
Evolution of Similar Configurations in Graph
Dynamical Systems

Joshua D. Priest1, Madhav V. Marathe1, S. S. Ravi1,2(B), Daniel J. Rosenkrantz1,2,
and Richard E. Stearns1,2

1 University of Virginia, Charlottesville, USA
{jdp8jb,marathe}@virginia.edu

2 University at Albany – SUNY, Albany, USA
ssravi0@gmail.com, drosenkrantz@gmail.com, thestearns2@gmail.com

Abstract. We investigate questions related to the time evolution of discrete graph
dynamical systems where each node has a state from {0,1}. The configuration of
a system at any time instant is a Boolean vector that specifies the state of each
node at that instant. We say that two configurations are similar if the Hamming
distance between them is small. Also, a predecessor of a configuration B is a
configuration A such that B can be reached in one step from A. We study prob-
lems related to the similarity of predecessor configurations from which two simi-
lar configurations can be reached in one time step. We address these problems
both analytically and experimentally. Our analytical results point out that the
level of similarity between predecessors of two similar configurations depends
on the local functions of the dynamical system. Our experimental results, which
consider random graphs as well as small world networks, rely on the fact that
the problem of finding predecessors can be reduced to the Boolean Satisfiability
problem (SAT).

1 Introduction

Discrete graph dynamical systems are generalizations of cellular automata (CA)
[10,26]. They serve as a useful formal model in many contexts, including multi-agent
systems, propagation of contagions in social networks and interaction phenomena in
biological systems (see e.g., [1,17,25,27]). Here, we focus on one such class of graph
dynamical systems, namely synchronous discrete dynamical systems (SyDSs). Infor-
mally, a SyDS1 consists of an undirected graph2 whose vertices represent entities and
edges represent local interactions among entities. Each node v has a Boolean state and
a local function fv whose inputs are the current state of v and those of its neighbors;
the output of fv is the next state of v. The vector consisting of the state values of all
the nodes at each time instant is referred to as the configuration of the system at that
instant. In each time step, all nodes of a SyDS compute and update their states syn-
chronously. Starting from a (given) initial configuration, the time evolution of a SyDS
consists of a sequence of successive configurations, which is also called a trajectory.
1 Formal definitions associated with SyDSs are presented in Sect. 2.
2 Synchronous dynamical systems, where the underlying graph is directed, are called Syn-
chronous Boolean Networks (see e.g., [12,13,19]).

c⃝ The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. M. Benito et al. (Eds.): COMPLEX NETWORKS 2020, SCI 943, pp. 544–555, 2021.
https://doi.org/10.1007/978-3-030-65347-7_45

Evolution of Similar Configurations 545

In this paper, we examine questions related to the evolution of configurations that
are similar. We measure the similarity between two configurations by their Hamming
distance (i.e., the number of bit positions where the two configurations differ). Thus,
two configurations are similar if the Hamming distance between them is small. It is
known that certain dynamical systems may exhibit unpredictable behavior when the
initial conditions are perturbed slightly [26]. A primary goal of our study is to obtain
an understanding of when and how two similar configurations may arise from con-
figurations that may be dissimilar. Such a study can be useful in understanding the
sensitivity of a given dynamical system. As a concrete and simplified version of the
general research question, we consider the following problem: given two similar con-
figurations, how similar are their predecessors (i.e., configurations that just preceded
the given configurations in the time evolution of the system)? A summary of our results
is given below.

(a) Analytical Results. In Sect. 3, we show that SyDSs may exhibit extreme behaviors
with respect to the evolution of configurations. For example, one of our results (Propo-
sition 1) shows that there are SyDSs in which for any two configurations C1 and C2
which differ in h bits, there are respective predecessors C′

1 and C′
2 which also differ in

exactly h bits. Further, we show (Proposition 2) that there are SyDSs where two very
similar configurations (which differ in just one bit) have highly dissimilar predecessors
(i.e., they differ in all the bits). In addition, we present examples of SyDSs (Corol-
lary 1) in which highly dissimilar configurations have predecessors that differ in just
one bit. We also show that computing similarity measures of the predecessors of two
given configurations is, in general, computationally intractable. Further, we point out
that the problem of computing a predecessor of a given configuration can be reduced to
the Boolean Satisfiability problem (SAT).

