele-

ments can later be approximately recovered. We provide

more details on the Count Sketch in Appendix C, but here

1In practice, the clients may not be chosen randomly, since
often only devices that are on wifi, charging, and idle are allowed
to participate.

we treat it simply as a compression operator S(·), with the

special property that it is linear:

S(g1 + g2) = S(g1) + S(g2).

Using linearity, the server can exactly compute the sketch

of the true minibatch gradient gt = ∑i gt
i given only the

S(gt
i):

∑
i

S(gt
i) = S

(

∑
i

gt
i

)
= S(gt).

Another useful property of the Count Sketch is that, for a

sketching operator S(·), there is a corresponding decom-

pression operator U (·) that returns an unbiased estimate of

the original vector, such that the high-magnitude elements

of the vector are approximated well (see Appendix C for

details):

Top-k(U (S(g))) ≈ Top-k(g).

Briefly, U (·) approximately “undoes” the projections com-

puted by S(·), and then uses these reconstructions to esti-

mate the original vector. See Appendix C for more details.

With the S(gt
i) in hand, the central aggregator could update

the global model with Top-k
(
U (∑i S(gt

i))
)
≈ Top-k

(
gt
)
.

However, Top-k(gt) is not an unbiased estimate of gt, so

the normal convergence of SGD does not apply. Fortunately,

Karimireddy et al. (2019b) show that biased gradient com-

pression methods can converge if they accumulate the error

incurred by the biased gradient compression operator and

re-introduce the error later in optimization. In FetchSGD,

the bias is introduced by Top-k rather than by S(·), so the

aggregator, instead of the clients, can accumulate the error,

and it can do so into a zero-initialized sketch Se instead of

into a gradient-like vector:

St =
1

W

W

∑
i=1

S(gt
i)

∆t = Top-k(U (ηSt + St
e)))

St+1
e = ηSt + St

e − S(∆t)

wt+1 = wt − ∆t,

where η is the learning rate and ∆t ∈ R
d is k-sparse.

In contrast, other biased gradient compression methods in-

troduce bias on the clients when compressing the gradients,

so the clients themselves must maintain individual error

accumulation vectors. This becomes a problem in federated

learning, where clients may participate only once, giving

the error no chance to be reintroduced in a later round.

Viewed another way, because S(·) is linear, and because er-

ror accumulation consists only of linear operations, carrying

out error accumulation on the server within Se is equivalent

FetchSGD: Communication-Efficient Federated Learning with Sketching

to carrying out error accumulation on each client, and up-

loading sketches of the result to the server. (Computing the

model update from the accumulated error is not linear, but

only the server does this, whether the error is accumulated

on the clients or on the server.) Taking this a step further, we

note that momentum also consists of only linear operations,

and so momentum can be equivalently carried out on the

clients or on the server. Extending the above equations with

momentum yields

St =
1

W

W

∑
i=1

S(gt
i)

St+1
u = ρSt

u + St

∆ = Top-k(U (ηSt+1
u + St

e)))

St+1
e = ηSt+1

u + St
e − S(∆)

wt+1 = wt − ∆.

FetchSGD is presented in full in Algorithm 1.

Algorithm 1 FetchSGD

Input: number of model weights to update each round k
Input: learning rate η
Input: number of timesteps T
Input: momentum parameter ρ, local batch size `
Input: Number of clients selected per round W
Input: Sketching and unsketching functions S , U

1: Initialize S0
u and S0

e to zero sketches

2: Initialize w0 using the same random seed on the clients and
aggregator

3: for t = 1, 2, · · · T do
4: Randomly select W clients c1, . . . cW

5: loop {In parallel on clients {ci}W
i=1}

6: Download (possibly sparse) new model weights wt −
w0

7: Compute stochastic gradient gt
i on batch Bi of size `:

gt
i =

1
` ∑

l
j=1 ∇wL(wt, zj)

8: Sketch gt
i : St

i = S(gt
i) and send it to the Aggregator

9: end loop

10: Aggregate sketches St = 1
W ∑

W
i=1 St

i

11: Momentum: St
u = ρSt−1

u + St

12: Error feedback: St
e = ηSt

u + St
e

13: Unsketch: ∆t = Top-k(U (St
e))

14: Error accumulation: St+1
e = St

e − S(∆t)
15: Update wt+1 = wt − ∆t

16: end for

Output:
{

wt
}T

t=1

4. Theory

This section presents convergence guarantees for

FetchSGD. First, Section 4.1 gives the convergence of

FetchSGD when making a strong and opaque assumption

about the sequence of gradients. Section 4.2 instead makes

a more interpretable assumption about the gradients, and

arrives at a weaker convergence guarantee.

4.1. Scenario 1: Contraction Holds

To show that compressed SGD converges when using some

biased gradient compression operator C(·), existing meth-

ods (Karimireddy et al., 2019b; Zheng et al., 2019; Ivkin

et al., 2019b) appeal to Stich et al. (2018), who show that

compressed SGD converges when C is a τ-contraction:

‖C(x)− x‖ ≤ (1 − τ) ‖x‖
Ivkin et al. (2019b) show that it is possible to satisfy this con-

traction property using Count Sketches to compress gradi-

ents. However, their compression method includes a second

round of communication: if there are no high-magnitude

elements in et, as computed from S(et), the server can

query clients for random entries of et. On the other hand,

FetchSGD never computes the et
i , or et, so this second

round of communication is not possible, and the analysis of

Ivkin et al. (2019b) does not apply. In this section, we as-

sume that the updates have heavy hitters, which ensures that

the contraction property holds along the optimization path.

Assumption 1 (Scenario 1). Let {wt}T
t=1 be the sequence

of models generated by FetchSGD. Fixing this model se-

quence, let {ut}T
t=1 and {et}T

t=1 be the momentum and

error accumulation vectors generated using this model se-

quence, had we not used sketching for gradient compression

(i.e. if S and U are identity maps). There exists a con-

stant 0 < τ < 1 such that for any t ∈ [T], the quantity

qt := η(ρut−1 + gt−1) + et−1 has at least one coordinate

i s.t. (qt
i)

2 ≥ τ
∥∥qt

i

∥∥2
.

Theorem 1 (Scenario 1). Let f be an L-smooth 2 non-

convex function and let the norm of stochastic gradients of f
be upper bounded by G. Under Assumption 1, FetchSGD,

with step size η = 1−ρ

2L
√

T
, in T iterations, returns {wt}T

t=1,

such that, with probability at least 1 − δ over the sketching

randomness:

1. min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ 4L(f (w0)− f ∗) + G2)√
T

+ 2(1+τ)2G2

(1−τ)τ2T
.

2. The sketch uploaded from each participating client to

the parameter server is O (log (dT/δ) /τ) bytes per

round.

The expectation in part 1 of the theorem is over the random-

ness of sampling minibatches. For large T, the first term

dominates, so the convergence rate in Theorem 1 matches

that of uncompressed SGD.

Intuitively, Assumption 1 states that, at each time step, the

descent direction – i.e., the scaled negative gradient, in-

cluding momentum – and the error accumulation vector

must point in sufficiently the same direction. This assump-

tion is rather opaque, since it involves all of the gradient,

2A differentiable function f is L-smooth if
‖∇ f (x)−∇ f (y)‖ ≤ L ‖x − y‖ ∀ x, y ∈ dom(f).

FetchSGD: Communication-Efficient Federated Learning with Sketching

Remarks:

1. These guarantees are for the non-i.i.d. setting – i.e. f
is the average risk with respect to potentially unrelated

distributions (see eqn. 2).

