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A B S T R A C T

Dynamical equations form the basis of design for manufacturing processes and control systems; however,
identifying governing equations using a mechanistic approach is tedious. Recently, Machine learning (ML) has
shown promise to identify the governing dynamical equations for physical systems faster. This possibility of
rapid identification of governing equations provides an exciting opportunity for advancing dynamical systems
modeling. However, applicability of the ML approach in identifying governing mechanisms for the dynamics
of complex systems relevant to manufacturing has not been tested. We test and compare the efficacy of two
white-box ML approaches (SINDy and SymReg) for predicting dynamics and structure of dynamical equations
for overall dynamics in a distillation column. Results demonstrate that a combination of ML approaches should
be used to identify a full range of equations. In terms of physical law, few terms were interpretable as related
to Fick’s law of diffusion and Henry’s law in SINDy, whereas SymReg identified energy balance as driving
dynamics.
1. Introduction

Mathematical models have formed the foundation of chemical en-
ineering and manufacturing systems for several decades in order to
esign, optimize and control the processes (Rasmuson et al., 2014).
mong these models, identification of system dynamics is a critical
omponent, that mainly relies on first principal methods to understand
he underlying mechanisms driving dynamics. With the increased focus
n reducing greenhouse gas emissions to combat climate change, there
s an increased push towards adopting novel manufacturing processes
uch as biobased or waste recycling. In order to design and safely
perate these novel systems, understanding the mechanisms driving the
ynamics is crucial.
However, discovering governing dynamical equations from first

rinciples is difficult and slow as we need to simplify the model to
ake it more tractable while ensuring that the skeletal form still
reserves the salient features of the complete model (Carrier, 1967;
ollkind & Dichone, 2018). This can sometimes take many decades
o establish equations such as in fluid dynamical equations (Lin &
egel, 1988), which can delay the adoption of novel manufacturing
nits. Sometimes, the system is highly complex and deriving a single
overning dynamical equation for the whole system seems infeasible
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such as in the distillation column units (Kumar et al., 1983). Fur-
ther, system identification of nonlinear systems poses another set of
challenges where mainly black box models such as artificial neural net-
works have been used (Krishnapura & Jutan, 1997; Prasad & Bequette,
2003). While these models can give a good predictive model for state
variables, it does not provide insights into the mechanisms driving the
dynamics. With the existing challenges of system identification using
first principle approach and lack of insights into mechanisms using
black-box models, data-driven approach such as machine learning (ML)
using white-box models to identify governing dynamical equations
have been proposed recently. This data-driven discovery of governing
equations has been shown to perform well for extracting the equations
of fluid dynamics such as NVS (Raissi & Karniadakis, 2018), Lorenz
systems (Brunton et al., 2016), chemical reaction kinetics (Hoffmann
et al., 2019) networks and Burgers equation (Rudy et al., 2019) or also
used for extracting reduced kinetic equations that can capture whole
dynamics (Harirchi et al., 0000). Different classes of ML algorithm
that have been used are symbolic regression (Bongard & Lipson, 2007;
Schmidt & Lipson, 2009), sparse identification of nonlinear dynamics
based on lasso regression (Schaeffer et al., 2013), neural networks
informed by physics (Lee et al., 2018a), equation-free modeling (Bindal
et al., 2006), genetic programming (Koza, 1992) etc. The recent studies
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that have shown promising results on identifying governing equations
for dynamics of physical systems from fast data-driven approach may
also prove beneficial to identify governing dynamical equations for
complex manufacturing units. Therefore, we propose to use white-box
ML approach to identify governing dynamical equations for complex
manufacturing systems.

For the white-box ML algorithms, a basic guiding principle is to
relate the depiction of dynamics using the state space representation
of each system variables as a combination of variables to capture
the dynamics. So far, most of these algorithms have been tested on
well-known equations (such as Lorenz, NVS etc.) or for extraction of
dynamics in cases where the mechanism is easy to elucidate (such
as rate kinetics dependent on the law of mass action in Hoffmann
et al., 2019). In this work, we demonstrate the efficacy of such data-
driven ML approach on a complex manufacturing unit of distillation
column, which is a ubiquitous unit in chemical, pharmaceutical and
food manufacturing systems. The system studied is an extractive distil-
lation column for binary separation. We test two different white box ML
algorithms: SINDy and SymReg and compare the identified governing
dynamical equations for prediction accuracy and interpreting the terms
for mechanisms that drive dynamics. The standard procedure of cross-
validation is followed to identify the best model, and the model is tested
for accuracy using Root Mean Square Error (RMSE). The results from
prediction of dynamics are promising, as both SINDy and SymReg show
good predictions. We also test different scenarios (such as changing
the operation parameters for distillation column), in order to test the
robustness of algorithms, which also shows promising results. Finally,
in terms of mechanism elucidation, we find that SINDy and SymReg
capture different mechanisms due to the nature of operation of these
methods. Hence, we propose that a combination of white-box ML ap-
proaches should be used to identify governing equations for unknown
physical systems and use the results to narrow down physical testing to
verify the mechanisms. This approach will result in fine-tuning and cost
savings for designing experiments to verify physical laws governing the
dynamics of unknown systems.

Rest of the paper is organized as follows: In Section 2, we discuss
related work on modeling the dynamics of distillation column and
examples of ML approach for identification of governing dynamics.
In Section 3, we explain our methodology and the white-box ML
approaches — SINDy and SymReg. Next in Section 4, we explain the
set up of the physical system and simulations using dynamic process
flow simulation of the extractive distillation column built in ASPEN
dynamics to generate data set followed by details of model training
and selection in Section 5. In Section 6, we discuss our results and
observations from testing, along with explanations on the differences
for SINDy and SymReg for identified equations. We finally discuss
the key takeaways and the prospects for future research on extending
white-box ML approaches for manufacturing systems in Section 7.

2. Related work on modeling dynamics of distillation column and
machine learning applications for dynamics

A review on extractive distillation by Gerbaud(Gerbaud et al.,
2019), explains the current status of process design, operation, opti-
mization and control of extractive distillation columns. Dynamics in
distillation columns arise primarily due to liquid and vapor holdups
(effected by fluid dynamics or pressure dynamics), tray hydraulics and
changes in physical properties (effected by thermodynamics). A rigor-
ous model for distillation columns dynamics was developed by (Gani
et al., 1986). This generalized dynamical model is derived from first
principles and thoroughly models tray hydraulics and holdups. It
involves a set of non-linear ordinary differential equations written for
every tray based on material and energy balances, vapor–liquid equi-
librium models, Murphee tray efficiency coefficient, Bernoulli equation
for friction losses, tray hydraulics models (Bolles, 1988; Lockett &
Banik, 1986; Stichlmair & Hofer, 1978), froth density correlation (Ben-
nett et al., 1983), flow over weir given by the modified Francis
2