(b) Experimental Results. Our experimental results (presented in Sect. 4) rely on
the result that the problem of computing a predecessor of a given configuration can be
reduced to SAT. While many public domain SAT solvers are available [22], we used
Clasp [7] for our experiments. The reasons for this choice are explained in Sect. 4. Our
experiments consider several classes of graphs (grids, Watts-Strogatz small world net-
works and Erdős-Rényi graphs). Since our analytical results indicate that non-monotone
Boolean functions (e.g., exclusive OR) can cause extreme behaviors with respect to
Hamming distance, we used threshold3 functions (which are monotone) in our experi-
ments. For small networks, our results show the exact maximum, minimum and average
Hamming distance values for several threshold values. For larger networks, since it is
computationally expensive to find all the predecessors and compute the exact Hamming
distance values, we generated up to 104 predecessors and computed the Hamming dis-
tance values using those predecessors. In general, the results discussed in Sect. 4 indi-
cate that for small threshold values, as the Hamming distance between a pair of con-
figurations is increased, the average Hamming distance between their predecessor sets
increases linearly; for larger threshold values, the average Hamming distance between
predecessor sets remains more or less stable. We also present results showing the num-
ber of clauses generated by the transformation of the predecessor problem into SAT

3 The class of threshold functions is defined in Sect. 2.

546 J. D. Priest et al.

and the time used by two SAT solvers (namely, Clasp [7] and Glucose [8]) to solve the
corresponding SAT instances.

Related Work. Computational problems associated with discrete dynamical sys-
tems have been addressed by many researchers. For example, Barrett et al. [3] and
Rosenkrantz et al. [21] studied the reachability problem (i.e., given a SyDS S and two
configurations C1 and C2, does S starting from C1 reach C2?) for undirected graphs.
The same problem for directed graphs has been studied in [5,19]. Tosic [23,24] pre-
sented results for counting the number of fixed points4 for systems with special forms of
local functions. Kosub and Homan [15] presented dichotomy results that delineate com-
putationally intractable and efficiently solvable versions of counting fixed points, based
on the class of allowable local functions. The complexity of the predecessor existence
problem for various classes of underlying graphs and local functions is investigated in
[4]. A more general version of the predecessor existence problem, where the goal is
to find t-step predecessors for values of t ≥ 2, has been studied in [14,16]. Problems
similar to predecessor existence have also been considered in the context of cellular
automata [6,9]. Readers interested in the applications of graph dynamical systems are
referred to [1,17].

Note: For space reasons, proofs are not included; they can be found in [20].

2 Preliminaries

Synchronous Dynamical Systems and Local Functions. We follow the presentation
in [4] for the basic definitions associated with discrete dynamical systems. Let B denote
the Boolean domain {0,1}. A Synchronous Dynamical System (SyDS) S over B is
specified as a pair S = (G,F), where (a) G(V,E), an undirected graph with |V | = n,
represents the underlying graph of the SyDS and (b) F= { f1, f2, . . . , fn} is a collection
of functions in the system, with fi denoting the local function associated with node
vi, 1 ≤ i ≤ n. Each node of G has a state value from B. For any node v, we use N[v] to
denote the closed neighborhood of v, that is, the set consisting of v and all its neighbors.
Each function fi specifies the local interaction between node vi and its neighbors in G.
The inputs to function fi are the state of the nodes in N[vi]; function fi maps each
combination of inputs to a value in B. This value becomes the next state of node vi. It
is assumed that each local function can be computed efficiently.

At any time τ , the configuration C of a SyDS is the n-vector (sτ
1,s

τ
2, . . . ,s

τ
n), where

sτ
i ∈ B is the state of node vi at time τ (1 ≤ i ≤ n). Given a configuration C, the state of
a node v in C is denoted by C(v). In a SyDS, all nodes compute and update their next
state synchronously. Other update disciplines (e.g., sequential updates) have also been
considered in the literature (e.g., [4,17]). Suppose a given SyDS transitions in one step
from a configuration C′ to a configuration C. Then we say that C is the successor of C′,
and C′ is a predecessor of C. Since the SyDSs considered in this paper are determinis-
tic, each configuration has a unique successor. However, a configuration may have zero
or more predecessors. In the graph dynamical systems literature, configurations with no

4 A fixed point of a SyDS is a configuration which is its own successor.

Evolution of Similar Configurations 547

predecessors are called Garden of Eden (GE) configurations [17]. Given a configura-
tion C, we use the notation σ(C) to denote the successor of C, and Π(C) to denote the
set of all predecessors of C.

