
ar
X

iv
:2

00
7.

12
76

2v
2

 [c
s.D

S]
 1

5
N

ov
 2

02
0

Sublinear-Time Algorithms for Computing & Embedding

Gap Edit Distance

Tomasz Kociumaka∗1,2 and Barna Saha†2

1Bar-Ilan University, Ramat Gan, Israel

2University of California, Berkeley, USA
kociumaka@berkeley.edu, barnas@berkeley.edu

Abstract

In this paper, we design new sublinear-time algorithms for solving the gap edit distance
problem and for embedding edit distance to Hamming distance. For the gap edit distance
problem, we give an Õ(n

k
+ k2)-time greedy algorithm that distinguishes between length-n

input strings with edit distance at most k and those with edit distance exceeding (3k + 5)k.
This is an improvement and a simplification upon the result of Goldenberg, Krauthgamer,
and Saha [FOCS 2019], where the k vs Θ(k2) gap edit distance problem is solved in Õ(n

k
+k3)

time. We further generalize our result to solve the k vs k′ gap edit distance problem in time

Õ(nk
k′

+ k2 + k2

k′

√
nk), strictly improving upon the previously known bound Õ(nk

k′
+ k3).

Finally, we show that if the input strings do not have long highly periodic substrings,
then already the k vs (1 + ε)k gap edit distance problem can be solved in sublinear time.
Specifically, if the strings contain no substring of length ℓ with period at most 2k, then the
running time we achieve is Õ(n

ε2k
+ k2ℓ).

We further give the first sublinear-time probabilistic embedding of edit distance to Ham-
ming distance. For any parameter p, our Õ(n

p
)-time procedure yields an embedding with

distortion O(kp), where k is the edit distance of the original strings. Specifically, the Ham-
ming distance of the resultant strings is between k−p+1

p+1
and O(k2) with good probability.

This generalizes the linear-time embedding of Chakraborty, Goldenberg, and Koucký [STOC
2016], where the resultant Hamming distance is between k

2
and O(k2). Our algorithm is

based on a random walk over samples, which we believe will find other applications in
sublinear-time algorithms.

1 Introduction

The edit distance, also known as the Levenshtein distance [29], is a basic measure of sequence
similarity. For two strings X and Y , the edit distance ED(X,Y) is defined as the minimum
number of character insertions, deletions and substitutions required to transform X into Y . A
natural dynamic programming computes the edit distance of two strings of total length n in
O(n2) time. While running a quadratic-time algorithm is prohibitive for many applications, the
Strong Exponential Time Hypothesis (SETH) [25] implies that there is no truly subquadratic-
time algorithm that computes edit distance exactly [6].

The last two decades have seen a surge of interest in designing fast approximation algo-
rithms for edit distance computation [2, 4, 5, 7, 8, 9, 11, 14, 16, 22, 26]. A breakthrough
result of Chakraborty, Das, Goldenberg, Koucký, and Saks provided the first constant-factor

∗Supported by ISF grants no. 1278/16 and 1926/19, by a BSF grant no. 2018364, and by an ERC grant
MPM under the EU’s Horizon 2020 Research and Innovation Programme (agreement no. 683064).

†Supported by NSF grants no. 1652303 (NSF CAREER), 1934846 (NSF HDR TRIPODS), and 1909046, and
by an Alfred P. Sloan fellowship award.

1

http://arxiv.org/abs/2007.12762v2
mailto:kociumaka@berkeley.edu
mailto:barnas@berkeley.edu

approximation of edit distance in truly subquadratic time [16]. Nearly a decade earlier, An-
doni, Krauthgamer, and Onak showed a polylogarithmic-factor approximation for edit distance
in near-linear time [2]. Recently, the result of [16] was improved to a constant-factor approxi-
mation in near-linear time: initially by Brakensiek and Rubinstein [14] as well as Koucký and
Saks [26] for the regime of near-linear edit distance, and then by Andoni and Nosatzki [4]
for the general case. Efficient algorithms for edit distance have also been developed in other
models, such as in the quantum and massively parallel framework [11], and when independent
preprocessing of each string is allowed [23].

In this paper, we focus on sublinear-time algorithms for edit distance, the study of which
was initiated by Batu, Ergün, Kilian, Magen, Rashkodnikova, Rubinfeld, and Sami [8], and then
continued in [3, 5, 22, 32]. Here, the goal is to distinguish, in time sublinear in n, whether the
edit distance is at most k or strictly above k′ for some k′ ≥ k. This is known as the (k vs k′)
gap edit distance problem. In computational biology, before an in-depth comparison of new
sequences is performed, a quick check to eliminate sequences that are not highly similar can
save a significant amount of resources [20]. In text corpora, a super-fast detection of plagiarism
upon arrival of a new document can save both time and space. In these applications, k is
relatively small and a sublinear-time algorithm with k′ relatively close to k could be very useful.

Results on Gap Edit Distance

The algorithm of Batu et al. [8] distinguishes between k = n1−Ω(1) and k′ = Ω(n) in time

O(max(k
2

n ,
√
k)). However, their algorithm crucially depends on k′ = Ω(n) and cannot distin-

guish between, say, k = n0.01 and k′ = n0.99. A more recent algorithm by Andoni and Onak [5]

resolves this issue and can distinguish between k and k′ ≥ k ·nΩ(1) in time O(n
2+o(1)k
(k′)2

). However,

if we want to distinguish between k and k′ = Θ(k2), then the algorithm of [5] achieves sublinear
time only when k = ω(n1/3). (Setting k′ = Θ(k2) yields a natural test case for the gap edit dis-
tance problem since the best that one can currently distinguish in linear time is k vs Θ(k2) [28].)
In a recent work, Goldenberg, Krauthgamer, and Saha [22] gave an algorithm solving quadratic

gap edit distance problem in Õ(nk +k3) time1, thereby providing a truly sublinear-time algorithm

as long as nΩ(1) ≤ k ≤ n1/3−Ω(1).
Bar-Yossef, Jayram, Krauthgamer, and Kumar [7] introduced the gap edit distance problem

and solved the quadratic gap edit distance problem for non-repetitive strings. Their algorithm
computes a constant-size sketch but still requires a linear-time pass over the data. This result
was later generalized to arbitrary sequences [17] via embedding edit distance into Hamming dis-
tance, but again in linear time. Nevertheless, already the algorithm of Landau and Vishkin [28]
computes the edit distance exactly in O(n + k2) time, and thus also solves the quadratic gap
edit distance problem in linear time. Given the prior works, Goldenberg et al. [22] raised a
question whether it is possible to solve the quadratic gap edit problem in sublinear time for
all k ≥ nΩ(1). In particular, the running times of the algorithms of Goldenberg et al. [22] and
Andoni and Onak [5] algorithms meet at k ≈ n1/3, when they become nearly-linear. In light
of the O(n + k2)-time exact algorithm [28], the presence of a k3 term in the time complexity
of [22] is undesirable, and it is natural to ask if the dependency can be reduced. In particular, if
the polynomial dependency on k can be reduced to k2, then, for k = O(n1/3), the contribution
of that term is negligible compared to n

k .

Quadratic Gap Edit Distance We give a simple greedy algorithm solving the quadratic
gap edit distance problem in Õ(nk + k2) time. This resolves an open question posed in [22] as to

whether a sublinear-time algorithm for the quadratic gap edit distance is possible for k = n1/3.
Our algorithm improves upon the main result of [22], also providing a conceptual simplification.

1The Õ notation hides factors polylogarithmic in the input size and, in case of Monte Carlo randomized
algorithms, in the inverse error probability.

2

k vs k′ Gap Edit Distance Combining the greedy approach with the structure of compu-
tations in [28], we can solve the k vs k′ gap edit distance problem in Õ(nkk′ + k2 + k2

k′

√
kn) time.

For all values of k′ and k, this is at least as fast as the Õ(nkk′ + k3) time bound of [22].

k vs (1 + ε)k Gap Edit Distance We can distinguish edit distance at most k and at least
(1 + ε)k in Õ(n

ε2k + ℓk2) time as long as there is no length-ℓ substring with period at most 2k.
Previously, sublinear-time algorithms for distinguishing k vs (1 + ε)k were only known for
the very special case of Ulam distance, where each character appears at most once in each
string [3, 32]. Note that not only we can allow character repetition, but we get an (1 + ε)-
approximation as long as the same repetitive structure does not continue for more than ℓ
consecutive positions or has shortest period larger than 2k. This is the case with most text
corpora and for biological sequences with interspersed repeats.

Embedding Edit Distance to Hamming Distance

Along with designing fast approximation algorithms for edit distance, a parallel line of works
investigated how edit distance can be embedded into other metric spaces, especially to the
Hamming space [1, 9, 17, 18, 34]. Indeed, such embedding results have led to new approximation
algorithms for edit distance (e.g., the embedding of [9, 34] applied in [5, 9]), as well as new
streaming algorithms and document exchange protocols (e.g., the embedding of [17] applied
in [10, 17]). In particular, Chakraborty, Goldenberg, and Koucký [17] provided a probabilistic
embedding of edit distance to Hamming distance with linear distortion. Their algorithm runs in
linear time, and if the edit distance between two input sequences is k, then the Hamming distance
between the resultant sequences is between k

2 and O(k2) with good probability. The embedding
is based on performing an interesting one-dimensional random walk which had also been used
previously to design fast approximation algorithms for a more general language edit distance

problem [35]. So far, we are not aware of any sublinear-time metric embedding algorithm from
edit distance to Hamming distance. In this paper, we design one such algorithm.

Random Walk over Samples We show that it is possible to perform a random walk similar
to [35, 17] over a suitably crafted sequence of samples. This leads to the first sublinear-time
algorithm for embedding edit distance to Hamming distance: Given any parameter p = Ω(log n),
our embedding algorithm processes any length-n string in Õ(np) time and guarantees that (with

good probability) the Hamming distance of the resultant strings is between k−p+1
p+1 and O(k2),

where k is the edit distance of the input strings. That is, we maintain the same expansion rate
as [17] and allow additional contraction by a factor roughly p. As the algorithm of [17] has been
very influential (see its applications in [10, 13, 24, 36]), we believe the technique of random walk
over samples will also find other usages in designing sublinear-time and streaming algorithms.

Technical Overview

The classic Landau–Vishkin algorithm [28] tests whether ED(X,Y) ≤ k in O(n+k2) time, where
n = |X| + |Y |. The algorithm fills a dynamic-programming table with cells di,j for i ∈ [0 . . k]
and j ∈ [−k . . k],2 aiming at di,j = max{x : ED(X[0 . . x), Y [0 . . x + j)) ≤ i}. In terms of the
table of all distances ED(X[0 . . x), Y [0 . . y)), each value di,j can be interpreted as (the row of)
the farthest cell on the jth diagonal with value i or less. After preprocessing X and Y in linear
time, the cells di,j can be filled in O(1) time each, which results in O(n+ k2) time in total.

Our algorithm for the quadratic gap edit distance problem follows the basic framework
of [28]. However, instead of computing Θ(k2) values di,j, it only computes Θ(k) values di with
i ∈ [0 . . k]. Here, di can be interpreted as a relaxed version of maxkj=−k di,j, allowing for a

2For ℓ, r ∈ Z, we denote [ℓ . . r) = {j ∈ Z : ℓ ≤ j < r} and [ℓ . . r] = {j ∈ Z : ℓ ≤ j ≤ r}.

3

factor-O(k) underestimation of the number of edits i. Now, it suffices to test whether dk = |X|,
because dk = |X| holds if ED(X,Y) ≤ k and, conversely, ED(X,Y) = O(k2) holds if dk = |X|.
In addition to uniform sampling at a rate of Õ(1

k+1), identifying each of these O(k) values di

requires reading Õ(k) extra characters. This yields a total running time of Õ(nk + k2).
Our algorithm not only improves upon the main result of Goldenberg et al. [22], but also

provides a conceptual simplification. Indeed, the algorithm of [22] also utilizes the high-level
structure of [28], but it identifies all Θ(k2) values di,j (relaxed to allow for factor-O(k) under-
estimations), paying extra Θ̃(k) time per each value. In order to do so, the algorithm follows a
more complex row-by-row approach of an online version [27] of the Landau–Vishkin algorithm.

For the general k vs Θ(k′) gap edit distance problem, greedily computing the values di for
i ∈ [0 . . k] is sufficient only for k′ = Ω(k2), when the time complexity becomes Õ(nkk′ + k2)

if we simply decrease the sampling rate to Õ(k
k′). Otherwise, each shift between diagonals

j ∈ [−k . . k], which happens for each i ∈ [1 . . k] as we determine di based on di−1, involves up
to 2k insertions or deletions, whereas to distinguish edit distance k and Θ(k′), we would like to
approximate the number of edits within a factor O(k

′

k). In order to do so, we decompose the

entire set of 2k+1 diagonals into Θ(k
2

k′) groups of Θ(k
′

k) consecutive diagonals. Within each of
these wide diagonals, we compute the (relaxed) maxima of di,j following our greedy algorithm.

This approximates the true maxima up to a factor-O(k
′

k) underestimation of the number of

edits. Computing each of the O(k) values for each wide diagonal requires reading Õ(k
′

k) ex-

tra characters. Hence, the running time is Õ(nkk′ + k′) per wide diagonal and Õ(nk3

(k′)2
+ k2) in

total (across the Θ(k
2

k′) wide diagonals). This bound is incomparable to Õ(nkk′ + k3) of [22]:
While we pay less on the second term, the uniform sampling rate increases. In order to de-
crease the first term, instead of sampling over each wide diagonal independently, we provide
a synchronization mechanism so that the global uniform sampling rate remains Õ(k

k′). This

leads to an implementation with running time Õ(nkk′ + k4

k′), which already improves upon [22].
However, synchronizing only over appropriate smaller groups of wide diagonals, we can achieve
the running time of Õ(nkk′ + k2 + k2

k′

√
kn), which subsumes both Õ(nk3

(k′)2 + k2) and Õ(nkk′ +
k4

k′).