weir formula (Green & Perry, 2007) and pressure drop correlations
derived (Richardson et al., 1983). An alternate rate-based model de-
veloped by Retzbach (1986) (Retzbach, 1986) has mass transfer corre-
lations, hydraulic and pressure drop correlations. This models multi-
component mixtures and is used extensively in simulations. These
highly complex models describe the dynamics precisely and is capa-
ble of making accurate predictions. However, these models involve
simultaneously solving nonlinear differential equations, numerical in-
tegrations, parameter fitting and root-finding methods and present
challenges for use in real-time predictions similar to the CFD limi-
tations (Ding et al., 2019; Skogestad, 1992). Overviews of different
rigorous models developed with different underlying assumptions are
available in (McAvoy & Wang, 1986; Rademaker, 1975; Rosenbrock,
1962; Tolliver & Waggoner, 1980). Some simplifications have been
used for distillation dynamics (Berber & Karadurmus, 1989; Choe &
Luyben, 1987; Gani et al., 1986; Kapoor & McAvoy, 1988; Pantelides
t al., 1988), however these models are not very accurate and give
arge deviations, especially in low pressure (vacuum) and high-pressure
olumns (Choe & Luyben, 1987).
Recently with the advent in machine learning, non-parametric mod-

els have been developed for the distillation process. These data-driven
models use input–output data to identify the system without using first
principles and can thus be made less complex. ANN (artificial neural
networks) are increasingly being employed for this purpose (Macmur-
ray & Himmelblau, 1995). Further, these data driven models have been
shown to perform better than simplified models in terms of predictive
capabilities and are computationally faster than rigorous models due
to their parallelizability. These methods also do not require detailed
domain-specific theory and assumptions. Unlike the previous models
which are built either for individual trays or by treating groups of trays
as sections, ANN models can be built for the entire column also (Singh
et al., 2005, 2007). Other recent applications and potential of using
machine learning approaches in chemical engineering have also been
discussed by Lee et al. (2018b) and Venkatsubramanian (Venkatasub-
ramanian, 2019). However, data-driven approaches using ANN, yield
black box models which, despite having very good predictive capabil-
ities do not provide much insight about the underlying mechanisms
driving dynamics, thus limiting insights into design for improvement.
This might be a drawback in systems which evolve or whose parameters
(which were not modeled but kept as constants during the training
phase) change. The developed model, unlike in the case of first princi-
ples becomes obsolete and needs to be developed again from scratch.
Hence, there is a trade-off between utilizing first principle based dy-
namical equations and black-box data driven models which can be
overcome by using the white-box ML approach such as SINDy (Brunton
et al., 2016) or Symbolic Regressions (Zames et al., 1981) that can
provide underlying equations governing dynamics. However, how good
these white-box ML approaches are in elucidating the basic mechanisms
driving dynamics of manufacturing systems is still an open question
which we address in this paper. The white-box ML approach is expected
to fill the need for creating models capturing dynamics which are
(1) simple and computationally inexpensive (2) have good predicting
abilities (capture the complexities of the process) (3) provide insights
about the governing mechanisms for dynamical predictions (4) require
little domain knowledge during the development phase and (5) can be
modified fast according to the changes in the system, which is crucial
for evolving manufacturing systems. SINDy method has been shown to
perform extremely well for systems such as fluid dynamics/chemical
kinetics (Brunton et al., 2016; Hoffmann et al., 2019) and can balance
model complexity with model accuracy while SymReg method also
generates models without any assumptions on model structure and has
recently been successfully applied on prediction of continuous (/me-
chanical) dynamical systems (Gout et al., 2018; Quade et al., 2016).
The strengths of these approaches motivates our study to develop an
approach for using these algorithms on manufacturing systems and also
test their efficacy. We explain these methods in Sections 3.1 and 3.2 .
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3. Methodology

In order to extract the governing equations for overall dynamics
of the distillation column, we follow a hybrid methodology. We chose
two white box machine learning approaches, SINDy and SymReg, and
applied these techniques on time series data generated for distilla-
tion column in ASPEN dynamics. Hence, our methodology utilizes
mechanistic models to generate time series data and ML methods to
construct governing equations depicting the mechanistic dynamics.
The results from two different ML approaches are then compared for
performance and identification of mechanisms driving the dynamics.
We first describe the ML algorithms SINDy (Section 3.1) and SymReg
(Section 3.2) followed by simulation details of distillation column
dynamics (Section 4) and model selection in Section 5. In this work,
we do not modify the original SINDy and SymReg algorithm because
our goal was to test the hypothesis of the efficacy of these algorithms
in extracting underlying mechanisms that govern dynamics for systems
with unknown governing principles.

3.1. Sparse identification of non-linear dynamics: White box machine learn-
ing approach 1

Sparse Identification of Non-Linear Dynamics or SINDy is a sparse
regression based ML methodology that works under the assumption
that the governing equations of most dynamical systems can be de-
scribed in sparse dimensions that can capture the essential dynamics of
the complex system. Hence, these equations can be considered sparse
in the function space, and the system is expected to evolve on a low
dimensional manifold. SINDy algorithm then utilizes an optimization
approach to identify these equations from time series data. Here, we
consider systems whose governing equations are non-linear ODEs of the
form given in Eq. (1).
d(𝐱(𝐭))
dt

= f(𝐱(𝐭), u(t)) (1)

In Eq. (1), 𝐱(𝐭) ∈ R𝑛 denotes the state of the system at time 𝑡,
u(𝑡) ∈ R is the external forcing variable at time 𝑡 and f (𝐱(t), u(t)) is a
linear combination of non-linear functions of x(t) and u(t). Hence, the
equation obtained for capturing the dynamics is given by Eq. (2), where
𝜃s are non-linear functions called the candidate terms of 𝑓 (𝑥, 𝑢), and 𝜉s
are the coefficients of the terms. The state of the system is given by 𝐱(t)
in Eq. (3) where 𝑥1,… 𝑥𝑛 are the n states of the system corresponding
to n state variables.

𝐱̇𝐭 = 𝛴𝑘
𝑖=1𝜉𝑖𝜃𝑖(𝐱(𝑡), 𝑢(𝑡)) (2)

𝐱(𝐭) =
[

𝑥1(𝑡) 𝑥2(𝑡) … 𝑥𝑛(𝑡)
]

(3)

SINDy algorithm builds on the assumption that most of 𝜉s in Eq. (2)
can be 0 if the system displays dynamics that can be captured by a
few functions. Hence, the goal of algorithm is to identify the very few
non-zero coefficients for terms which make up 𝑓 (𝑥, 𝑢) from a very large
set of candidates. To obtain this sparse set of functions, the SINDy
algorithm utilizes a penalty for model complexity instead of brute
forces combinatorial search, thus ensuring not to overfit the data. As
a result, the final governing equation is given by Eq. (4).

Ẋt = Θ (𝐗 (t) , u(t))Ξ (4)

where, Θ (𝐗 (t) , u (t)) ∈ R𝑚×𝑘 and can be expressed as
[

θ1 (𝐗 (t) , u(t)) θ2 (𝑿 (t) , u(t))…
]

and 𝛯 ∈ R𝑘×𝑛 can be expressed as
[

𝜉1 𝜉2 … 𝜉𝑛
]

, m is the length of time series data, n is the number
of state variables and k is the number of non-zero terms.

The sparse matrix 𝛯 is obtained by solving the least squares op-
timization problem for n state variables. A regularization term (𝛼)
is added to the objective function to implement sparsity. The ideal
regularization to force sparsity would be minimizing the 𝐿0 norm of the
coefficients (number of non zero terms in the vector). But this an NP-

hard problem (K. Natarajan, 1995), hence a ‘‘Least Absolute Shrinkage

3

and Selection Operator’’ or LASSO approach is used which minimizes
the 𝐿1 norm and also produces sparse solutions (Donoho & Elad, 2003).
The LASSO optimization problem is given by Eq. (5).

