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Abstract

In this article, we propose a new class of priors for
Bayesian inference with multiple Gaussian graph-
ical models. We introduce Bayesian treatments
of two popular procedures, the group graphical
lasso and the fused graphical lasso, and extend
them to a continuous spike-and-slab framework to
allow self-adaptive shrinkage and model selection
simultaneously. We develop an EM algorithm that
performs fast and dynamic explorations of poste-
rior modes. Our approach selects sparse models
efficiently and automatically with substantially
smaller bias than would be induced by alternative
regularization procedures. The performance of
the proposed methods are demonstrated through
simulation and two real data examples.

1. Introduction

Bayesian formulations of graphical models have been
widely adopted as a way to characterize conditional inde-
pendence structure among complex high-dimensional data.
These models are popular in scientific domains including ge-
nomics (Briollais et al., 2016; Peterson et al., 2013), public
health (Dobra, 2014; Li et al., 2017b), and economics (Do-
bra et al., 2010). In practice, data often come from several
distinct groups. For example, data may be collected under
various conditions, at different locations and time periods,
or correspond to distinct subpopulations. Assuming a sin-
gle graphical model in such cases can lead to unreliable
estimates of network structure, whereas the alternative, esti-
mating different graphical models separately for each group,
may not be feasible for high dimensional problems.

Several approaches have been proposed to learn graphical
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models jointly for multiple classes of data. Much of this
work extends the penalized maximum likelihood approach
to incorporate additional penalty terms that encourage the
class-specific precision matrices to be similar (Guo et al.,
2011; Danaher et al., 2014; Saegusa & Shojaie, 2016; Ma &
Michailidis, 2016). In the Bayesian literature, Peterson et al.
(2015) and Lin et al. (2017) utilize Markov Random Field
priors to model a super-graph linking different graphical
models. Tan et al. (2017) uses a logistic regression model
to link the connectivity of nodes to covariates specific to
each graph. These approaches only model the similarity of
the underlying graphs, and thus are limited in their ability
to borrow information when estimating the precision matri-
ces. Borrowing strength is especially important when some
classes have small sample sizes.

In this work, we introduce a new Bayesian formulation for
estimating multiple related Gaussian graphical models by
leveraging similarities in the underlying sparse precision
matrices directly. We first present two shrinkage priors for
multiple related precision matrices, as the Bayesian coun-
terpart of joint graphical lasso estimators (Danaher et al.,
2014). We then propose a doubly spike-and-slab mixture
extension to these priors, which allows us to achieve si-
multaneous shrinkage and model selection, as well as han-
dle missing observations. In Section 5 and 6, we extend
from the recent literature on deterministic algorithms for
Bayesian graphical models (Gan et al., 2018; Li & Mc-
Cormick, 2019; Deshpande et al., 2019) and provide a fast
Expectation-Maximization (EM) algorithm to quickly iden-
tify the posterior modes. We also propose a procedure to
sequentially explore a series of posterior modes. We then
demonstrate the substantial improvements in both model
selection and parameter estimation over the original joint
graphical lasso approach using both simulated data and two
real datasets in Section 7. Finally, in Section 8 we discuss
future directions for improvements.

2. Preliminaries
2.1. The joint graphical lasso

We first briefly introduce the notation used throughout this
paper. We let G denote the number of classes in the data,
and let 2, and X, denote the precision and covariance

matrix for the g-th class. We let w](.i) denote the (j, k)-th



Bayesian Joint Spike-and-Slab Graphical Lasso

element in 2, and w;j, = {wﬁ)}gzl ,,,,, & denote the vector
of all the (j, k)-th elements in {Q2}. Suppose we are given
G datasets, X1, ..., X (@) where X9 is a n, x p matrix
of independent centered observations from the distribution
Normal(0, ©2;'). As maximum likelihood estimates of £2,,
can have high variance and are ill-defined when p > ng, the
joint penalized log likelihood for the G dataset is usually
considered instead:

L{}) = anlogdetﬂ — tr(SyQy) — pen({Q}),

g 1
(D
where S, = (X@)T X (9). The penalty function encour-
ages {2} to have zeros on the off-diagonal elements and be
similar across groups. In particular, we consider two useful
penalty functions studied in Danaher et al. (2014), the group
graphical lasso (GGL), and the fused graphical lasso (FGL):
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pen({2}) =

where pen(wji) = |[|wjx||2 for GGL and >_ _ |w§.i) -

w](.i/) | for FGL. Both penalties encourage similarity across
groups when A2 > 0, and reduce to separate graphical
lasso problems when \s = 0. The group graphical lasso
encourages only similar patterns of zero elements across
the G precision matrices, while the fused graphical lasso
encourages a stronger form of similarity: the values of oft-
diagonal elements are also encouraged to be similar across
the G precision matrices. In practice, A is typically set to O
when the diagonal elements are not to be penalized.

2.2. Bayesian formulation of Gaussian graphical
models

One of the most popular approaches for Bayesian infer-
ence with Gaussian graphical models is the G-Wishart
prior (Lenkoski & Dobra, 2011; Mohammadi et al., 2015).
The GG-Wishart prior estimates the precision matrices with
exact zeros in the off-diagonal elements and enjoys the con-
jugacy with the Gaussian likelihood. However, posterior
inference under the G-Wishart prior can be computationally
burdensome and has to rely on stochastic search algorithms
over the large model space, consisting of all possible graphs.
In recent years, several classes of shrinkage priors have been
proposed for estimating large precision matrices, including
the graphical lasso prior (Wang, 2012; Peterson et al., 2013),
the continuous spike-and-slab prior (Wang, 2015; Li et al.,
2017b), and the graphical horseshoe prior (Li et al., 2017a).
This line of work draws direct connections between penal-
ized likelihood schemes and, as their names suggest, the
posterior modes in a Bayesian setting. Unlike the G-Wishart

prior, these shrinkage priors do not take point mass at zero
for the off-diagonal elements in the precision matrix, and
thus usually lead to efficient block sampling algorithms with
improved scalability. However, fully Bayesian procedures
still need to rely on stochastic search to achieve model se-
lection, making it less appealing for many problems.

To address this issue, deterministic algorithms have been
proposed to perform fast posterior exploration and mode
searching in Gaussian graphical models (Gan et al., 2018; Li
& McCormick, 2019; Deshpande et al., 2019). Motivated by
the EMVS (Rockové & George, 2014) and spike-and-slab
lasso (Rockova & George, 2018) procedures in the linear
regression literature, the idea is to use a two-component mix-
ture distribution, i.e., spike-and-slab priors, to parameterize
off-diagonal elements in the precision matrix, which allows
simultaneous model selection and parameter estimation. We
will utilize a similar strategy for model estimation in this

paper.

3. Bayesian joint graphical lasso priors

We first provide a Bayesian interpretation of the group and
fused graphical lasso estimators. From a probabilistic per-
spective, it is well understood that estimators that optimize
a penalized likelihood can often be seen as the posterior
mode estimator under some suitable prior distributions. The
Bayesian counterpart to (2) can be constructed by placing
the prior p({Q2}) x exp(—pen({Q})) on the precision ma-
trices. Following directly from the Bayesian representation
of lasso variants demonstrated in Kyung et al. (2010), we
can rewrite p({€2}) as products of scale mixtures of normal
distributions on the off-diagonal elements. That is, for the
GGL prior, we can let

p({Q}7,p) = C; ), [ ] Normal(w;y; 0, (©7)) ")
j<k
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where C , is a normalizing constant and M/ denotes the

space of symmetric positive definite matrices. The normal-

izing constant is analytically intractable due to this con-

straint, but it cancels out in the marginal distribution of
p({€2}). Such cancellation has been studied by several au-
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thors (Wang, 2012; 2015; Liu et al., 2014). Similarly, the
FGL prior can be defined as

p({Q}|7,¢) = 7} T Normal(w;; 0, (©%7) ")

j<k
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It is also worth noting that both of the above priors are
proper, and we leave the proof of the following proposition
in the supplement.

Proposition 1. The priors defined in (3) — (5) and (6) — (8)
are proper and the posterior mode of {2} is the solution of
the group and fused graphical lasso problem with penalty
terms defined in (2).