2. The convergence rates bound the objective gradient norm

rather than the objective itself.

3. The convergence rate in Theorem 1 matches that of un-

compressed SGD, while the rate in Theorem 2 is worse.

4. The proof uses the virtual sequence idea of Stich et al.

(2018), and can be generalized to other class of functions

like smooth, (strongly) convex etc. by careful averaging

(proof in Appendix B.2).

5. Evaluation

We implement and compare FetchSGD, gradient sparsifi-

cation (local top-k), and FedAvg using PyTorch (Paszke

et al., 2019).4 In contrast to our theoretical assumptions,

we use neural networks with ReLU activations, whose loss

surfaces are not L-smooth. In addition, although Theorem 2

uses a sliding window Count Sketch for error accumulation,

in practice we use a vanilla Count Sketch. Lastly, we use

non-zero momentum, which Theorem 1 allows but Theorem

2 does not. We also make two changes to Algorithm 1. For

all methods, we employ momentum factor masking (Lin

et al., 2017). And on line 14 of Algorithm 1, we zero out the

nonzero coordinates of S(∆t) in St
e instead of subtracting

S(∆t); empirically, doing so stabilizes the optimization.

We focus our experiments on the regime of small local

datasets and non-i.i.d. data, since we view this as both an

important and relatively unsolved regime in federated learn-

ing. Gradient sparsification methods, which sum together

the local top-k gradient elements from each worker, do a

worse job approximating the true top-k of the global gra-

dient as local datasets get smaller and more unlike each

other. And taking many steps on each client’s local data,

which is how FedAvg achieves communication efficiency,

is unproductive since it leads to immediate local overfitting.

However, real-world users tend to generate data with sizes

that follow a power law distribution (Goyal et al., 2017), so

most users will have relatively small local datasets. Real

data in the federated setting is also typically non-i.i.d.

FetchSGD has a key advantage over prior methods in this

regime because our compression operator is linear. Small

local datasets pose no difficulties, since executing a step

using only a single client with N data points is equivalent to

executing a step using N clients, each of which has only a

single data point. By the same argument, issues arising from

non-i.i.d. data are partially mitigated by random client selec-

tion, since combining the data of participating clients leads

4Code available at https://github.com/

kiddyboots216/CommEfficient. Git commit at the
time of camera-ready: 833ca44.

to a more representative sample of the full data distribution.

For each method, we report the compression achieved rela-

tive to uncompressed SGD in terms of total bytes uploaded

and downloaded.5 One important consideration not captured

in these numbers is that in FedAvg, clients must download

an entire model immediately before participating, because

every model weight could get updated in every round. In

contrast, local top-k and FetchSGD only update a limited

number of parameters per round, so non-participating clients

can stay relatively up to date with the current model, reduc-

ing the number of new parameters that must be downloaded

immediately before participating. This makes upload com-

pression more important than download compression for

local top-k and FetchSGD. Download compression is also

less important for all three methods since residential Internet

connections tend to reach far higher download than upload

speeds (Goga and Teixeira, 2012). We include results here

of overall compression (including upload and download),

but break up the plots into separate upload and download

components in the Appendix, Figure 6.

In all our experiments, we tune standard hyperparameters

on the uncompressed runs, and we maintain these same

hyperparameters for all compression schemes. Details on

which hyperparameters were chosen for each task can be

found in Appendix A. FedAvg achieves compression by

reducing the number of iterations carried out, so for these

runs, we simply scale the learning rate schedule in the it-

eration dimension to match the total number of iterations

that FedAvg will carry out. We report results for each com-

pression method over a range of hyperparameters: for local

top-k, we adjust k; and for FetchSGD we adjust k and the

number of columns in the sketch (which controls the com-

pression rate of the sketch). We tune the number of local

epochs and federated averaging batch size for FedAvg, but

do not tune the learning rate decay for FedAvg because we

find that FedAvg does not approach the baseline accuracy

on our main tasks for even a small number of local epochs,

where the learning rate decay has very little effect.

In the non-federated setting, momentum is typically crucial

for achieving high performance, but in federating learning,

momentum can be difficult to incorporate. Each client could

carry out momentum on its local gradients, but this is inef-

fective when clients participate only once or a few times.

Instead, the central aggregator can carry out momentum

on the aggregated model updates. For FedAvg and local

top-k, we experiment with (ρg = 0.9) and without (ρg = 0)

this global momentum. For each method, neither choice

of ρg consistently performs better across our tasks, reflect-

ing the difficulty of incorporating momentum. In contrast,

5We only count non-zero weight updates when computing how
many bytes are transmitted. This makes the unrealistic assumption
that we have a zero-overhead sparse vector encoding scheme.

FetchSGD: Communication-Efficient Federated Learning with Sketching

Acknowledgements

This research was supported in part by NSF BIG-

DATA awards IIS-1546482, IIS-1838139, NSF CAREER

award IIS-1943251, NSF CAREER grant 1652257, NSF

GRFP grant DGE 1752814, ONR Award N00014-18-1-

2364 and the Lifelong Learning Machines program from

DARPA/MTO. RA would like to acknowledge support pro-

vided by Institute for Advanced Study.

In addition to NSF CISE Expeditions Award CCF-1730628,

this research is supported by gifts from Alibaba, Amazon

Web Services, Ant Financial, CapitalOne, Ericsson, Face-

book, Futurewei, Google, Intel, Microsoft, Nvidia, Scotia-

bank, Splunk and VMware.

References

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,

and Milan Vojnovic. Qsgd: Communication-efficient

sgd via gradient quantization and encoding. In Advances

in Neural Information Processing Systems, pages 1709–

1720, 2017.

Noga Alon, Yossi Matias, and Mario Szegedy. The space

complexity of approximating the frequency moments.

Journal of Computer and system sciences, 58(1):137–147,

1999.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah

Estrin, and Vitaly Shmatikov. How to backdoor federated

learning, 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzade-

nesheli, and Anima Anandkumar. signsgd: Compressed

optimisation for non-convex problems. arXiv preprint

arXiv:1802.04434, 2018.

Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal,

and Seraphin Calo. Analyzing federated learning through

an adversarial lens. arXiv preprint arXiv:1811.12470,

2018.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio

Marcedone, H Brendan McMahan, Sarvar Patel, Daniel

Ramage, Aaron Segal, and Karn Seth. Practical secure ag-

gregation for federated learning on user-held data. arXiv

preprint arXiv:1611.04482, 2016.

Vladimir Braverman and Rafail Ostrovsky. Smooth his-

tograms for sliding windows. In 48th Annual IEEE Sym-

posium on Foundations of Computer Science (FOCS’07),

pages 283–293. IEEE, 2007.

Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky.

How to catch l2-heavy-hitters on sliding windows. Theo-

retical Computer Science, 554:82–94, 2014.

Vladimir Braverman, Rafail Ostrovsky, and Alan Royt-

man. Zero-one laws for sliding windows and univer-

sal sketches. In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques

(APPROX/RANDOM 2015). Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2015.

Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin,

Jelani Nelson, Zhengyu Wang, and David P Woodruff.

Bptree: an `2 heavy hitters algorithm using constant mem-

ory. In Proceedings of the 36th ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems,

pages 361–376, 2017.

Vladimir Braverman, Petros Drineas, Cameron Musco,

Christopher Musco, Jalaj Upadhyay, David P Woodruff,

and Samson Zhou. Near optimal linear algebra in the

online and sliding window models. arXiv preprint

arXiv:1805.03765, 2018a.

Vladimir Braverman, Elena Grigorescu, Harry Lang,

David P Woodruff, and Samson Zhou. Nearly optimal

distinct elements and heavy hitters on sliding windows.