𝜉∗𝑖 = argmin
𝜉𝑖

‖

‖

‖

𝐱̇𝐢 − Θ
(

𝐗𝐭 , ut
)

𝜉𝑖
‖

‖

‖2
+ 𝛼‖𝜉𝑖‖1 i = 1, 2… 𝑛 (5)

In Eq. (5), 𝛼 is the regularization parameter which has to be tuned
in order to achieve a trade-off between accuracy and sparsity. This
optimization problem can be solved by the standard convex optimiza-
tion algorithms. We have used coordinate descent algorithm which is
available as a prebuilt function in the scikit Python library. The capa-
bility of the algorithm to capture the dynamics of the system depends
mainly on the candidate functions, 𝛩 (𝐗 (𝐭) ,𝐮 (𝐭)) provided. Some prior
knowledge of the functional form that may govern dynamics of the
process might help identify these candidate functions where domain
knowledge becomes an important aspect for applying ML appropriately.
In case, no prior knowledge is available, various combination of func-
tions such as polynomial, trigonometric etc, can be used and allow the
algorithm to identify correct functional representation; however, this is
a computationally expensive approach. Fortunately, with the advent of
computational power, this is no longer a limiting factor and has led to
explorations of data driven approaches for identifying the dynamics of
these systems.

3.2. Symbolic Regression: White Box Machine Learning Approach 2

In Symbolic Regression (SymReg), the function is determined using
genetic programming, which is an evolutionary algorithm that builds
and tests candidate functions out of simple building blocks. That is,
unlike SINDY in SymReg, no particular model is provided as a start-
ing point to the algorithm. Instead, initial expressions are formed by
randomly combining mathematical building blocks such as constants,
mathematical operators and state variables. These functions are then
modified according to a set of evolutionary rules and generations of
functions are tested until a pre-determined accuracy is achieved or any
other criteria of termination are satisfied. As compared to the SINDy
approach, SymReg is a bottom up approach that allows the algorithm
to build functions without any set rules.

As depicted in Fig. 1 symbolic regression algorithm constructs a
population of parse trees, which gradually evolves to optimal algebraic
expressions expressing the functional input–output relationship of the
data. The equation for capturing the dynamics is given by Eq. (6),
where 𝛾s are non-linear functions generated from a set of operators such
as (+, sin(), cos(), MyFunction(), . . . ) for 𝑓 (𝑥) similar to 𝜁 . The state of
the system is given by 𝑥(𝑡) as in Eq. (3). Notice how there are no 𝜉s
in Eq. (6) (as compared to Eq. (2)) because all the generated functions
from SymReg are included in the final identified dynamics equation.

Gplearn api in python was used to implement the SymReg optimiza-
tion problem with fitness measured using root mean square error (rmse)
and taking into account a parsimony coefficient of 0.01. (parsimony
coefficient is set low because algorithm has tendency to generate simple
results). Similar to SINDy, some prior knowledge of the mechanisms
that may govern dynamics of the process might help to limit the oper-
ator functions to be used in SymReg, where again domain knowledge
becomes an important aspect for applying ML appropriately.

𝐱̇𝐭 = Σ𝑘
i=1γi(𝐱(t), u(t)) (6)

We do not modify SINDy and SymReg in order to test the ap-
plicability of original algorithms purely on data without any domain
knowledge to identify system dynamics. After the set up of the problem
and system, the next step was to obtain appropriate time series data
that captures the dynamics of the physical system for which we use
mechanistic approach and simulations, described in next section.
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Fig. 1. An example of a parse tree generated for the expression 𝑥̇ = 𝑥22 +𝑥3𝑥2 + 𝑠𝑖𝑛(𝑥5).

Fig. 2. Process Flow Diagram — Distillation Column.

4. Simulations: Data Generation for applying Machine Learning to
Extract Governing Dynamical Equations

4.1. System selection and data set up for machine learning

We selected a simple extractive distillation column shown in Fig. 2
o extract governing equation for distillation dynamics using SINDy
nd SymReg. The column was modeled to recover methylcyclohexane
MCH) from a mixture of MCH and toulene. Since MCH (Boiling Point
101◦ C) and toluene (Boiling Point = 110.6◦ C) have very close boiling
oints, these cannot be separated by a conventional distillation column.
herefore, phenol (Boiling Point = 181.7◦ C) is used which has a higher
ffinity towards toluene to alter the relative volatility and promote
eparation. An equimolar mixture of MCH and toluene forming the feed
tream and a pure phenol stream are fed to the distillation column.
CH is extracted as the overhead product while toluene and phenol
eave as the bottom products. The column was modeled as a RadFrac
nit. The specifications of the distillation column used are listed in
ppendix A, Table 1, and the feed conditions are given in Appendix
, Table 2.
In order to generate time series data, the ASPEN model for the col-

mn was exported to Aspen Dynamics for running dynamic simulations.
he first-principle based mechanistic model has 2403 variables and
848 equations as identified by Aspen Dynamics, however structure of
ll these equations are not known. The dynamics was captured using a
erturbations to the phenol feed rate while the feed mixture flow rate
as kept constant. The phenol feed perturbation was implemented by
xecuting a Task in Aspen Dynamics. The perturbation was a random
ix of step changes, linear ramps and sigmoidal ramps with a time
eriod of 1 h each and amplitudes between 1000 lbmol/hr to 3000
bmol/hr generated randomly with a uniform probability distribution
unction. The simulation was run for 100 h with a calculation step size
f 0.01 h (See details in Section 1, Appendix A) . This allows system
o show dynamics related to changes in extracting agent flow rate. The
oal of SINDy and SymReg was then to extract the governing equations
or predicting the dynamics of whole system in response to these

erturbations using the time series generated from mechanistic model.

4

Table 1
Different operating conditions tested for dynamics equation.
Parameter System 1 System 2 System 3 System 4

Reflux Ratio 6 8 8 8
Toluene Feed 200 200 200 400
MCH Feed 200 200 400 200

Valid range of phenol flow rates were obtained through sensitivity
analysis (Appendix A, Fig. 1).

Operating Conditions : In order to define the system, the following
variables were fixed as operating condition parameters : Reflux ratio,
toluene feed rate, MCH feed rate, distillation column sizing, tray ge-
ometry, reboiler geometry and sizing, condenser geometry and sizing,
reboiler duty and condenser heat transfer coefficients. These conditions
play a crucial role in operation of selected distillation column hence
fixing these parameters would allow us to identify the governing equa-
tions for mechanisms that drive the dynamics of flow streams. Further,
in order to test the robustness of the equations extracted, the structure
of the obtained equations were compared across different operating
conditions obtained by altering some of these parameters. The different
operating conditions tested are listed in Table 1 which forms four
different systems for which governing equations have been extracted.