4. Bayesian joint spike-and-slab graphical
lasso priors

The Bayesian formulation of the joint graphical lasso prob-
lems discussed in the previous section provide shrinkage
effects at the level of both individual precision matrices and
across different classes. However, two issues remain. First,
shrinkage priors alone do not produce sparse models since
the posterior draws are never exactly 0. Thus, additional
thresholding is needed to obtain a sparse representation of
the graph structure. Second, the fixed penalty term, A\; and
A2 may be too restrictive, as the non-zero elements in {2}
are penalized equally to elements close to zero (Li & Mc-
Cormick, 2019). To reduce the bias from over-penalizing
the large elements, different hyper-priors on A; have been
proposed to adaptively estimate the penalty term in Bayesian
graphical lasso (Wang, 2012; Peterson et al., 2013).

Here we address both challenges simultaneously using
the spike-and-slab approaches in Bayesian variable selec-
tion (George & McCulloch, 1993). In particular, we employ
a set of latent indicators to construct a “selection” prior
on both the group level and within-groups for the similar-
ity penalties. We first let binary variables 6 = {01} <k
denote the existence of each edge in the graph, indexing
the 2P(P=1)/2 possible models at the group level, so that
;% = 1 indicates the (7, k)-th edge is selected for all pre-
cision matrices. We then let another set of binary variables

& = {&k}j<k denote the non-existence of ‘similarities’
among the elements in the same cell of different precision
matrices, so that ;, = 0 indicates the (j, k)-th element is
expected to be similar. We use the term ‘similarity’ here
as a broad term parameterized by Ao, since the behavior
of the similarity depends on the form of the penalization.
Conditional on the two binary indicators, we replace the
fixed penalty parameters A\; and Ay by a mixture of edge-
wise penalties that take values from {\; /v, A1/v1}, and
{A2/v0, A2 /v } respectively, with fixed vy > vg > 0. That
is, we introduce the following penalties conditional on §
and &, and we propose the doubly spike-and-slab extensions
to GGL and FGL as

A°zz»wnw Yyl kel
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where pen(wjy) is defined as before and & = &ikdjk- The
prior defined in (9) relate to the unconditional penalties by

pen({Q2}) = pen({Q2}]0,£) — log(p(d,£)), and we will
refer to them as DSS-FGL and DSS-GGL.

In practice, we find it usually reasonable to enforce all ele-
ments from the spike distribution to also be similar, since
the spike distribution is always chosen to have large penal-
ization and leads to posterior modes at exactly 0. However,
other types of element-wise dependence between 05, and
&;1 are also possible with minor modifications. For example,
we can also fix ;1 to be 1, so that the two penalty terms
will always be proportional. We refer to this setting as spike-
and-slab group and fused lasso (SS-GGL and SS-FGL) and
discuss their behavior in the supplements.

The original GGL and FGL suffer from the same bias in-
duced by the excessive shrinkage of lasso estimates. With
the introduction of vy and v;, we can adaptively estimate
which wjy, to penalize in a data-driven way. As we discuss
in more detail in Section 6, this adaptive shrinkage prop-
erty can indeed significantly reduce bias imposed on the
lasso penalty. That is, by choosing the hyperparameters
so that A\; /vy > \;/v1, we impose only minimal shrink-
age on values arising from the slab distribution. From now
on, in order to avoid confusion from the overparameteri-
zation, we always fix v; = 1, and report results with the
effective shrinkage parameters \; /v;,4,j € {1,2}. At this
point, it may still seem that we need introduced one more
hyperparameter that needs to be tunned, but as we show in
Section 6, model selection can be achieved automatically
without cross-validation.

For a Bayesian setup, we employ standard priors on the
binary indicators to allow the edges to further share infor-
mation on the sparsity level. The full generative model for
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{Q} is:

p({2}18,€,0) = Cy ' C5 ¢ exp(—pen({02}16, £)) 1iaye(nr+)
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where 0 denote (7, p) for DSS-GGL, and (7, ¢) for DSS-
FGL. Cs ¢ is another intractable normalizing constant. We
put standard Beta hyperpriors on the sparsity parameters so
that 5 ~ Beta(aq,b,) and mg ~ Beta(asz, b2). Throughout
this paper, we let a; = a; = 1 and b; = by = p.