SyDSs have been considered in the literature under many classes of local functions
(see e.g., [4,14]). We now present an example of a SyDS where the local function at
each node is a threshold function. For each integer k ≥ 0, the k-threshold function
has the value 1 iff at at least k of its inputs are 1.

Example: The underlying graph of a SyDS shown in Fig. 1. The threshold value for
each node is shown within parentheses. (Thus, the local function at b is the 2-threshold
function while that at d is the 3-threshold function.) Suppose the initial configuration
of the system is (1,1,0,0,0); that is, a and b are in state 1 while c, d and e are in state
0. The reader can verify that starting from time 0, the system goes through the follow-
ing sequence of configurations: (1,1,0,0,0) −→ (1,1,1,0,0) −→ (1,1,1,1,0) −→

c

(1)

(3)(2)

(1)
(2)

d

e

b

a

Fig. 1. An Example of a SyDS
where each node has a threshold
function. The threshold values are
shown in parentheses.

(1,1,1,1,1). Once the system reaches the configu-
ration (1,1,1,1,1) at time step 3, no further state
changes occur in the subsequent time steps; that is, the
configuration (1,1,1,1,1) is a fixed point.

The phase space PS of a SyDS S is a directed
graph defined as follows. There is a node in PS for
each configuration of S. There is a directed edge from
a node representing configurationC1 to that represent-
ing configuration C2 if there is a one step transition of
S from C1 to C2. For a SyDS with n nodes, the num-
ber of nodes in the phase space is 2n; thus, the size of
phase space is exponential in the size of a SyDS. Each
node in the phase space has an outdegree of 1 (since
our SyDS model is deterministic). Also, in the phase
space, each fixed point of a SyDS is a self-loop and
each GE configuration is a node of indegree zero.

Hamming Distance and Similarity of Configurations. Given two configurations C1
and C2 of a SyDS over the domain {0,1}, theHamming Distance between C1 and C2,
denoted by H(C1, C2), is the number of positions in which they differ. For example, if
C1 = (1,0,0,1) andC2 = (0,1,0,0), thenH(C1,C2) = 3.We say that two configurationsC1
and C2 of a SyDS are h-close ifH(C1, C2) = h. Two configurations that are h-close for
a small value of h can be thought of as ‘similar’ configurations. We note that in a SyDS
with n nodes, the maximum Hamming distance between any pair of configurations C1
and C2 is n; this occurs when C1 is the bitwise complement of C2.

Similarity Measures for Sets of Configurations. Our focus is on studying the degree
of similarity between predecessors of similar configurations. To do this, we define the
following distance measures between two sets of nonempty configurations S1 and S2.

548 J. D. Priest et al.

(a) Minimum Separation (MINSEP): This measure is defined as follows:

MINSEP(S1,S2) = min{H(C,C′) : C ∈ S1, C′ ∈ S2}.

(b) Maximum Separation (MAXSEP): This measure, which is analogous to mini-
mum separation, is defined as follows.

MAXSEP(S1,S2) = max{H(C,C′) : C ∈ S1, C′ ∈ S2}.

(c) Average Separation (AVGSEP): This measure is defined as follows.

AVGSEP(S1,S2) =
∑C∈S1, C′∈S2 H(C,C′)

|S1|× |S2|
.

Among the above measures, a small value of MAXSEP provides the strongest guarantee
of similarity. This is because if MAXSEP(S1, S2) = α , and α is small, then the Hamming
distance between any pair configurations C and C′, where C ∈ S1 and C′ ∈ S2, is at
most α; in other words, each such configuration pair is α-close. For convenience, when
at least one of the sets S1 and S2 is empty, we define the values of MINSEP(S1,S2),
MAXSEP(S1,S2) and AVGSEP(S1,S2) to be ∞.

The following lemma points out two simple properties of predecessors in SyDSs.

Lemma 1. Let S be a SyDS. (i) Suppose C1 and C2 are two different configurations of
S. The sets Π(C1) and Π(C2) are disjoint. (ii) Suppose every configuration of S has a
predecessor. Then each configuration of S has a unique predecessor.