State Variables of the System : To study the dynamics, we selected
the set of state variables which change with the perturbations and are
not fixed as operating conditions. Hence, from the ML algorithm, the
result will be a system of ODEs that can describe the evolution of
the whole system as state space dynamics for these variables. For the
system under consideration, we initially chose the following variables
as state space variables : overhead stream temperature (𝑇𝑂𝑃𝑇 ), over-
head stream Phenol flow rate (𝑇 𝑜𝑝Ph), OVERHEAD Stream — Toluene
Flow Rate (𝑇 𝑜𝑝Tol), OVERHEAD Stream — MCH Flow Rate (𝑇 𝑜𝑝MCH),
OTTOMS Stream — MCH Flow Rate (𝐵𝑜𝑡MCH), BOTTOMS Stream —
henol Flow Rate (BotPh), BOTTOMS Stream — Toluene Flow Rate
otTol, BOTTOMS Stream Temperature (BotT), Condenser Duty (Qcond),
eboiler Vapor Flow Rate (Vap Reb), Stage 1/Condenser Pressure (P1),
tage 22/Reboiler Pressure (P22).
These variables hold significance in terms of column requirements

s the equations developed can later be used for studying dynamics of a
pecific extent of separation, quality of product, ensure pressure in the
olumn within safety limits or estimate energy requirements. Hence,
DEs for these variables will make these applications possible.

.2. Data pre-processing (noisy data)

Since, performance of both the methods also depends on the quality
f the data, we filtered the derivatives and variables to remove any
oise by applying numerical differentiation on time series data to
btain the derivatives. In order to test the effect of differentiation on
ny noise present in data, we added a normally distributed white noise
f mean zero and variance based on SNR(Sound to Noise Ratio) of 40 dB
o the simulated data so as to simulate sensor error during industrial
ata collection as seen in Fig. 3(a). But Fig. 3(b) shows that the
umerical differentiation using total variance regularization method
enerated the same differentiated values as the differentiation method
as developed to reduce the effect of noise in the data (Chartrand,
011). Therefore, we perform all the model fitting on original time
eries data obtained from simulation.

. Algorithm implementation, model selection and testing

After selection of state variables and generation of data, the SINDy
lgorithm was implemented in Python 3.6.5 using the libraries - pandas,
umpy, sklearn, scipy, matplotlib and itertools. Similarly the SymReg Al-
orithm was implemented in Python 3.6.5 using the libraries - pandas,
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umpy, sklearn, matplotlib, gplearn (API Version 0.4.1). For both the
lgorithms we have used numerical differentiation with total variance
egularization method developed in (Chartrand, 2011) to obtain the
erivatives of the variables. And have split the time series data in the
atio 3:1:1 for training, cross validation (CV) and testing. The function
election input for both algorithms is as follows :

andidate Functions input to SINDy for Governing Dynamics :
nce the state variables were selected, the next input to the SINDy
lgorithm is the set of candidate functions to capture the dynamics of
ystems. The state variables were first mean shifted and auto scaled
efore generating the candidate functions. We used 360 candidate
unctions of the form given in Eq. (7), which corresponds to second
rder polynomial function built using 𝑥𝑠𝑗 .

fi = x
a(i)1
1 x

a(i)2
2 ⋯ x

a(i)14
14 i = 1, 2… 𝑘

where,
Σ12
j=0a

i
j ≤ 2

−2 ≤ a(i)j ≤ 2

a(i)j ∈ Z

𝑥0 ∶ Perturbed Input

(7)

And 70 candidate functions of the form sin(𝑥𝑗 ), cos(𝑥𝑗 ), 𝑙𝑛(|𝑥𝑗 |), 𝑒𝑥𝑗
and

√

|𝑥𝑗 |∀ 𝑗 = 1, 2…14. These functions were chosen without using
ny strong understanding of the system to check if the algorithm can
ork with very little to no domain knowledge for choosing functions
epresenting dynamics of system.

perator set 𝜁 for SymReg Governing Dynamics : In case of SymReg,
perators where chosen so as to generate similar kind of candidate
unctions mentioned above and at the same time cover a broad set of
athematical functional space. Therefore set 𝜁 includes following rules
or building functional relationship between variables provided : {’add’,
sub’, ‘mul’, ‘div’, ‘sin’, ‘cos’, ‘log’, ‘sqrt’, ‘abs’, ‘neg’, ‘inv’, ‘tan’ }. Using
hese mathematical operations, the algorithm builds functions using the
ariables given to represent the dynamics.

.1. Model selection

Generally, model selection based on highest Cross Validation Accu-
acy for white box machine learning algorithm results in models with
oo many terms making it difficult to interpret their physical meaning
nd resulting in overfitting. Therefore, a penalty for number of terms
s added to balance between accuracy and interpretability.

INDy Model selection: Inline with the above discussion, a selection
core based on model complexity was defined for model selection by
INDy. Based on this fitness score given by Eq. (8), the model with the
ighest score was selected.

𝑙𝑛
(

𝑅2 )

− 𝜆𝑘 (8)
𝐶𝑉

5

n Eq. (8), 𝜆 and 𝜇 are parameters for the score function and 𝑘 denotes
he number of terms in the obtained equation and 𝑅2

𝐶𝑉 is the cross
validation 𝑅2 accuracy. For SINDy, values for both 𝜆 and 𝜇 are based on
IC (Akaike information criterion) calculated for variables that showed
lear elbow plot indicating decline in gain in prediction accuracy for
dding more parameters.

ymReg Model selection: In SymReg similar approach to Eq. (8) was
sed for model selection. Here, the values of 𝜆 and 𝜇 for the fitness
core was determined using the parsimony coefficient parameter that
s the API for SymReg calculates internally 𝜆 and 𝜇 based on parsimony
oefficient parameter.

.2. Model testing and evaluation

The governing equations or models for dynamics extracted from
oth SINDy and SymReg were tested for (a) accuracy of predicting ̇𝐱(𝑡)
iven 𝐱(𝐭) and 𝐮(𝐭), (b) comparison of structure of ODEs for capturing
he mechanisms of dynamics for 4 different systems simulated and
c) comparing the equations obtained from SINDy and SymReg . The
esults of these tests along with their interpretations are available in
ection 6 and Appendix B. The data selection for testing is described
below :

Random Test Data: Tests the accuracy of the developed model on
the 20% data selected randomly and excluded from training.
This gives an idea about the overfitting and the predictive ability
of the model under conditions similar to which the training
data was obtained. Low success under this test could indicate
overfitting during training of model.

ong Time Accuracy: In this testing, the dynamical system is run
for a longer time (250 h) than the training time (100 h) to
generate test data. This will help identify long time dynamic
effects or time based evolution of the system which could have
been missed by the algorithm.

utside Perturbation Region-: In this test, we created a new data set
by changing the feed perturbation region and testing the model
on this new data. This checks if the model was able to capture
the complete mechanism of dynamics of the system so that it can
also perform well outside the perturbation region. Low accuracy
under this test would indicate incompleteness of the model in
terms of missing critical state variables or insufficient candidate
functions.