Additionally, the above prior can be easily reparameterized
with scale mixture of normal prior distributions similar as
before by modifying the precision matrix ® into the follow-
ing form, and they can be shown to be proper priors (the
proofs can be found in the supplement):

v§ . Ve
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049 = T Bingg’ 9 #g
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' Pik  Tikg

Proposition 2. The priors defined in (10) — (13) are proper,
and the posterior mode of {§2} is the solution to the cor-
responding spike-and-slab version of joint graphical lasso
penalties.

Finally, it is straightforward to see that the proposed DSS-
GGL and DSS-FGL penalties reduce to their non spike-and-
slab counterparts when § and & are fixed to be 1. Several
other spike-and-slab formulations in the literature can be
seen as the special case of this prior when G = 1 as well.
For example, the spike-and-slab mixture of double exponen-
tial priors considered in Deshpande et al. (2019) is a special
case with A2 = 0. The spike-and-slab Gaussian mixtures
in Li & McCormick (2019) can also be considered as a spe-
cial case where we further fix 714 = co. This approach is
also related to the work on sparse group selection in linear
regression, as has been discussed in Xu et al. (2015) and
(Zhang et al., 2014). As opposed to the point mass priors
for the spike distribution commonly in the literature, our
doubly spike-and-slab formulation of continuous mixtures
allows the spike distribution to absorb small non-zero noises
and facilitates fast dynamic explorations, as we will show
in Section 6.

5. Model estimation

Given fixed A1, A2, and vy, The representation of p({2})
with the scale mixture of normal distributions allows the

posterior to be sampled using a block Gibbs algorithm,
as described in the supplement. However, choosing the

‘hyperparameters can usually be a nontrivial task. In-

stead, we focus on faster deterministic methods to detect
posterior modes under different choices of hyperparame-
ters (Rockova & George, 2014). We present an EM al-
gorithm that maximizes the complete-data posterior dis-
tribution p({2}, 9, &, ms, m¢| X ) by treating the binary la-
tent variables as “missing data.” Similar ideas have been
explored in recent work for linear regression (Rockova
& George, 2014; 2018) and single graphical model es-
timation (Deshpande et al., 2019; Li & McCormick,
2019). Our EM algorithm maximizes the objective func-
tion E&El{n}(t)7ﬂ§t)’ﬁét>7x(logp({ﬂ}, s, me| X)) by iter-
ating between the E-step and M-step until changes in {2}
are within a small threshold.

In the E-step, we compute the conditional expectation terms
in the objective function. It turns out that it suffices to find
the conditional distribution of (&;x, &;%). The corresponding
cell probabilities are proportional the the following mixture
densities:

pgjk,éjk (J, k) o

s (1 — mg) 32224h(v1, o) djk =1,&xk =0
ToTe Aqlé\Q@/’(”la”l) Ojr =1,k =1
(1 —ms)(1 —mg) /\ié\z (vo,v0) Gk =0,&x =0

where 9 (a,b) = exp(—A1 3, |[w\?|/a — Aapen(wjr) /b).

It is interesting to note that the three scenarios above repre-
sent three types of relationships among w;: weak shrink-
age but strong similarity, weak shrinkage and weak simi-
larity, and strong shrinkage across classes. F.|.(d;x) and
E.|.(&;x) are then simply the marginal probabilities in this 2
by 2 table, i.e., E|.(0;r) = pio(Jj, k) + pi1(j k), and
E (&) = E.(0k&k) = pii1(j, k). The EM algo-
rithm also handles missing cells in X naturally. Assum-
ing missing at random, the expectation can also be taken
over the space of missing variables, by additionally comput-
ing E.1.(tr(8,8,)) = tr(E..(X9)TX9)Q,)), using
the conditional Gaussian distribution of wz(’gy)mss |wggo)bs. We
relegate the derivations of the objective function to the sup-
plement.