Approximation, Randomization, and Combinatorial Opti-

mization. Algorithms and Techniques, 2018b.

Theodora S Brisimi, Ruidi Chen, Theofanie Mela, Alex Ol-

shevsky, Ioannis Ch Paschalidis, and Wei Shi. Federated

learning of predictive models from federated electronic

health records. International journal of medical informat-

ics, 112:59–67, 2018.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu,

Tian Li, Jakub Konecny, H. Brendan McMahan, Virginia

Smith, and Ameet Talwalkar. Leaf: A benchmark for

federated settings, 2018.

Moses Charikar, Kevin Chen, and Martin Farach-Colton.

Finding frequent items in data streams. In International

Colloquium on Automata, Languages, and Programming,

pages 693–703. Springer, 2002.

G. Cohen, S. Afshar, J. Tapson, and A. van Schaik. Emnist:

Extending mnist to handwritten letters. In 2017 Inter-

national Joint Conference on Neural Networks (IJCNN),

pages 2921–2926, May 2017. doi: 10.1109/IJCNN.2017.

7966217.

Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Mot-

wani. Maintaining stream statistics over sliding windows.

SIAM journal on computing, 31(6):1794–1813, 2002.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,

Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, An-

drew Senior, Paul Tucker, Ke Yang, et al. Large scale

distributed deep networks. In Advances in neural infor-

mation processing systems, pages 1223–1231, 2012.

FetchSGD: Communication-Efficient Federated Learning with Sketching

EU. 2018 reform of eu data protection rules, 2018. URL

https://tinyurl.com/ydaltt5g.

Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differen-

tially private federated learning: A client level perspec-

tive, 2017.

Oana Goga and Renata Teixeira. Speed measurements of

residential internet access. In International Conference

on Passive and Active Network Measurement, pages 168–

178. Springer, 2012.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large mini-

batch sgd: Training imagenet in 1 hour. arXiv preprint

arXiv:1706.02677, 2017.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ra-

maswamy, Francoise Beaufays, Sean Augenstein, Hubert

Eichner, Chloé Kiddon, and Daniel Ramage. Federated

learning for mobile keyboard prediction. arXiv preprint

arXiv:1811.03604, 2018.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard

Nock, Giorgio Patrini, Guillaume Smith, and Brian

Thorne. Private federated learning on vertically parti-

tioned data via entity resolution and additively homo-

morphic encryption. arXiv preprint arXiv:1711.10677,

2017.

Nikita Ivkin, Zaoxing Liu, Lin F Yang, Srinivas Suresh

Kumar, Gerard Lemson, Mark Neyrinck, Alexander S

Szalay, Vladimir Braverman, and Tamas Budavari. Scal-

able streaming tools for analyzing n-body simulations:

Finding halos and investigating excursion sets in one pass.

Astronomy and computing, 23:166–179, 2018.

Nikita Ivkin, Ran Ben Basat, Zaoxing Liu, Gil Einziger,

Roy Friedman, and Vladimir Braverman. I know what

you did last summer: Network monitoring using interval

queries. Proceedings of the ACM on Measurement and

Analysis of Computing Systems, 3(3):1–28, 2019a.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah,

Vladimir Braverman, Ion Stoica, and Raman Arora.

Communication-efficient distributed sgd with sketching.

In Advances in Neural Information Processing Systems,

pages 13144–13154, 2019b.

Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin

Jin. Qpipe: Quantiles sketch fully in the data plane.

In Proceedings of the 15th International Conference on

Emerging Networking Experiments And Technologies,

pages 285–291, 2019c.

Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui.

Sketchml: Accelerating distributed machine learning with

data sketches. In Proceedings of the 2018 International

Conference on Management of Data, pages 1269–1284,

2018.

Peter Kairouz, H. Brendan McMahan, Brendan Avent,

Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,

Keith Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, Rafael G. L. D’Oliveira, Salim El

Rouayheb, David Evans, Josh Gardner, Zachary Gar-

rett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons,

Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie

He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Mar-

tin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak,

Jakub Konecny, Aleksandra Korolova, Farinaz Koushan-

far, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek

Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Ras-

mus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage,

Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U.

Stich, Ziteng Sun, Ananda Theertha Suresh, Florian

Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong,

Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen

Zhao. Advances and open problems in federated learning,

2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar

Mohri, Sashank J. Reddi, Sebastian U. Stich, and

Ananda Theertha Suresh. Scaffold: Stochastic controlled

averaging for on-device federated learning, 2019a.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U

Stich, and Martin Jaggi. Error feedback fixes signsgd

and other gradient compression schemes. arXiv preprint

arXiv:1901.09847, 2019b.

Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Pe-

ter Richtárik, Ananda Theertha Suresh, and Dave Bacon.

Federated learning: Strategies for improving communica-

tion efficiency, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multi-

ple layers of features from tiny images. Master’s thesis,

Department of Computer Science, University of Toronto,

2009.

Kyunghan Lee, Joohyun Lee, Yung Yi, Injong Rhee, and

Song Chong. Mobile data offloading: How much can

wifi deliver? In Proceedings of the 6th International

Conference, pages 1–12, 2010.

David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gis-

selbrecht, and Joseph Dureau. Federated learning for

keyword spotting. In ICASSP 2019-2019 IEEE Inter-

national Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 6341–6345. IEEE, 2019.

FetchSGD: Communication-Efficient Federated Learning with Sketching

He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in

edge: Deep learning for the internet of things with edge

computing. IEEE network, 32(1):96–101, 2018.

Tian Li, Zaoxing Liu, Vyas Sekar, and Virginia Smith. Pri-

vacy for free: Communication-efficient learning with

differential privacy using sketches. arXiv preprint

arXiv:1911.00972, 2019.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J

Dally. Deep gradient compression: Reducing the commu-

nication bandwidth for distributed training. arXiv preprint

arXiv:1712.01887, 2017.

Zaoxing Liu, Nikita Ivkin, Lin Yang, Mark Neyrinck, Ger-

ard Lemson, Alexander Szalay, Vladimir Braverman,

Tamas Budavari, Randal Burns, and Xin Wang. Streaming

algorithms for halo finders. In 2015 IEEE 11th Interna-

tional Conference on e-Science, pages 342–351. IEEE,

2015.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth

Hampson, et al. Communication-efficient learning of

deep networks from decentralized data. arXiv preprint

arXiv:1602.05629, 2016.

Jayadev Misra and David Gries. Finding repeated elements.

Science of computer programming, 2(2):143–152, 1982.

Lev Muchnik, Sen Pei, Lucas C Parra, Saulo DS Reis, José S

Andrade Jr, Shlomo Havlin, and Hernán A Makse. Ori-

gins of power-law degree distribution in the heterogeneity

of human activity in social networks. Scientific reports, 3

(1):1–8, 2013.

Shanmugavelayutham Muthukrishnan et al. Data streams:

Algorithms and applications. Foundations and Trends R©
in Theoretical Computer Science, 1(2):117–236, 2005.

David Page. How to train your resnet, Nov

2019. URL https://myrtle.ai/

how-to-train-your-resnet/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zem-

ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito,

Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,

Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-

tala. Pytorch: An imperative style, high-performance

deep learning library. In H. Wallach, H. Larochelle,

A. Beygelzimer, F. dAlché Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Sys-

tems 32, pages 8024–8035. Curran Associates, Inc., 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever. Language models are unsu-

pervised multitask learners. OpenAI Blog, 1(8):9, 2019.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer,

Ameet Talwalkar, and Virginia Smith. On the conver-

gence of federated optimization in heterogeneous net-

works. arXiv preprint arXiv:1812.06127, 2018.

Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon

See. Understanding top-k sparsification in distributed

deep learning. arXiv preprint arXiv:1911.08772, 2019.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu

Xu. Edge computing: Vision and challenges. IEEE

internet of things journal, 3(5):637–646, 2016.

Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and An-

shumali Shrivastava. Compressing gradient optimizers

via count-sketches. arXiv preprint arXiv:1902.00179,

2019.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin

Jaggi. Sparsified sgd with memory. In Advances in Neural

Information Processing Systems, pages 4447–4458, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey

Hinton. On the importance of initialization and momen-

tum in deep learning. In International conference on

machine learning, pages 1139–1147, 2013.

Mark Tomlinson, Wesley Solomon, Yages Singh, Tanya

Doherty, Mickey Chopra, Petrida Ijumba, Alexander C

Tsai, and Debra Jackson. The use of mobile phones as

a data collection tool: a report from a household survey

in south africa. BMC medical informatics and decision

making, 9(1):51, 2009.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified

framework for the design and analysis of communication-

efficient sgd algorithms, 2018.

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K

Leung, Christian Makaya, Ting He, and Kevin Chan.

Adaptive federated learning in resource constrained edge

computing systems. IEEE Journal on Selected Areas in

Communications, 37(6):1205–1221, 2019.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang.

Gradient sparsification for communication-efficient dis-

tributed optimization. In Advances in Neural Information

Processing Systems, pages 1299–1309, 2018.

Thomas Wolf. How to build a state-of-the-art conversational

ai with transfer learning, May 2019. URL https://

tinyurl.com/ryehjbt.

Thomas Wolf, L Debut, V Sanh, J Chaumond, C Delangue,

A Moi, P Cistac, T Rault, R Louf, M Funtowicz, et al.

Huggingface’s transformers: State-of-the-art natural lan-

guage processing. ArXiv, abs/1910.03771, 2019.

FetchSGD: Communication-Efficient Federated Learning with Sketching

Laurence T Yang, BW Augustinus, Jianhua Ma, Ling Tan,

and Bala Srinivasan. Mobile intelligence, volume 69.

Wiley Online Library, 2010.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng

Sun, Wei Li, Nicholas Kong, Daniel Ramage, and Fran-

coise Beaufays. Applied federated learning: Improv-

ing google keyboard query suggestions. arXiv preprint

arXiv:1812.02903, 2018.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam,

Douwe Kiela, and Jason Weston. Personalizing dialogue

agents: I have a dog, do you have pets too?, 2018.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon

Civin, and Vikas Chandra. Federated learning with non-

iid data, 2018.

Shuai Zheng, Ziyue Huang, and James Kwok.

Communication-efficient distributed blockwise momen-

tum sgd with error-feedback. In Advances in Neural

Information Processing Systems, pages 11446–11456,

2019.

FetchSGD: Communication-Efficient Federated Learning with Sketching

The Appendix is organized as follows:

• Appendix A lists hyperparameters and model architectures used in all experiments, and includes plots with additional

experimental data, including results broken down into upload, download and overall compression.

• Appendix B gives full proofs of convergence for FetchSGD.

• Appendix C describes the Count Sketch data structure and how it is used in FetchSGD.

• Appendix D provides the high level idea of the sliding window model and describes how to extend a sketch data

structure to the sliding window setting.

A. Experimental Details

We run all experiments on commercially available NVIDIA Pascal, Volta and Turing architecture GPUs.

A.1. CIFAR

In all non-FedAvg experiments we train for 24 epochs, with 1% of clients participating each round, for a total of 2400

iterations. We use standard train/test splits of 50000 training datapoints and 10000 validation. We use a triangular learning

rate schedule which peaks at epoch 5. We use the maximum peak learning rate for which the uncompressed runs converge:

0.3 for CIFAR10, and 0.2 for CIFAR100. We use this learning rate schedule for all compressed runs. FedAvg runs for

fewer than 24 epochs, so we compress the learning rate schedule in the iteration dimension accordingly. We do not tune the

learning rate separately for any of the compressed runs.

We split the datasets into 10,000 (CIFAR10) and 50,000 (CIFAR100) clients, each of which has 5 (CIFAR10) and 1

(CIFAR100) data point(s) from a single target class. In each round, 1% of clients participate, leading to a total batch size of

500 for both datasets (100 clients with 5 data points for CIFAR10, and 500 clients with 1 data point for CIFAR100). We

augment the data during training with random crops and random horizontal flips, and we normalize the images by the dataset

mean and standard deviation during training and testing. We use a modified ResNet9 architecture with 6.5M parameters for

CIFAR10, and 6.6M parameters for CIFAR100. We do not use batch normalization in any experiments, since it is ineffective

with the very small local batch sizes we use. Most of these training procedures, and the modified ResNet9 architecture we

use, are drawn from the work of Page (2019).

FetchSGD, FedAvg and local top-k each have unique hyperparameters that we search over. For FetchSGD, we try a

grid of values for k and the number of columns in the sketch. For k we try values of [10, 25, 50, 75, 100] ×103. For the

number of columns we try values of [325, 650, 1300, 2000, 3000] ×103. We also tune k for local top-k, trying values of

[325, 650, 1300, 2000, 3000, 5000] ×103. We present results for local top-k with and without global momentum, but not

with local momentum: with such a low participation rate, we observe anecdotally that local momentum performs poorly,

since the momentum is always stale, and maintaining local momentum and error accumulation vectors for the large number

of clients we experiment with is computationally expensive. The two hyperparameters of interest in FedAvg are the total

number of global epochs to run (which determines the compression), and the number of local epochs to perform. We run a

grid search over global epochs of [6, 8, 12] (corresponding to 4×, 3×, and 2× compression), and local epochs of [2,3,5].

Figure 6 shows the Pareto frontier of results with each method for CIFAR10 and CIFAR100 broken down into upload,

download, and overall compression. Figure 7 shows all runs that converged for the two datasets. For CIFAR10, 1 FetchSGD

run, 3 local top-k runs, and all FedAvg runs using global momentum diverged. For CIFAR100, 1 local top-k run and all

FedAvg runs using global momentum diverged.

A.2. FEMNIST

The dataset consists of 805,263 28 × 28 pixel grayscale images distributed unevenly over 3,550 classes/users,

with an average of 226.83 datapoints per user and standard deviation of 88.94. We further pre-

process the data using the preprocessing script provided by the LEAF repository, using the command:

./preprocess.sh -s niid --sf 1.0 -k 0 -t sample. This results in 706,057 training samples and 80,182

validation samples over 3,500 clients. 6

6Leaf repository: https://tinyurl.com/u2w3twe

FetchSGD: Communication-Efficient Federated Learning with Sketching

accumulation vector. We explore this method, called true top-k, briefly in Figure 10, which shows the method’s performance

as a function of k. For intermediate values of k, true top-k actually out-performs the uncompressed baseline, likely because

it provides some regularization. For large k, performance reduces because momentum factor masking inhibits momentum.

Method k PPL Download Upload Total

Compression Compression Compression

Uncompressed – 14.9 ± 0.02 1× 1× 1×
Local Top-k 50,000 19.3 ± 0.05 30.3× 2490× 60×
Local Top-k 500,000 17.1 ± 0.02 3.6× 248× 7.1×

FedAvg (2 local iters) – 16.3 ± 0.2 2× 2× 2×
FedAvg (5 local iters) – 20.1 ± 0.02 5× 5× 5×

Sketch (1.24M cols) 25,000 15.8 ± 0.007 3.8× 100× 7.3×
Sketch (12.4M cols) 50,000 14.8 ± 0.002 2.4× 10× 3.9×

Table 1. Validation perplexities, with standard deviations measured over three different random seeds, for representative runs with

FetchSGD, local top-k, and FedAvg on GPT2. Loss curves for these hyperparameter settings can be found in Figure 5.