DE Structural Comparison-: 4 additional system variation were
created as mentioned in Table 1 by altering the operating
conditions. The model was trained on these 4 systems. The
structure of the equations obtained were compared across these
4 systems for similar terms (only for the presence or absence of
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Table 2
SINDy: Training and test 𝑅2 values for the systems 2 & 3.
Variable System 2 System 3

Low regularization High regularization Low regularization High regularization

Train Test N Train Test N Train Test N Train Test N

Top F (𝑥̇0) 0.99 0.986 25 0.979 0.979 14 0.959 0.942 39 0.93 0.897 19
Top T (𝑥̇1) 0.99 0.985 27 0.978 0.977 15 0.965 0.943 36 0.933 0.894 18
Top MCH (𝑥̇2) 0.99 0.986 28 0.979 0.979 14 0.96 0.943 39 0.93 0.898 19
Top Ph (𝑥̇3) 0.282 0.315 6 0.282 0.315 6 0.435 0.389 50 0.377 0.358 40
Top Tol (𝑥̇4) 0.962 0.974 25 0.959 0.969 18 0.954 0.924 41 0.866 0.712 9
Bot T (𝑥̇5) 0.972 0.966 50 0.854 0.835 19 0.875 0.774 60 0.748 0.669 23
Bot MCH (𝑥̇6) 0.975 0.977 45 0.827 0.815 22 0.856 0.772 63 0.698 0.58 22
Bot Ph (𝑥̇7) 0.904 0.871 57 0.718 0.632 23 0.795 0.755 78 0.544 0.495 23
Bot Tol (𝑥̇8) 0.873 0.722 50 0.723 0.5 15 0.77 0.769 63 0.58 0.53 21
Cond Q (𝑥̇9) 0.972 0.956 36 0.958 0.948 14 0.955 0.926 50 0.909 0.858 20
Vap Reb ( ̇𝑥10) 0.914 0.866 37 0.844 0.783 20 0.861 0.822 64 0.686 0.651 20
P1 ( ̇𝑥11) 0.976 0.96 31 0.963 0.939 14 0.952 0.908 32 0.927 0.862 19
P22 ( ̇𝑥12) 0.965 0.948 30 0.947 0.923 16 0.932 0.902 52 0.873 0.812 18
Table 3
SINDy: Training and test 𝑅2 values for the systems 4 & 1.
Variable System 4 System 1

Low regularization High regularization Low regularization High regularization

Train Test N Train Test N Train Test N Train Test N

Top F (𝑥̇0) 0.983 0.957 53 0.944 0.921 21 0.989 0.963 37 0.97 0.955 16
Top T (𝑥̇1) 0.985 0.981 52 0.951 0.951 19 0.989 0.966 40 0.964 0.949 16
Top MCH (𝑥̇2) 0.974 0.963 39 0.942 0.926 20 0.989 0.963 36 0.97 0.955 16
Top Ph (𝑥̇3) 0.624 0.605 34 0.625 0.605 34 0.562 0.565 43 0.511 0.554 30
Top Tol (𝑥̇4) 0.97 0.609 33 0.933 0.704 20 0.892 0.826 8 0.892 0.826 8
Bot T (𝑥̇5) 0.878 0.734 70 0.733 0.696 27 0.98 0.889 41 0.892 0.491 18
Bot MCH (𝑥̇6) 0.832 0.7 67 0.649 0.49 24 0.863 0.794 48 0.759 0.66 31
Bot Ph (𝑥̇7) 0.792 0.493 87 0.792 0.493 87 0.832 0.762 48 0.703 0.504 23
Bot Tol (𝑥̇8) 0.803 0.389 88 0.803 0.389 88 0.952 0.866 30 0.923 0.89 14
Cond Q (𝑥̇9) 0.969 0.964 50 0.935 0.93 18 0.966 0.926 50 0.93 0.904 15
Vap Reb ( ̇𝑥10) 0.889 0.875 67 0.758 0.864 38 0.91 0.843 51 0.822 0.677 21
P1 ( ̇𝑥11) 0.976 0.934 53 0.939 0.901 25 0.982 0.97 43 0.968 0.946 20
P22 ( ̇𝑥12) 0.958 0.935 51 0.91 0.908 21 0.977 0.948 38 0.958 0.906 21
Table 4
SymReg: Training and test 𝑅2 values for the 4 systems.
Variable System 1 System 2 System 3 System 4

Train Test N Train Test N Train Test N Train Test N

Top F (𝑥̇0) 0.717 0.694 2 0.773 0.760 2 0.493 0.471 2 0.680 0.662 2
Top T (𝑥̇1) 0.715 0.672 2 0.687 0.670 2 0.493 0.472 2 0.692 0.654 2
Top MCH (𝑥̇2) 0.714 0.675 2 0.760 0.730 2 0.494 0.471 2 0.551 0.502 2
Top Ph (𝑥̇3) 0.386 0.463 2 0.558 0.433 2 0.414 0.396 2 0.452 0.345 2
Top Tol (𝑥̇4) −0.002 −0.002 1 0.001 0.002 1 −0.011 0.001 1 0.006 0.008 1
Bot T (𝑥̇5) 0.000 0.000 1 0.332 0.296 2 0.000 0.000 1 0.198 0.203 2
Bot MCH (𝑥̇6) 0.000 0.000 1 −0.001 0.000 1 0.189 0.198 2 0.109 0.139 2
Bot Ph (𝑥̇7) 0.254 0.213 2 0.201 0.192 2 0.198 0.210 2 0.001 0.001 1
Bot Tol (𝑥̇8) 0.251 0.202 2 0.260 0.198 2 0.333 0.360 2 0.072 0.073 2
Cond Q (𝑥̇9) 0.689 0.623 2 0.621 0.645 2 0.652 0.602 2 0.431 0.441 2
Vap Reb ( ̇𝑥10) 0.452 0.443 2 0.338 0.314 2 0.326 0.363 2 0.479 0.473 2
P1 ( ̇𝑥11) 0.738 0.737 2 0.772 0.7605 2 0.568 0.523 2 0.640 0.655 2
P22 ( ̇𝑥12) 0.728 0.713 2 0.770 0.748 2 0.989 0.963 2 0.622 0.582 2
terms and not for the similarity of regression coefficients). Our
test hypothesis was that if the algorithm is able to extract the
governing mechanisms for dynamics of the system, irrespective
of the operating conditions, the equation would contain the
same terms and differ only in the parameter values.

. Results and discussions

.1. Derivative predictions : SINDy and symreg in 4 simulated system

Results for testing of extracted DEs to predict 𝑥̇(𝑡) using test data 𝑥(𝑡)
for all 4 simulated systems (Table 1) are shown in Tables 2 and 3 for
SINDy and in Table 4 for SymReg. Interpretations are discussed below.
6

SINDy: In case of SINDy, we trained and tested the models for two
values of 𝛼, corresponding to low and high regularization. Training
and test column for all 4 systems show high accuracy at both high
and low regularization, except for the phenol flow rate in the top
feed (state variable Top Ph). We also observed that reducing the
regularization increases the accuracy in the test data. This trend is seen
across variables and till very small regularization parameter values.
This indicates that we are unable to capture enough information from
the data using the provided candidate functions and number of terms as
accuracy keeps on increasing with lowering regularization that leads to
increasing number of functions included in the model. This could either
indicate insufficient candidate function and state variables or absence
of a low dimensional function space representation for the system.
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Table 5
SINDy: Long Time and testing outside the training perturbation region.
Variable Long time Outside training perturbation

Low 𝛼 High 𝛼 Low 𝛼 High 𝛼

Top F (𝑥̇0) 0.948 0.945 0.778 0.803
Top T (𝑥̇1) 0.953 0.944 0.704 0.817
Top MCH (𝑥̇2) 0.951 0.946 0.819 0.799
Top Ph (𝑥̇3) 0.198 0.198 −0.588 −0.588
Top Tol (𝑥̇4) 0.516 0.523 0 0.19
Bot T (𝑥̇5) 0.95 0.813 −4.94 −0.477
Bot MCH (𝑥̇6) 0.931 0.76 0 0.13
Bot Ph (𝑥̇7) 0.786 0.585 −9.034 −9.034
Bot Tol (𝑥̇8) 0.75 0.514 −30.744 −30.744
Cond Q (𝑥̇9) 0.949 0.922 0.626 0.789
Vap Reb ( ̇𝑥10) 0.852 0.78 −0.498 −1.424
P1 ( ̇𝑥11) 0.868 0.86 0.24 0.783
P22 ( ̇𝑥12) 0.851 0.877 0 0.726

Ways to analyze and possibly overcome this are discussed in Section 7.
However, high accuracy in predicting dynamics of key state variables
such as Top MCH from extracted ODEs even at high regularization
was promising if the goal is to build a simplified predictive models for
dynamics of key state variables.