Proof: See [20].

Boolean Satisfiability Problem (SAT): Given an m-variable Boolean function F of in
conjunctive normal form (CNF), the goal of the Satisfiability problem (SAT) problem
is to determine whether there is an assignment of a Boolean values to each of the m
variables so that the function F evaluates to true under the assignment. We will explain
in Sect. 3 how the problem of finding predecessors of a given configuration can be
reduced to an appropriate instance of SAT. Many public domain SAT solvers are cur-
rently available to obtain solutions to practical SAT instances [22]. Our experimental
results in Sect. 4 were generated using SAT solvers.

3 Analytical Results

Overview. In this section, we first show that the problem of finding the predecessors of
a given configuration of a SyDS can be expressed as an instance of SAT. This transfor-
mation forms the basis for the experimental results presented in Sect. 4. In addition, we
present several analytical results regarding the similarities of predecessor sets of two
configurations of a SyDS. Throughout this section, the reader should bear in mind that
for any configuration C, σ(C) denotes the successor of C and Π(C) denotes the set of
all predecessors of C.
Reducing Predecessor Finding to SAT. We assume that the nodes of the underlying
graph of the given SyDS are numbered 1 through n and that the local function at node

Evolution of Similar Configurations 549

i is denoted by fi, 1 ≤ i ≤ n. For each node i, let Ni denote the closed neighborhood
of node i (defined in Sect. 2) in the underlying graph; thus, the states of the nodes in Ni
are the inputs to the local function fi, 1 ≤ i ≤ n.

Let C = (c1,c2, . . . ,cn) be the given configuration for which we need to find a pre-
decessor (if one exists). Note that each ci is a known 0 or 1 value, 1 ≤ i ≤ n. We need
to find a configuration C′ = (x1,x2, . . . ,xn) such that C′ is a predecessor of C (if one
exists). This condition can be transformed into an instance of SAT as follows.

Consider node i of the SyDS. As mentioned earlier, let Ni = {i1, i2, . . . , ir} denote
the closed neighborhood of node i, where r= |Ni|. Thus, the inputs to the local function
fi at node i are xi1 , xi2 , . . ., xir . Since we want C′ to be a predecessor of C, the condition
to be satisfied at node i is the following:

ci ⇔ fi(xi1 ,xi2 , . . . ,xik). (1)

Since ci is a known 0 or 1 value, the expression given in Eq. (1) can be simplified. If
ci = 0, the above expression simplifies to ¬ fi(xi1 ,xi2 , . . . ,xik). Likewise, if ci = 1, the
above expression simplifies to fi(xi1 ,xi2 , . . . ,xik).

Using Pi to denote the subexpression given by Eq. (1) for node i, the condition to be
satisfied for C′ to be a predecessor of C is given by

P1 ∧ P2 ∧ . . . ∧ Pn. (2)

As before, since each subexpression Pi can be expressed as an equivalent CNF, we can
get a CNF formula with variables x1, x2, . . ., xn from Eq. (2). Each solution to the
resulting CNF formula (which can be obtained using a SAT solver) gives a predecessor
of the given configuration C. If there is no satisfying assignment to the CNF formula
corresponding to the expression in Eq. (2), then C has no predecessor; that is, C is a
Garden-of-Eden configuration. This SAT-based approach for finding predecessors will
be incorporated into a software system called net.science that is being built in col-
laboration with several organizations [2].

Results on Similarities of Predecessor Sets. We now present our theoretical results
regarding the similarity of predecessors of two configurations. Our first result points
out that there are SyDSs where the Hamming distance between a pair of configurations
is preserved when predecessors are considered.

Proposition 1. Let G be an arbitrary graph. Then, there is a SyDS S with underlying
graph G, such that S has the following properties: (i) every configuration has a prede-
cessor, and (ii) for any pair of distinct configurations C1 and C2, H(σ(C1),σ(C2))
= H(C1,C2) and MAXSEP (Π(C1), Π(C2)) = MINSEP (Π(C1), Π(C2)) =
AVGSEP (Π(C1), Π(C2)) = H(C1,C2).

Proof: See [20].
Our next result shows that there are SyDSs for which there are two distinct configura-
tions that are 1-close, but their predecessors are highly dissimilar; that is, they have the
maximum possible Hamming distance.