FetchSGD: Communication-Efficient Federated Learning with Sketching

B. Theoretical properties

Theorems 1 and 2 both rely on the concept of `2
2-heavy hitters; in Theorem 1, heavy hitters appear in the quantity

qt = η(ρut−1 + gt−1) + et−1, and in Theorem 2, they appear in sums of consecutive gradients gt. for g ∈ R
d, gi is a

(τ, `2
2)-heavy hitter (or τ-heavy) if g2

i ≥ τ‖g‖2. Given this definition, Assumption 1 can be rephrased as saying that at every

timestep, qt contains at least one (τ, `2
2)-heavy hitter. And Assumption 2 can be rephrased to say that sums of consecutive g

vectors contain (τ, `2
2)-heavy hitters, with all remaining values in the gradients drawn from mean-zero symmetric noise

distributions.

With this definition in mind, the following two sections present proofs of Theorems 1 and 2, respectively.

B.1. Scenario 1:

In Scenario 1, we assume that a contraction property holds during all of training (Assumption 1). To be consistent with

our experimental evaluation, we show that FetchSGD converges (Theorem 1) when using a vanilla Count Sketch for

error accumulation, and when recovering the k highest-magnitude elements from the error accumulation sketch instead of

recovering only τ-heavy hitters.

Proof of Theorem 1. We first verify that the stochastic gradients constructed are stochastic gradients with respect to the

empirical mixture 1
C ∑

C
j=1 Pi, and we calculate its second moment bound. At a given iterate w, we sample B ⊆ [C], |B| = W,

a set of W clients uniformly from C clients at every iteration, and compute g = 1
W ∑

W
i=1 gi, where gi are stochastic gradients

with respect to the distribution Pi on client i. This stochastic gradient is unbiased, as shown below.

Eg = ÊE[g|i] = 1

W

1

(C
W)

(
C − 1

W − 1

) C

∑
i=1

E
Pi

gi =
1

C

C

∑
i=1

∇ fi(w).

The norm of the stochastic gradient is bounded:

E‖g‖2 = ÊE

∥∥∥∥∥∥
1

W ∑
i∈B,|B|=W

gi

∣∣ B

∥∥∥∥∥∥

2

≤ 1

(C
W)

1

W2
W

(
C − 1

W − 1

) C

∑
i=1

E
Pi

‖gi‖2 ≤ G2

This proof follows the analysis of compressed SGD with error feedback in Karimireddy et al. (2019b), with additional momen-

tum. Let C(x) = Top-k(U (S(x))), the error accumulation then is S(et+1) = S(η(ρut−1 + gt) + et)− S(C(η(ρut−1 +
gt) + et)). Consider the virtual sequence w̃t = wt − et − ηρ

1−ρ ut−1. Upon expanding, we get

w̃t = wt−1 − C(η(ρut−2 + gt−1) + et−1) + C(η(ρut−2 + gt−1) + et−1)− η(ρut−2 + gt−1)− et−1 − ηρ

1 − ρ
ut−1

= wt−1 − et−1 − ηgt−1 − ηρut−2 − ηρ

1 − ρ
(ρut−2 + gt−1)

= wt−1 − et−1 − η

(
1 +

ρ

1 − ρ

)
gt−1 − ηρ

(
1 +

ρ

1 − ρ

)
ut−2

= wt−1 − et−1 − ηρ

1 − ρ
ut−2 − η

1 − ρ
gt−1

= w̃t−1 − η

1 − ρ
gt−1

FetchSGD: Communication-Efficient Federated Learning with Sketching

So this reduces to an SGD-like update but with a scaled learning rate. Applying L-smoothness of f , we get,

E f (w̃t+1) ≤ E

[
f (w̃t) +

〈
∇ f (w̃t), w̃t+1 − w̃t

〉
+

L

2

∥∥∥w̃t+1 − w̃t
∥∥∥

2
]

≤ E f (w̃t)− η

(1 − ρ)
E
〈
∇ f (w̃t), gt

〉
+

Lη2

2(1 − ρ)2
E
∥∥gt
∥∥2

≤ E f (w̃t)− η

(1 − ρ)
E
〈
∇ f (w̃t),∇ f (wt)

〉
+

Lη2

2(1 − ρ)2
E
∥∥gt
∥∥2

≤ E f (w̃t)− η

(1 − ρ)
E
∥∥∇ f (wt)

∥∥2
+

η

2(1 − ρ)

(
E
∥∥∇ f (wt)

∥∥2
+ E

∥∥∇ f (w̃t)−∇ f (wt)
∥∥2
)
+

Lη2G2

2(1 − ρ)2

≤ E f (w̃t)− η

2(1 − ρ)
E
∥∥∇ f (wt)

∥∥2
+

ηL2

2(1 − ρ)
E
∥∥w̃t − wt

∥∥2
+

Lη2G2

2(1 − ρ)2

= E f (w̃t)− η

2(1 − ρ)
E
∥∥∇ f (wt)

∥∥2
+

ηL2

2(1 − ρ)
E

∥∥∥∥et +
ηρ

1 − ρ
ut−1

∥∥∥∥
2

+
Lη2G2

2(1 − ρ)2
(3)

We now need to bound

∥∥∥et + ηρ
1−ρ ut−1

∥∥∥
2
. However, we never compute or store et or ut, since the algorithm only maintains

sketches of et and ut. Instead, we will bound

∥∥∥S(et) + ηρ
1−ρS(ut−1)

∥∥∥
2
. This is sufficient because (1 − τ) ‖x‖ ≤

‖S(x)‖ ≤ (1 + τ) ‖x‖, for a user-specified constant τ (which we will see later that it holds with high-probability due to

the sketch size we use). Note that

∥∥∥S
(

et + ηρ
1−ρ ut−1

)∥∥∥
2
≤ 2

(∥∥S(et)
∥∥2

+
(

ηρ
1−ρ

)2 ∥∥S(ut−1)
∥∥2
)

because of linearity

of sketching and the numerical inequality (a + b)2 ≤ 2(a2 + b2). We bound
∥∥S(ut−1)

∥∥ first:

∥∥∥S(ut−1)
∥∥∥

2
=

∥∥∥∥∥
t−1

∑
i=1

ρiS(gi)

∥∥∥∥∥

2

≤
(

t−1

∑
i=1

ρi
∥∥∥S(gi)

∥∥∥
)2

≤
(

t−1

∑
i=1

ρi(1 + τ)G

)2

≤
(
(1 + τ)G

1 − ρ

)2

where the first inequality follows by application of triangle inequality for norms, and the second follows from ‖S(x)‖ ≤
(1 + τ) ‖x‖, and the bound on the gradients. By definition of error accumulation, we have

∥∥S(et)
∥∥2

=
∥∥∥η(ρS(ut−1) + S(gt−1)) + S(et−1))− S(Top-k(U (η(ρS(ut−1) + S(gt−1)) + S(et−1))))

∥∥∥
2

By Assumption 1, qt = η(ρut−1 + gt−1) + et−1 contains at least one τ-heavy coordinate. All such coordinates will be

successfully recovered by the unsketching procedure Top-k(U (·)) with probability at least 1 − δ (depending on the size of

Count Sketch, as discussed below), thus reducing the norm as follows:

∥∥S(et)
∥∥2 ≤ (1 − τ)