Our algorithm for the k vs (1+ ε)k gap edit distance for strings without length-ℓ substrings
with period at most 2k follows a very different approach, inspired by the existing solutions
for estimating the Ulam distance [3, 32]. This method consists of three ingredients. First, we
construct decompositions X = X0 · · ·Xm and Y = Y0 · · · Ym into phrases of length O(ℓk) such
that, if ED(X,Y) ≤ k, then

∑m
i=0 ED(Xi, Yi) ≤ ED(X,Y) holds with good probability (note

that ED(X,Y) ≤ ∑m
i=0 ED(Xi, Yi) is always true). The second ingredient estimates ED(Xi, Yi)

for any given i. This subroutine is then applied for a random sample of indices i by the third
ingredient, which distinguishes between

∑m
i=0 ED(Xi, Yi) ≤ k and

∑m
i=0 ED(Xi, Yi) > (1 + ε)k

relying on the Chernoff bound. The assumption thatX does not contain long periodic substrings
is needed only in the first step: it lets us uniquely determine the beginning of the phrase Yi

assuming that the initial ℓ positions of the phrase Xi are aligned without mismatches in the
optimal edit distance alignment (which is true with good probability for a random decomposition
of X). We did not optimize the Õ(ℓk2) term in our running time Õ(n

ε2k
+ ℓk2) to keep our

implementation of the other two ingredients much simpler than their counterparts in [3, 32].
A simple random deletion process, introduced in [35], solves the quadratic gap edit distance

problem in linear time. The algorithm simultaneously scans X and Y from left to right. If the
two currently processed characters X[x] and Y [y] match, they are aligned, and the algorithm
proceeds to X[x + 1] and Y [y + 1]. Otherwise, one of the characters is deleted uniformly at
random (that is, the algorithm proceeds to X[x] and Y [y + 1] or to X[x + 1] and Y [y]). This
process can be interpreted as a one-dimensional random walk, and the hitting time of the
random walk provides the necessary upper bound on the edit distance. In order to conduct a
similar process in sublinear query complexity, we compare X[x] and Y [y] with probability Õ(1p)
only; otherwise, we simply align X[x] and Y [y]. We show that performing this random walk

4

over samples is sufficient for the k vs Θ(k2p) gap edit distance problem. Finally, we observe
that this random walk over samples can be implemented in Õ(np) time by batching iterations.

In order to derive an embedding, we modify the random deletion process so that, after
learning that X[x] = Y [y], the algorithm uniformly at random chooses to stay at X[x] and Y [y]
or move to X[x + 1] and Y [y + 1]. This has no impact on the final outcome, but the decision
whether the algorithm stays at X[x] or moves to X[x + 1] can now be made independently of
Y . This allows for an embedding whose shared randomness consists in the set S ⊆ [1 . . 3n] of
iterations i when X[x] is accessed and, for each i ∈ S, a random function hi : Σ → {0, 1}. For
each iteration i ∈ S, the embedding outputs X[x] and proceeds to X[x + hi(X[x])]. If Y is
processed using the same shared randomness, the two output strings are, with good probability,
at Hamming distance between k−p+1

p+1 and O(k2).

Organization

After introducing the main notations in Section 2, we describe and analyze our algorithm for
the quadratic gap edit distance problem in Section 3. In Section 4, we solve the more general
k vs k′ gap edit distance problem for k′ = O(k2). The k vs (1 + ε)k gap edit distance problem
for strings without long periodic substrings is addressed in Section 5. The random walk over
samples process is presented in Section 6. Finally, the embedding result is provided in Section 7.

Further Remarks

A recent independent work [12] uses a greedy algorithm similar to ours and achieves a running
time of Õ(n√

k
) for the quadratic gap edit distance problem. This is in contrast to our bound of

Õ(nk + k2), which is superior for k ≤ n2/5. At the same time, for k ≥ n2/5+o(1), the algorithm

of Andoni and Onak [5] has a better running time O
(

n2+o(1)

k3

)

. We also remark here that

there exists an even simpler algorithm (by now folklore) that has query complexity Õ(n√
k
).

The algorithm samples both sequences X and Y independently with probability Θ̃(1√
k
) so

that P[X[x] and Y [y] are sampled] = Θ̃(1k) for all x ∈ [0 . . |X|) and y ∈ [0 . . |Y |). Then, by
running the Landau–Vishkin algorithm [28] suitably over the sampled sequences, one can solve
the quadratic gap edit distance problem. Still, it remains open to tightly characterize the time
and query complexity of the quadratic gap edit distance problem.

2 Preliminaries

A string X is a finite sequence of characters from an alphabet Σ. The length of X is denoted by
|X| and, for i ∈ [0 . . |X|), the ith character of X is denoted by X[i]. A string Y is a substring

of a string X if Y = X[ℓ]X[ℓ + 1] · · ·X[r − 1] for some 0 ≤ ℓ ≤ r ≤ |X|. We then say that Y
occurs in X at position ℓ. The set of positions where Y occurs in X is denoted Occ(Y,X). The
occurrence of Y at position ℓ in X is denoted by X[ℓ . . r) or X[ℓ . . r− 1]. Such an occurrence is
a fragment of X, and it can be represented by (a pointer to) X and a pair of indices ℓ ≤ r. Two
fragments (perhaps of different strings) match if they are occurrences of the same substring. A
fragment X[ℓ . . r) is a prefix of X if ℓ = 0 and a suffix of X if r = |X|.

A positive integer p is a period of a string X if X[i] = X[i+p] holds for each i ∈ [0 . . |X|−p).
We define per(X) to be the smallest period of X. The following result relates periods to
occurrences:

Fact 2.1 (Breslaurer and Galil [15, Lemma 3.2]). If strings P, T satisfy |T | ≤ 3
2 |P |, then

Occ(P, T) forms an arithmetic progression with difference per(P).

5

Hamming distance and edit distance The Hamming distance between two strings X,Y of
the same length is defined as the number of mismatches. Formally, HD(X,Y) = |{i ∈ [0 . . |X|) :
X[i] 6= Y [i]}|. The edit distance between two strings X and Y is denoted ED(X,Y).

LCE queries Let X,Y be strings and let k be a non-negative integer. For x ∈ [0 . . |X|] and
y ∈ [0 . . |Y |], we define LCEX,Y

k (x, y) as the largest integer ℓ such that HD(X[x . . x+ℓ), Y [y . . y+
ℓ)) ≤ k (in particular, ℓ ≤ min(|X| − x, |Y | − y) so that X[x . . x+ ℓ) and Y [y . . y + ℓ) are well-
defined). We also set LCEX,Y

k (x, y) = 0 if x /∈ [0 . . |X|] or y /∈ [0 . . |Y |].
Our algorithms rely on two notions of approximate LCE queries. The first variant is sufficient

for distinguishing between ED(X,Y) ≤ k and ED(X,Y) > k(3k+5) in Õ(n
k+1 + k2) time, while

a more general algorithm distinguishing between ED(X,Y) ≤ k and ED(X,Y) > αk is based
on the more subtle second variant.

Definition 2.2. Let X,Y be strings and let k ≥ 0 be an integer. For integers x, y, we set
LCEX,Y

≤k (x, y) as any value satisfying LCEX,Y
0 (x, y) ≤ LCEX,Y

≤k (x, y) ≤ LCEX,Y
k (x, y).

Definition 2.3. Let X,Y be strings and let r > 0 be a real parameter. For integers x, y, we
set LCEX,Y

r (x, y) as any random variable satisfying the following conditions:

• LCEX,Y
r (x, y) ≥ LCEX,Y

0 (x, y),

• P
[

LCEX,Y
r (x, y) > LCEX,Y

k (x, y)
]

≤ exp(−k+1
r) for every integer k ≥ 0.

Note that LCEX,Y
r (x, y) for r = k+1

lnN satisfies the conditions on LCEX,Y
≤k (x, y) with probabil-

ity 1− 1
N . Thus, LCEr queries with sufficiently small r = Θ̃(k + 1) yield LCE≤k queries with

high probability.

3 Quadratic Gap Edit Distance

The classic Landau–Vishkin exact algorithm [28] for testing if ED(X,Y) ≤ k is given below as
Algorithm 1. The key property of this algorithm is that di,j = max{x : ED(X[0 . . x), Y [0 . . x+

j)) ≤ i} holds for each i ∈ [0 . . k] and j ∈ [−k . . k]. Since LCEX,Y
0 queries can be answered in

O(1) time after linear-time preprocessing, the running time is O(|X|+ k2).

Algorithm 1: The Landau–Vishkin algorithm [28]

1 foreach i ∈ [0 . . k] and j ∈ [−k − 1 . . k + 1] do d′i,j := di,j := −∞;

2 d′0,0 := 0;

3 for i := 0 to k do

4 for j := −k to k do

5 if d′i,j 6= −∞ then di,j := d′i,j + LCEX,Y
0 (d′i,j , d

′
i,j + j) ;

6 for j := −k to k do d′i+1,j := min(|X|,max(di,j−1, di,j + 1, di,j+1 + 1)) ;

7 if ||X| − |Y || ≤ k and dk,|Y |−|X| = |X| then return YES ;

8 else return NO ;

The main idea behind the algorithm of Goldenberg et al. [22] is that if LCE0 queries are
replaced with LCE≤k queries, then the algorithm is still guaranteed to return YES if ED(X,Y) ≤
k and NO if ED(X,Y) > k(k + 2). The cost of their algorithm is Õ(1

k+1 |X|) plus Õ(k) per

LCE≤k query, which yields Õ(1
k+1 |X| + k3) in total. Nevertheless, their implementation is

tailored to the specific structure of LCE queries in Algorithm 1, and it requires these queries to
be asked and answered in a certain order, which makes them use an online variant [27] of the
Landau–Vishkin algorithm.

6

An auxiliary result of this paper is that LCEX,Y
≤k (x, y) queries with |x − y| ≤ k can be

answered in Õ(k) time after Õ(1
k+1 |X|) preprocessing, which immediately yields a more modular

implementation of the algorithm of [22]. In fact, we show that Õ(k) time is sufficient to answer
all queries LCEX,Y

≤k (x, y) with fixed x and arbitrary y ∈ [x− k . . x+ k].
Unfortunately, this does not give a direct speed-up, because the values d′i,j in Algorithm 1

might all be different. However, given that relaxing LCE0 queries to LCE≤k queries yields a

cost of up to k mismatches for every LCEX,Y
≤k (x, y) query, the algorithm may as well pay O(k)

further edits (insertions or deletions) to change the shift j = y − x arbitrarily. As a result, we
do not need to consider each shift j separately. This results in a much simpler Algorithm 2.

Algorithm 2: Simple algorithm

1 d′0 := 0;
2 for i := 0 to k do

3 di := d′i +maxkδ=−k LCE
X,Y
≤k (d′i, d

′
i + δ);

4 d′i+1 := min(|X|, di + 1);

5 if ||X| − |Y || ≤ k and dk = |X| then return YES ;
6 else return NO ;

Lemma 3.1. Algorithm 2 returns YES if ED(X,Y) ≤ k and NO if ED(X,Y) > (3k + 5)k.

Proof. We prove two claims on the values d′i and di.

Claim 3.2. Each i ∈ [0 . . k] has the following properties:

(a) ED(X[0 . . d′i), Y [0 . . y)) ≤ (3k + 1)i + k for every y ∈ [d′i − k . . d′i + k] ∩ [0 . . |Y |];

(b) ED(X[0 . . di), Y [0 . . y)) ≤ (3k + 1)i + 4k for every y ∈ [di − k . . di + k] ∩ [0 . . |Y |].

Proof. We proceed by induction on i. Our base case is Property (a) for i = 0. Since d′0 = 0, we
have ED(X[0 . . d′0), Y [0 . . y)) = y ≤ k for y ∈ [d′0 − k . . d′0 + k] ∩ [0 . . |Y |].

Next, we shall prove that Property (b) holds for i ≥ 0 assuming that Property (a) is
true for i. By definition of LCE≤k queries, we have di ≤ d′i + LCEX,Y

k (d′i, y
′) for some position

y′ ∈ [d′i−k . . d′i+k]∩ [0 . . |Y |], and thus HD(X[d′i . . di), Y [y′ . . y′+di−d′i)) ≤ k. The assumption
yields ED(X[0 . . d′i), Y [0 . . y′)) ≤ (3k + 1)i + k, so we have ED(X[0 . . di), Y [0 . . y′ + di − d′i)) ≤
(3k + 1)i + 2k. Due to |y′ + di − d′i − y| ≤ 2k, we conclude that ED(X[0 . . di), Y [0 . . y)) ≤
(3k + 1)i+ 4k.

Finally, we shall prove that Property (a) holds for i > 0 assuming that Property (b) is
true for i − 1. Since d′i ≤ di−1 + 1, the assumption yields ED(X[0 . . d′i − 1), Y [0 . . y − 1)) ≤
(3k + 1)(i− 1)+4k, and thus ED(X[0 . . d′i), Y [0 . . y)) ≤ 1+(3k+1)(i−1)+4k = (3k+1)i+k.

Thus, ED(X,Y)≤(3k + 5)k if the algorithm returns YES.

Claim 3.3. If ED(X[0 . . x), Y [0 . . y)) = i ∈ [0 . . k] for x ∈ [0 . . |X|] and y ∈ [0 . . |Y |], then

x ≤ di.

Proof. We proceed by induction on i. Both in the base case of i = 0 and the inductive
step of i > 0, we shall prove that x ≤ d′i + maxkδ=−k LCE

X,Y
0 (d′i, d

′
i + δ). Since di ≥ d′i +

maxkδ=−k LCE
X,Y
0 (d′i, d

′
i + j) holds by definition of LCE≤k queries, this implies the claim.

In the base case of i = 0, we have X[0 . . x) = Y [0 . . y) and d′0 = 0. Consequently, x ≤
LCEX,Y

0 (0, 0) ≤ d′0 +maxkδ=−k LCE
X,Y
0 (d′0, d

′
0 + δ).

For i > 0, we consider an optimal alignment between X[0 . . x) and Y [0 . . y), and we
distinguish its maximum prefix with i − 1 edits. This yields positions x′, x′′ ∈ [0 . . x] and

7

y′, y′′ ∈ [0 . . y] with x′′ − x′ ∈ {0, 1} and y′′ − y′ ∈ {0, 1} such that ED(X[0 . . x′), Y [0 . . y′)) =
i − 1 and X[x′′ . . x) = Y [y′′ . . y). The inductive assumption yields x′ ≤ di−1, which implies
x′′ ≤ min(x, di−1 + 1) ≤ d′i. Due to X[x′′ . . x) = Y [y′′ . . y), we have LCEX,Y

0 (x′′, y′′) ≥ x − x′′.
By x′′ ≤ d′i, this implies LCEX,Y

0 (d′i, d
′
i + y − x) ≥ x − d′i. Since |y − x| ≤ k, we conclude that

x = d′i + (x− d′i) ≤ d′i + LCEX,Y
0 (d′i, d

′
i + y − x) ≤ d′i +maxkδ=−k LCE

X,Y
0 (d′i, d

′
i + δ).