550 J. D. Priest et al.

Proposition 2. Let G be an arbitrary connected graph, and let n be the number of nodes
in G. Then, there is a SyDS S with underlying graph G, such that S has the following
properties: (i) every configuration has a predecessor and (ii) for every configurationC1,
there is a configuration C2 such that H(C1,C2) = 1 and MAXSEP (Π(C1), Π(C2))
= MINSEP (Π(C1), Π(C2)) = AVGSEP (Π(C1), Π(C2)) = n.

Proof: See [20].
We now show the existence of SyDSs in which there are pairs of configurations which
have the maximum level of dissimilarity but their predecessors are 1-close.

Proposition 3. Let G be an arbitrary graph, and let ∆ be the maximum node degree
of G. Then, there is a SyDS S with underlying graph G, such that S has the
following properties: (i) every configuration has a predecessor and (ii) for every
configuration C1, there is a configuration C2 such that H(C1,C2) = ∆ + 1 and
MAXSEP (Π(C1), Π(C2)) = MINSEP (Π(C1), Π(C2)) = AVGSEP (Π(C1), Π(C2))
= 1.

Proof: See [20].
The following corollary is a direct consequence of Proposition 3 by taking the underly-
ing graph of the SyDS to be the star graph on n nodes.

Corollary 1. For any integer n ≥ 2, there is a SyDS S with n nodes satisfying the fol-
lowing properties: (i) there is a pair of configurations C1 and C2 with H(C1,C2) = n
and MAXSEP (Π(C1), Π(C2)) = 1.

We now present a result that establishes the computational complexity of comput-
ing distance measures for predecessor configurations. The decision problem, which we
call Minimum Predecessor Separation (MPS), is the following: given a SyDS S, two
configurations C1 and C2, and a positive integer q, is MINSEP(Π(C1),Π(C2)) ≤ q?
Using the known result that the Predecessor Existence problem (i.e., given a SyDS S
and a configuration C, does C have a predecessor?) is NP-complete [4], it can be shown
that MPS is also NP-complete. This result is stated below.

Proposition 4. The MPS problem is NP-complete.

Proof: See [20].
Our proof of Proposition 4 relies on the fact that it NP-hard to decide whether a con-
figuration C has a predecessor. We now present a stronger NP-completeness result. We
show that the MPS problem isNP-complete even when we are given predecessors ofC1
and C2. We call the decision problem when this extra information is given Minimum
Predecessor Separation Given Predecessors (MPSGP). Note that since the predeces-
sors ofC1 andC2 are specified in a given MPSGP problem instance, it is unnecessary to
explicitly specifyC1 andC2. Thus, we formalize the MPSGP problem as follows: given
a SyDS S, and two configurations C′

1 and C′
2, is MINSEP(Π(σ(C′

1)),Π(σ(C′
2))) <

H(C′
1,C

′
2)? Our next result points out the NP-hardness of this problem.

Theorem 1. The MPSGP problem is NP-complete.

Proof: See [20].

Evolution of Similar Configurations 551

4 Experimental Results

Overview. The analytical results presented in Sect. 3 show that in general, SyDSs may
exhibit extreme behaviors with respect to evolution of configurations. So, in the exper-
imental phase, our goal was to understand the behavior for restricted classes of graphs
and local functions. We generated SyDSs whose underlying graphs are from special
classes of graphs and whose local functions are from restricted classes of Boolean
functions. We generated pairs of configurations that are h-close for small values of h
and examined the range of Hamming distances for their sets of predecessors. We used
the transformation from the predecessor problem to SAT discussed in Sect. 3.

SyDS Construction. We investigated several types of underlying graph structures
including Erdős–Rényi models, lattice/grid graphs, andWatts-Strogatz small-world net-
works [18]. All graphs were created using the NetworkX library [11]. The Erdős–Rényi
graphs were constructed such that the estimated mean degree of the graph was 16. Grid
graphs were constructed such that each node connected to exactly four other nodes.
Nodes in the Watts-Strogatz small world networks were initially wired to their eight
nearest neighbors; then each edge had a 50% chance to be rewired to a random node in
the graph.