∥∥∥η(ρS(ut−1) + S(gt−1)) + S(et−1)
∥∥∥

2

≤ (1 − τ)

(
(1 + γ)

∥∥∥S(et−1)
∥∥∥

2
+ (1 + 1/γ)η2

∥∥S(ut)
∥∥2
)

≤ (1 − τ)

(
(1 + γ)

∥∥∥S(et−1)
∥∥∥

2
+

(1 + 1/γ)(1 + τ)2η2G2

(1 − ρ)2

)

≤
∞

∑
i=0

(1 + τ)2((1 − τ)(1 + γ))i(1 + 1/γ)η2G2

(1 − ρ2)

≤ (1 + τ)2(1 − τ)(1 + 1/γ)η2G2

1 − ((1 − τ)(1 + γ))
.

where in the second inequality, we use the inequality (a + b)2 ≤ (1 + γ)a2 + (1 + 1/γ)b2. As argued in Karimireddy

et al. (2019b), choosing γ = τ
2(1−τ)

suffices to upper bound the above with ≤ 4(1+τ)2(1−τ)η2G2

τ2(1−ρ)2 .

FetchSGD: Communication-Efficient Federated Learning with Sketching

Plugging everything into equation 3, we get that

E
∥∥∇ f (wt)

∥∥2 ≤ 2(1 − ρ)

η

(
E f (w̃t)− E f (w̃t+1) +

ηL2

2(1 − ρ)

4(1 + τ)2η2G2

(1 − τ)τ2(1 − ρ)2
+

Lη2G2

2(1 − ρ)2

)
.

Averaging over T yields

min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ 1

T

T

∑
t=1

E
∥∥∇ f (wt)

∥∥2 ≤ 2(1 − ρ)(f (w0)− f ∗)
ηT

+
4L2(1 + τ)2η2G2

(1 − τ)τ2(1 − ρ)2
+

LηG2

(1 − ρ)
.

Setting η = 1−ρ

2L
√

T
finishes the proof of convergence.

Now we will address the size of the sketch needed. As mentioned earlier, the sketch is required 1) to approximate the norm

of d-dimensional vectors up to a multiplicative error of (1 ± τ), and 2) to recover all τ-heavy coordinates. Following the

Count Sketch memory complexity from Charikar et al. (2002), we require memory of O
(

1
τ log (d/δ)

)
to succeed with

probability at least 1 − δ. However, we reuse the same sketch over T iterations, thus by a union bound we nee a sketch of

size O
(

1
τ log (dT/δ)

)
to succeed with probability at least 1 − δ. This completes the proof.

Also, note that setting the momentum ρ = 0 in the above, we recover a guarantee for FetchSGD with no momentum

Corollary 1. Under the same assumptions as Theorem 1, FetchSGD, with no momentum, in T iterations, outputs
{

wt
}T

t=1
such that

min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ 4L(f (w0)− f ∗) + G2

√
T

+
(1 + τ)2G2

2(1 − τ)τ2T

B.2. Scenario 2

In the previous section, we show convergence under Assumption 1, which is relatively opaque and difficult to verify

empirically. In this section, we make the more interpretable Assumption 2, which posits the existence of `2-heavy hitters in

the sequence of gradients encountered during optimization. Under this assumption, FetchSGD is unlikely to converge

when using a vanilla Count Sketch with error accumulation, by the following argument. Under Assumption 2, the useful

signal in the sequence of gradients consists solely of `2-heavy hitters spread over at most I iterations. As such, the norm of

the signal at some iteration t is bounded by O (I), whereas the norm of the error accumulation sketch overall (signal plus

noise) is bounded by O (t), since the error accumulation includes the sum of gradient vectors up to time t. Because noise

hinders a Count Sketch’s ability to recover heavy hitters, FetchSGD would have a difficult time converging once t � I.

To solve this problem, we show that FetchSGD converges when using a sliding window Count Sketch instead of a vanilla

Count Sketch plus error accumulation. Using a sliding window sketch solves the problem of noise growing as O (t) by

recovering all of the signal present up until iteration t − I, and then discarding the remaining noise. To see why this is the

case, we consider a straightforward implementation of a sliding window Count Sketch that maintains I individual Count

Sketches {Si
e}I

i=1, where the ith sketch was initialized at iteration t − i, as shown in Figure 11a. On lines 12 and 14 of

Algorithm 1, we add a Count Sketch into Se by simply adding the sketch to each of the Si
e. On line 13, we recover heavy

hitters (U (·)) by unsketching each of the Si
e and taking the union of the resulting heavy hitters. And on line 16, we prepare

the sliding window Count Sketch for the next iteration by setting Si+1
e = Si

e, and initializing S0
e as an empty Count Sketch.

By constructing the sliding window data structure in this way, any sequence of up to I gradients will appear in one of the Si
e

at some iteration. Therefore, a data structure of this sort will recover all `2-heavy signal spread over up to I iterations with

probability 1 − δ when using individual sketches Si
e of size O

(
1
τ log

(
dI
δ

))
. Because of this, when we discard Si

e at the

end of every iteration, we are only discarding noise, thereby preventing the noise from growing as O (t) without losing any

useful signal.

We use the sliding window Count Sketch data structure described above to show convergence, but in Appendix D we discuss

more efficient implementations that require maintaining only log (I) instead of I individual Count Sketch data structures, as

FetchSGD: Communication-Efficient Federated Learning with Sketching

depicted in 11b. In addition, to simplify the presentation, instead of recovering the highest-magnitude k elements from the

sliding window error accumulation sketch, we recover only τ-heavy hitters.

Proof of Theorem 2. For clarity, we break the proof into two parts. First, we address the particular case when I = 1, and

then we extend the proof to general I.

Warm-up: I = 1 (without error accumulation). When I = 1, Assumption 2 guarantees that every gradient contains

heavy hitters. And the sliding window error accumulation sketch used by FetchSGD reduces to a simple Count Sketch for

compression, with no error accumulation across iterations. In this case, the gradient update step is of the form

wt+1 = wt − C(ηgt).

where C(·) is Top-τ(U (S(·))). Consider the virtual sequence w̃t = wt − ∑
t−1
i=1

(
ηgi − C(ηgi)

)
. Upon expanding, we get

w̃t = wt−1 − C(ηgt−1)−
t−1

∑
i=1

(
ηgi − C(ηgi)

)
= wt−1 −

t−2

∑
i=1

(
ηgi − C(ηgi)

)
− ηgt−1 = w̃t−1 − ηgt−1

From L-smoothness of f ,

E f (w̃t+1) ≤ E f (w̃t) + E

〈
∇ f (w̃t), w̃t+1 − w̃t

〉
+

L

2
E

∥∥∥w̃t+1 − w̃t
∥∥∥

2

= E f (w̃t)− Eη
〈
∇ f (w̃t), gt

〉
+

Lη2

2
E
∥∥gt
∥∥2

≤ E f (w̃t)− Eη
〈
∇ f (w̃t)−∇ f (wt) +∇ f (wt),∇ f (wt)

〉
+

η2LG2

2

= E f (w̃t)− ηE
∥∥∇ f (wt)

∥∥2 − Eη
〈
∇ f (w̃t)−∇ f (wt),∇ f (wt)

〉
+

η2LG2

2

≤ E f (w̃t)− ηE
∥∥∇ f (wt)

∥∥2
+

η

2
E

(∥∥∇ f (w̃t)−∇ f (wt)
∥∥2

+
∥∥∇ f (wt)

∥∥2
)
+

η2LG2

2

≤ E f (w̃t)− η

2
E
∥∥∇ f (wt)

∥∥2
+

ηL2

2
E
∥∥w̃t − wt

∥∥2
+

η2LG2

2
(4)

where in the third inequality, we used |〈u, v〉| ≤ 1
2

(
‖u‖2 + ‖v‖2

)
, and the last inequality follows from L-smoothness.