Hence, the algorithm returns YES if ED(X,Y) ≤ k.

A data structure computing LCEX,Y
≤k (x, y) for a given x and all y ∈ [x − k . . x + k] is

complicated, but a simpler result stated below and proved in Section 3.1 suffices here.

Proposition 3.4. There exists an algorithm that, given strings X and Y , an integer k ≥ 0, an
index i, and a range of indices J , computes ℓ := maxj∈J LCE

X,Y
≤k (i, j). With high probability,

the algorithm is correct and its running time is Õ(ℓ
k+1 + |J |).

Theorem 3.5. There exists an algorithm that, given strings X and Y , and an integer k ≥ 0,
returns YES if ED(X,Y) ≤ k, and NO if ED(X,Y) > (3k + 5)k. With high probability, the

algorithm is correct and its running time is Õ(1
k+1 |X|+ k2).

Proof. The pseudocode is given in Algorithm 2. Queries LCE≤k are implemented using Propo-
sition 3.4. With high probability, all the queries are answered correctly. Conditioned on this
assumption, Lemma 3.1 yields that Algorithm 2 is correct with high probability. It remains
to analyze the running time. The cost of instructions other than LCE≤k queries is O(k). By
Proposition 3.4, the cost of computing di is Õ(1

k+1(di − d′i) + k). Due to 0 ≤ d′0 ≤ d0 ≤ d′1 ≤
d1 ≤ · · · ≤ d′k ≤ dk ≤ |X|, this sums up to Õ(1

k+1 |X|+ k2) across all queries.

3.1 Proof of Proposition 3.4

Our implementation of maxj∈J LCE
X,Y
≤k (i, j) queries heavily borrows from [22]. However, our

problem is defined in a more abstract way and we impose stricter conditions on the output value,
so we cannot use tools from [22] as black boxes; thus, we opt for a self-contained presentation.

On the highest level, in Lemma 3.7, we develop an oracle that, additionally given a threshold
ℓ, must return YES if maxj∈J LCE

X,Y
0 (i, j) ≥ ℓ, must return NO if maxj∈J LCE

X,Y
k (i, j) < ℓ,

and may return an arbitrary answer otherwise. The final algorithm behind Proposition 3.4 is
then an exponential search on top of the oracle. This way, we effectively switch to the decision
version of the problem, which is conceptually and technically easier to handle.

The oracle can be specified as follows: it must return YES if X[i . . i+ ℓ) = Y [j . . j + ℓ) for
some j ∈ J , and NO if HD(X[i . . i + ℓ), Y [j . . j + ℓ)) > k for every j ∈ J . Now, if ℓ ≤ 3|J |,
then we can afford running a classic exact pattern matching algorithm [31] to verify the YES-
condition. Otherwise, we use the same method to filter candidate positions j ∈ J satisfying
X[i . . i + 3|J |) = Y [j . . j + 3|J |). If there is just one candidate position j, we can continue
checking it by comparing X[i + s] and Y [j + s] at shifts s sampled uniformly at random with
rate Θ̃(1

k+1).
If there are many candidate positions, Fact 2.1 implies that X[i . . i+ 3|J |) is periodic with

period p ≤ |J | and that the candidate positions form an arithmetic progression with difference
p. We then check whether p remains a period of X[i . . i + ℓ), and of Y [j . . j + ℓ) for the
leftmost candidate j. Even if either check misses k

2 mismatches with respect to the period, two
positive answers guarantee HD(X[i . . i+ ℓ), Y [j . . j + ℓ)) ≤ k, which lets us return YES. Thus,
the periodicity check (Lemma 3.6) can be implemented by testing individual positions sampled
with rate Θ̃(1

k+1).
A negative answer of the periodicity check is witnessed by a single mismatch with respect to

the period. However, further steps of the oracle require richer structure as a leverage. Thus, we
augment the periodicity check so that it returns a break B with |B| = 2|J | and per(B) > |J |.

8

Algorithm 3: FindBreak(T , q, k)

1 p := per(T [0 . . 2q));
2 if p > q then return T [0 . . 2q);

3 Let S ⊆ [0 . . |T |) with elements sampled independently at sufficiently large rate Θ̃(1
k+1);

4 foreach s ∈ S do

5 if T [s] 6= T [s mod p] then
6 b := 2q; e := s;
7 while b < e do

8 m := ⌈ b+e
2 ⌉;

9 for j := m− 2q to m− 1 do

10 if T [j] 6= T [j mod p] then e := j;
11 if e ≥ m then b := m;

12 return T (b− 2q . . b]

13 return ⊥

For this, we utilize a binary-search-based procedure, which is very similar to finding “period
transitions” in [22]. Whenever X[i . . i + ℓ) = Y [j . . j + ℓ), the break B (contained in either
string) must match exactly the corresponding fragment in the other string. Since the break is
short, we can afford checking this match for every j ∈ J (using exact pattern matching again),
and since it is not periodic, at most one candidate position j ∈ J passes this test. This brings
us back to the case with at most one candidate position.

Compared to the outline above, the algorithm described in Lemma 3.7 handles the two main
cases (many candidate positions vs one candidate position) in a uniform way, which simplifies
formal analysis and implementation details.

We start with the procedure that certifies (approximate) periodicity or finds a break.

Lemma 3.6. There exists an algorithm that, given a string T an integer k ≥ 0, and a positive

integer q ≤ 1
2 |T |, returns either

• a length-2q break B in T such that per(B) > q, or

• ⊥, certifying that p := per(T [0 . . 2q)) ≤ q and |{i ∈ [0 . . |T |) : T [i] 6= T [i mod p]}| ≤ k.

With high probability, the algorithm is correct and costs Õ(1
k+1 |T |+ q) time.

Proof. A procedure FindBreak(T , q, k) implementing Lemma 3.6 is given as Algorithm 3.
First, the algorithm computes the shortest period p = per(T [0 . . 2q)). If p > q, then the

algorithm returns B := T [0 . . 2q), which is a valid break due to per(T) = p > q.
Otherwise, the algorithm tries to check if ⊥ can be returned. If we say that a position

i ∈ [0 . . |T |) is compatible when T [i] = T [i mod p], then ⊥ can be returned provided that
there are at most k incompatible positions. The algorithm samples a subset S ⊆ [0 . . |T |)
with a sufficiently large rate Õ(1

k+1). Such sampling rate guarantees that if there are at least
k + 1 incompatible positions, then with high probability at least one of them belongs to S.
Consequently, the algorithm checks whether all positions s ∈ S are compatible (Line 5), and, if
so, returns ⊥ (Line 13); this answer is correct with high probability.

In the remaining case, the algorithm constructs a break B based on an incompatible position
s (Lines 6–12). The algorithm performs a binary search maintaining positions b, e with 2q ≤
b ≤ e < |T | such that e is incompatible and positions in [b − 2q . . b) are all compatible. The
initial choice of b := 2q and e := s satisfies the invariant because positions in [0 . . 2q) are all
compatible due to p = per(T [0 . . 2q)). While b < e, the algorithm chooses m := ⌈ b+e

2 ⌉. If
[m− 2q . .m) contains an incompatible position j, then j ≥ b (because j ≥ m− 2q ≥ b− 2q and

9

positions in [b − 2q . . b) are all compatible), so the algorithm maintains the invariant setting
e := j for such a position j (Line 10). Otherwise, positions in [m− 2q . .m) are all compatible.
Due to m ≤ e, this means that the algorithm maintains the invariant setting b := m (Line 11).
Since e− b decreases by a factor of at least two in each iteration, after O(log |T |) iterations, the
algorithm obtains b = e. Then, the algorithm returns B := T (b− 2q . . b].

We shall prove that this is a valid break. For a proof by contradiction, suppose that p′ :=
per(B) ≤ q. Then, p′ is also period of T (b − 2q . . b). Moreover, the invariant guarantees
that positions in (b − 2q . . b) are all compatible, so also p is a period of T (b − 2q . . b). Since
p + p′ − 1 ≤ 2q − 1, the periodicity lemma [21] implies that also gcd(p, p′) is a period of
X(b− 2q . . b). Consequently, T [b] = T [b− p′] = T [b− p] = T [(b− p) mod p] = T [b mod p], i.e., b
is compatible. However, the invariant assures that b is incompatible. This contradiction proves
that per(B) > q.

It remains to analyze the running time. Determining per(T [0 . . 2q)) in Line 1 costs O(q)
time using a classic algorithm [31]. The number of sampled positions is |S| = Õ(1

k+1 |T |) with
high probability, so the test in Line 5 costs Õ(1

k+1 |T |) time in total. Binary search (the loop

in Line 7) has O(log |T |) = Õ(1) iterations, each implemented in O(q) time. The total running
time is Õ(1

k+1 |T |+ q).

Next comes the oracle testing maxj∈J LCE
P,T
≤k (i, j) ≤ ℓ.

Lemma 3.7. There exists an algorithm that, given strings X and Y , an integer k ≥ 0, an

integer ℓ > 0, an integer i ∈ [0 . . |X|− ℓ], and a non-empty range J ⊆ [0 . . |Y |− ℓ], returns YES
if ∃j∈J : X[i . . i + ℓ) = Y [j . . j + ℓ), and NO if ∀j∈J : HD(X[i . . i + ℓ), Y [j . . j + ℓ)) > k. With

high probability, the algorithm is correct and its running time is Õ(ℓ
k+1 + |J |).

Proof. A procedure Oracle(P , T , i, J , k, ℓ) implementing Lemma 3.7 is given as Algorithm 4.

Algorithm If ℓ < 3|J |, then the algorithm simply returns the answer based on whether
X[i . . i + ℓ) = Y [j . . j + ℓ) holds for some j ∈ J . Otherwise, the algorithm computes a set
C ⊆ J of candidate positions j satisfying X[i . . i + 3|J |) = Y [j . . j + 3|J |), and returns NO if
C = ∅. In the remaining case, the algorithm applies the procedure FindBreak of Lemma 3.6 to
X[i . . i + ℓ) and Y [maxC . .minC + ℓ), both with q = |J | and threshold ⌊k2⌋. If both strings
are certified to have an approximate period, then the algorithm returns YES. Otherwise, the
algorithm further filters C using the breaks returned by FindBreak: If a break BX = X[x . . x′) is
found in X[i . . i+ ℓ), then C is restricted to positions j satisfying BX = Y [j− i+x . . j− i+x′).
Similarly, if a break BY = Y [y . . y′) is found in Y [maxC . .minC + ℓ), then C is restricted to
positions j satisfying BY = X[i − j + y . . i − j + y′). If this filtering leaves C empty, then the
algorithm returns NO. Otherwise, the algorithm samples a subset S ⊆ [0 . . ℓ) with sufficiently
large rate Õ(1

k+1), and returns the answer depending on whether X[i+ s] = Y [minC+ s] holds
for all s ∈ S.

Correctness Denote M = {j ∈ J : X[i . . i + ℓ) = Y [j . . j + ℓ)}. Recall that the algorithm
must return YES if M 6= ∅, and it may return NO whenever M = ∅.

If |J | < 3ℓ, then the algorithm verifies M 6= ∅, so the answers are correct. Thus, we
henceforth assume |J | ≥ 3ℓ.

Let us argue that M ⊆ C ⊆ J holds throughout the execution: indeed, every position j ∈ M
satisfies X[i . . i+3|J |) = Y [j . . j+3|J |), as well as X[x . . x′) = Y [j − i+ x . . j−i+x′) for every
fragment X[x . . x′) contained in X[i . . i+ ℓ), and Y [y . . y′) = X[i− j + y . . i− j + y′) for every
fragment Y [y . . y′) contained in Y [j . . j+ ℓ). Moreover, the strings in the two calls to FindBreak
are chosen so that the breaks, if any, are contained in X[i . . i+ ℓ), and in Y [j . . j + ℓ) for every
j ∈ C, respectively. Consequently, the NO answers returned in Lines 4 and 10 are correct.

10

Algorithm 4: Oracle(X, Y , i, J , k, ℓ)

1 if ℓ < 3|J | then
2 return ∃j∈J : X[i . . i+ ℓ) = Y [j . . j + ℓ);
3 C := {j ∈ J : X[i . . i+ 3|J |) = Y [j . . j + 3|J |)};
4 if C = ∅ then return NO;

5 BX := FindBreak(X[i . . i+ ℓ), |J |, ⌊k2⌋);
6 BY := FindBreak(Y [maxC . .minC+ℓ), |J |, ⌊k2⌋);
7 if ⊥ = BX and ⊥ = BY then return YES;
8 if ⊥ 6= BX =: X[x . . x′) then C := {j ∈ C : BX = Y [j − i+ x . . j − i+ x′)};
9 if ⊥ 6= BY =: Y [y . . y) then C := {j ∈ C : BY = X[i− j + y . . i− j + y′)};

10 if C = ∅ then return NO;

11 Let S ⊆ [0 . . ℓ) with elements sampled independently at sufficiently large rate Θ̃(1
k+1);

12 foreach s ∈ S do

13 if X[i+ s] 6= Y [minC + s] then return NO;
14 return YES;

Next, note that the calls to FindBreak satisfy the requirements of Lemma 3.6. In particular,
the two strings are of length at least 3|J | and 2|J |, respectively. To justify the YES answer
in Line 7, we shall prove that HD(X[i . . i + ℓ), Y [minC . .minC + ℓ)) ≤ k holds with high
probability in case both calls return ⊥. Denote p = per(X[i . . i+2|J |]), let P = X[i . . i+ p) be
the corresponding string period, and let P∞ be the concatenation of infinitely many copies of P .
The outcome ⊥ of the first call to FindBreak certifies that X[i . . i+ ℓ) is with high probability at
Hamming distance at most k

2 from a prefix of P∞. Due to X[i . . i+2|J |) = Y [maxC . .maxC+
2|J |), the outcome ⊥ of the second call to FindBreak certifies that also Y [maxC . .minC + ℓ)
is with high probability at Hamming distance at most k

2 from a prefix of P∞. Moreover, by
Fact 2.1, p is a divisor of maxC−minC, so, Y [minC . .maxC) is an integer power of P . Thus,
Y [minC . .minC + ℓ) is with high probability at Hamming distance at most k

2 from a prefix of
P∞. Now, the triangle inequality yields HD(X[i . . i+ ℓ), Y [minC . .minC+ ℓ)) ≤ k, as claimed.