To examine the similarity of configurations, we considered several local functions.
All SyDSs constructed and tested were uniform SyDSs5 with threshold functions rang-
ing from threshold 1 (equivalent to Boolean OR) to threshold 4. We chose threshold
functions as they are monotone Boolean functions. As shown in Sect. 3, SyDSs with
similar configurations and non-monotone local functions (such as exclusive OR) can
have predecessors with very high variability in their Hamming distances. With thresh-
old functions, we expected the Hamming distances of the predecessors of similar con-
figurations to show less extreme variance.

Procedure for Generating Configurations and Their Predecessors. We imple-
mented the transformation from the predecessor problem to SAT in Python. We limited
the number of predecessors generated for each configuration for the following reasons.
In order to compute the minimum, average, and maximum Hamming distances between
two sets S1 and S2 of predecessors, each predecessor in S1 must be compared with each
predecessor from S2. For example, with just 104 predecessors for each configuration,
the number of such comparisons is 108. In addition to time used for such a computa-
tion, attempting to exhaustively find and record every predecessor for larger graph sizes
could generate several terabytes of data.

We defined our “base” configuration as the one with all node states set to 1. To
generate a configuration with Hamming distance h from the base configuration, the
states of h random nodes were changed from 1 to 0. In total, 20 configurations with
different Hamming distances were generated. We generated up to 104 solutions for each
predecessor problem. We computed the necessary Hamming distance values between
the set of predecessors for the base configuration and the sets of predecessors of the 20
configurations derived from the base configuration. Our results provide an indication of
the minimum and maximum Hamming distances. In the plots shown in this section, the

5 A uniform SyDS is one in which all the nodes have the same local function.

552 J. D. Priest et al.

mean Hamming distance between the predecessors of the base configuration and those
of the 20 derived configurations are shown, with error bars representing the minimum
and maximum Hamming distances of the solution sets. For each threshold value, we fit
a linear trend line to the results.

Table 1. Table showing minimum, maximum and average Hamming distance values for grids and
Watts-Strogatz small world networks with 16 nodes

Threshold
Hamming Square Grid Watts-Strogatz Network

distance from Predecessors’ Hamming distance Predecessors’ Hamming distance
base Configuration Minimum Average Maximum Minimum Average Maximum

2

2 2 8.000 14 1 8.248 16
4 2 8.376 16 1 8.304 16
6 2 8.602 16 2 8.384 16

14 5 9.605 16 3 8.490 16

3

2 2 6.905 11 1 8.250 16
4 2 6.905 11 2 8.537 16
6 2 7.502 13 1 8.473 16

12 5 9.095 14 2 8.799 16
14 5 9.540 15 4 8.883 16

4

2 1 3.789 5 1 7.872 15
4 2 4.491 6 1 7.964 14

10 4 6.421 8 3 8.486 15
12 4 7.013 10 4 9.041 16
14 4 8.191 12 5 9.163 15

Fig. 2. Average Hamming distance values for grid and Watts-Strogatz networks

Hamming Distance Results for Small Networks. Table 1 shows the minimum, aver-
age, and maximum Hamming distances for 16 node grids and Watts-Strogatz networks.
For these small networks, we were able to generate all predecessors for each configu-
ration. The table shows the results for the configurations for which both the grid and
the Watts-Strogatz graph had predecessors. For both classes of graphs and all thresh-
old values, the minimum and average predecessor Hamming distance show a roughly
monotonic non-decreasing trend with increase in the Hamming distance of a config-
uration from the base configuration. The maximum Hamming distance also increased

Evolution of Similar Configurations 553

monotonically for the grid graphs; however, for the Watts-Strogatz networks started at
the highest value (16) and stayed very close to that value.

Hamming Distance Results for Large Networks. Our results for the 1024 node
square grid network and the 1024 node Watts-Strogatz small world network are shown
in Figs. 2a and 2b respectively. The average Hamming distances of predecessors for
these two graphs show similar trends. For both networks, the Hamming distance values
for threshold 1 were lower compared to the other threshold values; moreover, the aver-
age Hamming distance increased linearly with increase in the Hamming distance of a
configuration from the base configuration. Threshold 2 showed the highest values of
average Hamming distances for both networks; further, the average Hamming distance
also showed a stable trend as configuration Hamming distance was increased. For the
square grid graph, threshold 4 also showed a stable trend. In contrast, threshold 4 results
for theWatts-Strogatz graph show a linearly increasing trend similar to Threshold 1. For
both networks, the range of minimum and maximum Hamming distances was within 50
units of the average.