SymReg: We see that for SymReg the accuracy is low as compared
to SINDy across all variables for all systems because of the simple
form of predicted DEs (2 or 1 term in Equation). Therefore, based
on 𝑅2 accuracy SymReg is underfitting and SINDy performs better
comparatively. This happens because of (1) the spiky nature (close to
zero at most places and with sudden high values in between) of the
derivatives which results in difficult learning for machine learning al-
gorithm and (2) learning difference of SymReg and SINDy as discussed
in Section 6.3.2. Also across all the four systems derivative predictions
for the variables Top Tol (x4), Bot T (x5), and Bot MCH (x6) is bad
, 𝑅2 = 0, that is simple average value is predicted for these variables.
This is because these variable show fast dynamics and that is they reach
steady state faster than other variables. In other words derivatives for
these variables are more spiky than other variables. However, SINDy
performs really well for predicting the dynamics of these variables with
complex function. This shows that SymReg is getting stuck in local
optima (here average value), thus failing to learn the complex function
needed to capture the dynamics of these variables.

Hence, overall we observed that SINDy performed better than Sym-
Reg for predicting the dynamics of most state variables under all four
different operating conditions tested for the distillation column.

6.2. Derivative predictions beyond the training time and outside training
perturbation region: SINDy and symreg

Results in Tables 5 and 6 show the performance of extracted ODEs
from the algorithm for accuracy of predictions beyond the time of train-
ing datasets (long time evolution accuracy) for System 1, for SINDy and
SymReg respectively. It is clearly seen that for long time simulations,
both algorithms give test accuracies similar to those given in Tables 3
and 4 for System 1. Hence, we chose to show only 1 system here, as
he differences in performance will be expected to be similar based on
imilar functions for these algorithms across the systems. In Fig. 4 for
INDy we can see that the model performs well for predicting dynamics
n test data generated from long time simulations beyond the training
ime as indicated by high 𝑅2 value. This is the case for all the variables.
his cements the fact that the evolution of the system with time (if
resent) has been captured well by the extracted DEs. If this were not
he case the model performance would have deteriorated with longer
ests. On the other hand, consistent with lower performance of SymReg,
ig. 5 shows lower prediction accuracy for long term simulations.
Results for outside perturbation region testing for system 1 are also

isted in Tables 5 and 6 for SINDy and SymReg respectively. We find
7

able 6
ymReg: Long time and testing outside the training perturbation region.
Variable Long time Outside training perturbation

Top F (𝑥̇0) 0.681 0.501
Top T (𝑥̇1) 0.663 0.657
Top MCH (𝑥̇2) 0.650 0.510
Top Ph (𝑥̇3) 0.423 0.466
Top Tol (𝑥̇4) −0.004 0.000
Bot T (𝑥̇5) −0.001 0.000
Bot MCH (𝑥̇6) 0.124 0.213
Bot Ph (𝑥̇7) 0.211 0.197
Bot Tol (𝑥̇8) 0.201 0.223
Cond Q (𝑥̇9) 0.489 0.452
Vap Reb ( ̇𝑥10) 0.550 0.482
P1 ( ̇𝑥11) 0.631 0.341
P22 ( ̇𝑥12) 0.638 0.341

that the performance is sub-par in the region outside the training per-
turbation for most of the states for SINDy model as in Fig. 6(b). Also, for
SINDy, with higher regularization, the model marginally improves as
opposed to all the previous observations where the model kept getting
better on the test set with decreasing regularization. This indicates that
the available variables and candidate functions are over-fitting for the
state of the system in the training region. It can also be indicative
of other dynamic regimes present outside the perturbation region,
which can be resolved by including new state variables or candidate
functions to train new models in different perturbation regions that
will allow capturing the dynamics pertinent to that regime. Hence,
this can be used to build piecemeal functions for different regimes
and gain insights into overlapping mechanisms for governing dynamics.
However, it is not clear what range of perturbations will be enough to
capture all dynamic regimes.

In contrast to SINDy, we see that the accuracy for outside the
perturbation for SymReg is at par with basic System 1 and long time
simulation for System 1 (Fig. 7). This indicates that even though
SymReg might be underfitting but the underlying structure identified
by it is valid for outside perturbation range thereby eliminating the
point of other dynamic regime for this outside perturbation range data.
This further validated our observation that SINDy may have over-fitted
for a specific dynamic regime.

6.3. Identified Governing Equations: Structural Comparison and Physical
Interpretations

6.3.1. ODE structural comparison across different systems
The governing Ordinary Differential Equations (ODEs) obtained for

the simulated distillation column under 4 different operating conditions
(Table 1) were compared with each other for similarity in the terms
selected. This comparison can be interpreted as dynamic equivalent
of sensitivity analysis in steady state systems since the results here
depict the impact of changing operating conditions on governing equa-
tions for dynamics in the studied distillation column. We also present
comparison between the equations obtained from SINDy and SymReg.

SINDy: The number of similar terms in ODEs for two levels of regular-
ization along with the total number of terms is provided in Appendix
B, section 2.2. Tables in section 2.2 of Appendix B also have a list
of the terms that were repeated maximum number of times across
the 4 systems tested. If there is a unique governing dynamical law
that determines the overall dynamics of distillation column and SINDy
appropriately captured it, we would expect most of the terms in the
ODEs to be repeated across the system to depict similar driver of
dynamics. However, this was not observed. Hardly 10% of the total
terms were common across 3 systems where the feed compositions were
altered. This could mean that we have not completely described our
system with the current set of states or there is not a truly unique
governing law for overall dynamics of distillation column. We need
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Fig. 4. SINDy Model Performance on Predicting 𝑥̇(𝑡) for Test Data from Long Time Simulations.
Fig. 5. SymReg Model Performance on Predicting 𝑥̇(𝑡) for Test Data from Long Time Simulations.
Fig. 6. SINDy Model Performance on Predicting 𝑥̇(𝑡) for Data Outside Training Perturbation.
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o look for variables which are crucial in deciding the dynamics by
erforming sensitivity analyses on the operating conditions too.