It remains to justify the answers returned in Lines 13 and 14. Because the breaks BX and
BY , if defined, satisfy per(BX) > |J | and per(BY) > |J |, Lemma 3.6 implies that their exact
occurrences must be more than |J | positions apart. Consequently, applying Line 8 or Line 9
leaves at most one position in C. Thus, the algorithm correctly returns NO if it detects a
mismatch in Line 13 while testing random shifts s for the unique position minC ∈ C. Finally,
note that the sampling rate in the construction of S guarantees that if there are at least k + 1
mismatches between X[i . . i+ ℓ) and Y [minC . .minC + ℓ), then with high probability at least
one of them is detected. Thus, returning YES in Line 14 is also correct.

Running time Lines 2, 3, 8, and 9 can be interpreted as finding exact occurrences of X[i . . i+
ℓ), X[i . . i + 3|J |), BX , and BY , respectively, starting at up to |J | consecutive positions of X
or Y . Since the length of all these patterns is O(|J |), this search can be implemented in
O(|J |) using a classic pattern matching algorithm [31]. The calls to FindBreak from Lemma 3.6
cost Õ(ℓ

⌊k/2⌋+1 + |J |) time with high probability. Finally, the number of sampled positions is

|S| = Õ(ℓ
k+1) with high probability, and this is also the total cost of Line 13. The total running

time is Õ(ℓ
k+1 + |J |).

Finally, we derive Proposition 3.4 via a simple reduction to Lemma 3.7.

Proposition 3.4. There exists an algorithm that, given strings X and Y , an integer k ≥ 0, an
index i, and a range of indices J , computes ℓ := maxj∈J LCE

X,Y
≤k (i, j). With high probability,

the algorithm is correct and its running time is Õ(ℓ
k+1 + |J |).

11

Proof. Observe that Lemma 3.7 provides an oracle that returns YES if maxj∈J LCE
X,Y
0 (i, j) ≥ ℓ

and NO if maxj∈J LCE
X,Y
k (i, j) < ℓ. However, before calling Oracle(P , T , i, J , k, ℓ), we need

to make sure that ℓ > 0, i ∈ [0 . . |X| − ℓ], and ∅ 6= J ⊆ [0 . . |Y | − ℓ]. Thus, basic corner cases
have to be handled separately: The algorithm returns YES if ℓ ≤ 0; otherwise, it sets J :=
J∩[0 . . |Y |−ℓ], returns NO if i /∈ [0 . . |X|−ℓ] or J = ∅, and makes a call Oracle(P , T , i, J , k, ℓ)
in the remaining case.

A single call to the oracle costs Õ(ℓ
k+1 + |J |) time. Hence, we need to make sure that the

intermediate values of the threshold ℓ are bounded from above by a constant multiple of the final
value. For this, the algorithm uses exponential search rather than ordinary binary search.

4 Improved Approximation Ratio

Goldenberg et al. [22] generalized their algorithm in order to solve the k vs αk gap edit distance
problem in Õ(nα + k3) time for any α ≥ 1. This transformation is quite simple, because
Algorithm 1 (the Landau–Vishkin algorithm) with LCE0 queries replaced by LCE≤α−1 queries
returns YES if ED(X,Y) ≤ k and NO if ED(X,Y) > k + (α− 1)(k + 1).

However, if we replace LCE≤k queries with LCE≤α−1 queries in Algorithm 2, then we are
guaranteed to get a NO answer only if ED(X,Y) > 2k(k+2)+ (α− 1)(k+1). As a result, with
an appropriate adaptation of Proposition 3.4, Algorithm 2 yields an Õ(nα + k2)-time solution to
the k vs αk gap edit distance problem only for α = Ω(k). The issue is that Algorithm 2 incurs
a cost of up to Θ(k) edits for up to Θ(k) arbitrary changes of the shift y − x within queries
LCEX,Y (x, y). On the other hand, no such shift changes are performed in Algorithm 1, but this
results in LCEX,Y (x, y) queries asked for up to Θ(k2) distinct positions x, which is the reason
behind the Õ(k3) term in the running time Õ(nα + k3) of [22].

Nevertheless, since each LCEX,Y
≤α−1(x, y) query incurs a cost of up to α−1 edits (mismatches)

it is still fine to pay O(α− 1) further edits (insertions or deletions) to change the shift y−x by
up to α− 1. Hence, we design Algorithm 5 as a hybrid of Algorithms 1 and 2.

Algorithm 5: Improved algorithm

1 foreach i ∈ [0 . . k] and j ∈ [⌊−k
α ⌋ − 1 . . ⌊ k

α⌋+ 1] do d′i,j := di,j := −∞;

2 d′0,0 := 0;

3 for i := 0 to k do

4 for j := ⌊−k
α ⌋ to ⌊ k

α⌋ do

5 if d′i,j 6= −∞ then

6 di,j := d′i,j +max
(j+1)α−1
δ=jα LCEX,Y

≤α−1(d
′
i,j , d

′
i,j + δ);

7 for j := ⌊−k
α ⌋ to ⌊ k

α⌋ do

8 d′i+1,j := min(|X|,max(di,j−1, di,j + 1, di,j+1 + 1));

9 j := ⌊ 1
α (|Y | − |X|)⌋;

10 if ||X| − |Y || ≤ k and dk,j = |X| then return YES ;
11 else return NO ;

Lemma 4.1. For any integers k ≥ 0 and α ≥ 1, Algorithm 5 returns YES if ED(X,Y) ≤ k
and NO if ED(X,Y) > k + 3(k + 1)(α − 1).

Proof. As in the proof of Lemma 3.1, we characterize the values di,j and d′i,j using two claims.

Claim 4.2. Each i ∈ [0 . . k] and j ∈ [⌊−k
α ⌋ . . ⌊ k

α⌋] satisfies the following two properties:

(a) ED(X[0 . . d′i,j), Y [0 . . y)) ≤ i+(3i+1)(α−1) for y ∈ [d′i,j+ jα . . d′i,j+(j+1)α)∩ [0 . . |Y |];

(b) ED(X[0 . . di,j), Y [0 . . y)) ≤ i+3(i+1)(α−1) for y ∈ [di,j+ jα . . di,j+(j+1)α)∩ [0 . . |Y |].

12

Proof. We proceed by induction on i. Our base case is Property (a) for i = 0. Due to d′0,j = −∞
for j 6= 0, the range for y is non-empty only for j = 0, when the range is [0 . . α) due to d′0,0 = 0.
Moreover, for y ∈ [0 . . α), we have ED(X[0 . . d′0,0), Y [0 . . y)) = y ≤ α− 1.

Next, we shall prove Property (b) for i ≥ 0 assuming that Property (a) is true for i.
By definition of LCE≤α−1 queries, we have di,j ≤ d′i,j + LCEX,Y

α−1(d
′
i,j , y

′) for some position
y′ ∈ [d′i,j+jα . . d′i,j+(j+1)α)∩[0 . . |Y |], and thus HD(X[d′i,j . . di,j), Y [y′ . . y′+di,j−d′i,j)) ≤ α−1.
The inductive assumption yields ED(X[0 . . d′i,j), Y [0 . . y′)) ≤ i + (3i + 1)(α − 1), so we have
ED(X[0 . . di,j), Y [0 . . y′ + di,j − d′i,j)) ≤ i+ (3i+2)(α− 1). Due to |y′ + di,j − d′i,j − y| ≤ α− 1,
we conclude that ED(X[0 . . di,j), Y [0 . . y)) ≤ i+ 3(i+ 1)(α − 1).

Finally, we shall prove Property (a) for i > 0 assuming that Property (b) is true for i−1. We
consider three subcases: If d′i,j ≤ di−1,j−1, then the inductive assumption yields ED(X[0 . . d′i,j),
Y [0 . . y − α)) ≤ (i − 1) + 3i(α − 1), and therefore ED(X[0 . . d′i,j), Y [0 . . y)) ≤ α + (i − 1) +
3i(α − 1) = i + (3i + 1)(α − 1). If d′i,j ≤ di−1,j + 1, then the inductive assumption yields
ED(X[0 . . d′i,j − 1), Y [0 . . y− 1)) ≤ (i− 1)+ 3i(α− 1), and therefore ED(X[0 . . d′i,j), Y [0 . . y)) ≤
1+(i−1)+3i(α−1) = i+3i(α−1). If d′i,j ≤ di−1,j+1+1, then the inductive assumption yields
ED(X[0 . . d′i,j − α), Y [0 . . y)) ≤ (i − 1) + 3i(α − 1), and therefore ED(X[0 . . d′i,j), Y [0 . . y)) ≤
α+ (i− 1) + 3i(α − 1) = i+ (3i + 1)(α − 1).

In particular, if the algorithm returns YES, then ED(X,Y) ≤ k + 3(k + 1)(α − 1).

Claim 4.3. If ED(X[0 . . x), Y [0 . . y)) = i for x ∈ [0 . . |X|], y ∈ [0 . . |Y |], and i ∈ [0 . . k], then
x ≤ di,j holds for j = ⌊ 1

α(y − x)⌋.

Proof. We proceed by induction on i. Both in the base case of i = 0 and in the inductive step

of i > 0, we prove that x ≤ d′i,j + max
(j+1)α−1
δ=jα LCEX,Y

0 (d′i,j , d
′
i,j + δ). This implies the claim

since di,j ≥ d′i,j +max
(j+1)α−1
δ=jα LCEX,Y

0 (d′i,j , d
′
i,j + δ), holds by definition of LCE≤α−1 queries.

In the base case of i = 0, we have X[0 . . x) = Y [0 . . y), so x = y and j = 0. Consequently,
due to d′0,0 = 0, we have x ≤ LCEX,Y

0 (0, 0) ≤ d′0,0 +maxα−1
δ=0 LCEX,Y

0 (d′0,0, d
′
0,0 + δ).

For i > 0, we consider an optimal alignment between X[0 . . x) and Y [0 . . y), and we distin-
guish its maximum prefix with i−1 edits. This yields positions x′, x′′ ∈ [0 . . x] and y′, y′′ ∈ [0 . . y]
with x′′ − x′ ∈ {0, 1} and y′′ − y′ ∈ {0, 1} such that ED(X[0 . . x′), Y [0 . . y′)) = i − 1 and
X[x′′ . . x) = Y [y′′ . . y). The inductive assumption yields x′ ≤ di−1,j′ , where j′ = ⌊ 1

α(y
′ − x′)⌋

satisfies |j − j′| ≤ 1. We shall prove that x′′ ≤ d′i,j by considering two possibilities. If j′ ≥ j,
then x′′ ≤ min(x, x′ + 1) ≤ min(|X|, di−1,j′ + 1) ≤ d′i,j . If j′ < j, on the other hand, then
y′ − x′ < y′′ − x′′ implies x′′ = x′ ≤ di−1,j′ = di−1,j−1 ≤ d′i,j . Due to X[x′′ . . x) = Y [y′′ . . y), we

have LCEX,Y
0 (x′′, y′′) ≥ x− x′′. By x′′ ≤ d′i,j, this implies LCEX,Y

0 (d′i,j , d
′
i,j + y − x) ≥ x− d′i,j.

By definition of j, we conclude that x = d′i,j + (x − d′i,j) ≤ d′i,j + LCEX,Y
0 (d′i,j, d

′
i,j + y − x) ≤

d′i,j +max
(j+1)α−1
δ=jα LCEX,Y

0 (d′i,j , d
′
i,j + δ).

In particular, if ED(X,Y) ≤ k, then the algorithm returns YES.

If we use Proposition 3.4 to implement LCE≤α−1 queries in Algorithm 5, then the cost of
computing di,j is O(α + 1

α(di,j − d′i,j)) with high probability. This query is performed only for
d′i,j ≥ 0, and it results in di,j ≤ |X|. As di,j ≤ d′i+1,j, the total query time for fixed j sums up

to Õ(1α |X|+ kα) across all queries. Over all the O(kα) values j, this gives Õ(k
α2 |X| + k2) time

with high probability, which is not comparable to the running time Õ(1α |X|+ k3) of [22].
However, we can obtain a faster algorithm using the data structure specified below and

described in Section 4.1. In particular, this result dominates Proposition 3.4 and, if we set
∆ = [−k . . k], then LCEX,Y

≤k (x, y) queries with |x− y| ≤ k can be answered in Õ(k) time after

Õ(1
k+1 |X|) preprocessing, as promised in Section 3.

13

Proposition 4.4. There exists a data structure that, initialized with strings X and Y , an

integer k ≥ 0, and an integer range ∆, answers the following queries: given an integer x, return
LCEX,Y

≤k (x, x + δ) for all δ ∈ ∆. The initialization costs Õ(1
k+1 |X|) time with high probability,

and the queries cost Õ(|∆|) time with high probability.

Since the LCEX,Y
≤α−1(x, y) queries in Algorithm 5 are asked for O(k

2

α) positions x and for
positions y satisfying |y − x| = O(k), a straightforward application of Proposition 4.4 yields an

Õ(1α |X| + k3

α)-time implementation of Algorithm 5, which is already better the running time
of [22]. However, the running time of a more subtle solution described below subsumes both

Õ(1α |X|+ k3

α) and Õ(k
α2 |X|+ k2) (obtained using Proposition 3.4).

Theorem 4.5. There exists an algorithm that, given strings X and Y , an integer k ≥ 0,
and a positive integer α = O(k), returns YES if ED(X,Y) ≤ k, and NO if ED(X,Y) >
k + 3(k + 1)(α − 1). With high probability, the algorithm is correct and its running time is

Õ(1α |X|+ k2 + k
α

√

|X|k).

Proof. We define an integer parameter b ∈ [1 . . ⌈ k
α⌉] (to be fixed later) and initialize O(k

αb)

instances of the data structure of Proposition 4.4 for answering LCEX,Y
≤α−1 queries. The instances

are indexed with j′ ∈ [⌊−k
αb ⌋ . . ⌊ k

αb⌋], and the j′th instance has interval ∆j′ = [j′αb . . (j′ +1)αb).
This way, the value di,j can be retrieved from the values LCE≤α−1(d

′
i,j, d

′
i,j + δ) for δ ∈ ∆⌊ j

b
⌋,

that is, from a single query to an instance of the data structure of Proposition 4.4.
Correctness follows from Lemma 4.1 since with high probability all LCE≤α−1 queries are

answered correctly. The total preprocessing cost is Õ(k
αb · 1

α |X|) = Õ(k
α2b

|X|) with high prob-

ability, and each value di,j is computed in Õ(αb) time with high probability. The number of

queries is O(k
2

α), so the total running time is Õ(k
α2b

|X|+k2b) with high probability. Optimizing

for b yields Õ(kα
√

|X|k). Due to b ∈ [1 . . ⌈ k
α⌉], we get additional terms Õ(k2 + 1

α |X|).