Now, to show convergence of ||∇ f (wt)||, we need to upper bound
∥∥w̃t − wt

∥∥ =
∥∥∥∑

t−1
i=1(C(ηgi)− ηgi)

∥∥∥. To do so,

we note that, conditioned on successful recovery of heavy hitters from the Count Sketch, C(ηgi) − ηgi consists only

of mean-zero symmetric noise: every gradient gi in a (1, τ)-sliding heavy sequence of gradients consists solely of τ-

heavy hitters and mean-zero symmetric noise, by Definition 1. Therefore, when all τ-heavy coordinates are identified,

C(gi)− gi =: zi consists only of gi
N (from Definition 1) and the Count Sketch heavy-hitter estimation error. By Assumption

2, gi
N =: zi

noise is drawn from a mean-zero symmetric distribution with scale
∥∥gi
∥∥. And by the properties of the Count

Sketch, the heavy-hitter estimation error zi
estimation is as well. Therefore, zi = ‖gi‖ξ i for some ξ i drawn from mean-zero

symmetric noise distributions, such that the ξ i’s are mutually independent and independent of
∥∥gi
∥∥. As a result:

∥∥w̃t − wt
∥∥ =

∥∥∥∥∥
t−1

∑
i=1

(C(ηgi)− ηgi)

∥∥∥∥∥ = η

∥∥∥∥∥
t−1

∑
i=1

zi
estimation + zi

noise

∥∥∥∥∥ = η

∥∥∥∥∥
t−1

∑
i=1

zi

∥∥∥∥∥ = η

∥∥∥∥∥
t−1

∑
i=1

∥∥∥gi
∥∥∥ ξ i

∥∥∥∥∥ .

Note that, since the gi’s are dependent because they are a sequence of SGD updates, the zi’s are also dependent. However

since the ξ i’s are independent with mean zero, E
[∥∥gi

∥∥ ξ i|Fi

]
= 0, where Fi is the filtration of events before the ith iteration.

FetchSGD: Communication-Efficient Federated Learning with Sketching

longer the case, since signal needed for convergence may not be `2-heavy in any given iteration. As described above, we

capture signal spread over multiple iterations using a sliding-window Count Sketch data structure, which recovers all the

`2-heavy signal with high probability, even if it is spread over multiple iterations. This is sufficient to show convergence

because Assumption 2 states that all of the signal in the sequence of gradients is contained within gradient coordinates that

are `2-heavy over a sliding window.

Because of the similarity between a Count Sketch and a sliding window Count Sketch, the proof of Theorem 2 for general I
largely follows the proof for I = 1.

Let Ct = U (St
e) be the result of unsketching the sliding window Count Sketch at iteration t, and consider a virtual sequence

similar to the one in the warm-up case:

w̃t = wt −
(

t−1

∑
i=1

ηgi − Ci

)

= wt−1 − Ct−1 −
(

t−1

∑
i=1

ηgi − Ci

)

= wt−1 −
t−2

∑
i=1

ηgi − Ci − ηgt−1

= w̃t−1 − ηgt−1

As before, we need to bound
∥∥w̃t − wt

∥∥ =
∥∥∥∑

t−1
i=1 ηgi − Ci

∥∥∥.

Because the sliding window sketch recovers all `2-heavy signal spread over at most I iterations, the value of ηgi − Ci

consists of only zestimation + znoise when i < t − I.

For i < t − I, the sliding window Count Sketch data structure will recover all the signal, leaving only zi
estimation + zi

noise

remaining. For t − I ≤ i ≤ t, some signal will already be recovered in Ci (which we denote gi
r), while other signal remains

to be recovered in future steps (gi
n). Note that gi = gi

r + gi
n, and we let znoise be distributed arbitrarily between gi

r and gi
n.

As shown in the warm-up case, we argue that

w̃t − wt =
t

∑
i=1

(ηgi − Ci) =

(
t−I

∑
i=1

ηgi +
t

∑
i=t−I+1

ηgi
r −

t

∑
i=1

Ci

)
+

t

∑
i=t−I+1

ηgi
n

=

(
t

∑
i=1

zi
estimation error + zi

noise

)
+

t

∑
i=t−I+1

ηgi
n =

t

∑
i=1

zi +
t

∑
i=t−I+1

ηgi
n

Since the gradients are bounded in norm, the norm of the sum of the past I gradients, from which signal has yet to be

recovered, can be bounded as IG. The norm of gi
n is less than the norm of gi, so the sum of gi

n can be likewise bounded.

Then, by the triangle inequality we get

∥∥w̃t − wt
∥∥2 ≤ 2

∥∥∥∥∥
t−I

∑
i=1

zi

∥∥∥∥∥

2

+ 2η2 I2G2

We now similarly argue that zi forms a martingale difference sequence and therefore we have

E
∥∥w̃t − wt

∥∥2 ≤ 2E

∥∥∥∥∥
t−I

∑
i=1

zi

∥∥∥∥∥+ 2η2 I2G2 ≤ 2(1 − τ + β)η2G2(t − I) + 2η2 I2G2 ≤ 2(1 − τ + β)η2G2t + 2η2 I2G2

FetchSGD: Communication-Efficient Federated Learning with Sketching

Repeating the steps in the warm-up case: using L-smoothness of f , we get

E f (w̃t+1) ≤ f (w̃t)− η

2

∥∥∇ f (wt)
∥∥2

+
ηL

2
E
∥∥w̃t − wt

∥∥2
+

η2LG2

2

≤ f (w̃t)− η

2

∥∥∇ f (wt)
∥∥2

+
ηL

2

(
2(1 − τ + β)η2G2t + 2η2 I2G2

)
+

η2LG2

2

Taking
∥∥∇ f (wt)

∥∥ to the left hand side, averaging and taking expectation with respect to all randomness, and choosing

η = 1
G
√

LT2/3
we get

min
t=1···T

E
∥∥∇ f (wt)

∥∥2 ≤ G
√

L
(

f (w0)− f ∗
)
+ 2(1 − τ + β)

T1/3
+

G
√

L

T2/3
+

2I2

T4/3

The first part of the theorem is recovered by noting that β ≤ 1. For the second part, note that the size of sketch needed to

capture τ-heavy hitters with probability at least 1 − δ is O
(

log(dδ)
τ2

)
; taking a union bound over all T iterations recovers

the second claim in the theorem.

Implementation. We now give details on how this data structure is constructed and what the operations correspond to.

For all heavy coordinates to be successfully recovered from all suffixes of the last I gradient updates (i.e. ∀I′ < I, to recover

heavy coordinates of ∑
t
i=t−I′ ηgi) we can maintain I sketches in the overlapping manner depicted in Figure 11a. That is,

every sketch is cleared every I iterations. To find heavy coordinates, the FindHeavy() method must query every sketch and

return the united set of heavy coordinates found; Insert() appends new gradients to all I sketches; and Update() subtracts

the input set of heavy coordinates from all I sketches. Although sketches are computationally efficient and use memory

sub-linear in d (a Count Sketch stores O (log (d)) entries), linear dependency on I in unfavorable, as it limits our choice

of I. Fortunately, the sliding window model, which is very close to the setting studied here, is thoroughly studied in the

streaming community (Braverman and Ostrovsky, 2007; Datar et al., 2002). These methods allow us to maintain a number

of sketches only logarithmic in I. For a high level overview we refer the reader to Appendix D.