However, by reducing regularization we noticed that the fraction
f terms retained across the systems either increased or remains the
ame in most cases. This indicates that by increasing the number
f candidate functions selected, they are able to explain the model
etter, even if only by a small increment. This result correlates with
he prediction accuracy explained earlier which kept improving with
maller regularization. We also find the same terms repeating across
ll 4 systems more commonly. The system with a different Reflux
atio (which is the only column specification varied, System 1) had
o common terms with other systems under high regularization but
ad an increasing number of common terms under low regularization.
his could further indicate that the system might not be truly sparse
8

n function space, highlighting the possible limitations of using SINDy
n identifying the complex dynamics of unknown system without some
nowledge about functional space that may govern the dynamics of
hese systems. A similar analysis was carried out between the training
et and the test set with phenol feed outside the training perturbation
egion. The results of this analysis are listed in Table 7

SymReg: Table 8 contains common form of derivative equations ob-
tained across all the 4 systems. We observed that for most of the state
variables the ODE had structure of the form in Eq. (9).

̇ = 𝑐 ∗ (𝑥𝑎 − 𝑥𝑏) (9)

where c is some constant. Similar structures were obtained even after
increasing the population size at each generation and depth of initial
generation. Across all the systems, variable Cond Q (𝑋̇ ) had ODE
9
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able 7
INDy: Structural similarity of ODEs.
Variable Low 𝛼 High 𝛼

Common Total Common Total

Top F (𝑥̇0) 5 23 5 14
Top T (𝑥̇1) 4 24 1 3
Top MCH (𝑥̇2) 7 28 4 14
Top Ph (𝑥̇3) 1 6 1 6
Top Tol (𝑥̇4) 13 28 5 18
Bot T (𝑥̇5) 18 39 5 16
Bot MCH (𝑥̇6) 21 39 3 18
Bot Ph (𝑥̇7) 19 35 6 13
Bot Tol (𝑥̇8) 21 37 4 12
Cond Q (𝑥̇9) 13 36 3 14
Vap Reb ( ̇𝑥10) 17 35 5 17
P1 ( ̇𝑥11) 5 30 3 9
P22 ( ̇𝑥12) 17 34 3 11

Table 8
SymReg: Structural similarity of ODE’s.
Variable Common form

Top F (𝑥̇0) 𝑥5 − 𝑥10
Top T (𝑥̇1) 𝑥5 − 𝑥10
Top MCH (𝑥̇2) 𝑥5 − 𝑥10
Top Ph (𝑥̇3) 𝑥5 − 𝑥10
Top Tol (𝑥̇4) 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
Bot T (𝑥̇5) 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
Bot MCH (𝑥̇6) 𝑥5 − 𝑥10
Bot Ph (𝑥̇7) 𝑥5 − 𝑥10
Bot Tol (𝑥̇8) 𝑥5 − 𝑥10
Cond Q (𝑥̇9) 𝑥10 − 𝑥5
Vap Reb ( ̇𝑥10) 𝑥5 − 𝑥10
P1 ( ̇𝑥11) 𝑥5 − 𝑥10
P22 ( ̇𝑥12) 𝑥5 − 𝑥10

structure in negation of other state variables. This clearly indicates
that whenever value of Top F or Top T increased based on Phenol
perturbation then Cond Q value decrease and vice versa. Such simple
interpretative results can be seen directly from simple white-box mod-
els. Structure for Top Tol (𝑋̇4) and Bot T (𝑋̇5) had a constant predicted
for all the four systems. These constants corresponded to the average
value of these state variables. Overall, SymReg shows more similarity
across systems for capturing dynamics of variables than SINDy.

ODE Structural Comparison for SINDy vs SymReg : Our next com-
parison focused on comparing the equations obtained for same state
variable from SINDy and SymReg. Fig. 8 shows the dynamics prediction
for 𝑥2 (Top MCH) using the equation obtained from SINDy (Eq. (10))
and SymReg (Eq. (11)). It can be seen in Figure that SINDy performs
better on prediction of dynamics with low RMSE while SymReg has
 t

9

high RMSE. SymReg captures the pattern but misses on the magnitude
by large values. However, the SINDy equation is much more complex
and may be overfitting and has low interpretability while SymReg
is clearly underfitting and has easier interpretability. According to
SymReg (Eq. (11)), the dynamics of Top MCH flow is determined by
bottom Toluene and vapor flow rate in reboiler which simply means
that the flow rate of MCH obtained as top product is determined by how
much toluene is extracted in bottom and reboiling returning vapor to
the column. Such simplistic understanding of dynamics was not feasible
for SINDy equations.

𝑥̇2−𝑆𝐼𝑁𝐷𝑦 = 0.409𝑥10𝑥−112 − 0.01188𝑥8𝑥13 − 0.6272𝑥8𝑥−112 − 1.278𝑥6𝑥−18 −

0.3459𝑥28+0.05691𝑥5𝑥
−1
8 + 0.04383𝑥−14 𝑥−13 + 0.1908𝑥4𝑥6 + 0.03016𝑥−13 𝑥−113+

0.06078𝑥−13 𝑥−111 − 0.1535𝑥−10 𝑥8 − 0.03093𝑠𝑖𝑛(𝑥4)−

0.0147𝑠𝑖𝑛𝑥6 − 0.002557𝑐𝑜𝑠𝑥4 (10)

𝑥̇2−𝑆𝑦𝑚𝑅𝑒𝑔 = 𝑥5 − 𝑥10 (11)

.3.2. Why symreg can generate simpler functions as compared to SINDy ?
In SINDy a single model function (comprising of all candidate func-

ions of all state variables) is optimized. Whereas in SymReg multiple
odels functions (parse trees) generated from either some or all the
tate variables are optimized. For example in Fig. 9 the spiked shaped
igure indicates the objective function space of a sparse model function.
n Fig. 9(a) the SINDy model function (dotted circle) consists of all the
tate variables (here two) which is then optimized, The complete circle
optimized model) is stuck at the point of local optima (red circle). In
ig. 9(b) SymReg generates multiple initial model functions consisting
f either some of the state variables (two dotted models on both the
xis) or all state variables. Those functions are evolved until one of
hem reaches a local optima (red circle). Since smaller model functions
re generated therefore there is a chance that smaller model functions
an also reach local optimum which is selected if the overall prediction
ccuracy is best among the selected trees.

.4. Physical interpretation of ODEs

In order to relate the extracted ODEs to a governing physical law
or dynamics of distillation column, structure of ODEs was analyzed
or System 2 (Equations under high regularization and are shown
n Appendix B, section 2.1). While these ODEs are very complex to
nterpret for a single physical law, it is still a win for representing the
ynamics of this system using one equation for each state variable as
ompared to over 1000 complex equations that relate the dynamics
f system. However, there was no direct interpretation of most of the