4.1 Proof of Proposition 4.4

While there are many similarities between the proofs of Propositions 3.4 and 4.4, the main
difference is that we heavily rely on LCEr queries in the proof of Proposition 4.4. The following
fact illustrates their main advantage compared to LCE≤k queries: composability.

Fact 4.6. Let X,X ′, Y be strings, let r > 0 be real parameter, and let j ∈ [0 . . |Y |−|X|]. Suppose
that LCEX,Y

r (0, j) and LCEX′,Y
r (0, j + |X|) are independent random variables, and define

ℓ :=

{

LCEX,Y
r (0, j) if LCEX,Y

r (0, j) < |X|,
|X| + LCEX′,Y

r (0, j + |X|) otherwise.

Then, ℓ satisfies the conditions for LCEXX′,Y
r (0, j).

Proof. Define d = HD(X,Y [j . . j + |X|)) and note that the following equality holds for k ≥ 0:

LCEXX′,Y
k (0, j) =

{

LCEX,Y
k (0, j) if k < d,

|X|+ LCEX′,Y
k−d (0, j + |X|) if k ≥ d.

Let us first prove that ℓ ≥ LCEXX′,Y
0 (0, j). If LCEX,Y

r (0, j) < |X|, then LCEX,Y
0 (0, j) ≤

LCEX,Y
r (0, j) < |X| implies d > 0, and thus ℓ = LCEX,Y

r (0, j) ≥ LCEX,Y
0 (0, j) = LCEXX′,Y

0 (0, j).

Otherwise, ℓ = |X|+LCEX′,Y
r (0, j+|X|) ≥ |X|+LCEX′,Y

0 (0, j+|X|) ≥ LCEXX′,Y
0 (0, j). Hence,

the claim holds in both cases.

14

Next, let us bound the probability P
[

ℓ > LCEXX′,Y
k (0, j)

]

for k ≥ 0. We consider two cases.

If k < d, then LCEXX′,Y
k (0, j) < |X| and

P
[

ℓ > LCEXX′,Y
k (0, j)

]

≤ P
[

LCEX,Y
r (0, j) > LCEXX′,Y

k (0, j)
]

= P
[

LCEX,Y
r (0, j) > LCEX,Y

k (0, j)
]

≤ exp(−k+1
r).

On the other hand, if k ≥ d, then LCEXX′,Y
k (0, j) = |X| + LCEX′,Y

k−d (0, j + |X|) ≥ |X| >

LCEX,Y
d−1 (0, j). Hence, the independence of LCEX,Y

r (0, j) and LCEX,Y
r (0, j + |X|) yields

P
[

ℓ > LCEXX′,Y
k (0, j)

]

≤ P
[

LCEX,Y
r (0, j) > |X| and LCEX′,Y

r (0, j + |X|) > LCEX′,Y
k−d (0, j + |X|)

]

= P
[

LCEX,Y
r (0, j) > |X|

]

· P
[

LCEX′,Y
r (0, j + |X|) > LCEX′,Y

k−d (0, j + |X|)
]

≤ exp(−d
r) · exp(−k−d+1

r)

= exp(−k+1
r).

This completes the proof.

Next, we show that a single value LCEX,Y
r (0, j) can be computed efficiently. We also require

that the resulting position ℓ witnesses LCEX,Y
0 (0, j) ≤ ℓ.

Fact 4.7. There is an algorithm that, given strings X and Y , a real parameter r > 0, and an

integer j, returns a value ℓ = LCEX,Y
r (0, j) such that X[ℓ] 6= Y [j + ℓ] or ℓ = min(|X|, |Y | − j).

The algorithm takes Õ(1r |X|) time with high probability.

Proof. If r ≤ 1, then the algorithm returns ℓ = LCEX,Y
0 (0, j) computed naively in O(|X|) time.

It is easy to see that this value satisfies the required conditions.
If r > 1, then the algorithm samples a subset S ⊆ [0 . .min(|X|, |Y | − j)) so that the events

s ∈ S are independent with P[s ∈ S] = 1
r . If X[s] = Y [j + s] for each s ∈ S, then the algorithm

returns ℓ = min(|X|, |Y |−j). Otherwise, the algorithm returns ℓ = min{s ∈ S : X[s] 6= Y [j+s]},
This way, ℓ ≥ LCEX,Y

0 (i, j), and P [ℓ] 6= Y [j + ℓ] or ℓ = min(|X|, |Y | − j).

It remains to bound P
[

ℓ > LCEX,Y
k (0, j)

]

for every k ≥ 0. This event holds only if each of
the k+1 leftmost mismatches (that is, the leftmost positions s such that X[s] 6= Y [j + s]) does
not belong to S. By definition of S, the probability of this event is (1− 1

r)
k+1 ≤ exp(−k+1

r).

Since |S| = Õ(1r min(|X|, |Y | − j)) with high probability, the total running time is Õ(1r |X|)
with high probability.

We are now ready to describe a counterpart of Lemma 3.6.

Lemma 4.8. There is an algorithm that, given a string T , a real parameter r > 0, and a

positive integer q ≤ 1
2 |T | such that p := per(T [0 . . 2q)) ≤ q, returns ℓ ∈ [2q . . |T |] such that

• ℓ = LCET,T ′

r (0, 0), where T ′ is an infinite string with T ′[i] = T [i mod p] for i ≥ 0, and

• ℓ = |T | or per(T (ℓ− 2q . . ℓ]) > q.

The algorithm takes Õ(1r |T |+ q) time with high probability.

Proof. A procedure FindBreak2(T , r, q) implementing Lemma 4.8 is given as Algorithm 6.
First, the algorithm computes the shortest period p = per(T [0 . . 2q)) (guaranteed to be at

most q by the assumption) and constructs an infinite string T ′ with T ′[i] = T [i mod p] for each
i ≥ 0; note that random access to T ′ can be easily implemented on top of random access to T .

15

Algorithm 6: FindBreak2(T , r, q)

1 p := per(T [0 . . 2q));
2 Define T ′[0 . .∞) with T ′[i] = T [i mod p];

3 ℓ′ := LCET,T ′

r (0, 0); ⊲ computed using Fact 4.7

4 if ℓ′ = |T | then return |T |;
5 b := 2q; e := ℓ′;
6 while b < e do

7 m := ⌈ b+e
2 ⌉;

8 for j := m− 2q to m− 1 do

9 if T [j] 6= T ′[j] then e := j;
10 if e ≥ m then b := m;

11 return b;

Next, the algorithm computes ℓ′ := LCET,T ′

r (0, 0) using Fact 4.7. If ℓ′ = |T |, then |T |
satisfies both requirements for the resulting value ℓ, so the algorithm returns ℓ := |T | (Line 1).

Otherwise, the algorithm tries to find a position ℓ ≤ ℓ′ such that per(T (ℓ − 2q . . ℓ]) > q
(Lines 5–11). This step is implemented as in the proof of Lemma 3.6. We call a position
i ∈ [0 . . |T |) compatible if T [i] = T ′[i]. The algorithm performs a binary search maintaining
positions b, e, with 2q ≤ b ≤ e < |T |, such that e is incompatible and the positions in [b−2q . . b)
are all compatible. The initial choice of b := 2q and e := ℓ satisfies the invariant because the
positions in [0 . . 2q) are all compatible due to p = per(T [0 . . 2q)). While b < e, the algorithm
chooses m := ⌈ b+e

2 ⌉. If [m− 2q . .m) contains an incompatible position j, then j ≥ b (because
j ≥ m − 2q ≥ b − 2q and the positions in [b − 2q . . b) are all compatible), so the algorithm
maintains the invariant setting e := j for such a position j (Line 9). Otherwise, all the positions
in [m − 2q . .m) are compatible. Due to m ≤ e, this means that the algorithm maintains the
invariant setting b := m (Line 10). Since e− b decreases at least twofold in each iteration, after
O(log |T |) iterations, the algorithm obtains b = e. Then, the algorithm returns ℓ := b.

We shall prove that this result is correct. For a proof by contradiction, suppose that p′ :=
per(T (b − 2q . . b]) ≤ q. Then, p′ is also period of T (b − 2q . . b). Moreover, the invariant
guarantees that positions in (b−2q . . b) are all compatible, so also p is a period of T (b−2q . . b).
Since p + p′ − 1 ≤ 2q − 1, the periodicity lemma [21] implies that also gcd(p, p′) is a period
of T [b − 2q + 1 . . b). Consequently, T [b] = T [b − p′] = T [b − p] = T ′[b − p] = T ′[b], i.e.,
b is compatible. However, the invariant assures that b is incompatible. This contradiction

proves that per(T (b− 2q . . b]) > q. The incompatibility of b guarantees that LCET,T ′

0 (0, 0) ≤ b.

Moreover, since b ≤ ℓ′, we have P[b > LCET,T ′

k (0, 0)] ≤ P[ℓ′ > LCET,T ′

k (0, 0)] ≤ exp(−k+1
r) for

each k ≥ 0. Thus, b satisfies the requirements for LCET,T ′

r (0, 0).
It remains to analyze the running time. Determining per(T [0 . . 2q)) in Line 1 costs O(q) time

using a classic algorithm [31]. The application of Fact 4.7 costs Õ(1r |T |) time with high prob-

ability. Binary search (the loop in Line 6) has O(log |T |) = Õ(1) iterations, each implemented
in O(q) time. Consequently, the total running time is Õ(1r |T |+ q) with high probability.

Next, we develop a counterpart of Lemma 3.7.

Lemma 4.9. There is an algorithm that, given strings X and Y , a real parameter r > 0, and
an integer range J , returns LCEX,Y

r (0, j) for each j ∈ J . The algorithm costs Õ(1r |X| + |J |)
time with high probability.

Proof. A procedure Batch(X, Y , r, J) implementing Lemma 4.9 is given as Algorithm 7.
First, the algorithm sets ∆ := maxJ −minJ and computes min(LCEX,Y

0 (0, j), 2∆) for each
j ∈ J . Implementation details of this step are discussed later on. Then, the algorithm sets

16

Algorithm 7: Batch(X, Y , r, J)

1 ∆ := max J −min J ;

2 foreach j ∈ J do ℓj := min(LCEX,Y
0 (0, j), 2∆);

3 C := {j ∈ J : ℓj = 2∆};
4 if |C| ≤ 1 then

5 foreach j ∈ C do ℓj := LCEX,Y
r (0, j); ⊲ computed using Fact 4.7

6 else

7 ℓX := FindBreak2(X, r, 2∆);
8 ℓY := FindBreak2(Y [minC . .min(maxC + |X|, |Y |)), r, 2∆);
9 foreach j ∈ C do

10 ℓj := min(ℓX , ℓY − j +minC);
11 if ℓj < min(|X|, |Y | − j) and X(ℓj − 2∆ . . ℓj] = Y (j + ℓj − 2∆ . . j + ℓj] then

12 ℓj := LCEX,Y
r (0, j); ⊲ computed using Fact 4.7

13 return (ℓj)j∈J

C := {j ∈ J : ℓj = 2∆} so that ℓj = LCEX,Y
0 (0, j) holds for each j ∈ J \ C. Consequently, ℓj

can be returned as LCEP,T
r (0, j) for j ∈ J \ C, and the algorithm indeed returns these values

(the values ℓj set in Line 2 are later modified only for j ∈ C).

Thus, the remaining focus is on determining LCEX,Y
r (0, j) for j ∈ C. If |C| ≤ 1, then these

values are computed explicitly using Fact 4.7. In the case of |C| ≥ 2, handled in Lines 6–12, the
algorithm applies the FindBreak2 function of Lemma 4.8 forX and Ȳ := Y [minC . .min(maxC+
|X|, |Y |)), both with q = 2∆.

These calls are only valid if per(X[0 . . 2∆)) ≤ ∆ and per(Ȳ [0 . . 2∆)) ≤ ∆, so we shall
prove that these conditions are indeed satisfied. First, note that C = {o + min J : o ∈
Occ(X[0 . . 2∆), Y [min J . .maxJ + 2∆))}. Consequently, Fact 2.1 implies that C is an arith-
metic progression with difference p := per(X[0 . . 2∆)). Due to |C| ≥ 2, we conclude that
p ≤ maxJ −min J = ∆. Moreover, since Y [j . . j + 2∆) = X[0 . . 2∆) for each j ∈ C, we have
Ȳ [0 . . 2∆) = Y [minC . .minC + 2∆) = X[0 . . 2∆), and thus per(Ȳ [0 . . 2∆)) ≤ ∆. Hence, the
calls to FindBreak2 are indeed valid.

Based on the values ℓX and ℓY returned by these two calls, the algorithm seets ℓj :=
min(ℓX , ℓY − j+minC) for each j ∈ C in Line 10. These values satisfy the following property:

Claim 4.10. For each j ∈ C, the value ℓj = min(ℓX , ℓY − j + minC) set in Line 10 satisfies

P[ℓj > LCEX,Y
k (0, j)] ≤ exp(−k+1

r) for every integer k ≥ 0.

Proof. Note that ℓj ≤ min(|X|, |Y | − j) due to ℓX ≤ |X| and ℓY ≤ |Ȳ |, Consequently, if

LCEX,Y
k (0, j) = min(|X|, |Y | − j), then the claim holds trivially. In the following, we assume

that d := LCEX,Y
k (0, j) < min(|X|, |Y | − j) so that X[0 . . d] and Y [j . . j + d] are well-defined

fragments with HD(X[0 . . d], Y [j . . j + d]) = k + 1.
Consider an infinite string X ′ with X ′[i] = X[i mod p] for each i ≥ 0, and define k1 =

HD(X[0 . . d],X ′[0 . . d]) as well as k2 = HD(Y [j . . j + d],X ′[0 . . d]), observing that the triangle

inequality yields k1 + k2 ≥ k + 1. Due to ℓX = LCEX,X′

r (0, 0) (by Lemma 4.8), we have

P[ℓX > d] ≤ exp(−k1
r), because d ≥ LCEX,X′

k1−1(0, 0).

Next, consider an infinite string Ȳ ′ with Ȳ ′[i] = Ȳ [i mod p] for i ≥ 0, and observe that
Ȳ ′ = X ′ due to Ȳ [0 . . 2∆) = X[0 . . 2∆). Consequently, k2 = HD(Ȳ [j −minC . . j −minC + d],
Ȳ ′[0 . . d]). Since C forms an arithmetic progression with difference p and j ∈ C, we further
have k2 = HD(Ȳ [j − minC . . j − minC + d], Ȳ ′[j − minC . . j − minC + d]). Moreover, p =
per(Ȳ [0 . . 2∆)) and j −minC ≤ ∆ yields Ȳ [0 . . j −minC) = Ȳ ′[0 . . j −minC), and therefore
k2 = HD(Ȳ [0 . . j − minC + d], Ȳ ′[0 . . j − minC + d]). We conclude that j − minC + d ≥

17

LCEȲ ,Ȳ ′

k2−1(0, 0). Due to ℓY = LCEȲ ,Ȳ ′

r (0, 0) (by Lemma 4.8), we thus have P[ℓY − j +minC >

d] = P[ℓY > j −minC + d] ≤ exp(−k2
r).