Given the expectations calculated in the E-step, one might
proceed with conditional maximization steps using gradi-
ent ascent similar to the Gibbs sampler (Li & McCormick,
2019). Alternatively, since the maximization step is equiva-
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lent to solving the following joint graphical lasso problem:

{2} = argmax g, Z Ztr(SgQg)
9
_ N ZZ W)
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meaning we can use the ADMM algorithm described
in Danaher et al. (2014).

6. Dynamic posterior exploration

The algorithm proposed in the previous section requires a
fixed set of hyperparameters, (Ao, A1, A2, Vo). The posterior
is relatively insensitive to the choice of Ay as long as it is
not too large (Wang, 2015). Furthermore, unlike the original
joint graphical lasso, where two tuning parameters need to
be selected using cross-validation or model selection crite-
rion, it turns out that we can leverage the self-adaptive prop-
erty from the doubly spike-and-slab mixture setup to achieve
automatic tuning using a path-following strategy (Rockova
& George, 2018). Specifically, we consider a sequence of de-
creasing vg = {v{, ..., v} } and some small \; and \o. We
initiate {2} so that Q49 = (S,/ny + cI)~', and iterative
estimate {2}, with vy = v},. After fitting the I-th model, we
use the estimated graph structure to warm start the ({4 1)-th
model by initiating €2, to be 49 o 1%>0, where lf§>0 de-
notes the group level graph structure at the [-th iteration. As
v decreases, the shrinkage imposed on the spike elements
steadily increases and leads to sparser models. As noted
in Rockovd & George (2018), the solution path from such
dynamic reinitialization procedure usually ‘stabilizes’ as vg
becomes closer to 0 in linear regression. We found similar
behavior in our spike-and-slab joint graphical lasso models
too, as illustrated in Figure 1.

To demonstrate the dynamic posterior exploration in ac-
tion, we simulated a small dataset from two classes, with
ng = 150 for g = 1,2, and p = 100. The two underlying
graphs differ by 5 edges: The first precision matrix con-
tains a 10-node block with an AR(1) precision matrix where
QY plj M and p1 = 0.7; the second precision ma-
trix in the second class contains a common 5-node AR(1)
block with po = 0.9. The rest of the nodes are all inde-
pendent. We fit the fused graphical lasso with a sequence
of A1, and fixed A\ = 0.1, which leads to the best perfor-
mance in this experiment; and DSS-FGL with A\; = 1, and
Ao = 1. Figure 1 shows the FGL and DSS-FGL solution
path. Unlike the continuous shrinkage of FGL, the zero

and non-zero elements under DSS-FGL tend to be separated
into two stable clusters as the effective shrinkage A1 /v in-
creases beyond a critical point. Danaher et al. (2014) noted
that graph selection using AIC tends to favor large models.
This example also confirms this observation as the likeli-
hood evaluation for smaller models suffers from the overly
aggressive shrinkage. In this example, AIC selects 27 edges
in both classes, leading to 41 false positives. Assuming
we know the true graphs, the best model in terms of edge
selection along the FGL solution path contains one false neg-
ative edge as shown in Figure 1. However, without accurate
prior knowledge of graph sparsity, correctly identifying this
model is typically difficult, if not impossible. On the other
hand, the stable model from the DSS-FGL solution path
yields 4 false positive edges in the second graph, but with
clear visual separation from the regularization plot: only one
false positive edge stabilizing to a larger value away from
0. Thus in practice, the solution path also provides a visual
tool to threshold the small values close to 0. Additionally,
the bias of the final precision matrices compared to the truth
is also much smaller than the best FGL solution.

We also find that the converged region is insensitive to the
choice of A1 and A, in all our experiments, as the model
allows a flexible combination of shrinkage through the adap-
tive estimation of p*. The supplement includes an empirical
assessment of sensitivity in the simulation experiments.