erms in physical sense for both the models.
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Fig. 8. Comparison of SINDy and SymReg for derivative prediction based on RMSE and parsimony.
Fig. 9. Working depiction of both the algorithms, dotted lines are initial model functions, and red circle indicates local optima. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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For SINDy some of the terms such as 𝑠𝑖𝑛(𝑇 𝑜𝑝𝑇 𝑜𝑙) which represents
sin of Toluene concentration in Top flow is physically not interpretable.
Some of the commonly recurring terms that we found physically rel-
evant were: 𝐶𝑜𝑛𝑐2 which basically meant that second order terms
in concentration were found relevant for controlling the dynamics.
These second order terms were related to the possible diffusion of
two components or cross diffusion driving the dynamics. This can
be because of fick’s law of diffusion acting on both the component
involved. For example one of the terms in Appendix B, section 2.1
is 𝐵𝑜𝑡𝑀𝐶𝐻∕𝐵𝑜𝑡𝑇 𝑜𝑙 which is the ratio of concentration of MCH and
Toluene in bottom flow. Appearance of this term in the equation driving
the MCH in top stream denotes some relationship between diffusivity
difference of MCH and Toluene in the extracting component Phenol.
While the form of equation is surprising because the functional form did
not give the fick’s law of diffusion which actually needs concentration
variation rather than just concentration, the appearance of this term
provides some hope of these data driven approaches to learn about
the governing mechanisms of dynamics in unknown complex systems.
Another term that we related to a physical law is ratio of concentration
and Pressure such as the terms of form 𝐵𝑜𝑡𝑇 𝑜𝑙∕𝑃22. This term represents
concentration of Toluene in bottom feed and pressure of the last plate.
We related this term to the Henry’s law which relates concentration
of a solute in liquid phase to the partial pressure of the solute in gas
phase. This term probably represents the relationship that the dynamics
of extraction is driven by concentration in bottom stream for toluene
which is related to the pressure on plates where the component may
exist in vapor phase.
10
For SymReg, the form of Eq. (9) makes it clear that difference of
those two variables is changing at the same instance as 𝑥̇𝑠 (of most of
he state variables). Though the magnitude of spike is not learned by
his simple form of SymReg algorithm. For example in Fig. 9(b), 𝑥̇2 for
system 3 is predicted as x5-x10. Looking at the variables it states that

̇𝑇 𝑜𝑝𝑀𝐶𝐻 = 𝐵𝑜𝑡𝑇 − 𝑉 𝑎𝑝𝑅𝑒𝑏, that is change in flowrate = temperature
- Energy. Though it makes sense that the flowrate of component will
be effected by temperature and energy provided or based on flowrate
and temperature, energy required can be calculated but here the model
does not provide more further interpretation. Hence, SymReg provides
a minimal equation that captures the dynamics well but does not
provide complex relationships between different governing variables.
Perhaps, a parsimonious physical relationship is derived between the
key variables driving the dynamics which can be useful for the goal of
predicting dynamics but not understanding the full mechanisms driving
the dynamics.

Overall the gas–liquid mass transfer in these type of complex sys-
tems are interconnected and complex, hence it is difficult to pin-point
one single mechanism driving dynamics. However, it is encouraging to
see some functional forms that may be related to physical laws being
picked up by SINDy in these equations and simple equation in SymReg
that have key driving variables. We conclude from these observations
that in order to be able to identify the laws for complex engineered
systems such as distillation column, better functional formulation rules
incorporating domain knowledge must be developed to be used with
properly tweaked machine learning algorithms. SINDy will be preferred
in such cases as it performed well in capturing these complex functions.
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In case, no underlying functional law is available, we believe SymReg
will be a good starting algorithm to understand the relationship for key
variables driving the dynamics.

7. Conclusions

In this work, we have demonstrated the strengths and limitations of
machine learning (ML) based approach to identify governing equations
for dynamics of complex manufacturing systems such as distillation
column. Comparison of two widely used white-box ML approaches —
SINDy and SymReg on extracting distillation column dynamics, shows
promising results for prediction of dynamics using the model extracted
from data which is simpler to interpret. On comparison for prediction
of dynamics it was observed that SINDy performs better in prediction
than SymReg based on 𝑅2 values. The results for prediction using ODEs
xtracted by SINDy on the test data generated from mechanistic models
ere very encouraging with most variables showing more than 80%
ccuracy. However, outside the perturbation range, the equations did
ot perform very well which may be because of the change in dynamic
egime. If the training data set only captured a particular dynamic
egime, it cannot capture the dynamics in a different regime. However,
his is still an un-resolved question from mechanistic perspective, that if
Es capture true physical mechanisms this should provide insights into
mpending regime change as well. On the other hand, while SymReg
howed lower prediction power as compared to SINDy, it gave much
impler equations for dynamics and performed better than SINDy on
utside perturbation range. This may be due to overfitting during
raining the model using complex functions in SINDy while SymReg
tarts from simpler function.
From physical interpretation perspective of the equations obtained,

n SINDy, it was encouraging to see terms such as 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛2 and
atio of concentration with pressure. The prior can be related to fick’s
aw of diffusion for two components in the column whereas the later
an be related to the Henry’s law controlling the solubility of the
omponents in the mixture controlled by pressure at different plates
n the column. In comparison, some of the SymReg equations can be
elated to conservation laws like energy conservation but not much can
e interpreted due to the simplicity except for the basic variables that
ay be driving the dynamics.
Overall, with SINDy being overfitting and SymReg being underfit-

ing, some crucial state variables or functional forms might be being
issed in these algorithms. However, if the aim of the work is to obtain
impler equations that can capture the overall non-linear dynamics for a
articular system, the algorithms perform well for predicting dynamics
ith reasonable accuracy. Additionally, it was clearly seen that SINDy
utperformed SymReg except in case of outside perturbation range
redictions. But, in order to understand the true underlying phys-
cal mechanisms governing dynamics, the SINDy algorithm perhaps
eed to be provided with functional forms determined by domain
xpert and SymReg must be tweaked to generate these complex forms.
uch an approach was used in identifying the reaction kinetics equa-
ions (Hoffmann et al., 2019), where the authors provided functional
orm determined by ‘‘law of mass action’’ which is a known physical
aw that drives rate kinetics and mechanisms. To improve on the
istillation column differential equation identification, such knowledge
bout relationship between top and bottom feed, temperature and
ressure need to be used to construct appropriate functions. This is
hallenging for the distillation column system because there are several
euristic based equations that are used in design of the separation
ystem along with iterative numerical computations that utilize mass
nd energy balances at plate scale, highlighting some limitations of
L approach for identifying mechanisms for complex manufacturing
ystems.
One interesting finding from extracting these DEs is the simplified

elationship that was obtained between component flow rate in top
tream to the component flow rates in the bottom flow rate along
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with the pressure of last plate by SINDy. In actual distillation column
design, there is a mass balance equation solved for each plate that
finally relates the component concentration in top stream to the bot-
tom stream. Use of this one simplified equation captures this whole
dynamics. Hence, we conclude this to be one of the major strength
of machine learning approach for analyzing the dynamics of manu-
facturing unit operation. Based on the accuracy of prediction within
certain time steps, a moving time window to train the model would be
more appropriate. Our expectation of SINDy and SymReg generating
same governing equations may also be far fetched, given both these
algorithms use different approach to capture dynamics. However, the
simple equations generated can be used complementary to identify key
variables for overall dynamics of unknown system using SymReg and
key functions (from set of expected functions) to capture the dynamics
using SINDy.

In summary, different ML algorithms may need to be used in parallel
to discover the laws of dynamics for complex systems. While, we
cannot claim that ML is a panacea to identifying governing equations
for mechanisms driving the dynamics of complex unit operations, this
study certainly shows the strength of ML in identifying equations
that can be very useful for predicting dynamics. The key challenge is
providing appropriate functions and mathematical rules using domain
knowledge to the algorithm. Such integration of ML and chemical
engineering sciences will be powerful in understanding dynamics of
novel complex systems along with using this knowledge for robust
design and operations of emerging manufacturing systems.
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