Finally, since the calls to Lemma 4.8 use independent randomness (and thus ℓX and ℓY are
independent random variables), we conclude that

P[ℓj > LCEX,Y
k (0, j)] = P[ℓj > d] = P[ℓX > d and ℓY − j +minC > d]

= P[ℓX > d] · P[ℓY − j +minC > d] ≤ exp(−k1
r) · exp(−k2

r) = exp(−k1+k2
r) ≤ exp(−k+1

r),

which completes the proof.

For each j ∈ C, after setting ℓj in Line 10, the algorithm performs an additional check in
Line 11; its implementation is discussed later on. If the check succeeds, then the algorithm
falls back to computing ℓj = LCEX,Y

r (0, j), using Fact 4.7, which results in a correct value by
definition. Otherwise, ℓj ≥ |X|, ℓj ≥ |Y | − j, or X(ℓj − 2∆ . . ℓj] 6= Y (j + ℓj − 2∆ . . j + ℓj].

Each of these condition yields LCEX,Y
0 (0, j) ≤ ℓj . Hence, due to Claim 4.10, returning ℓj as

LCEX,Y
r (0, j) is then correct. This completes the proof that the values returned by Algorithm 7

are correct.
However, we still need to describe the implementation of Line 2 and Line 11. The val-

ues min(LCEX,Y
0 (0, j), 2∆) needed in Line 2 are determined using an auxiliary string T =

X[0 . . 2∆)$Y [min J . .maxJ + 2∆), where $ and each out-of-bounds character does not match
any other character. The PREF table of T , with PREFT [t] = LCET,T

0 (0, t) for t ∈ [0 . . |T |],
can be constructed in O(|T |) = O(|J |) time using a textbook algorithm [19] and satisfies
min(LCEX,Y

0 (0, j), 2∆) = PREFT [2∆ + 1 + j −min J] for each j ∈ J .
Our approach to testing X(ℓj − 2∆ . . ℓj] = Y (j + ℓj − 2∆ . . j + ℓj] in Line 11 depends on

whether ℓj = ℓX or not. Positions j ∈ C with ℓj = ℓX need to be handled only if ℓX < |X|.
In this case, X(ℓj − 2∆ . . ℓj] = Y (j + ℓj − 2∆ . . j + ℓj] holds if and only if X(ℓX − 2∆ . . ℓX]
has an occurrence in T at position j + ℓX − 2∆ + 1. Hence, a linear-time pattern matching
algorithm is used to find the occurrences of X(ℓX − 2∆ . . ℓX] starting in T between positions
minC+ ℓX −2∆+1 and maxC+ ℓX −2∆+1, inclusive. Due to maxC−minC ≤ ∆, this takes
O(∆) time. Moreover, since per(X(ℓX − 2∆ . . ℓX]) > ∆ holds by Lemma 4.8, Fact 2.1 implies
that there is at most one such occurrence, i.e., at most one position j with ℓj = ℓX passes the
test in Line 11.

Next, consider positions j ∈ C with ℓj 6= ℓX . Since these positions satisfy ℓj = ℓY −j+minC,
the condition ℓj < |Y | − j implies ℓY + minC < |Y |. Moreover, the condition ℓj < |X|
implies ℓY < |X| + j −minC ≤ |X| + maxC −minC. Consequently, such j ∈ C need to be
handled only if ℓY < min(|Y | − minC, |X| + maxC − minC) = |Ȳ |. Our observation is that
X(ℓj−2∆ . . ℓj] = Y (j+ℓj−2∆ . . j+ℓj] if and only if Ȳ (ℓY −2∆ . . ℓY] has an occurrence in X at
position ℓY −j+minC−2∆+1. Hence, a linear-time pattern matching algorithm is used to find
the occurrences of Ȳ (ℓY −2∆ . . ℓY] starting in X between positions ℓY −maxC+minC−2∆+1
and ℓY − 2∆+1, inclusive. Due to maxC −minC ≤ ∆, this takes O(∆) time. Moreover, since
per(Ȳ (ℓY − 2∆ . . ℓY]) > ∆ holds by Lemma 4.8, Fact 2.1 implies that there is at most one such
occurrence, i.e., at most one position j with ℓj 6= ℓX passes the test in Line 11.

We conclude that Line 11 (across all j ∈ C) can be implemented in O(∆) time and that
Line 12 needs to be executed for at most two indices j ∈ C. Consequently, the overall cost of
executing Lines 10–12 is Õ(1r |X| + ∆) with high probability. Due to |Ȳ | ≤ |X| + ∆, the cost

of calls to FindBreak2 of Lemma 4.8 is also Õ(1r |X| + ∆) with high probability. As explained

above, executing Line 2 costs O(|J |) time. The cost of Line 5 is Õ(1r |X|) with high probability.

Due to ∆ = |J |− 1, the total running time is therefore Õ(1r |X|+ |J |) with high probability.

We are now ready to prove a counterpart of Proposition 4.4 for LCEr queries.

18

Lemma 4.11. There is a data structure that, initialized with strings X and Y , a real parameter

r > 0, and an integer range ∆, answers the following queries: given an integer x, return

LCEX,Y
r (x, x + δ) for each δ ∈ ∆. The initialization costs Õ(1r |X|) time with high probability,

and the queries cost Õ(|∆|) time with high probability.

Algorithm 8: Implementation of the data structure of Lemma 4.11

1 Construction(X, Y , r, ∆) begin
2 q := ⌈r|J |⌉;
3 x := |X|;
4 foreach δ ∈ ∆ do ℓx,δ := 0;
5 while x ≥ q do

6 x := x− q;
7 (vδ)δ∈∆ := Batch(X[x . . x+ q), Y , r, {x+ δ : δ ∈ ∆});
8 foreach δ ∈ ∆ do

9 if vδ < q then ℓx,δ := vδ;
10 else ℓx,δ := q + ℓx+q,δ;

11 Query(x) begin
12 if x /∈ [0 . . |X|] then return (0)δ∈∆;
13 x′ := x+ (|X| − x) mod q;
14 if x′ 6= x then

15 (vδ)δ∈∆ := Batch(X[x . . x′), Y , r, {x+ δ : δ ∈ ∆});
16 foreach δ ∈ ∆ do

17 if vδ < x′ − x then ℓx,δ := vδ;
18 else ℓx,δ := x′ − x+ ℓx′,δ;

19 return (ℓx,δ)δ∈∆;

Proof. Procedures Construction(X, Y , r, ∆) and Query(x) implementing Lemma 4.11 are given
as Algorithm 8.

The construction algorithm precomputes the answers for all x ∈ [0 . . |X|] satisfying x ≡ |X|
(mod q), where q = ⌈r|∆|⌉. More formally, for each such x, the data structure stores ℓx,δ =

LCEX,Y
r (x, x + δ) for all δ ∈ ∆. First, the values ℓ|X|,δ are set to 0. In subsequent iterations,

the algorithm computes ℓx,δ based on ℓx+q,δ. For this, the procedure Batch(X[x . . x + q), Y ,

r, {x + δ : δ ∈ ∆}) of Lemma 4.9 is called. The resulting values LCE
X[x. .x+q),Y
r (0, x + δ) are

then combined with ℓx+q,δ = LCE
X[x+q. .|X|),Y
r (0, x + q + δ) based on Fact 4.6, which yields

LCE
X[x. .|X|),Y
r (0, x+ δ) = LCEX,Y

r (x, x+ δ); the latter values are stored at ℓx,δ.
The cost of a single iteration is Õ(qr + |∆|) = Õ(qr) with high probability, and the number

of iterations is O(1q |X|), so the total preprocessing time is Õ(1r |X|) with high probability.

To answer a query for a given integer x, the algorithm needs to compute LCEX,Y
r (x, x+ δ)

for all δ ∈ ∆. If x /∈ [0 . . |X|], then these values are equal to 0 by definition. Otherwise, the
algorithm computes the nearest integer x′ ≥ x with x′ ≡ |X| (mod q). If x′ = x, then the sought
values have already been precomputed. Otherwise, the algorithm proceeds based the values ℓx′,δ.
For this, the procedure Batch(X[x . . x′), Y , r, {x + δ : δ ∈ ∆}) of Lemma 4.9 is called. The

resulting values LCE
X[x. .x′),Y
r (0, x+ δ) are then combined with ℓx′,δ = LCE

X[x′. .|X|),Y
r (0, x′ + δ)

based on Fact 4.6, which yields the sought values LCE
X[x. .|X|),Y
r (0, x+ δ) = LCEX,Y

r (x, x+ δ).
The cost of a query is Õ(x

′−x
r + |∆|) = Õ(qr + |∆|) = Õ(∆) with high probability.

Finally, we recall that LCEX,Y
r (x, y) satisfies the requirements for LCEX,Y

≤k (x, y) with prob-

ability at least 1− exp(−k+1
r). Consequently, taking sufficiently small r = Θ̃(k+ 1) guarantees

19

success with high probability. Thus, Lemma 4.11 yields Proposition 4.4, which we restate below.

Proposition 4.4. There exists a data structure that, initialized with strings X and Y , an

integer k ≥ 0, and an integer range ∆, answers the following queries: given an integer x, return
LCEX,Y

≤k (x, x + δ) for all δ ∈ ∆. The initialization costs Õ(1
k+1 |X|) time with high probability,

and the queries cost Õ(|∆|) time with high probability.

5 PTAS for Aperiodic Strings

In this section, we design an algorithm distinguishing between ED(X,Y) ≤ k and ED(X,Y) >
(1 + ε)k, assuming that X does not have a length-ℓ substring with period at most 2k. The
high-level approach of our solution is based on the existing algorithms for Ulam distance [3, 32].
The key tool in these algorithms is a method for decomposing X = X0 · · ·Xm and Y = Y0 · · · Ym

into short phrases such that ED(X,Y) =
∑m

i=0 ED(Xi, Yi) if ED(X,Y) ≤ k. While designing
such a decomposition in sublinear time for general strings X and Y remains a challenging open
problem, the lack of long highly periodic substrings makes this task feasible.

Lemma 5.1. There exists an algorithm that, given strings X and Y , integers k and ℓ such

that per(X[i . . i + ℓ)) > 2k for each i ∈ [0 . . |X| − ℓ], and a real parameter 0 < δ < 1, returns
factorizations X = X0 · · ·Xm and Y = Y0 · · · Ym with m = O(δ

(k+1)ℓ |X|) such that |Xi| ≤
⌈δ−1(k+1)ℓ⌉ for each i ∈ [0 . . m] and, if ED(X,Y) ≤ k, then P[ED(X,Y) =

∑m
i=0 ED(Xi, Yi)] ≥

1− δ. The running time of the algorithm is O(δ
k+1 |X|).

Proof. Let q = ⌈δ−1(k+1)ℓ⌉. If |X| ≤ q, then the algorithm returns trivial decompositions of X
and Y with m = 0. In the following, we assume that q < |X|. The algorithm chooses r ∈ [0 . . q)
uniformly at random and creates a partition X = X0 · · ·Xm so that |X0| = r, |Xi| = q for
i ∈ [1 . . m), and |Xm| ≤ q. This partition clearly satisfies m = O(1q |X|) = O(δ

(k+1)ℓ |X|) and

|Xi| ≤ q = ⌈δ−1(k + 1)ℓ⌉ for each i ∈ [0 . . m].
Let us define xi for i ∈ [0 . . m + 1] so that Xi = X[xi . . xi+1) for i ∈ [0 . . m]. For each

i ∈ [1 . . m], the algorithm finds the occurrences of X[xi . . xi + ℓ) in Y with starting positions
between xi−k and xi+k. If there is no such occurrence (perhaps due to |Xi| < ℓ for i = m), then
the algorithm declares a failure and returns a partition Y = Y0 · · · Ym with Y0 = Y and Yi = ε
for i ≥ 1. Otherwise, due to the assumption that per(X[xi . . xi + ℓ)) > 2k, there is exactly one
occurrence, say, at position yi. (Recall that the distance between two positions in Occ(P, T) is
either a period of P or larger than |P |.) The algorithm defines Yi = Y [yi . . yi+1) for i ∈ [0 . . m],
where y0 = 0 and ym+1 = |Y |. This approach can be implemented in O(mℓ) = O(δ

k+1 |X|) time
using a classic linear-time pattern matching algorithm [31].

We shall prove that the resulting partition Y = Y0 · · · Ym satisfies the requirements. Assum-
ing that ED(X,Y) ≤ k, let us fix an optimal alignment betweenX and Y . We need to prove that,
with probability at least 1−δ, the fragments X[xi . . xi+ℓ) are all matched against Y [yi . . yi+ℓ).
By optimality of the alignment, this will imply P[ED(X,Y) =

∑m
i=0 ED(Xi, Yi)] ≥ 1− δ.

We say that a position x ∈ [0 . . |X|] is an error if x = |X| or (in the alignment considered)
the position X[x] is deleted or matched against a position Y [y] for y ∈ [0 . . |Y |) such that
Y [y] 6= X[x] or Y [y + 1] is inserted. Each edit operation yields at most one error, so the
total number of errors is at most k + 1. Moreover, if [xi . . xi + ℓ) does not contain any error,
then X[xi . . xi + ℓ) is matched exactly against a fragment of Y , and that fragment must be
Y [yi . . yi + ℓ) (since we considered all starting positions in [xi − k . . xi + k]). Hence, if the
algorithm fails, then there is an error x ∈ [xi . . xi + ℓ) for some i ∈ [1 . . m]. By definition of
the decomposition X = X0 · · ·Xm, this implies x mod q ∈ [r . . r + ℓ) mod q, or, equivalently,
r ∈ (x − ℓ . . x] mod q. The probability of this event is ℓ

q ≤ δ
k+1 . The union bound across all

errors yields an upper bound of δ on the failure probability.

20

Next, we present a subroutine that will be applied to individual phrases of the decom-
positions of Lemma 5.1. Given that the phrases are short, we can afford using the classic
Landau–Vishkin algorithm [28] whenever we find out that the corresponding phrases do not
match exactly.