Fig. 3. Graph showing average Hamming dis-
tance values for a 256 node Erdős-Rényi net-
work

Average Hamming distance values for an
Erdős–Rényi graph with 256 nodes are
shown in Fig. 3. There, the minimum and
maximum Hamming distances in each
set were within 30 units of the average
and are not shown in Fig. 3 to avoid
clutter. The average Hamming distance
values for Threshold 1 once again show
a linearly increasing trend with increase
in the Hamming distance from the base
configuration. Threshold 4 also shows a
linearly increasing trend but with a slope
smaller than that of threshold 1. The val-
ues for Threshold 2 show a more or less
stable trend.

Number of Clauses Generated and SAT Solver Runtime. We conducted tests to
compare the performance of the two most recently updated SAT solvers, namely Clasp
[7] and Glucose [8]. For these experiments, graphs were generated in the same man-
ner as previously mentioned except that Erdős–Rényi graphs for this experiment were
constructed to have an average degree of 4. Assuming that each local function is the
1-threshold function, we computed the number of clauses generated for each predeces-
sor problem with a uniform threshold of 1 on a sample of 20 predecessor problems and
measured the average CPU time6 it took each SAT solver to produce one solution. The
results are shown in Table 2.

There was no significant difference between the Glucose and Clasp SAT solvers in
terms of CPU time taken to obtain a single solution to a SAT problem. The only notable
exception is that for the larger Watts-Strogatz graph, Clasp was faster than Glucose

6 Experiments were run on a single core of a 2.80 GHz Intel Core i5-8400 CPU and with 16 GB
of RAM.

554 J. D. Priest et al.

Table 2. Table showing the number of clauses in the SAT instance generated from a predecessor
problem and the CPU time to generate a solution for several networks

Network type 216 = 65,536 Nodes 218 = 262,144 Nodes

Number Clasp time Glucose time Number Clasp time Glucose time

of clauses (seconds) (seconds) of clauses (seconds) (seconds)

Square Grid 65806 0.059 0.054 262414 0.213 0.201

Watts-Strogatz 77614 0.552 0.772 299310 8.418 11.219

Erdős–Rényi 65686 0.096 0.129 262800 0.882 0.863

(8.418 s vs 11.219 s). The larger amount of time used for this graph could potentially
be due to the larger average degree. Clasp was eventually chosen for our experiments
because it can generate all the solutions for a given SAT instance.

5 Summary and Future Research Directions

We presented analytical and experimental results regarding the time evolution of simi-
lar configurations. We demonstrated the use of SAT solvers in studying these questions.
There are several directions for future work. We considered one method of generating
similar pairs of configurations starting from a base configuration. One may investigate
other ways of generating similar configurations. Also, instead of considering one step
predecessors, one may consider similarity issues for t-step predecessors for t ≥ 2. Such
generalized predecessor problems can also be reduced to SAT. Further, instead of Ham-
ming distance, one may consider other measures of similarity between configurations;
for example, two configurations may be considered similar if they have the same num-
ber of 1’s.

Acknowledgments. We thank the referees for their comments. This work is partially supported
by NSF Grants ACI-1443054 (DIBBS), IIS-1633028 (BIG DATA), CMMI-1745207 (EAGER),
OAC-1916805 (CINES), CCF-1918656 (Expeditions) and IIS-1908530.

References

1. Adiga, A., Kuhlman, C.J., Marathe, M.V., Mortveit, H.S., Ravi, S.S., Vullikanti, A.: Graphi-
cal dynamical systems and their applications to bio-social systems. Springer Int. J. Adv. Eng.
Sci. Appl. Math. 11(2), 153–171 (2019)

2. Ahmed, N.K., Alo, R.A., Amelink, C.T., et al.: net.science: a cyberinfrastructure for sus-
tained innovation in network science and engineering. In: Gateway (2020)

3. Barrett, C.L., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.:
Complexity of reachability problems for finite discrete dynamical systems. J. Comput. Syst.
Sci. 72(8), 1317–1345 (2006)

4. Barrett, C., Hunt III, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.,
Thakur, M.: Predecessor existence problems for finite discrete dynamical systems. Theoret.
Comput. Sci. 386(1), 3–37 (2007)