7. Numerical results

Simulation experiments To assess the performance of
the proposed models, we consider a three-class problem
similar to the study carried out in Danaher et al. (2014). We
first generate three networks with p = 500 features with
10 equal sized unconnected subnetworks following power
law degree distributions. Exactly one and two subnetworks
are removed from the second and third class. The details
of the data generating process can be found in the supple-
ment. The results comparing the proposed model and joint
graphical lasso are shown in Figure 2. As discussed be-
fore, the DSS-FGL and DSS-GGL achieve model selection
automatically. Thus we compare the selected models with
the average curve of FGL and GGL under different tuning
parameters. Figure 2(a) and (c) show that DSS-FGL and
DSS-GGL usually achieves better structure learning per-
formance for both identifying edges and differential edges.
The differential edges are defined as the edges for the (g, g')

pair with |w?) — (q 9| > 0.01. Figure 2(b) and (d) demon-
strate the blas d1m1nlsh1ng property of the proposed models
compared to the joint graphical lasso estimator at varying
sparsity levels, measured by the number of edges in (b) and
L1 norm of the estimator in (d). On average, both the sum
of bias as measured by the Frobenius norm, HQg —Q|F,
and the Kullback-Leibler (KL) divergence achieved by the
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Figure 1. The solution paths and estimated precision matrices of FGL (upper row) and DSS-FGL (lower row). The red nodes correspond
to true edges and the gray nodes correspond to 0’s. The two vertical lines in the FGL solution path indicate the model that best matches
the true sparsity (left) and the model with the lowest AIC (right). The block containing the edges is plotted for the estimated values (upper
triangular) against the truth (lower triangular). The model that best matches the true graphs is plotted for FGL. The off-diagonal values are
rescaled and negated to partial correlations, and 0’s are colored with light gray background for easier visual comparison. The bias of the
estimated precision matrix as measured by the Frobenius norm, ||f2_q — Q|| F, is also printed in the captions.

proposed model is much smaller.

Symptom networks of verbal autopsy data We applied
the DSS-FGL and DSS-GGL to a gold-standard dataset of
verbal autopsy (VA) surveys (Murray et al., 2011). VA sur-
veys are widely adopted in countries without full-coverage
civil registration and vital statistics systems to estimate
cause of death. They are conducted by interviewing care-
giver of a recently deceased person about the decedent’s
health history. The standard procedure of preparing the col-
lected data is to dichotomize all continuous variables into
binary indicators and many algorithms have been proposed
to automatically assign causes of death using the binary
input (Byass et al., 2012; Serina et al., 2015; McCormick
et al., 2016). However, more information may be gained by
modeling the continuous variables directly (Li et al., 2017b).
Here we focus on modeling the joint distribution of the
continuous variables. The 27 continuous variables in this
dataset contain representations of the duration of symptoms,
such as response to the question ‘how many days did the
fever last’, and age of the decedents. It is usually reasonable
to assume the response to these questions are jointly dis-
tributed in similar ways conditional on each cause of death.
We take the raw responses and transform raw duration x;;

by log(x;; + 1). We then let Xz(jg ) denote the j-th trans-
formed variable for observation ¢ due to the cause g. The
full dataset contains death assigned to 34 causes. We applied
DSS-FGL with Ay = Ao = 1 to the three largest determined
causes of death in this data: Stroke (n = 630), Pneumonia
(n = 540), and AIDS (n = 542) in Figure 3. The estimated
graphs under other models are discussed in the supplement.
Both DSS-FGL and DSS-GGL estimated similar graphs and
discovered interesting differential symptom pairs, such as
the strong conditional dependence between the duration of
illness and paralysis in deaths due to stroke. Further incorpo-
rating the DSS-FGL and DSS-GGL formulation of multiple
precision matrices into a classification framework would
likely improve accuracy over existing methods (e.g. Mc-
Cormick et al. (2016); Byass et al. (2012)) for automatic
cause-of-death assignment.

Prediction of missing mortality rates Beyond structure
learning, the bias reduction in estimating {2} also makes
the proposed method more appealing for prediction tasks
involving sparse precision matrices. In this example, we
illustrate the potential of using the proposed methods to im-
pute missing mortality rates using a cross-validation study.