Lemma 5.2. There exists an algorithm that, given strings X and Y , and an integer k ≥ 0,
computes ED(X,Y) > 0 exactly, taking Õ(|X|+ED(X,Y)2) time, or certifies that ED(X,Y) ≤ k
with high probability, taking Õ(1 + 1

k+1 |X|) time with high probability.

Proof. The algorithm first checks if |X| = |Y |, and then it samples X with sufficiently large rate
Θ̃(1

k+1) checking whether X[i] = Y [i] for each sampled position i. If the checks succeed, then

the algorithm certifies that ED(X,Y) ≤ k. This branch takes Õ(1 + 1
k+1 |X|) time with high

probability. Otherwise, ED(X,Y) > 0, and the algorithm falls back to a procedure of Landau
and Vishkin [28], whose running time is Õ(|X|+ |Y |+ ED(X,Y)2) = Õ(|X| + ED(X,Y)2).

As for correctness, it suffices to show that if the checks succeeded, then ED(X,Y) ≤ k
with high probability. We shall prove a stronger claim that HD(X,Y) ≤ k. For a proof by
contradiction, suppose that HD(X,Y) ≥ k + 1 and consider some k + 1 mismatches. Notice
that the sampling rate is sufficiently large that at least one of these mismatches is sampled with
high probability. This completes the proof.

The next step is to design a procedure which distinguishes between
∑m

i=0 ED(Xi, Yi) ≤ k and
∑m

i=0 ED(Xi, Yi) ≥ (1 + ε)k. Our approach relies on the Chernoff bound: we apply Lemma 5.2
to determine ED(Xi, Yi) for a small sample of indices i, and then we use these values to estimate
the sum

∑m
i=0 ED(Xi, Yi).

Lemma 5.3. There exists an algorithm that, given strings X0, . . . ,Xm, Y0, . . . , Ym, and a real

parameter 0 < ε < 1, returns YES if
∑m

i=0 ED(Xi, Yi) ≤ k, and returns NO if
∑m

i=0 ED(Xi, Yi) ≥
(1 + ε)k. The algorithm succeeds with high probability, and its running time is Õ(qk + k2 +

n
ε2(k+1)

), where q = maxmi=0 |Xi| and n =
∑m

i=0(|Xi|+ |Yi|).

Proof. If k = 0, then the algorithm naively checks if Xi = Yi for each i, which costs O(n) time.
In the following, we assume that k > 0.

For i ∈ [0 . . m] and j ∈ [0 . . |Xi| + |Yi|), let us define an indicator ri,j = [ED(Xi, Yi) > j].

Observe that
∑m

i=0 ED(X,Y) =
∑m

i=0

∑|Xi|+|Yi|−1
j=0 ri,j. The algorithm samples independent

random variables R1, . . . , Rr distributed as a uniformly random among the n terms ri,j, where
r = Θ̃(n

ε2k
) is sufficiently large, and returns YES if and only if

∑r
t=1 Rt ≤ (1 + ε

2)
rk
n .

Before we provide implementation details, let us prove the correctness of this approach. If
∑m

i=0 ED(X,Y) ≤ k, then E[Rt] ≤ k
n . Consequently, the multiplicative Chernoff bound implies

P[
∑r

t=1 Rt ≥ (1+ ε
2)

rk
n] ≤ exp(− ε2rk

12n). Since r = Θ̃(n
ε2k

) is sufficiently large, the complementary

event holds with high probability. Similarly, if
∑m

i=0 ED(X,Y) ≥ (1 + ε)k, then E[Rt] ≥ (1+ε)k
n .

Consequently, the multiplicative Chernoff bound implies P[
∑r

t=1 Rt ≤ (1+ ε
2)

rk
n] ≤ P[

∑r
t=1 Rt ≤

(1 − ε
4)r

(1+ε)k
n] ≤ exp(− ε2r(1+ε)k

48n). Since r = Θ̃(n
ε2k

) is sufficiently large, the complementary
event holds with high probability. This finishes the correctness proof.

Evaluating each Rt consists in drawing a term rit,jt uniformly at random and testing if
rit,jt = 1, that is, whether ED(Xit , Yit) > jt. For this, the algorithm makes a call to Lemma 5.2.
If this call certifies that ED(Xit , Yit) ≤ jt, then the algorithm sets Rt = 0. Otherwise, the
call returns the exact distance ED(Xit , Yit) > 0, and the algorithm sets Rt = 1 if and only
if ED(Xit , Yit) > jt. Moreover, the algorithm stores the distance ED(Xit , Yit) so that if it′ =
it for some t′ > t, then the algorithm uses the stored distance to evaluate rit′ ,jt′ instead of
calling Lemma 5.2 again. Whenever the sum of the stored distances exceeds k, the algorithm
terminates and returns NO. Similarly, a call to Lemma 5.2 is terminated preemptively (and NO
is returned) if the call takes too much time, indicating that ED(Xit , Yit) > k. Consequently,

21

since the function x 7→ x2 is convex, the total running time of the calls to Lemma 5.2 that
compute ED(Xit , Yit) is Õ(qk + k2). The total cost of the remaining calls can be bounded by
Õ(

∑r
t=1

1
jt+1 |Xit |). Since E[1

jt+1 |Xit | | it = i] ≤ ln(|Xi|+ |Yi|)+ 1 ≤ lnn+1, the total expected

running time of these calls is Õ(r) = Õ(nk). When
∑r

t=1
1

jt+1 |Xit | exceeds twice the expectation,
the whole algorithm is restarted; with high probability, the number of restarts is Õ(1).

Finally, we obtain the main result of this section by combining Lemma 5.1 with Lemma 5.3.

Theorem 5.4. There exists an algorithm that, given strings X and Y , integers k and ℓ such

that per(X[i . . i + ℓ)) > 2k for each i ∈ [0 . . |X| − ℓ], and a real parameter 0 < ε < 1, returns
YES if ED(X,Y) ≤ k, and NO if ED(X,Y) ≥ (1 + ε)k. With high probability,the algorithm is

correct and its running time is Õ(1
ε2(k+1) |X|+ k2ℓ).

Proof. The algorithm performs logarithmically many iterations. In each iteration, the algorithm
calls Lemma 5.1 (with δ = 1

2) to obtain decompositions X = X0 · · ·Xm and Y = Y0 · · · Ym.
Then, the phrases are processed using Lemma 5.3. If this subroutine returns YES, then the
algorithm also returns YES, because ED(X,Y) ≤ ∑m

i=0 ED(Xi, Yi) < (1 + ε)k with high prob-
ability. On the other hand, if each call to Lemma 5.3 returns NO, then the algorithm returns
NO. If ED(X,Y) ≤ k, then with high probability, ED(X,Y) =

∑m
i=0 ED(Xi, Yi) holds in at least

one iteration; thus, ED(X,Y) > k holds with high probability if the algorithm returns NO.
As for the running time, the calls to Lemma 5.1 cost Õ(1

k+1 |X|) time, and the calls to

Lemma 5.3 cost Õ((k + 1)2ℓ+ 1
ε2(k+1)

(|X| + |Y |)) time because max |Xi| = O((k + 1)ℓ).

6 Random Walk over Samples

In this section, we describe the sampled random walk process. This is used in Section 7 to
embed edit distance to Hamming distance in sublinear time.

Algorithm 9: SampledRandomWalk(X, Y , k, p)

1 x := 0, y := 0, c := 0; ⊲ Initialization

2 while x < |X| and y < |Y | do
3 Let s ∼ Bin(1, 2 lnn

p); ⊲ Biased coin

4 if s = 1 and X[x] 6= Y [y] then
5 Let r ∼ Bin(1, 12); ⊲ Unbiased coin

6 x := x+ r;
7 y := y + (1− r);
8 c := c+ 1;

9 else

10 x := x+ 1;
11 y := y + 1;

12 return c+max(|X| − x, |Y | − y) ≤ 1296k2;

Given stringsX,Y ∈ Σ≤n and integer parameters k ≥ 0, p ≥ 2 lnn, Algorithm 9 scansX and
Y from left to right. The currently processed positions are denoted by x and y, respectively. At
each iteration, the algorithm tosses a biased coin: with probability 2 lnn

p , it chooses to compare
X[x] with Y [y] and, in case of a mismatch (X[x] 6= Y [y]), it tosses an unbiased coin to decide
whether to increment x or y. In the remaining cases, both x and y are incremented. Once the
algorithm completes scanning X or Y , it returns YES or NO depending on whether the number
of mismatches encountered is at most 1296k2 −max(|X| − x, |Y | − y).

22

Theorem 6.1. Given strings X,Y ∈ Σ≤n and integers k ≥ 0 and 2 lnn ≤ p ≤ n, Algorithm 9

returns YES with probability at least 2
3 if ED(X,Y) ≤ k, and NO with probability at least 1− 1

n

if ED(X,Y) ≥ (1296k2 + 1)p. Moreover, Algorithm 9 can be implemented in Õ(np) time.

YES Case Recall that the indel distance IDD(·, ·) is defined so that IDD(X,Y) is the minimum
number of character insertions and deletions needed to transformX to Y (the cost of a character
substitution is 2 in this setting), and observe that ED(X,Y) ≤ IDD(X,Y) ≤ 2ED(X,Y).

We analyze how D := IDD(X[x . . |X|), Y [y . . |Y |)) changes throughout the execution of
Algorithm 9. Let D0 be the initial value of D and let Di be the value of D after the ith
iteration of the algorithm, where i ∈ [1 . . t] and t is the total number of iterations. We say that
iteration i is a mismatch iteration if the condition in Line 4 is satisfied. The following lemma
gathers properties of the values D0,D1, . . . ,Dt:

Lemma 6.2. We have D0 = IDD(X,Y) ≤ 2ED(X,Y). Moreover, the following holds for each

iteration i ∈ [1 . . t]:

(a) Di is a non-negative integer,

(b) If i is not a mismatch iteration, then Di ≤ Di−1.

(c) If i is a mismatch iteration, then Di = Di−1 − 1 or Di = Di−1 + 1, and Di = Di−1 − 1
holds for at least one of the two possible outcomes of r in Line 5.

(d) If Di−1 = 0, then Di = 0.

Proof. Property (a) is clear from the definition of D.
As for Property (b), let us consider an optimal indel-distance alignment resulting in Di−1 =

IDD(X[x . . |X|), Y [y . . |Y |)) at the beginning of iteration i, and transform it to an alignment
between X[x+1 . . |X|) and Y [y+1 . . |Y |) by discarding X[x] and Y [y] and deleting characters
matched with X[x] or Y [y], if any. Note that a character X[x′] with x′ > x is deleted only if the
original alignment deletes Y [y], and a character Y [y′] with y′ > y is deleted only if the original
alignment deletes X[x]. Hence, the alignment cost does not increase and Di ≤ Di−1.

As for Property (c), observe that incrementing x or y changes the value of D by exactly 1.
Since X[x] 6= Y [y] holds at the beginning of iteration i, every optimal alignment between
X[x . . |X|) and Y [y . . |Y |) deletes X[x] or Y [y]. Incrementing x or y, respectively, then results
in Di = Di−1 − 1.

As for Property (d), we note that once X[x . . |X|) = Y [y . . |Y |), no subsequent iteration will
be a mismatch iteration.

Now, consider a 1-dimensional random walk (W0)i≥0 that starts with W0 = 2k and moves
1 unit up or down at every step with equal probability 1

2 . Let us couple this random walk with
the execution of Algorithm 9. Let i1, . . . , ic be the mismatch iterations. For each j ∈ [1 . . c]
such that exactly one choice of r at iteration ij results in decrementing D, we require that
Wj = Wj−1 − 1 if and only if Dij = Dij−1 − 1. Otherwise, we keep Wj −Wj−1 independent of
the execution. As each coin toss in Algorithm 9 uses fresh randomness, the steps of the random
walk remain unbiased and independent from each other.

Now, Lemma 6.2 implies that D0 ≤ W0, that Dij ≤ Wj holds for j ∈ [1 . . c], and that Dt ≤
Wc holds upon termination of Algorithm 9. In particular, the hitting time T = min{j : Wj = 0}
satisfies T ≥ c+Wc ≥ c+Dt. However, as proved in [30, Theorem 2.17], P[T ≤ N] ≥ 1− 12k√

N
.

Thus, P[c+Dt ≤ 1296k2] ≥ 1− 12k√
1296k2

= 2
3 . Since Dt = max(|X| − x, |Y | − y), this completes

the proof of the YES case.

23

NO Case If s = 0 and X[x] 6= Y [y] holds at the beginning of some iteration of Algorithm 9,
we say the algorithm misses the mismatch between X[x] and Y [y]. Let us bound probability of
missing many mismatches in a row.

Lemma 6.3. Consider the values x, y at the beginning of iteration i of Algorithm 9. Conditioned

on any random choices made prior to iteration i, the probability that Algorithm 9 misses the

leftmost p mismatches between X[x . . |X|) and Y [y . . |Y |) is at most n−2.

Proof. Prior to detecting any mismatch between X[x . . |X|) and Y [y . . |Y |), the algorithm scans
these strings from left to right, comparing the characters at positions sampled independently
with rate 2 lnn

p . Hence, the probability of missing the first pmismatches is (1− 2 lnn
p)p ≤ n−2.

Now, observe that an execution of Algorithm 9 yields an edit-distance alignment between X
and Y : consider values of x and y at an iteration i of the algorithm. If i is a mismatch iteration,
then X[x] or Y [y] is deleted depending on whether the algorithm increments x or y. Otherwise,
X[x] is aligned against Y [y] (which might be a substitution). Finally, all max(|X| − x, |Y | − y)
characters remaining in X[x . . |X|) or Y [y . . |Y |) after the last iteration t are deleted. The total
number of deletions is thus c + max(|X| − x, |Y | − y), and every substitution corresponds to
a missed mismatch. By Lemma 6.3, for every block of subsequent non-mismatch iterations,
with probability at least 1 − 1

n2 , there are at most p − 1 missed mismatches. Overall, with
probability at least 1− 1

n , there are at most (p− 1)(c+1) missed mismatches, and ED(X,Y) <
(c+max(|X| − x, |Y | − y) + 1)p. Hence, the algorithm returns NO if ED(X,Y) ≥ (1296k2+1)p.

Efficient Implementation Finally, we observe that iterations with s = 0 do not need to
be executed explicitly: it suffices to repeat the following process: draw (from a geometric
distribution Geo(0, 2 lnn

p)) the number δ of subsequent iterations with s = 0, increase both x
and y by δ, and then execute a single iteration with s = 1. The total number of iterations is at
most |X|+ |Y | ≤ 2n, and the number of iterations with s = 1 is O(n lnn

p) with high probability.
This completes the proof of Theorem 6.1.