5. Chistikov, D., Lisowski, G., Paterson, M., Turrini, P.: Convergence of opinion diffusion is
PSPACE-complete. CoRR abs/1912.09864 (2019). http://arxiv.org/abs/1912.09864

6. Durand, B.: A random NP-complete problem for inversion of 2D cellular automata. Theoret.
Comput. Sci. 148(1), 19–32 (1995)

Evolution of Similar Configurations 555

7. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Clasp: a conflict-driven answer set
solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) Logic Programming and Nonmonotonic
Reasoning, pp. 260–265. Springer, Heidelberg (2007)

8. The Glucose SAT solver (2016). https://www.labri.fr/perso/lsimon/glucose/
9. Green, F.: NP-complete problems in Cellular Automata. Complex Syst. 1(3), 453–474 (1987)

10. Gutowitz, H.: Cellular Automata: Theory and Experiment. North Holland (1989)
11. Hagberg, A., Schult, D., Swart, P.: NetworkX reference (2020). https://networkx.github.io/

documentation/latest/ downloads/networkx reference.pdf
12. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Random Boolean network models

and the yeast transcriptional network. Proc. Natl. Acad. Sci. (PNAS) 100(25), 14796–14799
(2003)

13. Kauffman, S., Peterson, C., Samuelsson, B., Troein, C.: Genetic networks with canalyz-
ing Boolean rules are always stable. Proc. Natl. Acad. Sci. (PNAS) 101(49), 17102–17107
(2004)

14. Kawachi, A., Ogihara, M., Uchizawa, K.: Generalized predecessor existence problems for
Boolean finite dynamical systems. In: 42nd International Symposium onMathematical Foun-
dations of Computer Science (MFCS 2017), pp. 8:1–8:13 (2017)

15. Kosub, S., Homan, C.M.: Dichotomy results for fixed point counting in Boolean dynamical
systems. In: Proceedings of the 10th Italian Conference on Theoretical Computer Science,
pp. 163–174 (2007)

16. Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Computational aspects of fault
location and resilience problems for interdependent infrastructure networks. In: International
Conference on Complex Networks and their Applications, pp. 879–890. Springer, Heidelberg
(2018)

17. Mortveit, H., Reidys, C.: An Introduction to Sequential Dynamical Systems. Springer, New
York (2007)

18. Newman, M., Barabási, A.L., Watts, D.J.: The Structure and Dynamics of Networks. Prince-
ton University Press, Princeton (2006)

19. Ogihara, M., Uchizawa, K.: Computational complexity studies of synchronous Boolean finite
dynamical systems on directed graphs. Inf. Comput. 256, 226–236 (2017)

20. Priest, J.D., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Evolution of sim-
ilar configurations in graph dynamical systems. Technical Report for 2020, Network Sys-
tems Science and Advanced Computing (NSSAC) Division, Biocomplexity Institute and
Initiative, University of Virginia, Charlottesville, VA, USA. https://drive.google.com/file/d/
1Bc2idtlFnk7uidLnDEi6U3iggET0O0dh/view?usp=sharing

21. Rosenkrantz, D.J., Marathe, M.V., Ravi, S.S., Stearns, R.E.: Testing phase space proper-
ties of synchronous dynamical systems with nested canalyzing local functions. In: Proceed-
ings of the 17th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2018, Stockholm, Sweden, 10–15 July 2018, pp. 1585–1594 (2018)

22. Information regarding SAT solvers (2018). http://www.satlive.org
23. Tosic, P.T.: On the complexity of enumerating possible dynamics of sparsely connected

Boolean network automata with simple update rules. In: Automata 2010 - 16th International
Workshop on CA and DCS, pp. 125–144 (2010)

24. Tosic, P.T.: Phase transitions in possible dynamics of cellular and graph automata models
of sparsely interconnected multi-agent systems. In: Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, 8-12 May
2017, pp. 474–483 (2017)

25. Valente, T.W.: Social network thresholds in the diffusion of innovations. Soc. Netw. 18, 69–
89 (1996)

26. Wolfram, S.: Theory and Applications of Cellular Automata. World Scientific (1987)
27. Wooldridge, M.: An Introduction to Multi-Agent Systems. Wiley, West Sussex (2002)