(9) 45 the log transformed

We construct the data matrices X, J
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Figure 2. Performance of FGL, GGL, DSS-FGL, and DSS-GGL over 100 replications. The dots represent the metrics for the 100 selected
models under DSS-FGL and DSS-GGL, and the lines represent the average performance of FGL and GGL over 100 replications under

different tuning parameters.
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Figure 3. Estimated edges between the symptoms under the three causes using DSS-FGL. The width of the edges are proportional to the

; (9)
size of |wy

central mortality rate of age group j in year % for subpop-
ulation g (e.g., male and female). Standard approaches in
demography, such as the Lee-Carter model (Lee & Carter,
1992), typically use dimension reduction techniques to es-
timate mean effects due to age and time, and consider the
residuals as independent measurement errors. However,
residuals from such models are usually still highly corre-
lated (Fosdick & Hoff, 2014). We consider estimating the
residual structure with the 1 x 1 gender-specific mortality ta-
ble up to age 100 in the US over the period of 1960 to 2010
using data obtained from the Human Mortality Database
(HMD) (University of California, Berkeley (USA), and Max
Planck Institute for Demographic Research (Germany)). For
both the male and female mortality, we first randomly se-
lected 25 years and remove 25 data points in each of those
years. We then fit a Lee-Carter model to estimate the mean
model and interpolate the missing rates. Next, we esti-
mate the covariance matrices among the 101 age groups in
both genders using FGL and DSS-FGL from the residuals.

|. Common edges across all groups are colored in blue,

and the differential edges are colored in red.

The estimated residuals for the missing values can then be
obtained by the E-step in our EM algorithm, or as the ex-
pectation from the conditional Gaussian distributions with
covariance matrices estimated by FGL. The average mean
squared errors (MSEs) for the prediction of missing log
rates are summarized in Table 1. Imputation based on DSS-
FGL precision matrix reduces the MSE by 27.8% compared
to simple interpolation of the mean model (i.e., assuming
i.i.d errors), compared to the 6.5% reduction from the FGL
precision matrix with the same complexity. The estimated
graphs are in the supplement.

8. Discussion

In this paper, we introduced a new class of priors for joint
estimation of multiple graphical models. The proposed
doubly spike-and-slab mixture priors, DSS-FGL and DSS-
GGL, provide self-adaptive extensions to the joint graphical
lasso penalties, and achieves simultaneous model selection



Bayesian Joint Spike-and-Slab Graphical Lasso

Table 1. Average and standard deviation of the mean squared errors
from 50 cross-validation experiments. The FGL model is selected
to have the same number of edges as the DSS-FGL.

iid FGL DSS-FGL

0.00372  0.00348 0.00268
0.00030 0.00031 0.00028

Average MSE
SE of the MSEs

and parameter estimation. Moreover, while taking advan-
tage of the flexible class of penalty functions, the dynamic
posterior exploration procedure allows the penalties to be
adaptively estimated in a data-driven way, thus freeing prac-
titioners from choosing multiple tuning parameters. This
is especially useful in domains where sample sizes are too
small to reliably perform cross-validation. Finally, addi-
tional procedures such as multiple random initializations
and deterministic annealing may be further incorporated
into the proposed algorithm to better explore the posterior
surface. While not discussed in the main paper, we note that
the posterior uncertainty may be estimated using the Gibbs
sampler described in the supplement.

The proposed framework can be extended in a few direc-
tions. First, we have assumed all classes to be exchangeable,
as reflected in the penalty functions for the between-class
similarity. When the classes exhibit hierarchical structures
or different strengths of similarities, the indicator £ may
be modeled as functions of the class membership as well.
Markov Random Field priors discussed in Saegusa & Sho-
jaie (2016) and Peterson et al. (2015) may also be used to
model the between-class similarities. Second, we have con-
sidered the estimation of missing values in the data matrices.
It is also straightforward to extend to data with missing class
labels. In this way, the proposed methods can be extended
to classification or discriminant analysis based on sparse
precision matrices (Hao et al., 2016). Finally, the proposed
model is estimated using an EM algorithm that is iteratively
solving the joint graphical lasso problem. It may be interest-
ing to construct coordinate ascent algorithms that optimize
on the objective function directly, similar to that described
in Ro¢kova & George (2018) for linear regression.

The codes for the proposed algorithm are available at
https://github.com/richardli/SSJGL.
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