7 Embedding Edit Distance to Hamming Distance

A randomized embedding of edit distance to Hamming distance is given by a function f such
that HD(f(X,R), f(Y,R)) ≈ ED(X,Y) holds with good probability over the randomness R for
any two strings X and Y . Chakraborty, Goldenberg, and Koucký [17] gave one such randomized
embedding:

Theorem ([17, Theorem 1]). For every integer n ≥ 1, there is an integer ℓ = O(log n) and a

function f : {0, 1}n × {0, 1}ℓ → {0, 1}3n such that, for every X,Y ∈ {0, 1}n,
1
2ED(X,Y) ≤ HD(f(X,R), f(Y,R)) ≤ O(ED2(X,Y))

holds with probability at least 2
3 − e−Ω(n) over a uniformly random choice of R ∈ {0, 1}ℓ. More-

over, f can be evaluated in linear time.

Their algorithm utilizes 3n hash functions h1, h2, . . . , h3n mapping {0, 1} to {0, 1}. It scans
X sequentially, and if it is at X[x] in iteration i, it appends X[x] to the embedding and
increments x by hi(X[x]). The latter can be viewed as tossing an unbiased coin and, depending
on its outcome, either staying at X[x] or moving to X[x+ 1]. The algorithm uses O(n) random
bits, which can be reduced to O(log n) using Nisan’s pseudorandom number generator [33].

By utilizing random walk over samples, we provide the first sublinear-time randomized
embedding from edit to Hamming distance. Given a parameter p ≥ 2 ln n, we sample S ⊆
[1 . . 3n], with each index i ∈ [1 . . 3n] contained in S independently with probability 2 lnn

p . We
then independently draw |S| uniformly random bijections h1, h2, . . . , h|S| : {0, 1} → {0, 1}. The
shared randomness R consists of S and h1, h2, . . . , h|S|. We prove the following theorem.

24

Theorem 7.1. For every integer n ≥ 1 and p ≥ 2 ln n, there is an integer ℓ = O(log n) and a

function f : {0, 1}n × {0, 1}ℓ → {0, 1}Õ(n
p
)
such that, for every X,Y ∈ {0, 1}n,

ED(X,Y)−p+1
p+1 ≤ HD(f(X,R), f(Y,R)) ≤ O(ED2(X,Y))

holds with probability at least 2
3 − n−Ω(1) over a uniformly random choice of R ∈ {0, 1}ℓ. More-

over, f can be evaluated in Õ(np) time.

Algorithm 10 provides the pseudocode of the embedding.

Algorithm 10: SublinearEmbedding(X, 〈S, h1, . . . , h|S|〉)
1 Output := ε, j := 0, x := 0, X ′ := X · 03n;
2 for i := 1 to 3n do

3 if i ∈ S then

4 Output[j] := X ′[x];
5 j := j + 1;
6 x := x+ hj(X

′[x]);
7 else x := x+ 1;

8 return Output

Interpretation through Algorithm 9 Consider running Algorithm 9 for X ′ = X03n and
Y ′ = Y 03n, modified as follows: if s = 1 and X ′[x] = Y ′[y], then we still toss the unbiased coin
r and, depending on the result, either increment both x and y, or none of them. Observe that
this has no impact of the outcome of processing (x, y): ultimately, both x and y are incremented
and the cost c remains unchanged. Now, let us further modify Algorithm 9 so that its execution
uses R as the source of randomness: we use the event {i ∈ S} for the ith toss of the biased
coin s and the value hj(X

′[x]) for the jth toss of the unbiased coin r (which is now tossed
whenever s = 1). If S was drawn [1 . .∞), this would perfectly implement the coins. However,
S ⊆ [1 . . 3n], so the transformation is valid only for the first 3n iterations. Nevertheless, for
each iteration, the probability of incrementing x is 1 − lnn

p ≥ 1
2 , so x ≥ n and, symmetrically,

y ≥ n hold with high probability after iteration 3n, and then Algorithm 9 cannot detect any
mismatch. Hence, Algorithm 10 with high probability simulates the treatment of X ′ and Y ′ by
Algorithm 9. Moreover, c in Algorithm 9 corresponds to the number of iterations with s = 1
and X ′[x] 6= Y ′[y], and this number of iterations is precisely HD(f(X,R), f(Y,R)).

YES Case Algorithm 9 with k = ED(X,Y) = ED(X ′, Y ′) returns YES with probability at
least 2

3 . Thus, HD(f(X,R), f(Y,R)) = c ≤ 1296k2 = O(ED(X,Y)2) with probability at least 2
3 .

NO Case As proved in Section 6, ED(X ′, Y ′) ≤ c +max(|X ′| − x, |Y ′| − y) + (p − 1)(c + 1)
holds with probability at least 1− 1

n . Due to |X ′| = |Y ′| and |x−y| ≤ c, we deduce ED(X,Y) =

ED(X ′, Y ′) ≤ 2c+(p−1)(c+1) = (p−1)+(p+1)c, i.e., HD(f(X,R), f(Y,R)) = c ≥ ED(X,Y)−p+1
p+1 .

Efficient implementation To complete the proof, we note that Algorithm 10 can be imple-
mented in O(|S|) time by batching the iterations i with i /∈ S (for each such iteration, it suffices
to increment i and x). Moreover, |S| = O(n lnn

p) holds with high probability.

25

References

[1] Alexandr Andoni, Michel Deza, Anupam Gupta, Piotr Indyk, and Sofya Raskhodnikova.
Lower bounds for embedding edit distance into normed spaces. In 14th Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2003, pages 523–526, 2003. URL:
http://dl.acm.org/citation.cfm?id=644108.644196.

[2] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approxima-
tion for edit distance and the asymmetric query complexity. In 51st Annual IEEE Sym-

posium on Foundations of Computer Science, FOCS 2010, pages 377–386. IEEE, 2010.
doi:10.1109/FOCS.2010.43.

[3] Alexandr Andoni and Huy L. Nguyen. Near-optimal sublinear time algorithms for ulam
distance. In Moses Charikar, editor, 21st Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2010, pages 76–86. SIAM, 2010. doi:10.1137/1.9781611973075.8.

[4] Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a
constant factor. In Sany Irani, editor, 61st Annual IEEE Symposium on Foundations of

Computer Science, FOCS 2020. IEEE, 2020. doi:10.1109/FOCS46700.2020.00096.

[5] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time.
SIAM Journal on Computing, 41(6):1635–1648, 2012. doi:10.1137/090767182.

[6] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). SIAM Journal on Computing, 47(3):1087–1097,
2018. doi:10.1137/15M1053128.

[7] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating
edit distance efficiently. In 45th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2004, pages 550–559. IEEE, 2004. doi:10.1109/FOCS.2004.14.

[8] Tugkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt
Rubinfeld, and Rahul Sami. A sublinear algorithm for weakly approximating edit
distance. In Lawrence L. Larmore and Michel X. Goemans, editors, 35th Annual

ACM Symposium on Theory of Computing, STOC 2003, pages 316–324. ACM, 2003.
doi:10.1145/780542.780590.

[9] Tugkan Batu, Funda Ergün, and Süleyman Cenk Sahinalp. Oblivious string em-
beddings and edit distance approximations. In 17th Annual ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 2006, pages 792–801. ACM Press, 2006. URL:
http://dl.acm.org/citation.cfm?id=1109557.1109644.

[10] Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming, and document
exchange. In Irit Dinur, editor, 57th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2016, pages 51–60. IEEE, 2016. doi:10.1109/FOCS.2016.15.

[11] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, Mohammad Taghi Hajiaghayi, and
Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quantum and
mapreduce. In Artur Czumaj, editor, 29th Annual ACM-SIAM Symposium on Discrete Al-

gorithms, SODA 2018, pages 1170–1189. SIAM, 2018. doi:10.1137/1.9781611975031.76.

[12] Joshua Brakensiek, Moses Charikar, and Aviad Rubinstein. A simple sublinear algorithm
for gap edit distance, 2020. arXiv:2007.14368.

[13] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. IEEE Transactions on Information Theory,
64(5):3403–3410, 2018. doi:10.1109/TIT.2017.2746566.

26

http://dl.acm.org/citation.cfm?id=644108.644196
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1137/1.9781611973075.8
https://doi.org/10.1109/FOCS46700.2020.00096
https://doi.org/10.1137/090767182
https://doi.org/10.1137/15M1053128
https://doi.org/10.1109/FOCS.2004.14
https://doi.org/10.1145/780542.780590
http://dl.acm.org/citation.cfm?id=1109557.1109644
https://doi.org/10.1109/FOCS.2016.15
https://doi.org/10.1137/1.9781611975031.76
http://arxiv.org/abs/2007.14368
https://doi.org/10.1109/TIT.2017.2746566

[14] Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of near-
linear edit distance in near-linear time. In Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, 52nd Annual ACM

Symposium on Theory of Computing, STOC 2020, pages 685–698. ACM, 2020.
doi:10.1145/3357713.3384282.

[15] Dany Breslauer and Zvi Galil. Finding all periods and initial palindromes of a string in
parallel. Algorithmica, 14(4):355–366, 1995. doi:10.1007/BF01294132.

[16] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael E.
Saks. Approximating edit distance within constant factor in truly sub-quadratic time.
In Mikkel Thorup, editor, 59th Annual IEEE Symposium on Foundations of Computer

Science, FOCS 2018, pages 979–990. IEEE, 2018. doi:10.1109/FOCS.2018.00096.

[17] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Daniel Wichs and
Yishay Mansour, editors, 48th Annual ACM Symposium on Theory of Computing, STOC

2016, pages 712–725. ACM, 2016. doi:10.1145/2897518.2897577.

[18] Moses Charikar, Ofir Geri, Michael P. Kim, and William Kuszmaul. On estimating
edit distance: Alignment, dimension reduction, and embeddings. In Ioannis Chatzi-
giannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th Inter-

national Colloquium on Automata, Languages, and Programming, ICALP 2018, volume
107 of LIPIcs, pages 34:1–34:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.34.

[19] Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific, 2003.
doi:10.1142/4838.

[20] Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann, Jeremy Peterson, Owen White,
and Steven L. Salzberg. Alignment of whole genomes. Nucleic Acids Research, 27(11):2369–
2376, 1999. doi:10.1093/nar/27.11.2369.

[21] Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic func-
tions. Proceedings of the American Mathematical Society, 16(1):109–114, 1965.
doi:10.1090/S0002-9939-1965-0174934-9.

[22] Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. Sublinear algorithms
for gap edit distance. In David Zuckerman, editor, 60th Annual IEEE Symposium

on Foundations of Computer Science, FOCS 2019, pages 1101–1120. IEEE, 2019.
doi:10.1109/FOCS.2019.00070.

[23] Elazar Goldenberg, Aviad Rubinstein, and Barna Saha. Does preprocessing help in fast
sequence comparisons? In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, 52nd Annual ACM Symposium on Theory

of Computing, STOC 2020, pages 657–670. ACM, 2020. doi:10.1145/3357713.3384300.

[24] Bernhard Haeupler. Optimal document exchange and new codes for insertions and dele-
tions. In David Zuckerman, editor, 60th Annual IEEE Symposium on Foundations of Com-

puter Science, FOCS 2019, pages 334–347. IEEE, 2019. doi:10.1109/FOCS.2019.00029.

[25] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of

Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

27

https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1007/BF01294132
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1145/2897518.2897577
https://doi.org/10.4230/LIPIcs.ICALP.2018.34
https://doi.org/10.1142/4838
https://doi.org/10.1093/nar/27.11.2369
https://doi.org/10.1090/S0002-9939-1965-0174934-9
https://doi.org/10.1109/FOCS.2019.00070
https://doi.org/10.1145/3357713.3384300
https://doi.org/10.1109/FOCS.2019.00029
https://doi.org/10.1006/jcss.2000.1727

[26] Michal Koucký and Michael E. Saks. Constant factor approximations to edit dis-
tance on far input pairs in nearly linear time. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, 52nd An-

nual ACM Symposium on Theory of Computing, STOC 2020, pages 699–712. ACM, 2020.
doi:10.1145/3357713.3384307.

[27] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremen-
tal string comparison. SIAM Journal on Computing, 27(2):557–582, 1998.
doi:10.1137/S0097539794264810.

[28] Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. Journal of

Computer and System Sciences, 37(1):63–78, 1988. doi:10.1016/0022-0000(88)90045-1.

[29] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, inser-
tions and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965. URL:
http://mi.mathnet.ru/eng/dan31411.

[30] David Levin and Yuval Peres. Markov Chains and Mixing Times. American Mathematical
Society, 2017. doi:10.1090/mbk/107.

[31] James H. Morris, Jr. and Vaughan R. Pratt. A linear pattern-matching algorithm. Technical
Report 40, Department of Computer Science, University of California, Berkeley, 1970.

[32] Timothy Naumovitz, Michael E. Saks, and C. Seshadhri. Accurate and nearly optimal
sublinear approximations to ulam distance. In Philip N. Klein, editor, 28th Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2017, pages 2012–2031. SIAM, 2017.
doi:10.1137/1.9781611974782.131.

[33] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

[34] Rafail Ostrovsky and Yuval Rabani. Low distortion embeddings for edit distance. Journal
of the ACM, 54(5):23, 2007. doi:10.1145/1284320.1284322.

[35] Barna Saha. The Dyck language edit distance problem in near-linear time. In 55th Annual

IEEE Symposium on Foundations of Computer Science, FOCS 2014, pages 611–620. IEEE,
2014. doi:10.1109/FOCS.2014.71.

[36] Haoyu Zhang and Qin Zhang. Embedjoin: Efficient edit similarity joins via embeddings. In
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD 2017, pages 585–594. ACM, 2017. doi:10.1145/3097983.3098003.

28

https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0022-0000(88)90045-1
http://mi.mathnet.ru/eng/dan31411
https://doi.org/10.1090/mbk/107
https://doi.org/10.1137/1.9781611974782.131
https://doi.org/10.1007/BF01305237
https://doi.org/10.1145/1284320.1284322
https://doi.org/10.1109/FOCS.2014.71
https://doi.org/10.1145/3097983.3098003

	1 Introduction
	2 Preliminaries
	3 Quadratic Gap Edit Distance
	3.1 Proof of prp:aplce

	4 Improved Approximation Ratio
	4.1 Proof of prp:batch

	5 PTAS for Aperiodic Strings
	6 Random Walk over Samples
	7 Embedding Edit Distance to Hamming Distance