B.3. Are these assumptions necessary?

We have discussed that un-sketching a sketch gives an unbiased estimate of the gradient: EU (S(g)) = g, so the sketch can

be viewed as a stochastic gradient estimate. Moreover, since Top-k, error feedback and momentum operate on these new

stochastic gradients, existing analysis can show that our method converges. However, the variance of the estimate derived

from unsketching is Θ(d), in the worst-case. By standard SGD analysis, this gives a convergence rate of O
(

d/
√

T
)

,

which is optimal since the model is a function of only these new O (d)-variance stochastic gradients. This establishes

that even without any assumptions on the sequence of gradients encountered during optimization, our algorithm has

convergence properties. However this dimensionality dependence does not reflect our observation that the algorithm

performs competitively with uncompressed SGD in practice, motivating our assumptions and analysis.

C. Count Sketch

Streaming algorithms have aided the handling of enormous data flows for more than two decades. These algorithms operate

on sequential data updates, and their memory consumption is sub-linear in the problem size (length of stream and universe

size). First formalized by Alon et al. (1999), sketching (a term often used for streaming data structures) facilitates numerous

applications, from handling networking traffic (Ivkin et al., 2019c) to analyzing cosmology simulations (Liu et al., 2015). In

this section we provide a high-level overview of the streaming model, and we explain the intuition behind the Count Sketch

(Charikar et al., 2002) data structure, which we use in our main result. For more details on the field, we refer readers to

Muthukrishnan et al. (2005).

FetchSGD: Communication-Efficient Federated Learning with Sketching

Consider a frequency vector g ∈ Rd initialized with zeros and updated coordinate by coordinate in the streaming fashion

– i.e. at time t an update (ai, wi) changes the frequency as gai
+ = wi. Alon et al. (1999) introduce the AMS sketch,

which can approximate ‖g‖ with only constant memory. Memory footprint is very important in the streaming setting,

since d is usually assumed to be large enough that g cannot fit in the memory. The AMS sketch consists of a running

sum S initialized with 0, and a hash function h that maps coordinates of g into ±1 in an i.i.d. manner. Upon arrival

of an update (ai, wi), the AMS sketch performs a running sum update: S += h(ai)wi. Note that at the end of the

stream, E(S) = ∑
n
i=1 h(ai)wi can be reorganized as per coordinate E(S) = ∑

d
j=1

(
h(j)∑{i:ai=j} wi

)
= ∑

d
j=1 h(j)gj,

where gj is the value of j-th coordinate at the end of the stream. The AMS sketch returns S2 as an estimation of ‖g‖2:

E(S2) = E(∑
d
j=1 h(j)2g2

j) + E(∑
d
j=1 h(j)h(j′)gjgj′). If h is at least 2-wise independent second, then both Eh(j)h(j′)

and the second term are 0. So E(S2) = E(∑
d
j=1 g2

j) = ‖g‖2, as desired. Similarly, Alon et al. (1999) show how to bound

the variance of the estimator (at the cost of 4-wise hash independence). The AMS sketch maintains a group of basic sketches

described above, so that the variance and failure probability can be controlled directly via the amount of memory allocated:

an AMS sketch finds ̂̀2 = ‖g‖ ± ε‖g‖ using O(1/ε2) memory.

The Count Sketch data structure (Charikar et al., 2002) extends this technique to find heavy coordinates of the vector. A

coordinate i is (τ, `2)-heavy (or an (τ, `2)-heavy hitter) if gi ≥ τ‖g‖. The intuition behind the Count Sketch is as follows:

the data structure maintains a hash table of size c, where every coordinate j ∈ [d] is mapped to one of the bins, in which

an AMS-style running sum is maintained. By definition, the heavy coordinates encompass a large portion of the `2 mass,

so the `2 norm of the bins where heavy coordinates are mapped to will be significantly larger then that of the rest of the

bins. Consequently, coordinates mapped to the bins with small `2 norm are not heavy, and can be excluded from list of

heavy candidates. Repeating the procedure O(log (d)) times in parallel reveals the identities of heavy coordinates and

estimates their values. Formally, a Count Sketch finds all (τ, `2)-heavy coordinates and approximates their values with

±ε‖g‖ additive error. It requires O(1
ε2τ2 log (d)) memory. Algorithm 2 depicts the most important steps in a Count Sketch.

For more details on the proof and implementation, refer to (Charikar et al., 2002).

Algorithm 2 Count Sketch (Charikar et al., 2002)

1: function init(r, c):
2: init r × c table of counters S

3: for each row r init sign and bucket hashes:
{
(hs

j , hb
j)
}r

j=1

4: function update((ai, wi)):
5: for j in 1 . . . r : S[j, hb

j (i)] += hs
j (i)wi

6: function estimate(i):
7: init length r array estimates
8: for j in 1, . . . , r:

9: estimates[r] = hs
j (i)S[j, hb

j (i)]

10: return median(estimates)

For FetchSGD, an important feature of the Count Sketch data structure is that it is linear – i.e., S(g1) + S(g2) =
S(g1 + g2). This property is used when combining the sketches of gradients computed on every iteration, and to maintain

error accumulation and momentum. We emphasize that while there are more efficient algorithms for finding heavy hitters,

they either provide weaker `1 approximation guarantees (Muthukrishnan et al., 2005) or support only non-negative entries

of the vector (Misra and Gries, 1982; Braverman et al., 2017). The structure of the Count Sketch allows for high amounts of

parallelization, and the operations of a Count Sketch can be easily accelerated using GPUs (Ivkin et al., 2018).

D. Sliding Windows

As was mentioned in Appendix C, the streaming model focuses on problems where data items arrive sequentially and their

volume is too large to store on disk. In this case, accessing previous updates is prohibited, unless they are stored in the

sketch. In many cases, the stream is assumed to be infinite and the ultimate goal is to approximate some function on the

last n updates and to “forget” the older ones. The sliding window model, introduced in (Datar et al., 2002), addresses

exactly this setting. Recall the example from Appendix C: given a stream of updates (at, wt) to a frequency vector g (i.e.

gt
at+ = wt), approximating the `2 norm of g in the streaming model implies finding ̂̀2 = ‖g‖ ± ε‖g‖ On the other hand,

FetchSGD: Communication-Efficient Federated Learning with Sketching

in the sliding window model one is interested only in the last n updates, i.e. ̂̀2 = ‖gt − gt−n‖ ± ε‖gt − gt−n‖.

One naive solution is to maintain n overlapping sketches, as in Fig. 11a. However, such a solution is infeasible for larger n.

Currently there are 2 major frameworks to adopt streaming sketches to the sliding window model: exponential histograms,

by Datar et al. (2002), and smooth histograms, by Braverman and Ostrovsky (2007). For simplicity, we will provide only the

high level intuition behind the latter one. Maintaining all n sketches as in Fig. 11a is unnecessary if one can control the

growth of the function: neighboring sketches differ only by one gradient update, and the majority of the sketches can be

pruned. Braverman and Ostrovsky (2007) show that if a function is monotonic and satisfies a smoothness property, then

the sketches can be efficiently pruned, leaving only O (log (n)) sketches. As in Fig. 11b, ‖S(i)‖ < (1 + ε)‖S(i−1)‖, so

any value in the intermediate suffixes (which were pruned earlier) can be approximated by the closest sketch ‖S(i)‖ as

shown in Ivkin et al. (2019a). For more details on how to construct this data structure, and for a definition of the smoothness

property, we refer readers to Braverman and Ostrovsky (2007).

